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Summary of the Abstract

This presentation aims to formulate Hamilton’s equations in terms of any GA for any
Hamiltonian, not just the Hamiltonian for the rigid body motion. Actually, one gen-
eralizes this approach by replacing SE(3) by an arbitrary Lie group G and by defining
Hamiltonian by an arbitrary function on its cotangent bundle. The form of the Hamil-
ton’s equations in such cases is well-known, and if G is formed by rotors of a geometric
algebra, we can directly translate this general result for dynamics on Lie groups into the
GA language. The case of the rigid body corresponds to the choice of geometric algebra
PGA and G = SE(3). Of course, we may choose SE(n) to obtain an n-dimensional
version of the rigid body motion. But not just that, we may freely choose Hamiltonian to
describe various interactions, and we may also change geometric algebra, for example,
to CGA, which then leads to Lie group G = SO(n + 1, 1). In particular, we get a
description of the rigid body motion in CGA, and we also get its generalization to an
”elastic body motion”.

Extended abstract

It is well known that geometric algebra (GA) offers efficient representations for geometric
transformations and operations, making it valuable for computer graphics tasks such as
modeling, animation, and rendering. It also is widely used in robotics for kinematic
modeling, control, and motion planning. It enables the representation and manipulation
of robot poses and trajectories in a way that is both intuitive and computationally
efficient. But in all these applications, GA was only treated as a tool for solving the
kinematics or solving geometric problems in the usual mathematical sense.
Recently, S. De Keninck & L. Dorst, [5], used geometric algebra PGA to model the
classical Newtonian mechanics. They solved the problem of Rigid Body Dynamics by
an elegant treatment of Newton’s laws that is valid in any number of dimensions and
unifies linear and angular aspects completely. Namely, the motion is characterized by
a motor M ; an invertible PGA element that represent a combination of rotation and
translation. The kinematics equation reads

Ṁ = −1

2
MBb, (1)



where Bb is a bivector that represents a generator of the motion in the body frame. Its
time evolution depends on the mass distribution and on the forces and torques acting
on the body. Namely, the dynamics equation reads

Ḃb = I−1
b (Bb × Ib(Bb) + Fb), (2)

where × is the geometric algebra commutator product defined by a× b = 1/2(ab− ba)

and where Fb = M̃FwM is an element in PGA that uniformly represents the total forces
and torques in the body frame. For a rigid body consisting of a set of discrete points
miXi, the total body inertia map Ib is given by

Ib(B) =
∑
i

miXi ∨ (Xi ×B) (3)

and the Lagrangian of the system can be described as L = 1
2
B ∨ I(B). Alternatively,

one can find the above equations of motion by taking this Lagrangian as an input and
by using the Lagrangian or Hamiltonian formalism. Namely, the configuration space of
a rigid body is the Euclidean Lie group

SE(3) = SO(3)⋊R3,

and we may view the rigid body motion as a solution of the optimal control problem∫
Ldt → min,

where L : TSE(3) → R is the Lagrangian function. This approach is known in physics
as the principle of least action. By the Pontryagin maximum principle, the solution
satisfies Hamilton’s equations defined by the Hamiltonian associated with Lagrangian
L. Indeed, as we shall see, we get equations equivalent to (1) and (2) in this way.
This paper adopts this point of view and aims to formulate Hamilton’s equations in terms
of any GA for any Hamiltonian, not just the Hamiltonian for the rigid body motion.
Actually, one generalizes this approach by replacing SE(3) by an arbitrary Lie group G
and by defining Hamiltonian by an arbitrary function on its cotangent bundle. The form
of the Hamilton’s equations in such cases is well-known, and if G is formed by rotors
of a geometric algebra, we can directly translate this general result for dynamics on Lie
groups into the GA language. The case of the rigid body corresponds to the choice of
geometric algebra PGA and G = SE(3). Of course, we may choose SE(n) to obtain an
n-dimensional version of the rigid body motion. But not just that, we may freely choose
Hamiltonian to describe various interactions, and we may also change geometric algebra,
for example, to CGA, which then leads to Lie group G = SO(n + 1, 1). In particular,
we get a description of the rigid body motion in CGA, and we also get its generalization
to an ”elastic body motion”. We demonstrate our results in Ganja.js.

