
Clifford Group Equivariant Neural Networks

David Ruhe
AI4Science Lab, AMLab, API

University of Amsterdam
david.ruhe@gmail.com

Johannes Brandstetter
Microsoft Research

AI4Science
brandstetter@ml.jku.at

Patrick Forré
AI4Science Lab, AMLab
University of Amsterdam
p.d.forre@uva.nl

1 Introduction

Incorporating group equivariance to ensure symmetry constraints in neural networks has been a highly
fruitful line of research [14, 55, 15, 39, 52, 54, 18, 9, 53, 11]. Besides translation and permutation
equivariance [58, 45], rotation equivariance proved to be vitally important for many graph-structured
problems as encountered in, e.g., the natural sciences. Applications of such methods include modeling
the dynamics of complex physical systems or motion trajectories [34, 8]; studying or generating
molecules, proteins, and crystals [42, 27, 12, 46, 59, 50, 4]; and point cloud analysis [56, 51]. Note
that many of these focus on three-dimensional problems involving rotation, reflection, or translation
equivariance by considering the groups O(3), SO(3), E(3), or SE(3).

Such equivariant neural networks can be broadly divided into three categories: approaches that
scalarize geometric quantities, methods employing regular group representations, and those utilizing
irreducible representations, often of O(3) [28]. Scalarization methods operate exclusively on scalar
features or manipulate higher-order geometric quantities such as vectors via scalar multiplication
[46, 16, 35, 37, 44, 31, 23, 47, 17, 29, 48]. They can be limited by the fact that they do not extract
all directional information. Regular representation methods construct equivariant maps through an
integral over the respective group [14, 39]. For continuous Lie groups, however, this integral is
intractable and requires coarse approximation [19, 6]. Methods of the third category employ the
irreducible representations of O(3) (the Wigner-D matrices) and operate in a steerable spherical
harmonics basis [49, 2, 22, 8, 5]. This basis allows a decomposition into type-l vector subspaces
that transform under Dl: the type-l matrix representation of O(3) [40, 21]. Through tensor products
decomposed using Clebsch-Gordan coefficients (Clebsch-Gordan tensor product), vectors (of different
types) interact equivariantly. These tensor products can be parameterized using learnable weights.
Key limitations of such methods include the necessity for an alternative basis, along with acquiring
the Clebsch-Gordan coefficients, which, although they are known for unitary groups of any dimension
[32], are not trivial to obtain [1].

We propose Clifford Group Equivariant Neural Networks (CGENNs): an equivariant parameterization
of neural networks based on Clifford algebras. Inside the algebra, we identify the Clifford group
and its action, termed the (adjusted) twisted conjugation, which has several advantageous properties.
Unlike classical approaches that represent these groups on their corresponding vector spaces, we
carefully extend the action to the entire Clifford algebra. There, it automatically acts as an orthogonal
automorphism that respects the multivector grading, enabling nontrivial subrepresentations that
operate on the algebra subspaces. Furthermore, the twisted conjugation respects the Clifford algebra’s
multiplicative structure, i.e. the geometric product, allowing us to bypass the need for explicit tensor
product representations. As a result, we obtain two remarkable properties. First, all polynomials in
multivectors generate Clifford group equivariant maps from the Clifford algebra to itself. Additionally,
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Figure 1: CGENNs (represented with ϕ) are able to operate on multivectors (elements of the Clifford
algebra) in an O(n)- or E(n)-equivariant way. Specifically, when an action ρ(w) of the Clifford
group, representing an orthogonal transformation such as a rotation, is applied to the data, the model’s
representations corotate. Multivectors can be decomposed into scalar, vector, bivector, trivector, and
even higher-order components. These elements can represent geometric quantities such as (oriented)
areas or volumes. The action ρ(w) is designed to respect these structures when acting on them.

grade projections are equivariant, allowing for a denser parameterization of such polynomials. We
then demonstrate how to construct parameterizable neural network layers using these properties.

