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A visual interpretation of Conformal Geometric Algebra(CGA) is given,
using multiple tools and approaches, some of them novel. First the idea of
visualizing the versors A as the set of objects B such that B = (—1)“? ABA™!
for B of grade b and A of grade a. This handles many CGA elements but
has the problem that not all versors have any such invariant. A solution
to this is to consider what we call the n+1 dimensional intermediate space
for n-dimensional CGA. This sets up a link between CGA and Hyperbolic
Projective Geometric Algebra, which bears at least superficial similarity to
the approach of [2]. Implications of this approach are outlined for Projective
Geometric Algebra(PGA), oriented projective geometry, and Conformal
Spacetime Algebra.
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1 INTRODUCTION

Conformal Geometric Algebra is a widely-applied approach to ge-
ometry that contains representations of geometric objects including
arbitrary lines, spheres, circles, planes, points, and point-pairs, al-
though for reasons that will become clear, it is the belief of the
author that it is important to think of the representation of trans-
formations first, with geometric objects emerging as special cases
of transformations.

However, there exists a disagreement about the standardization
of CGA. There are two approaches: sphere-based (IPNS)[8] and
point-based (OPNS) CGA. In this paper we propose Hybrid CGA, in
which these two approaches are combined. Loosely, the claim is that
objects should be visualized with IPNS or OPNS views depending
on the sign of their square; more geometrically, it is dependent on
what sort of transformation they are involved in.

2 PRINCIPLES OF THE FLEMISH SCHOOL OF
GEOMETRIC ALGEBRA

A specific approach has emerged within GA in recent years which
we here call the Flemish school [16][4]. Algebraically, followers
of the Flemish school, more than multivectors, blades or versors,
emphasize k-reflections: geometric products of normalized, invert-
ible 1-vectors. But Flemish principles are more rooted in geometry,
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with a specific way to link particular Clifford algebras Cl(p,q,r) with
particular geometries, partly based on k-reflections. This approach
has not been codified anywhere, but certain principles are relatively
clear:

(1) The k-reflection A should be visualized as some set of k hyper-
planes that A can be decomposed into; the set of hyperplanes
can be "gauged" without implying a change to the object

(2) The geometric product is to be interpreted as transform com-
position

(3) Geometric objects should generally be considered especially
simple special cases of k-reflections. For example, a planar
reflection is a plane, and a 180 rotation is a line; that is, a
geometric object is an invariant of the transformation it rep-
resents

(4) The relationship of a rotor to the bivector that is it’s logarithm
is to generalize the relationship of a rotation to its axis. For
example, the logarithm of a translation is a line at infinity

A more vague but nevertheless fundamental principle is that
understanding the transformations in an algebra is as or more im-
portant than understanding the geometric objects in an algebra. One
motive for this is that transformations outnumber geometric ob-
jects; another is that, by principle (2) transformations turn out to
be a superset of geometric objects and so geometric objects may be
understood "for free" if one understands their transformations. An
example illustrating both of these is that if we choose as our geo-
metric object a line in 3D space, there is an infinite (one-parameter)
family of rotations that preserve it. The line and all the rotations
are included in the set of k-reflections.

The principles were developed with 2D and 3D Projective Geo-
metric Algebra, PGA, as a motivating example. Euclidean PGA,
including the idea of having 1-vectors be planes, was discovered
in [18]. It was later given its name by Charles Gunn in [5], where
he also explored its generalizations to Elliptic PGA Cl(4,0,0), 3D
Hyperbolic PGA CI(3,1,0), and (in a later chapter) Dual Euclidean
PGA which is CI(3,0,1) again.

3D Hyperbolic PGA CI(3,1,0) is important to this paper. A reader
used to Euclidean PGA CI(3,0,1) will find its coordinates familiar:
el, e2 and e3 are orthogonal planes through the origin; e12, e23,
el2+e31, and 0.8+0.6e12 are ordinary lines through/rotations about
the origin; e4 (which squares to -1) is a plane at perceptual infinity;
and e123+0.1e124 is a point displaced from the origin. However,
when multiplication and conjugation are used, everything away
from the origin behaves very differently to Euclidean PGA. In partic-
ular, there is a distinguished unit ball centered on the origin, known
as the Klein ball (disk in 2D). This will be discussed more later and
is depicted (along with other objects) in figure 3.

