
Towards an Integrated Development tool for GA

and a symbolic CGA implementation based on

CasADi for application in robotics.

Oliver Rettig, Fabian Hinderer, and Marcus Strand

Robot-and-Human-Motion-Lab (RaHM-Lab), DHBW-Karlsruhe
(Baden-Wuerttemberg Cooperative State University), Germany

Oliver.Rettig@dhbw-karlsruhe.de
https://www.karlsruhe.dhbw.de/rahmlab

Summary of the Abstract

With CasADi1 a framework for nonlinear optimization, optimal control
and model predictive control is available and very popular in robotics re-
search and applications. It employs a very fast acyclic graph modeling
structure. The aim of this project is to simplify modelling with geomet-
ric algebra (GA) not only in the context of robotics by providing a GA
library based on CasADi and by full GA tool integration into the Apache-
Netbeans IDE2. The latter is an integrated development environment with
syntax-highlighting and debugging functionality. The conference contri-
bution will be to present and discuss the current state of the project and
the direction of further developments.

Introduction
There is increased interest in usage of geometric algebra for modelling and im-
plementing algorithms in robotics as can be seen in the number of publica-
tions about applications e.g. listed in [4]. Their applications range from DH-
parameters determination [3] and symbolic implementations of inverse kinemat-
ics algorithms, e.g. [9] and ends up in complex algorithms for solving optimal
control problems [11] or identification of singularities [10]. With Garamon3 or
Gaalop4 generators for fast GA libraries are available and with Gaalop3 and
Ganja.js5 there are also web-based tools available which facilitates a lot exper-
imenting and starting to learn geometric algebra.

The aim of this project is to bring together fast GA implementations for
real world robotics applications and the need for simplification the process of
modelling with GA not only for newcomers in GA. To do this the development

1 https://web.casadi.org/ 2 https://netbeans.apache.org
3 https://github.com/vincentnozick/garamon 4 http://www.gaalop.de/
5 https://enkimute.github.io/ganja.js

1

https://web.casadi.org/
https://netbeans.apache.org
https://github.com/vincentnozick/garamon
http://www.gaalop.de/
https://enkimute.github.io/ganja.js


Figure 1: Geometric algebra inside the Netbeans IDE.

of a new domain specific language for geometric algebra (GA DSL) is started
[3] and integrated into the Apache Netbeans IDE2 combined with a fast imple-
mentation based on CasADi1 a popular libaray in the field of robotics. This
makes calculation of the Jacobian and Hessian matrices available by automatic
differentiation.

The conference contribution will be to present and discuss the current state
of the project and the direction of further developments.

Software Architecture
The idea of the software architecture is to create a modular framework, which
allows to combine components to work with GA based on plain Java alone or
with support of the Apache-Netbeans-IDE.

Furthermore it supports a new GA DSL, which is isolated from the GA im-
plementation allowing to switch between different GA libraries. With GACal-
cAPI 6 a service provider interface (SPI) is established to integrate symbolic
GA implementations. Its default implementation CGACasADi7 allows to gen-
erate c-code without any dependencies to any library. Thus it is possible to use
generated implementations of GA based algorithms outside the Java world.

With Euclid3DViewAPI 8 a SPI is provided to integrate 3D visualisation
tools. Euclid3D9 is its default implementation based on JZY3D10. This imple-
mentation allows to visualize simple geometric objects like points, lines, planes,
spheres ... together with complex objects defined by shapes read from external

6 https://github.com/orat/GACalcAPI 7 https://github.com/orat/CGACasADi
8 https://github.com/orat/Euclid3DViewAPI 9 https://github.com/orat/EuclidView3d
10 http://www.jzy3d.org/

2

https://github.com/orat/GACalcAPI
https://github.com/orat/CGACasADi
https://github.com/orat/Euclid3DViewAPI
https://github.com/orat/EuclidView3d
http://www.jzy3d.org/


files like robots. Euclid3D is not fast enough to visualize simulations due to
some limitations of JZY3D. That’s why it is planed to integrate external visu-
alizers like the one from ganja.js or Webots11 the new default one from ROS2 12

the robot operating system which is very popular in the scientific community of
robotics research.

A domain specific language for GA (GA DSL)
Different to the operator syntax of the script languages (e.g. CluScript13,
GaalopScript) Unicode additional to simple ASCII characters symbols (see tab.
1) are used. This improves readability. The geometric product (gp) is rep-
resented by a simple space character. This is common in mathematical text
books but an implementation of a corresponding syntax parser has turned out
as much more complex than the usage of a printable symbol as done by existing
geometric algebra scripting languages. Functions can be defined in the DSL
itself to extend the build-in ones. Further language structures and especially a
GA specific type system which allows to define subtypes of multivectors inside
the DSL itself and structures to work with matrices of multivectors are planned.