Our method comes with several advantages. First, instead of operating on alternative basis repre-
sentations such as the spherical harmonics, CGENNs (similarly to scalarization methods) directly
transform data in a vector basis. Second, multivector representations allow a (geometrically mean-
ingful) product structure while maintaining a finite dimensionality as opposed to tensor product
representations. Through geometric products, we can transform vector-valued information, resulting
in a more accurate and nuanced interpretation of the underlying structures compared to scalarization
methods. Further, we can represent exotic geometric objects such as pseudovectors, encountered
in certain physics problems, which transform in a nonstandard manner. Third, our method readily
generalizes to orthogonal groups regardless of the dimension or metric signature of the space, thereby
attaining O(n)- or E(n)-equivariance. These advantages are demonstrated on equivariance bench-
marks of different dimensionality. Note that specialized tools were developed for several of these
tasks, while CGENNs can be applied more generally.

2 Methodology

We restrict our layers to use F := R. Our method is most similar to steerable methods such as [8].
However, unlike these works, we do not require an alternative basis representation based on spherical
harmonics, nor do we need to worry about Clebsch-Gordan coefficients. Instead, we consider simply
a steerable vector basis for V , which then automatically induces a steerable multivector basis for
Cl(V, q) and its transformation kernels. By steerability, we mean that this basis can be transformed
in a predictable way under an action from the Clifford group, which acts orthogonally on both V and
Cl(V, q) (see Figure 1).

We present layers yielding Clifford group-equivariant optimizable transformations. It is worth
mentioning that the methods presented here form a first exploration of applying our theoretical results,
making future optimizations rather likely.

Linear Layers Let x1, . . . , xℓ ∈ Cl(V, q) be a tuple of multivectors expressed in a steerable basis,
where ℓ represents the number of input channels. Using the fact that a polynomial restricted to the
first order constitutes a linear map, we can construct a linear layer by setting

y(k)cout
:= T lin

ϕcout
(x1, . . . , xℓ)

(k) :=

ℓ∑
cin=1

ϕcoutcink x
(k)
cin

, (1)

where ϕcoutcink ∈ R are optimizable coefficients and cin, cout denote the input and output channel,
respectively. As such, Tϕ : Cl(V, q)ℓ → Cl(V, q) is a linear transformation in each algebra subspace
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k. Recall that this is possible due to the result that ρ(w) respects the multivector subspaces. This
computes a transformation for the output channel cout; the map can be repeated (using different sets of
parameters) for other output channels, similar to classical neural network linear layers. For y(0)cout ∈ R
(the scalar part of the Clifford algebra), we can additionally learn an invariant bias parameter.

Geometric Product Layers A core strength of our method comes from the fact that we can also
parameterize interaction terms. In this work, we only consider layers up to second order. Higher-order
interactions are indirectly modeled via multiple successive layers. As an example, we take the pair

x1, x2. Their interaction terms take the form
(
x
(i)
1 x

(j)
2

)(k)

, i, j, k = 0, . . . , n; where we again make
use of the fact that ρ(w) respects grade projections. As such, all the grade-k terms resulting from the
interaction of x1 and x2 are parameterized with

Pϕ(x1, x2)
(k) :=

n∑
i=0

n∑
j=0

ϕijk

(
x
(i)
1 x

(j)
2

)(k)

, (2)

where Pϕ : Cl(V, q)× Cl(V, q) → Cl(V, q). This means that we get (n+ 1)3 parameters for every
geometric product between a pair of multivectors1. Parameterizing and computing all second-order
terms amounts to ℓ2 such operations, which can be computationally expensive given a reasonable
number of channels ℓ. Instead, we first apply a linear map to obtain y1, . . . , yℓ ∈ Cl(V, q). Through
this map, the mixing (i.e., the terms that will get multiplied) gets learned. That is, we only get ℓ
pairs (x1, y1), . . . , (xℓ, yℓ) from which we then compute z

(k)
cout := Pϕcout

(xcin , ycin)
(k). Note that here

we have cin = cout, i.e., the number of channels does not change. Hence, we refer to this layer as
the element-wise geometric product layer. We can obtain a more expressive (yet more expensive)
parameterization by linearly combining such products by computing

z(k)cout
:= T prod

ϕcout
(x1, . . . , xℓ, y1, . . . , yℓ)

(k) :=

ℓ∑
cin=1

Pϕcoutcin
(xcin , ycin)

(k), (3)

which we call the fully-connected geometric product layer. Computational feasibility and experimental
verification should determine which parameterization is preferred.