0.1 Classical Hamiltonian dynamics

The common practice in studying Lagrangian and Hamiltonian dynamics on a manifold
is first to introduce local coordinates on the manifold and then formulate and analyze
the dynamics in terms of these local coordinates. The classical Lagrangian dynamics



is formulated in terms of a function on this tangent bundle, the so-called Lagrangian
function L : TRn → R, which may contain all physical information concerning the
system and the forces acting on it. According to Hamilton’s principle, the evolution of a
physical system between two specified states q0 = q(t0) and q1 = q(t1) is then determined
by a trajectory q(t) in the configuration space that is a stationary point of the action
functional

S[q] =
∫ t1

t0

L(q, q̇)dt. (4)

Computing the first variation, one finds that this requirement is equivalent to well-known
Euler–Lagrange equations

d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= 0. (5)

The Hamiltonian form of the equations of motion is given in terms of conjugate momen-
tum covectors. The passage from the tangent bundle to the cotangent bundle is realized
by the Legendre transformation TRn → T ∗Rn : (q, q̇) 7→ (q, p), where p ∈ T ∗

q Rn is the
conjugate momentum defined by

p =
∂L

∂q̇
. (6)

Note that we assume throughout the article that the Legendre transformation is globally
invertible. This property is usually referred to as the hyperregularity of the Lagrangian
function in literature. The Hamiltonian dynamics is then equivalent to the Lagrangian
and can be described by introducing the Hamiltonian function H : T ∗Rn → R:

H(q, p) = p · q̇ − L(q, q̇), (7)

where q̇ is viewed as a function of (q, p) by inverting the Legendre transformation.
Namely, the Euler-Lagrange equations (5) are equivalent to the well-known Hamilton’s
equations

q̇ =
∂H

∂p
, (8)

ṗ = −∂H

∂q
. (9)

0.2 Hamiltonian Dynamics on Lie Groups

Although this local approach is common practice, there are many deficiencies. In the
case that the configuration space is a Lie group G, it is possible to write down a global
coordinate-free form of Hamilton’s equations by using the global trivializations of the
tangent bundle and the cotangent bundle. Let g be the associated Lie algebra. The
tangent map (differential) at the identity to left translation map ℓg : G → G, defined
as ℓg(h) = gh, defines a map (ℓg)∗ : TeG = g → TgG from the Lie algebra to a tangent
space to G. It is easy to see that this map has the inverse (ℓg−1)∗ : TgG → g and thus
is a linear isomorphism

(ℓg−1)∗ : TG ∼= G× g. (10)



In other words, by left trivialization, we can identify the tangent bundle TG of a Lie
group G with G× g. Similarly, we can use the cotangent map to left translation (ℓg)

∗ :
T ∗
gG → T ∗

eG = g∗, defined by (ℓg)
∗(µ)(ξ) = µ((ℓg)∗(ξ)) for each ξ ∈ g and µ ∈ T ∗

gG, to
get a global trivialization of the cotangent bundle T ∗G:

(ℓg)
∗ : T ∗G ∼= G× g∗. (11)

The next ingredient we need to formulate the Hamilton’s equations on a Lie group G is
the coadjoint operator, for each µ ∈ g∗ and ξ, ζ ∈ g. defined by

ad∗
ξ(µ)(ζ) = µ(adξ(ζ)) = µ([ξ, ζ]), (12)

where [, ] denotes the Lie bracket in g. Now we are ready to formulate a coordinate-free
Hamiltonian dynamics on Lie group G. Using the identification (11), the Hamiltonian
function may be viewed as

H : G× g∗ → R.

Its derivative with respect to the second argument, which we write as ∂H/∂µ, is a linear
map g∗ → R, therefore it can be naturally considered as an element of (g∗)∗ ∼= g. The
derivative of the Hamiltonian function with respect to the first (group) argument, which
we write as ∂H/∂g, may be seen as a directional derivative and thus as a vector in the
cotangent space T ∗

gG.

Proposition 0.3 (Hamilton’s equations on a Lie group) Let G be a Lie group, g its
associated Lie algebra, and let ξ = ∂H/∂µ ∈ g. The Hamilton’s equations on G are a
system on G× g∗ given by

ġ = (ℓg)∗ξ, (13)

µ̇ = ad∗
ξ µ− (ℓg)

∗∂H

∂g
. (14)

The Hamilton’s equations have a particularly simple form in the case that the Hamilto-
nian function (or equivalently the Lagrangian function) is left-invariant, i.e. as a function
on G × g∗ it depends only on the second coordinate and not on the group coordinate.
In such a case, the Hamilton’s equations simplify to a decoupled coordinate-free system
on G and on g∗ known as the Lie-Poisson equation

ġ = (ℓg)∗ξ,

µ̇ = ad∗
ξ µ.

It means that one can solve first the dynamics part for µ, and then substitute the
result into the kinematics part, where ξ = ∂H/∂µ is given by the inverse Legendre
transformation g∗ → g. The equivalent system in the Lagrange formalism is known as
the Euler-Poincaré equation. It is obtained from (??) using the Legendre transformation
µ = ∂L/∂ξ.

0.4 GA formulation of Hamilton’s equations

The general form of Hamilton’s equations on a Lie group given above allows a direct
translation into the GA language if G = G(V ) is the Lie group of rotors in a geometric



algebra induced on a vector space V equipped with a quadratic form. In the case of a
non-degenerate form of signature (p, q), the Lie group G is a covering of the orthogonal
Lie group SO(p, q). If we allow a degenerate quadratic form with a kernel of dimension
r, the resulting geometric algebra can be embedded into the geometric algebra induced
by a non-degenerate quadratic form of signature (p+ r, q + r). Hence G is a covering of
a Lie subgroup of SO(p+ r, q+ r). In any case, the associated Lie algebra is the algebra
of bivectors,

g ∼= Λ2V.