The Flemish school, like Gunn, aim to be able to work with exotic
metrics; their recent work[15] applies the principles to CI(3,1,1).
However, Gunn’s approach to the visualization of PGA objects em-
phasizes ideas found in traditional projective geometry including
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pencils and bundles; this is different from the Flemish school which,
influenced by particle physics, emphasizes gauges. For example, the
object ez3 would be visualized by Gunn as the infinite family of
planes through the line; the Flemish approach visualizes it as a sin-
gle pair of orthogonal planes taken from this family - but understood
to be rotateable (“gaugeable”) about the line.

3 APPLYING FLEMISH SCHOOL PRINCIPLES TO 3D
CGA REQUIRES THAT BIVECTORS BE BOTH CIRCLES
AND POINT PAIRS

Conformal Geometric Algebra, as it is described and visualized in
the work of David Hestenes[7], now sometimes known as "OPNS"
CGA, does not follow the Flemish principles. For example, if we
were following principle 1, the 1-vector e; would be visualized as a
hyperplane, since it is a hyperplane that acts as the characterizing
invariant of the transformation e; Ae]’ 1 But Hestenes encourages
practitioners to conceptualize e; as an arrow (similar to the “Gibbs
vector” picture) sticking out of the origin "in the e; direction” -
though note that it would not be the origin in the 3D modelling
space, but instead in an "ambient" space of 5 dimensions.

Something like CGA in a Flemish style predates the discovery of
gauges in PGA; this goes under the name “IPNS” or “plane-based”
CGA[8], contrasted with “OPNS” or “point-based” CGA. Whether
point- or plane-based CGA is better suited to a particular task is not
currently widely agreed upon; a common subject of debates over it
is that depending on the decision, the (algebraically defined) wedge
product will be identified with the (geometrically defined) “meet”
or “join”.

Note that the meet (IPNS wedge) recalls the fact that a rotation
made from composing two reflections will have, as its axis, the line
where the two reflection planes meet. It might naively be expected,
then, that the Flemish principles are already followed by IPNS CGA.
In IPNS CGA, planes and spheres are always 1-vectors, lines and
circles are always 2-vectors, and point pairs are always 3-vectors.
This is extremely similar to the Euclidean PGA picture, with the
very minor caveat that the point pairs in Euclidean PGA always
have one point being the point at infinity.

In the following, the basis 1-vectors of 3D CGA will be labelled
e1, €2, €3, e, e— (2D CGA is the same but without e3).

The "IPNS=Flemish school" hypothesis is correct for a significant
number of elements, for example eq, e}, e; + 0.1ex + 0.1e_, eq2,
e3+, €123 - they should be visualized as (hyper-)spheres and circles.
However, to it should not be assumed that this is a complete story,
because of the following counterexample.

Consider positive-square bivectors such as e;— in 2D CGA (where
eq squares to 1 and e_ squares to -1, and so e;— squares to 1). The
bottom right panel of the figure 1 shows a rotor R whose bivector
part is proportional to such a bivector. This rotor has the effect
of pushing away from, and pulling toward, the two red points, as
suggested by the arrows.

Fig. 1. Compositions of pairs of circular reflections in 2D CGA, includ-
ing one that counterexample to the Flemish approach. Top left: a reflec-
tion(inversion) in the black circle followed by a reflection in the grey circle
creates a "vortex pair"-esque rotor around the point pair where they meet;
top right: a reflection in the black line followed by a reflection in the grey
line creates a rotation; bottom left: a reflection in the black line followed by
areflection in the grey line creates a translation; bottom right: a reflection in
the black circle followed by a reflection in the grey circle creates a dipole-like
transformation (the counterexample)

The claim is that this pair of points is the bivector e;— - just as
it is in the OPNS representation. Like an axis line or circle, it fully
defines a family of spheres, a accompanying handedness-preserving
transformation (pushing away from the one point and toward the
other). In particular it is the logarithm of that rotor.