Normalization and Nonlinearities Since our layers involve quadratic and potentially higher-order
interaction terms, we need to ensure numerical stability. In order to do so, we use a normalization
operating on each multivector subspace before computing geometric products by putting

x(m) 7→ x(m)

σ(am)
(
q̄(x(m))− 1

)
+ 1

, (4)

where x(m) ∈ Cl(m)(V, q). Here, σ denotes the logistic sigmoid function, and am ∈ R is a learned
scalar. The denominator interpolates between 1 and the quadratic form q̄

(
x(m)

)
, normalizing the

magnitude of x(m). This ensures that the geometric products do not cause numerical instabilities
without losing information about the magnitude of x(m), where a learned scalar interpolates between
both regimes. Note that by q̄(x(m)) is invariant under the action of the Clifford group, rendering
Equation (4) an equivariant map.

Next, we use the layer-wide normalization scheme proposed by [43], which, since it is also based on
the extended quadratic form, is also equivariant with respect to the twisted conjugation.

Regarding nonlinearities, we use a slightly adjusted version of the units proposed by [43]. Since the
scalar subspace Cl(0)(V, q) is always invariant with respect to the twisted conjugation, we can apply
x(m) 7→ ReLU

(
x(m)

)
when m = 0 and x(m) 7→ σϕ

(
q̄
(
x(m)

))
x(m) otherwise. We can replace

ReLU with any common scalar activation function. Here, σϕ represents a potentially parameterized
nonlinear function. Usually, however, we restrict it to be the sigmoid function. Since we modify x(m)

with an invariant scalar quantity, we retain equivariance. Such gating activations are commonly used
in the equivariance literature [54, 24].

1In practice, we use fewer parameters due to the sparsity of the geometric product, implying that many
interactions will invariably be zero, thereby making their parameterization redundant.
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Figure 2: Left: Test mean-squared errors on the O(3) signed volume
task as functions of the number of training data. Note that due to
identical performance, some baselines are not clearly visible. Right:
same, but for the O(5) convex hull task.

Figure 3: Test mean-
squared-errors on the O(5)
regression task.

Embedding Data in the Clifford Algebra In this work, we consider data only from the vector
space V or the scalars R, although generally one might also encounter, e.g., bivector data. That is,
we have some scalar features h1, . . . , hk ∈ R and some vector features hk+1, . . . , hℓ ∈ V . Typical
examples of scalar features include properties like mass, charge, temperature, and so on. Additionally,
one-hot encoded categorical features are also included because {0, 1} ⊂ R and they also transform
trivially. Vector features include positions, velocities, and the like. Then, using the identifications
Cl(0)(V, q) ∼= R and Cl(1)(V, q) ∼= V , we can embed the data into the scalar and vector subspaces of
the Clifford algebra to obtain Clifford features x1, . . . , xℓ ∈ Cl(V, q).

Similarly, we can predict scalar- or vector-valued data as output of our model by grade-projecting onto
the scalar or vector parts, respectively. We can then directly compare these quantities with ground-
truth vector- or scalar-valued data through a loss function and use standard automatic differentiation
techniques to optimize the model. Note that invariant predictions are obtained by predicting scalar
quantities.

3 Experiments

Here, we show that CGENNs excel across tasks, attaining top performance in several unique contexts.
Parameter budgets as well as training setups are kept as similar as possible to the baseline references.
All further experimental details can be found in the public code release.

3.1 Estimating Volumetric Quantities

O(3) Experiment: Signed Volumes This task highlights the fact that equivariant architectures
based on scalarization are not able to extract some essential geometric properties from input data.
In a synthetic setting, we simulate a dataset consisting of random three-dimensional tetrahedra. A
main advantage of our method is that it can extract covariant quantities including (among others)
signed volumes, which we demonstrate in this task. Signed volumes are geometrically significant
because they capture the orientation of geometric objects in multidimensional spaces. For instance,
in computer graphics, they can determine whether a 3D object is facing towards or away from the
camera, enabling proper rendering. The input to the network is the point cloud and the loss function
is the mean-squared error between the signed volume and its true value. Note that we are predicting
a covariant (as opposed to invariant) scalar quantity (also known as a pseudoscalar) under O(3)
transformations using a positive-definite (Euclidean) metric. The results are displayed in the left part
of Figure 2. We compare against a standard multilayer perceptron (MLP), an MLP version of the
E(n)-GNN [44] which uses neural networks to update positions with scalar multiplication, Vector
Neurons (VN) [17], and Geometric Vector Perceptrons (GVP) [31]. We see that the scalarization
methods fail to access the features necessary for this task, as evidenced by their test loss not improving
even with more available data. The multilayer perceptron, although a universal approximator, lacks the
correct inductive biases. Our model, however, has the correct inductive biases (e.g., the equivariance
property) and can also access the signed volume. Note that we do not take the permutation invariance
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of this task into account, as we are interested in comparing our standard feed-forward architectures
against similar baselines.