Implementation of a generator to build an opti-
mized calculation graph
A CasADi (acyclic) graph is build up automatically from the geometric algebra
expressions formulated in the GA DSL at compile time. The generator (in the
sense of [13]) CGACasADi7 is implemented in Java and it uses JCasADi1 a
Java-Wrapper for CasADi, which we have build with help of Swig14.

The gp is based on a geometric model specific cayley-table formulation. The
further products (left- and right contraction the outer-, inner-, dot- and scalar-
product (definition following [7]) are based on the gp and a grade selection
operator. The linear operators dual/undual, reverse, conjugate and grade in-
volution are implemented model free based on matrix formulations. Non linear
operators are implemented symbolically and specific for the conformal model
only. Exponentiation is implemented without usage of taylor series following
[5] and [6] for bivectors only. Normalization and square roots are implemented
following [2]. The inverse and constitutive the (right) division operator are im-
plemented following [1]. Additional, for versor only arguments, a generic model
free implementation is provided.

Implementation of a Java-Wrapper to use CasADi
CasADi is a fairly huge library and written in C++. To use in Java a way to
call functions of compiled native libraries is needed.

The mapping between languages itself is non-trivial due to the differences
between them. This spans from syntactical properties like multiple inheritance
and operator overloading, which both is supported in CC++ and not in Java,
to subtle implementation details like that a C++ template definition won’t be

11 https://cyberbotics.com/ 12 https://docs.ros.org/en/rolling/
13 https://clucalc.software.informer.com 14 https://www.swig.org/

3

https://cyberbotics.com/
https://docs.ros.org/en/rolling/
https://clucalc.software.informer.com
https://www.swig.org/


Precedence Symbol Unicode code-points Description

dot(X) dot product
scp(X) scalar product

negate14(X) neg. 1. and 4. grade
6 X* \u002A dual
6 X-* \u207B \u002A undual
6 X˜ \u02DC reverse
6 X� \u2020 Clifford conjugate
6 X∧ \u005E grade involution
5 −X \u002D negate

4 (space) \u0020 geometric product
3 ∧ \u2227 outer product
3 ∨ \u2228 regressive product
3 ⌋ \u230B left contraction
3 ⌊ \u230A right contraction
3 · \u22C5 inner product
1 + \u002B sum
1 − \u002D difference

⟨X⟩p ⟨= \u003C, ⟩= \u003E extraction of grade p

normalize(X) (euclidean) normalize
norm(X) euclidean norm
sqrt(X) square root
exp(X) exponentiation
atan2(X) atan2 (for scalar only)

6 X-1 \u207B \u00B9 inverse
2 / \u002F right division (inv. gp)
6 X2 \u00B2 square
3 ∩ \u2229 meet
3 ∪ \u222A join

ϵ0 \u03B5 \u2080 origin ⟨ϵ0⟩
ϵ1 \u03B5 \u2081 x ⟨ϵ1⟩
ϵ2 \u03B5 \u2082 y ⟨ϵ2⟩
ϵ3 \u03B5 \u2083 z ⟨ϵ3⟩
ϵi \u03B5 \u1D62 infinity⟨ϵi⟩
ϵ+ \u03B5 \u208A ϵ0 +

1
2ϵi

ϵ− \u03B5 \u208B 1
2ϵi − ϵ0

π \u03C0 3.1415...

Table 1: 1. Linear- , 2. non-linear operators/functions, 3. predefined sym-
bols: The given Unicode code-points are used in the GA DSL to get the shown
symbols. A higher precedence number results in a higher binding strength.

4



compiled into the binary or that C++ uses monomorphization for template
instances while Java uses type erasure for its generics. JNI the standard way
to implement a wrapper around native code by manually programming is error-
prone, cumbersome and time-consuming. That’s why we utilize Swig14 to create
glue code semi-automatically. Swig provides a lot of support doing the mapping,
however it can still be complex and time consuming to create a working and
correct mapping. CasADi uses multiple C++ specific features in its public API.
And although it provides a Swig file aimed at Python, Matlab and Octave, this
was not of much use due to being not easily comprehensible and not very much
suitable for a statically typed language like Java.

JCasADi15 is our-Java wrapper of CasADi. Primarily due to the lack of
operator overloading in Java it is slightly more laborious to be used directly
in comparison to the Python version. However its usage is hidden for the end
user, has been proven useful in the implementation of CGACasADi7 and works
stable so far.