Rotors characterized by such bivectors like 1.25 + 0.75e1 - should
not be considered objects of mere curiosity: in the Poincare disk
(or sphere) model of hyperbolic geometry, which CGA acts as an
instantiation of3], it is an important object known as a hyper-
bolic translation; for visualizations of hyperbolic translations in
the Poincare and Klein disks, the reader is referred to [17]. Rotors
like this are also related to boosts (from special relativity) and uni-
form scalings - a uniform scaling is a special case of the kind of
transformation just described (where one of the points is at infinity).

Note that this kind of bivector (positive square) remains a point
pair in any number of dimensions, whereas bivectors associated to
rotations go from being point pairs in 2D CGA, to circles and lines
in 3D CGA, to spheres in 4D CGA.

Therefore, a form of CGA that follows Flemish principles requires

On its own, this 2D picture may seem compatible with the IPNS=Flemish a hybrid of OPNS and IPNS CGA: bivectors can be circles or point

hypothesis. The problem is when we consider its equivalent in 3D
CGA. The equivalent there would be a pair of spheres, with the red
points still as points, but in 3D space. But IPNS CGA requires that
point pairs should be 3-vectors; a contradiction.
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pairs (by similar logic, trivectors can be circles or point pairs). Null
bivectors e1+ + e1— and e14+ — ej— turn out to be superimposed lines
and point pairs, with zero (or infinite) radius - when their radius is
zero they resemble 3dz2 orbitals in chemistry.
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Fig. 2. Different pictures of different dimensionalities of CGA. The bottom shows the “modelling space” that we end up with; some of the other pictures will be
familiar to CGA practitioners, for example the one at the top with the grey cone, which corresponds to the “horosphere” picture seen in Hestenes and Doran
and Lasenby. The intermediate-space view is obtained from the horosphere view by placing one’s eye at the base of the cone and looking upward. The final
modelling space view is obtained by placing one’s eye at the north pole of the sphere in the intermediate space. The intermediate-space view for 2D CGA also

resembles “stereographic projection” or the Riemann sphere.

4 INTERMEDIATE-SPACE CGA, OR, CGA AS N+1
HYPERBOLIC PGA

In CGA literature, when two spheres do not intersect, they are
sometimes said to intersect at a "negative radius" or “imaginary”
circle - this is intended to call to mind a circle that can no longer
be seen. In this terminology, the conclusion of the previous section
could be phrased as: “imaginary circles of sphere-based 3D CGA
are best thought of as point pairs, since that is the shape which
characterizes the transformation gotten by composing reflections
in the two spheres”. But, since it can be seen (and it has a positive
square), it is hard on any level to justify the word “imaginary” for
these objects, so this term will be used no further in this paper.

With that said, there ought to be some further geometric justi-
fication for why a circle that is no longer a circle might become a
point pair, or why circles and point pairs in 3D are of a sufficiently
similar kind to be considered the same “grade”.

Insight into this and other issues may be gleaned from a geo-
metric construction relating Conformal geometry to n+1 Hyperbolic
geometry, essentially due to Springborn and Bobenko[2] but which

has not, to the author’s knowledge, previously been applied to CGA.
It is depicted in the middle rows of figure 2.

Algebraic justification for it can be seen in the fact that the signa-
ture of n-dimensional CGA precisely matches the signature of Hy-
perbolic Projective Geometric Algebra of n+1 dimensions - CI(3,1,0)
in the case of both 2D CGA and 3D hyperbolic PGA. Hyperbolic PGA
has been discussed and visualized by Gunn[5] and De Keninck[15].
This isomorphism (which works in any dimension) turns out to
match up an integral part of CGA, the "horosphere" of null objects,
to the Klein disk/ball of hyperbolic geometry. This is a circle that
divides up axes into those within it, which perform ordinary ro-
tations, and those outside it, which perform boosts or hyperbolic
translations. Those axes that sit precisely on the boundary of the
klein disk (and ball, for 3D, in the middle-left column) have yet other
properties.