O(5) Experiment: Convex Hulls We go a step further and consider a five-dimensional Euclidean
space, showcasing our model’s ability to generalize to high dimensions. We also make the experiment
more challenging by including more points and estimating the volume of the convex hull generated by
these points – a task that requires sophisticated algorithms in the classical case. Note that some points
may live inside the hull and do not contribute to the volume. We use the same network architectures
as before (but now embedded in a five-dimensional space) and present the results in Figure 2. We
report the error bars for CGENNs, representing three times the standard deviation of the results of
eight runs with varying seeds. Volume (unsigned) is an invariant quantity, enabling the baseline
methods to approximate its value. However, we still see that CGENNs outperform the other methods,
the only exception being the low-data regime of only 256 available data points. We attribute this to
our method being slightly more flexible, making it slightly more prone to overfitting. To mitigate this
issue, future work could explore regularization techniques or other methods to reduce overfitting in
low-data scenarios.

3.2 O(5) Experiment: Regression

We compare against the methods presented by [20] who propose an O(5)-invariant regression problem.

The task is to estimate the function f(x1, x2) := sin(∥x1∥)− ∥x2∥3/2 + x⊤
1 x2

∥x1∥∥x2∥ , where the five-
dimensional vectors x1, x2 are sampled from a standard Gaussian distribution in order to simulate
train, test, and validation datasets. The results are shown in Figure 3. We used baselines from [20]
including an MLP, MLP with augmentation (MLP+Aug), and the O(5)- & SO(5)-MLP architectures.
We maintain the same number of parameters for all data regimes. For extremely small datasets (30
and 100 samples), we observe some overfitting tendencies that can be countered with regularization
(e.g., weight decay) or using a smaller model. For higher data regimes (300 samples and onward),
CGENNs start to significantly outperform the baselines.

3.3 E(3) Experiment: n-Body System

Method MSE (↓)
SE(3)-Tr. 0.0244
TFN 0.0155
NMP 0.0107
Radial Field 0.0104
EGNN 0.0070
SEGNN 0.0043

CGENN 0.0039± 0.0001

Table 1: Mean-squared error (MSE)
on the n-body system experiment.

The n-body experiment [34] serves as a benchmark for assess-
ing the performance of equivariant (graph) neural networks
in simulating physical systems [28]. In this experiment, the
dynamics of n = 5 charged particles in a three-dimensional
space are simulated. Given the initial positions and velocities
of these particles, the task is to accurately estimate their po-
sitions after 1 000 timesteps. To address this challenge, we
construct a graph neural network (GNN) using the Clifford
equivariant layers introduced in the previous section. We use
a standard message-passing algorithm [25] where the message
and update networks are CGENNs. So long as the message
aggregator is equivariant, the end-to-end model also maintains
equivariance. The input to the network consists of the mean-
subtracted positions of the particles (to achieve translation invariance) and their velocities. The
model’s output is the estimated displacement, which is to the input to achieve translation-equivariant
estimated target positions. We include the invariant charges as part of the input and their products as
edge attributes. We compare against the steerable SE(3)-Transformers [22], Tensor Field Networks
[49], and SEGNN [8]. Scalarization baselines include Radial Field [37] and EGNN [44]. Finally,
NMP [25] is not an E(3)-equivariant method. The number of parameters in our model is maintained
similar to the EGNN and SEGNN baselines to ensure a fair comparison.

Results of our experiment are presented in Table 1, where we also present for CGENN three times
the standard deviation of three identical runs with different seeds. Our approach clearly outperforms
earlier methods and is significantly better than [8], thereby surpassing the baselines. This experiment
again demonstrates the advantage of leveraging covariant information in addition to scalar quantities,
as it allows for a more accurate representation of the underlying physics and leads to better predictions.
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Model Accuracy (↑) AUC (↑) 1/ϵB (↑)
(ϵS = 0.5)

1/ϵB (↑)
(ϵS = 0.3)

ResNeXt [57] 0.936 0.9837 302 1147
P-CNN [13] 0.930 0.9803 201 759
PFN [38] 0.932 0.9819 247 888
ParticleNet [41] 0.940 0.9858 397 1615
EGNN [44] 0.922 0.9760 148 540
LGN [7] 0.929 0.9640 124 435
LorentzNet [26] 0.942 0.9868 498 2195

CGENN 0.942 0.9869 500 2172

Table 2: Performance comparison between our proposed method and alternative algorithms on the
top tagging experiment. We present the accuracy, Area Under the Receiver Operating Characteristic
Curve (AUC), and background rejection 1/ϵB and at signal efficiencies of ϵS = 0.3 and ϵS = 0.5.

