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Summary of the Abstract

We introduce the notion of rank of multivector in Clifford geometric algebras of arbitrary dimension
without using the corresponding matrix representations and using only geometric algebra operations. We use
the concepts of characteristic polynomial in geometric algebras and the method of SVD. The results can be
used in various applications of geometric algebras in computer science, engineering, and physics.
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1 Real and Complexified GA

Let us consider the real Clifford geometric algebra (GA) Gp,q [4, 5, 3, 11] with the identity element e ≡ 1 and
the generators ea, a = 1, 2, . . . , n, where n = p+ q ≥ 1. The generators satisfy the conditions

eaeb + ebea = 2ηabe, η = (ηab) = diag(1, . . . , 1︸ ︷︷ ︸
p

,−1, . . . ,−1︸ ︷︷ ︸
q

).

Consider the subspaces Gk
p,q of grades k = 0, 1, . . . , n, which elements are linear combinations of the basis

elements eA = ea1a2...ak
= ea1

ea2
· · · eak

, 1 ≤ a1 < a2 < · · · < ak ≤ n, with ordered multi-indices of length k.
An arbitrary element (multivector) M ∈ Gp,q has the form

M =
∑
A

mAeA ∈ Gp,q, mA ∈ R,

where we have a sum over arbitrary multi-index A of length from 0 to n. The projection of M onto the
subspace Gk

p,q is denoted by ⟨M⟩k.
The grade involution and reversion of a multivector M ∈ Gp,q are denoted by

M̂ =

n∑
k=0

(−1)k⟨M⟩k, M̃ =

n∑
k=0

(−1)
k(k−1)

2 ⟨M⟩k. (1)

We have

M̂1M2 = M̂1M̂2, M̃1M2 = M̃2M̃1, ∀M1,M2 ∈ Gp,q. (2)

Let us consider the complexified Clifford geometric algebra GC
p,q := C⊗Gp,q [11]. An arbitrary element of

M ∈ GC
p,q has the form

M =
∑
A

mAeA ∈ GC
p,q, mA ∈ C.

Note that GC
p,q has the following basis of 2n+1 elements:

e, ie, e1, ie1, e2, ie2, . . . , e1...n, ie1...n. (3)
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In addition to the grade involution and reversion, we use the operation of complex conjugation, which
takes complex conjugation only from the coordinates mA and does not change the basis elements eA:

M =
∑
A

mAeA ∈ GC
p,q, mA ∈ C, M ∈ GC

p,q.

We have
M1M2 = M1 M2, ∀M1,M2 ∈ GC

p,q.

2 Unitary groups in GA

Let us consider an operation of Hermitian conjugation † in GC
p,q (see [6, 11]):

M† := M |eA→(eA)−1, mA→mA
=
∑
A

mA(eA)
−1. (4)

We have the following two equivalent definitions of this operation:

M† =

e1...pM̃e−1
1...p, if p is odd,

e1...p
˜̂
Me−1

1...p, if p is even,
(5)

M† =

ep+1...nM̃e−1
p+1...n, if q is even,

ep+1...n
˜̂
Me−1

p+1...n, if q is odd.
(6)

The operation1

(M1,M2) := ⟨M†
1M2⟩0

is a (positive definite) scalar product with the properties

(M1,M2) = (M2,M1), (7)

(M1 +M2,M3) = (M1,M3) + (M2,M3), (M1, λM2) = λ(M1,M2), (8)

(M,M) ≥ 0, (M,M) = 0 ⇔ M = 0. (9)

Using this scalar product we introduce inner product space over the field of complex numbers (unitary space)
in GC

p,q.
We have a norm

||M || :=
√

(M,M) =
√

⟨M†M⟩0. (10)

Let us consider the following faithful representation (isomorphism) of the complexified geometric algebra

β : GC
p,q →

{
Mat(2

n
2 ,C), if n is even,

Mat(2
n−1
2 ,C)⊕Mat(2

n−1
2 ,C), if n is odd.

(11)

Let us denote the size of the corresponding matrices by

N := 2[
n+1
2 ],

where square brackets mean taking the integer part.
Let us present an explicit form of one of these representations of GC

p,q (we use it also for Gp,q in [7]

and for GC
p,q in [12]). We denote this fixed representation by β′. Let us consider the case p = n, q = 0.

To obtain the matrix representation for another signature with q ̸= 0, we should multiply matrices β′(ea),
a = p+1, . . . , n by imaginary unit i. For the identity element, we always use the identity matrix β′(e) = IN of
the corresponding dimension N . We always take β′(ea1a2...ak

) = β′(ea1)β
′(ea2) · · ·β′(eak

). In the case n = 1,

1Compare with the well-known operation M1 ∗M2 := ⟨M̃1M2⟩0 in the real geometric algebra Gp,q , which is positive definite
only in the case of signature (p, q) = (n, 0).
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we take β′(e1) = diag(1,−1). Suppose we know β′
a := β′(ea), a = 1, . . . , n for some fixed odd n = 2k + 1.