In the case of some CGA transformations, the intermediate space
turns out to be the only way to find an invariant for them. Examples
of this include e_ and eq234 - these are, respectively, a plane and a
point in the intermediate hyperbolic space ("hyperideals"[14]). If the
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Fig. 3. To obtain the modelling-space picture of 2D CGA(right), we place
our eye at the north pole of the klein ball in the intermediate hyperbolic
space (left). The eye sees only those things that are on the surface of the
ball - for example lines in the intermediate space like the green one appear
to the eye only as a green point pair. The set of planes and lines that pass
exactly through the north pole where the eye comprise the set of objects
that appear in PGA (sometimes called “flats”). The geometric realization
of this subalgebra marks it as a “Clifford fibre”. The precise point in the
intermediate space where the eye is located is the PGA pseudoscalar. Hybrid
CGA is therefore completely compatible with PGA: the only "change" is to
replace PGA’s e0 with the hyperplane at infinity, eg a plane tangent at the
north pole which will appear to the eye as an infinite-radius circle. This
plane appears as a pink disk in figure 2

Flemish school is to insist on finding hyperplanes for k-reflections
to be decomposed into, these ones will be a necessity.

If we drop the requirement that the invariant be in any sense
"localizable", we find that there is a way for e and other negative-
square 1-vectors to be visualized by creatures who are confined to
the modelling space (the ones on the bottom row), as humans are
with 3D CGA. They turn out to be discrete reflections (like other
1-vectors), and like any reflection they pair up all points in space.
The difference is that all points are reflected, by them, to a distant
partner - none of them are left in place. The point-pairs are at least
preserved though - so a 3D entity can see the e_ of 3D CGA if
they imagine all of space to be filled with a gas whose color varies
smoothly; and in which each precise color appears at exactly two
distant points. The case of this for 1D CGA is seen in figure 4.

A

Fig. 4. The effect of a hyperbolic reflection on the horosphere of 1D CGA -
all points are sent to their same-color partner. The eye at the top would see
the circle stereographically projected, below. In 2D CGA, to visualize the
effect of a — e_ae_ would similarly be done with some set of colorings for
points that are to be exchanged. In order for Flemish-school principles to be
applied CGA in a way that is confined to the number of dimensions of the
modelled space (eg 3 dimensions for 3D CGA) pictures such as the lower
line may become necessary

A different approach to visualizing elements like e_ is to visualize
their "carriers"[9], but this is mostly uninformative as to the nature
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of the e_ transformation. It also relies on the choice of point-at-
infinity; this somewhat betrays the idea of CGA, because by the
conformal nature of the space, the point at infinity is not meant to
be special (different points can be continuously moved to take its
place).

5 HYBRID CGA ANSWERS A PUZZLE IN ORIENTED
GEOMETRY

Dorst and De Keninck have drawn attention to a puzzle in oriented
geometry[4], see figure 5. The hybrid view of CGA answers this
puzzle: the red lines and blue lines with rotation-implying markup
(“intrinsically oriented line”; "meet line"; “pencil”[6]) is a bivector,
while the yellow and green lines with translation-implying markup
(“intrinsically oriented line”; "join line"; “spear”) are actually trivec-

tors.

Fig. 5. Differently oriented lines should be expected to have different be-
haviour under reflections. Previous solutions[4] have focussed on PGA
duality, using "doubled" PGA. The proposal of hybrid CGA is to say that the
lines in these pictures, in spite of the fact that they are all lines, actually
have different grades

Looking at figure 5, suppose the starting red line to be e;3, the
blue to be ey3, the yellow to be ez, (dual to e;3), and the green to be
e1+— (dual to ez3. Supposing the reflection plane to be e3, the reader
will find that the orientation flips (minus signs) of the figure are
correctly produced, so long as they use the full sandwich product:
(-1)** ABA™! where grade(A) = a and grade(B) = b.

Following this view, what Dorst[4] calls intrinsic lines and intrinsic
planes can always be formed with wedge products (that is, grade-
increasingly) of zero-radius spheres.