3.4 O(1, 3) Experiment: Top Tagging

Jet tagging in collider physics is a technique used to identify and categorize high-energy jets produced
in particle collisions, as measured by, e.g., CERN’s ATLAS detector [10]. By combining information
from various parts of the detector, it is possible to trace back these jets’ origins [36, 3]. The current
experiment seeks to tag jets arising from the heaviest particles of the standard model: the ‘top quarks’
[30]. A jet tag should be invariant with respect to the global reference frame, which can transform
under Lorentz boosts due to the relativistic nature of the particles. A Lorentz boost is a transformation
that relates the space and time coordinates of an event as seen from two inertial reference frames. The
defining characteristic of these transformations is that they preserve the Minkowski metric, which
is given by γ(ct, x, y, z) := (ct)2 − x2 − y2 − z2. Note the difference with the standard positive
definite Euclidean metric, as used in the previous experiments. The set of all such transformations is
captured by the orthogonal group O(1, 3); therefore, our method is fully compatible with modeling
this problem.

We evaluate our model on a top tagging benchmark published by [33]. It contains 1.2M training
entries, 400k validation entries, and 400k testing entries. For each jet, the energy-momentum 4-
vectors are available for up to 200 constituent particles, making this a much larger-scale experiment
than the ones presented earlier. Again, we employ a standard message passing graph neural network
[25] using CGENNs as message and update networks. The baselines include ResNeXt [57], P-CNN
[13], PFN [38], ParticleNet [41], LGN [7], EGNN [44], and the more recent LorentzNet [26]. Among
these, LGN is a steerable method, whereas EGNN and LorentzNet are scalarization methods. The
other methods are not Lorentz-equivariant. Among the performance metrics, there are classification
accuracy, Area Under the Receiver Operating Characteristic Curve (AUC), and the background
rejection rate 1/ϵB at signal efficiencies of ϵS = 0.3 and ϵS = 0.5, where ϵB and ϵS are the
false positive and true positive rates, respectively. We observe that LorentzNet, a method that uses
invariant quantities, is an extremely competitive baseline that was optimized for this task. Despite
this, CGENNs are able to match its performance while maintaining the same core implementation.

4 Conclusion

We presented a novel approach for constructing O(n)- and E(n)-equivariant neural networks based on
Clifford algebras. After establishing the required theoretical results, we proposed parameterizations of
nonlinear multivector-valued maps that exhibit versatility and applicability across scenarios varying
in dimension. This was achieved by the core insight that polynomials in multivectors are O(n)-
equivariant functions. Theoretical results were empirically substantiated in three distinct experiments,
outperforming or matching baselines that were sometimes specifically designed for these tasks.

CGENNs induce a (non-prohibitive) degree of computational overhead similar to other steerable
methods. On the plus side, we believe that improved code implementations such as custom GPU
kernels or alternative parameterizations to the current ones can significantly alleviate this issue,
potentially also resulting in improved performances on benchmark datasets. This work provides solid
theoretical and experimental foundations for such developments.

6



References
[1] Arne Alex, Matthias Kalus, Alan Huckleberry, and Jan von Delft, A numerical algorithm for the

explicit calculation of su (n) and sl (n, c) clebsch–gordan coefficients, Journal of Mathematical
Physics 52 (2011), no. 2, 023507.

[2] Brandon M. Anderson, Truong-Son Hy, and Risi Kondor, Cormorant: Covariant Molecular
Neural Networks., Conference on Neural Information Processing Systems (NeurIPS), 2019,
pp. 14510–14519.

[3] ATLAS, Jet energy scale measurements and their systematic uncertainties in proton-proton
collisions at

√
s = 13 TeV with the ATLAS detector, arXiv preprint arXiv:1703.09665, 2017.