Integration into the Apache-Netbeans-IDE
The Apache-Netbeans-IDE2 has a very modular structure and provides many
APIs to plugin additional functionality. Semantic syntax highlighting and
braces matching of the GA DSL is implemented by providing a TextMate
file so far based on TextMate Lexer16 but an implementation based on the
Language-Server-Protocol17 to reach more flexibility is already planned. This
will also allow code completion, code snippets, error squiggles and apply
suggestions from errors just like general snippets.

Our GA DSL is based on a AntLR grammar18. To integrate the CasADi
expression graphs (created from this at compile time) into the Netbeans Debug-
ger infrastructure is difficult. That´s why we have implemented a second GA
implementation based on the same AntLR grammar using the Truffle language
implementation framework 19. This allows automagically polyglot debugging
starting from Java-code into our DSL with the default Netbeans debugger.

Next steps
It is an ongoing project. The next big steps at the time of writing this abstract
are implementing the type system of the DSL and extentions for working with
matrices. Furthermore there is a long wishlist specific for GA implementation
code generation and optimizations:

� Hyperwedge product implementation following [8] to speed up CGACasADi
� Symbolic optimization with Maxima20

� c-code export and parallelization with CasADi
� Using metric matrices to define the ga model instead of cayley-tables
� Completion of CGA implementation based on extended Vahlen matrices
following [12]

15 https://github.com/MobMonRob/JCasADi 16 https://bits.netbeans.org/dev/javadoc/org-netbeans-modules-textmate-lexer/overview-summary.html
17 https://en.wikipedia.org/wiki/Language_Server_Protocol
18 https://www.antlr.org/ 19 https://www.graalvm.org
20 https://maxima.sourceforge.io/

5

https://github.com/MobMonRob/JCasADi
https://bits.netbeans.org/dev/javadoc/org-netbeans-modules-textmate-lexer/overview-summary.html
https://en.wikipedia.org/wiki/Language_Server_Protocol
https://www.antlr.org/
https://www.graalvm.org
https://maxima.sourceforge.io/


� ...

References
[1] E. Hitzer and S. Sangwine, Multivector and multivector matrix inverses in

real Clifford algebras., In Appl Math Comput., 311, pages 375-389, 2017.

[2] S. De Keninck and M. Roelfs, Normalization, Square Roots, and the Ex-
ponential and Logarithmic Maps in Geometric Algebras of Less than 6D. In
Math Meth Appl Sc., pages 1-17, 2022.

[3] O. Rettig, F. Hinderer and M. Strand, Application of Conformal Geometric
Algebra in Robotics: DH-Parameters Extraction from Joint Axes Poses, In
IAS Society: Proceedings of the 18th International Conference on Intelligent
Autonomous Systems IAS-18: Suwon, Korea, pages 4–7, 2023.

[4] E. Hitzer, M. Kamarianakis, G. Papagiannakis and P. Vasik, Survey of New
Applications of Geometric Algebra, In Math Meth Appl Sc., 2023.

[5] M. Roelfs, S. de Keninck, Graded Symmetry Groups: Plane and Simple, In
Adv. Appl. Clifford Algebras., 33, 30, 2023.

[6] A. Dargys and A. Acus, Exponentials of general multivector (MV) in 3D
Clifford algebras. In Nonlinear Anal.: Model. Control., 27, 1, 2022.

[7] L. Dorst, C. Doran, J. Lasenby, The Inner Products of Geometric Algebra.
In Appl of Geometric Algebra in Comp Sc. and Eng, Chapter, 2002.

[8] S. De Keninck and L. Dorst, Hyperwedge. In CGI 2020, LNCS 12221, pages
549-554, 2020.

[9] A. Kleppe and O. Egeland, Inverse Kinematics for Industrial Robots using
Conformal Geometric Algebra, In Modeling, Identification and Control, 37,
1, pages 63-75, 2016.

[10] I. Zaplana, H. Hadfield and J. Lasenby, Singularities of serial robots: Iden-
tification and distance computation using geometric algebra, In Mathematics,
10, 2068, 2022.

[11] T. L”ow and S. Calinon, Geometric Algebra for Optimal Control With
Applications in Manipulation Tasks, In IEEE Transactions on Robotics, 99,
pages 1-15, 2022.

[12] L. Dorst Conformal geometric algebra by extended Vahlen matrices, In
GraVisMa 2009 Workshop proceedings, pages 72-79, 2009

[13] K. Czarnecki and U. W. Eisenecker, Generative Programming - Methods,
Tools, and Applications, Addison-Wesley Pub Co, 2000.

6