Table 1 shows how objects are to be understood in 3D Hybrid
CGA. Note that just because a versor is involved in hyperbolic,
euclidean/parabolic, or elliptic transformation does not mean it
cannot be involved in the others - for example, e; can be involved in
all of them. At the same time, quadvectors specifically are necessarily
either elliptic, hyperbolic, or parabolic. A given quadvector, together
with the objects in its outer product null space, act as a conformal
model for euclidean/parabolic, elliptic, or hyperbolic geometry -
in the case of hyperbolic geometry, this means the Poincaré ball
or upper half plane models, with a specific quadvector defining
a specific sphere or plane to act as a boundary. ejz;— and —ejg4—
would be two examples - following Dorst, one would be pictured as
a plane (the e3 plane) covered in small clockwise-winding arrows,
the other counter-clockwise. One reason it is sensible to call the
object "intrinsic" is because 2D CGA can be performed inside the
plane with ej24— or —ej24+— as its governing pseudoscalar.

Quadvectors can also be visualized in the intermediate space as
points. They act in some sense as "pivots" for the behaviour of planes,
lines, etc passing through them. This appears strongly connected to
the "pointors” of [16].
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Table 1. How objects are to be understood in Hybrid CGA. "Likely" here means, assuming the object was found in a versor made from a product of random
1-vectors, what transformation the versor would implement. Note that the examples given are blades, however, not random versors. It is interesting to note
that the geometric interpretation of objects recalls the structure of Cl(4) over the complex numbers; although this involves pairing up odd and even versors,

which is less meaningful from a transformations point of view.

o 4

% :
) 5
o 5
3 & Examples = "Likely" associated transformation Invariant object (/un-oriented appearance) Orientation Notes and alternative names
0o 1 1 Identity Entirety of space Oriented volume
11 e—,e— +05e; 0 Hyperbolic reflection4 None in 3D; hyperplane in intermediate space 3D "point pair field"? Handedness-reversing in 4D
1 0 ey = et +e— 0 Annihilation oco-radius sphere Extrinsic Has sidedness
1 et —e—,e; +e— 0 Annihilation 0-radius sphere Extrinsic Has sidedness
1 1 e, e, e+, e3 +ep 0 Planar reflection; Sphere inversion Sphere/plane Extrinsic Has sidedness
2 -1 e, e23,e31, €12 + e 1 Rotation around line/circle Circle/Line Extrinsic Set of spheres/planes through a circle/line (elliptic pencil)
2 0 €01, €02, €01 + €02 1 Translation oo-radius circle and co-radius point pair Extrinsic; intrinsic Set of parallel planes (plane pencil with axis at infinity)
20 e1y — e 1 Parabolic motion 0-radius circle and 0-radius point pair Extrinsic; intrinsic  Parabolic pencil (set of spheres tangent to a plane at a point)
21 eq—,e1_,ep_,e3_ 1 Hyperbolic translation or scaling Point pair / point Intrinsic Hyperbolic pencil (set of spheres/planes “centered” on two points); Dipole
3 -1 €123, €12+ €234 lor3  Rotoreflection, point reflection Point pair / point Extrinsic Elliptic bundle (set of spheres and planes passing through two points)
30 ep12 €023 €31 1 Transflection co-radius circle and co-radius point pair Intrinsic; extrinsic  Plane bundle (set of planes through two opposing points at infinity)
30 eqpy —eja_ 1 Parabolic transflection 0-radius circle and 0-radius point pair Intrinsic; extrinsic  Parabolic bundle (set of spheres tangent to a line at a point)
3 1 e1p—,e3_ tej3_ 2? Hyperbolic transflection or "scaleflection” Circle/Line Intrinsic Hyperbolic bundle (set of spheres and planes orthogonal to a circle); spear
4 -1 €123+ €124 — 2? Hyperbolic screw or scale-and-rotation Sphere/plane Intrinsic Poincare ball/upper half plane boundary; circle bundle
4 0 €1230 2 Euclidean screw motion co-radius sphere Intrinsic Set of co-radius circles and polar dual point pairs
4 0 €123+ +€123— 2 Parabolic screw motion 0-radius sphere Intrinsic Set of zero-radius circles around a point and polar dual point pairs
4 1 ejp3q.eq34 +0.lejpp 4orz  Elliptic screw (“isoclinic”) None in 3D; point in intermediate space Possibly a 3D "Circle pair field"? Handedness-preserving in 4D
5 -1 €1234— flecti d-hyperbolic-tr None in 3D or 4D; point (origin) in 5D " flection”; can also 1l d-scal