Then for n = 2k + 2, we take the same β′(ea), a = 1, . . . , 2k + 1, and

β′(e2k+2) =

(
0 IN

2

IN
2

0

)
.

For n = 2k + 3, we take

β′(ea) =

(
β′
a 0
0 −β′

a

)
, a = 1, . . . , 2k + 2,

and

β′(e2k+3) =

(
ik+1β′

1 · · ·β′
2k+2 0

0 −ik+1β′
1 · · ·β′

2k+2

)
.

This recursive method gives us an explicit form of the matrix representation β′ for all n.
Note that for this matrix representation we have

(β′(ea))
† = ηaaβ

′(ea), a = 1, . . . , n,

where † is the Hermitian transpose of a matrix. Using the linearity, we get that Hermitian conjugation of
matrix is consistent with Hermitian conjugation of corresponding multivector:

β′(M†) = (β′(M))†, M ∈ GC
p,q. (12)

Note that the same is not true for an arbitrary matrix representations β of the form (11). It is true the
matrix representations γ = T−1β′T obtained from β′ using the matrix T such that T †T = I.

Let us consider the group

UGC
p,q = {M ∈ GC

p,q : M†M = e}, (13)

which we call a unitary group in GC
p,q. Note that all the basis elements eA of Gp,q belong to this group by the

definition.
Using (11) and (12), we get the following isomorphisms to the classical matrix unitary groups:

UGC
p,q ≃

{
U(2

n
2 ), if n is even,

U(2
n−1
2 )×U(2

n−1
2 ), if n is odd,

(14)

where

U(k) = {A ∈ Mat(k,C), A†A = I}. (15)

3 SVD in GA

We have the following well-known theorem on singular value decomposition of an arbitrary complex matrix.
For an arbitrary A ∈ Cn×m, there exist matrices U ∈ U(n) and V ∈ U(m) such that

A = UΣV †, (16)

where
Σ = diag(λ1, λ2, . . . , λk), k = min(n,m), R ∋ λ1, λ2, . . . , λk ≥ 0.

Note that choosing matrices U ∈ U(n) and V ∈ U(m), we can always arrange diagonal elements of the matrix
Σ in decreasing order λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0.

Diagonal elements of the matrix Σ are called singular values, they are square roots of eigenvalues of the
matrices AA† or A†A. Columns of the matrices U and V are eigenvectors of the matrices AA† and A†A
respectively.
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Theorem 1 (SVD in GA) [10] For an arbitrary multivector M ∈ GC
p,q, there exist multivectors U, V ∈

UGC
p,q, where

UGC
p,q = {U ∈ GC

p,q : U†U = e}, U† :=
∑
A

uA(eA)
−1,

such that

M = UΣV †, (17)

where multivector Σ belongs to the subspace K ∈ GC
p,q, which is a real span of a set of N = 2[

n+1
2 ] fixed basis

elements (3) of GC
p,q including the identity element e.

4 Determinant and other characteristic polynomial coefficients in
GA

Let us consider the concept of determinant and characteristic polynomial [7] in geometric algebra. Explicit
formulas for characteristic polynomial coefficients are discussed in [1], applications to Sylvester equation
are discussed in [8], the relation with noncommutative Vieta theorem is discussed in [9], applications to
calculation of elementary functions in geometric algebras are discussed in [2].

We can introduce the notion of determinant

Det(M) := det(β(M)) ∈ R, M ∈ GC
p,q,

where β is (11), and the notion of characteristic polynomial

φM (λ) := Det(λe−M) = λN − C(1)λ
N−1 − · · · − C(N−1)λ− C(N) ∈ G0

p,q ≡ R,

M ∈ GC
p,q, N = 2[

n+1
2 ], C(k) = C(k)(M) ∈ G0

p,q ≡ R, k = 1, . . . , N. (18)

The following method based on the Faddeev–LeVerrier algorithm allows us to recursively obtain basis-free
formulas for all the characteristic coefficients C(k), k = 1, . . . , N (18):

M(1) := M, M(k+1) = M(M(k) − C(k)), (19)

C(k) :=
N

k
⟨M(k)⟩0, k = 1, . . . , N. (20)

In this method, we obtain high coefficients from the lowest ones. The determinant is minus the last coefficient

Det(M) = −C(N) = −M(N) = U(C(N−1) −M(N−1)) (21)

and has the property

Det(M1M2) = Det(M1)Det(M2), M1,M2 ∈ GC
p,q. (22)

The inverse of a multivector M ∈ GC
p,q can be computed as

M−1 =
Adj(M)

Det(M)
=

C(N−1) −M(N−1)

Det(M)
, Det(M) ̸= 0. (23)

5 Rank in GA

Let us introduce the notion of rank of a multivector M ∈ GC
p,q:

rank(M) := rank(β(M)) ∈ {0, 1, . . . , N}, (24)

where β is (11). Below we present another equivalent definition, which does not depend on the matrix
representation. We use the fact that rank is the number of nonzero singular values in the SVD and Vieta
formulas.
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Lemma 1 Suppose that a square matrix A ∈ CN×N is diagonalizable. Then

rank(A) = N ⇔ C(N) ̸= 0; (25)

rank(A) = k ∈ {1, . . . , N − 1} ⇔ C(k) ̸= 0, C(j) = 0, j = k + 1, . . . , N ; (26)

rank(A) = 0 ⇔ A = 0. (27)