The dual Lie algebra g∗ ∼= Λ2V ∗ can be identified with g in the non-degenerate case.
Namely, the defining bilinear form extends then extends to a non-degenerate bilinear
form on bivectors via ⟨A,B⟩ = ⟨AB̃⟩0, where ⟨⟩0 denotes the projection to the scalar
part and B̃ is the reversion of B. Another possibility of viewing the dual algebra g∗ in
GA is via a pseudoscalar I ( or volume form). Namely, if we associate a µ♯ ∈ Λn−2V to
each µ ∈ g∗ ∼= Λ2V ∗ such that µ♯ ∧ B = µ(B)I for each bivector B ∈ Λ2V , we get an
isomorphism of Lie algebras

g∗ ∼= Λn−2V,

where the Lie bracket on the right-hand side is given by the commutator with respect
to the geometric product in G(V ). It is easy to show that, in this identification, the
coadjoint action corresponds to a commutator in GA of a bivector and an element of
grade n− 2,

(ad∗
ξ µ)

♯ = [µ♯, ξ].

From now on, we will omit writing the sharp symbol, and we will consider an element
of g∗ as an element of Λn−2V . Then the Hamiltonian is a function

H : G× Λn−2V → R,

the inverse Legendre transformation gives a bivector

B =
∂H

∂µ
∈ Λ2V (15)

while the derivative of the Hamiltonian function with respect to the group variable,
expressed in the right trivialization trivialization is an element

Fs =
∂H

∂M
M̃ ∈ Λn−2V.

This term corresponds in the Newtonian picture to forces that are expressed in the world
frame. Then, the Hamiltonian dynamics on the Lie group G in GA language look as
follows.

Proposition 0.5 Let G(V ) be a geometric algebra over a quadratic space V of dimen-
sion n and of any signature, and let G be the Lie group of its invertible elements. The
Hamilton’s equations on G read

Ṁ = MB

µ̇ = [µ,B]− M̃FsM

where M ∈ G, µ ∈ Λn−2V , B = ∂H/∂µ is the bivector obtained by the inverse Legendre
transformation, and where [ , ] is the commutator with respect to the geometric product
in G(V ).



0.6 Examples

Our basic example is the rigid body motion. A suitable geometric algebra for its descrip-
tion is PGA since its rotors form the Lie group G = SE(3). Indeed, PGA is generated
by vector space V and quadratic form of degenerate signature (3, 0, 1), i.e. with basis
(e0, e1, e2, e3) such that

e21 = e22 = e23 = 1 and e20 = 0.

Due to the one-dimensional kernel generated by e0, the bivectors form Lie algebra g =
se(3) = span{e0 ∧ ei, ei ∧ ej}. Hence any bivector is of a form

B =
∑

vie0 ∧ ei +
∑

ωkei ∧ ej,

where we assume that k is the complementary index to indices i, j. For the dual Lie
algebra we have g∗ = span{ei ∧ ej, e0 ∧ ei}. Actually, it has the same structure as g, and
a dual bivector can be written as

µ =
∑

pi(e0 ∧ ei)
∗ +

∑
ℓk(ei ∧ ej)

∗,

where the star denotes the usual PGA duality. The dependence of rigid body Lagrangian
L(M,B) on the fiber variable is given by

L( , B) =
1

2
mv2 +

1

2

∑
Jkω

2
k

and thus the Legendre transformation g → g∗ is given by linear function

I(B) =
∂L

∂B
= mvi(e0 ∧ ei)

∗ + Jkωk(ei ∧ ej)
∗.

The corresponding Hamiltonian reads

H( , µ) = pi
pi
m

− 1

2
m(

pi
m
)2 +

1

2

∑
Jk(

ℓk
Jk

)2 =
p2

2m
−
∑ ℓ2k

2Jk

and the inverse Legendre transformation is given by the (also linear) function

I−1(µ) =
∂H

∂µ
=

pi
m
e0 ∧ ei +

ℓk
Jk

ei ∧ ej.

Due to the linearity, the Hamilton’s equations can be written as

Ṁ = MB

I(Ḃ) = [I(B), B] + M̃
∂H

∂M
M

which is equivalent to the equations in [5] up to conventions concerning signum and
factor 1/2. If we view the Euclidean group SE(3) as a subgroup of SO(4, 1), and
we take the same Hamiltonian, we get a description of rigid body motion in terms of
geometric algebra CGA. Such conformal description also allows a generalization to the
motion of an ”elastic body.” Due to the existence of two null vectors e20 = e2∞ = 0,
the lie algebra has extra elements. In particular, it is e0 ∧ e∞ that generates scaling.
We will discuss this case and show some implementations in Ganja.js (A versatile and
multiplatform Algebra generator with a focus on education and visualization available
at BiVector.net)
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