6 APPLICATION OF THE 1-DOWN-INTERMEDIATE
VISUALIZATION TO CONFORMAL SPACETIME
ALGEBRA

The intermediate-space tool is useful in the context of another sys-
tem, Conformal Space Time Algebra, CSTA, which is connected
with Twistor theory[1] and De Sitter space[11]. The simplest CSTA
algebra is for 1 dimension of space and 1 dimension of time and is
represented by Cl(2,2), whose basis 1-vectors shall be labelled e1, et,
e+, e-. We can therefore give 1+1 CSTA a similar treatment to the
one just given to 2D CGA. Taking a Projective Geometric Algebra
view of Cl(2,2), we find that, like 3D Hyperbolic PGA, it has a 2D
null-manifold in it. But this time, instead of a sphere, it is in the
shape of a hyperboloid-of-one-sheet.

We again mark the null 1-vector e; + e— = €0 as being special and
place our eye at the point where it is tangent to the null manifold.
This eye will see 1+1 Minkowski space, just as the eye in figure 3
saw 2D conformal space. From the point of view of this eye, planes
that pierce the manifold but do not contain the eye itself curves
(again like CGA) - specifically, they will be the hyperbolas seen in
the visualizations of [11]. Reflections in the intermediate projective-
2,2-space will look like hyperbola-inversions (like circle-inversions)
from the point of view of the eye. The phrase "pseudoinversive
geometry" has been suggested for this.

Other objects of special relativity such as Unruh horizons, inertial
world lines, wavefronts, twistors, and Penrose diagrams ("causal
diamonds") appear to have realizations either as conformal objects
(like point pairs) in Minkowski space, or in intermediate space.

Another, different algebra, CI(1,1,1) “LTAP”, along with higher
dimensional versions like CI(3,1,1), "STAP", is currently being re-

searched with applications to electromagnetism and special relativity[15].

Just as PGA is a subalgebra of CGA that all pass through a point in
the intermediate space, STAP is a subalgebra of CSTA whose blades
and versors all pass through the point where €0 is tangent to the
null-hyperboloid - eg the eye’s position.

Fig. 6. The intermediate Cl(2,2,0) PGA with its null manifold in yellow -
all points on it, and lines or planes tangent to it, will be null. Null planes
will intersect it at crosses, which the eye will see as null "cones” in 1+1
Minkowski space - these are, precisely, lightcones, and are the 0-radius
"spheres” in Minkowski space. The plane in red, tangent to the null manifold
at the eye’s position, is the ey plane of 1+1 STAP. The purple line (which will
be seen as the origin point by the eye) is the e;;

7 CONCLUSION

CGA was originally developed to solve problems in euclidean ge-
ometry, such as those faced by graphics programmers. But PGA
has matured to fill this role, and CGA can no longer be considered
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a serious competitor to it. Even for the extra tasks it can do (uni-
form scaling and representation of spheres), its complexity, and the
sparseness of its Euclidean objects, is a serious drawback.
Nevertheless, CGA may have a bright future because of the insight
it offers into the group of conformal transformations. Note that the
conformal group is distinguished by the fact that the sphere, and
point, at infinity, can move. This is both the powerful thing about
CGA and the source of the complexity that makes it less suited than
PGA to most applied geometry. Yes, using ni and no, one can try to
rid CGA of versors that move the point at infinity, to focus on "flats"
which keep it in place. But this is simply to work with PGA (so long
as we make the identification that PGA points are point pairs with
a point at infinity), and to give up on the advantages CGA offers.
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