Lemma 2 For an arbitrary multivector M ∈ GC
p,q, we have

C(N)(M
†M) = 0 ⇐⇒ C(N)(M) = 0, (28)

C(1)(M
†M) = 0 ⇐⇒ M = 0. (29)

Theorem 2 (Rank in GA) For an arbitrary M ∈ GC
p,q, we have

rank(M) =



N, if C(N)(M) ̸= 0,

N − 1, if C(N)(M) = 0 and C(N−1)(T ) ̸= 0,

N − 2 if C(N)(M) = C(N−1)(T ) = 0 and C(N−2)(M
†M) ̸= 0,

· · ·
2, if C(N)(M) = C(N−1)(T ) = · · · = C(3)(T ) = 0 and C(2)(T ) ̸= 0,

1, if C(N)(M) = C(N−1)(T ) = · · · = C(2)(T ) = 0 and M ̸= 0,

0, if M = 0,

(30)

where T := M†M .

Example 1 For an arbitrary M ∈ GC
p,q, p+ q = 1, we have

rank(M) =


2, if MM̂ ̸= 0,

1, if MM̂ = 0 and M ̸= 0,

0, if M = 0.

(31)

Example 2 For an arbitrary M ∈ GC
p,q, p+ q = 2, we have

rank(M) =


2, if M

˜̂
M ̸= 0,

1, if M
˜̂
M = 0 and M ̸= 0,

0, if M = 0.

(32)

Example 3 For an arbitrary M ∈ GC
p,q, p+ q = 3, we have

rank(M) =



4, if M
˜̂
MM̂M̃ ̸= 0,

3, if M
˜̂
MM̂M̃ = 0 and T

˜̂
T T̂ + T

˜̂
T T̃ + T T̂ T̃ +

˜̂
T T̂ T̃ ̸= 0,

2, if M
˜̂
MM̂M̃ = T

˜̂
T T̂ + T

˜̂
T T̃ + T T̂ T̃ +

˜̂
T T̂ T̃ = 0 and

T
˜̂
T + T T̂ + T T̃ +

˜̂
T T̂ +

˜̂
T T̃ + T̂ T̃ ̸= 0,

1, if M
˜̂
MM̂M̃ = T

˜̂
T T̂ + T

˜̂
T T̃ + T T̂ T̃ +

˜̂
T T̂ T̃ =

= T
˜̂
T + T T̂ + T T̃ +

˜̂
T T̂ +

˜̂
T T̃ + T̂ T̃ = 0 and M ̸= 0,

0, if M = 0,

(33)

where T := M†M .

Example 4 Let us consider the △-operation [7]

M△ :=

n∑
k=0

(−1)
k(k−1)(k−2)(k−3)

24 ⟨M⟩k =
∑

k=0,1,2,3 mod 8

⟨M⟩k −
∑

k=4,5,6,7 mod 8

⟨M⟩k. (34)
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For an arbitrary M ∈ GC
p,q, p+ q = 4, we have

rank(M) =



4, if M
˜̂
M(M̂M̃)△ ̸= 0,

3, if M
˜̂
M(M̂M̃)△ = 0 and T

˜̂
T T̂ + T

˜̂
T T̃ + T (T̂ T̃ )△ +

˜̂
T (T̂ T̃ )△ ̸= 0,

2, if M
˜̂
M(M̂M̃)△ = T

˜̂
T T̂ + T

˜̂
T T̃ + T (T̂ T̃ )△ +

˜̂
T (T̂ T̃ )△ = 0 and

T
˜̂
T + T T̂ + T T̃ +

˜̂
T T̂ +

˜̂
T T̃ + (T̂ T̃ )△ ̸= 0,

1, if M
˜̂
M(M̂M̃)△ = T

˜̂
T T̂ + T

˜̂
T T̃ + T (T̂ T̃ )△ +

˜̂
T (T̂ T̃ )△ =

= T
˜̂
T + T T̂ + T T̃ +

˜̂
T T̂ +

˜̂
T T̃ + (T̂ T̃ )△ = 0 and M ̸= 0,

0, if M = 0,

(35)

where T := M†M .

Corollary 1 We have the following properties of the rank of arbitrary multivectors M1,M2,M3 ∈ GC
p,q:

rank(M1U) = rank(UM1) = rank(M1), ∀ invertible U ∈ GC
p,q, (36)

rank(M1M2) ≤ min(rank(M1), rank(M2)), (37)

rank(M1M2) + rank(M2M3) ≤ rank(M1M2M3) + rank(M2), (38)

rank(M1) + rank(M3) ≤ rank(M1M3) +N. (39)

Note that the results of this work are valid not only for complexified Clifford geometric algebras, but also
for real Clifford geometric algebras, since we can use the same matrix representations in the real case (but
these matrix representations will have non-minimal dimension in this case).
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