[4] Simon Axelrod and Rafael Gómez-Bombarelli, Geom, energy-annotated molecular conforma-
tions for property prediction and molecular generation, Scientific Data, Springer Science and
Business Media LLC, 2022.

[5] Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky, E(3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials, Nature Communications, 2022.

[6] Erik J Bekkers, B-spline cnns on lie groups, arXiv preprint arXiv:1909.12057, 2019.
[7] Alexander Bogatskiy, Brandon M. Anderson, Jan T. Offermann, Marwah Roussi, David W.

Miller, and Risi Kondor, Lorentz Group Equivariant Neural Network for Particle Physics,
International Conference on Machine Learning (ICML), 2020, pp. 992–1002.

[8] Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, and Max Welling,
Geometric and Physical Quantities improve E(3) Equivariant Message Passing., International
Conference on Learning Representations (ICLR), 2022.

[9] M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velivckovi’c, Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges, arXiv, 2021.

[10] JM Butterworth, J Thion, U Bratzler, PN Ratoff, RB Nickerson, JM Seixas, I Grabowska-Bold,
F Meisel, S Lokwitz, et al., The atlas experiment at the cern large hadron collider, Jinst 3
(2008), S08003.

[11] Gabriele Cesa, Leon Lang, and Maurice Weiler, A Program to Build E(N)-Equivariant Steerable
CNNs., International Conference on Learning Representations (ICLR), 2022.

[12] Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt,
and Klaus-Robert Müller, Machine learning of accurate energy-conserving molecular force
fields, Science Advances, American Association for the Advancement of Science (AAAS),
2017.

[13] CMS, Boosted jet identification using particle candidates and deep neural networks, Detector
Performance Figures: CMS-DP-17-049, 2017.

[14] Taco Cohen and Max Welling, Group Equivariant Convolutional Networks., International
Conference on Machine Learning (ICML), 2016, pp. 2990–2999.

[15] Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling, Spherical CNNs., International
Conference on Learning Representations (ICLR), 2018.

[16] Benjamin Coors, Alexandru Paul Condurache, and Andreas Geiger, Spherenet: Learning Spher-
ical Representations for Detection and Classification in Omnidirectional Images., European
Conference on Computer Vision (ECCV), Springer International Publishing, 2018, pp. 525–541.

[17] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas J.
Guibas, Vector Neurons: A General Framework for SO(3)-Equivariant Networks., IEEE Inter-
national Conference on Computer Vision (ICCV), IEEE, 2021, pp. 12180–12189.

[18] Carlos Esteves, Theoretical aspects of group equivariant neural networks, arXiv, 2020.
[19] Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson, Generalizing Con-

volutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data.,
International Conference on Machine Learning (ICML), 2020, pp. 3165–3176.

[20] Marc Finzi, Max Welling, and Andrew Gordon Wilson, A practical method for constructing
equivariant multilayer perceptrons for arbitrary matrix groups, International Conference on
Machine Learning, PMLR, 2021, pp. 3318–3328.

7



[21] William T Freeman, Edward H Adelson, et al., The design and use of steerable filters, IEEE
Transactions on Pattern analysis and machine intelligence 13 (1991), no. 9, 891–906.

[22] Fabian Fuchs, Daniel E. Worrall, Volker Fischer, and Max Welling, Se(3)-Transformers: 3d Roto-
Translation Equivariant Attention Networks., Conference on Neural Information Processing
Systems (NeurIPS), 2020.

[23] Johannes Gasteiger, Florian Becker, and Stephan Günnemann, Gemnet: Universal Directional
Graph Neural Networks for Molecules., Conference on Neural Information Processing Systems
(NeurIPS), 2021, pp. 6790–6802.

[24] Mario Geiger and Tess Smidt, e3nn: Euclidean neural networks, 2022.
[25] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl, Neural

message passing for quantum chemistry, International conference on machine learning, PMLR,
2017, pp. 1263–1272.

[26] Shiqi Gong, Qi Meng, Jue Zhang, Huilin Qu, Congqiao Li, Sitian Qian, Weitao Du, Zhi-Ming
Ma, and Tie-Yan Liu, An efficient Lorentz equivariant graph neural network for jet tagging,
Journal of High Energy Physics, Springer Science and Business Media LLC, 2022.

[27] Richard Gowers, Max Linke, Jonathan Barnoud, Tyler Reddy, Manuel Melo, Sean Seyler, Jan
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