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Abstract

This paper introduces a novel method for solving the resection problem in two dimensions
based on CGA. An efficient implementation of the recently presented VGA methods is also
presented. Advantage is taken because of the characteristics of CGA, which enables the repre-
sentation of points, lines, planes, and volumes in a unified mathematical framework and offers
a more intuitive and geometric understanding of the problem, in contrast to existing purely
algebraic methods. Several numerical examples are presented to demonstrate the efficacy of
the proposed methods and to compare its validity with established techniques in the field. Our
findings suggest that the proposed VGA and CGA-based methods can provide a more efficient
and comprehensible solution to the two-dimensional resection problem, paving the way for fur-
ther applications and advances in geodesy, surveying or navigation research. Furthermore, the
method’s emphasis on graphical and geometric representation makes it particularly suitable
for educational purposes, allowing the reader to grasp the concepts and principles of resection
more effectively.

1 Introduction

The resection problem, also known in surveying as the Snellius-Pothenot (SP) or the inverse in-
tersection problem, involves calculating the position of an unknown point P (also called a station)
using the positions of three known points A, B and C, and relative angular measurements from
P . It is a relevant problem not only in geodesy and surveying, but also in other disciplines such as
robot path planning, positioning, navigation or computer graphics [3, 4], and can be solved both
geometrically and algebraically. Traditionally, solutions to this problem have relied on heavily al-
gebraically loaded methods, which can be complex and challenging to comprehend. Furthermore,
these methods do not always provide an intuitive understanding of the geometric relationships in-
volved in the problem. Therefore, there is a need for a more geometric or graphical approach that
simplifies the study of the resection problem. Although there are existing graphical methods for
solving the problem in 2D that have been known for some time, their algebraic implementation can
be quite cumbersome, hindering their widespread adoption. When the problem is approached from
a geometric perspective, a better understanding of the underlying structures and relationships can
be achieved, making the problem more accessible to a wider range of researchers and practitioners.

In light of the exposed ideas, the main motivation behind this paper is to develop a novel
geometric method based on conformal geometric algebra (CGA) to address the resection problem
in two dimensions. We also provide efficient implementations for both CGA and VGA methods.

2 Resection using Geometric Algebra

Nowadays, methods based on Geometric Algebra have been developed, providing a new solution to
the resection problem while maintaining the focus on its geometrical roots.
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Figure 1: Vector GA-based method to solve the 2D resection problem.

2.1 Vector GA method

The 2D VGA-based method was recently proposed by J. Smith and published as disseminative
material [5]. The process is mainly geometric and results in obtaining a vector p that describes the
position of the point P when choosing the middle point B as the origin (see Fig. 1).

Using known data (A, B, C, α, and β) and with the help of the central angle theorem, the
vectors d1 and d2 are obtained

d1 = v1 +
v1

tanα
σ12 =

v1

sinα
e(90−α)σ12

d2 = v2 −
v2

tanβ
σ12 =

v2

sinβ
e(β−90)σ12

(1)

The next step involves determining the vector d as d2 − d1. Finally, the desired vector p is the
rejection of d1 or d2 on d. In VGA, the above steps are summarised in the following equation

p = (d1 ∧ d)d−1 = −(d2 ∧ d)d−1 = (d1 ∧ d2)d
−1 (2)

2.2 Conformal GA Method

Given that the resection problem primarily deals with circles, utilising the conformal extension of
GA, specifically the Compass Ruler Algebra (CRA), appears to be more suitable. Two traditional
and well-known graphical methods are proposed to solve the resection problem using CRA: Cassini
and Collins. By leveraging CRA, both methods can receive clear algebraic interpretations, as
explained in the following sections.

2.2.1 Cassini Construction

The Cassini method provides a solution to the resection problem by leveraging the inscribed an-
gle theorem. The solution is obtained by determining the intersection of two circles: one passing
through points A, B, and P , and the other through points B, C, and P as shown in Fig. 1. To deter-
mine the centres of the circles, two lines must be intersected. Fig. 2 shows a concise and condensed
summary of the key steps involved and discussed above. It provides valuable visual depictions that
enhance the geometric intuition underlying the method, offering an algebraic interpretation of the
graphical approach.
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Figure 2: CRA version of Cassini’s method step by step.

Method Mean (ms) Error (ms) StdDev (ms) Rank #

VGA 88.90 1.228 1.148 1
ToTal 163.00 – – 2
Ligas 171.00 – – 3
CollinsCGA 221.45 4.104 4.031 4
CassiniCGA 298.48 2.895 2.566 5
Font-Llagunes 228.00 – – 6

Table 1: Performance Comparison of Resection Algorithms using Geometric Algebra and state-of-
the-art algorithms (see [4]).

2.2.2 Collins Construction

The graphical method of Collins provides a solution to the resection problem using the intersec-
tion of the line passing through the point B and the so-called Collins auxiliary point E with the
circle containing the points A, C and E. The step-by-step procedure for applying Collins’ method
graphically is depicted in Fig. 3.

3 Benchmarks

To evaluate the computational efficiency of our GA-based algorithms, extensive benchmarking tests
were performed and the results were compared with state-of-the-art methods. Our implementation,
which exploits the power of code generation, has achieved superior performance, outperforming
the best-known algorithms to date. Moreover, sophisticated CGA-based approaches have shown
excellent results and are among the most efficient in terms of execution time. Each algorithm was
executed 106 times at random locations within the same square-shaped area used for error analysis
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Figure 3: CRA version of Collins’ Method step by step.

(see next section). The tests were performed on an Intel Core i7-9700K CPU 3.60GHz (Coffee Lake)
with 8 logical and 8 physical cores (8 GB RAM, Windows 11, C#, .NET SDK 8.0.102).

Our findings reveal that our VGA-based implementation outperforms all others (see Table 1),
executing approximately 83% faster than the previously best known algorithm by Pierlot (ToTal)
and Ligas, and 150% faster than the one proposed by Font-Llagunes (we use the same CPU archi-
tecture as in [4]). Furthermore, the CGA versions of Collins and Cassini also rank in the top #5 of
the most efficient algorithms.

4 Uncertainty analysis

This section investigates the impact of measurement uncertainties on the efficacy of the proposed
GA methods. Given the intrinsic presence of noise in practical measurements, it is crucial to assess
the sensitivity and resilience of the method to such perturbations [1, 4]. In order to improve the
ability to evaluate the accuracy of the algorithms and determine the station position error, a new
metric has been developed. Consequently, we propose three formulations that are essentially differ-
ent variations of the same underlying approach, each defining the metric D based on the square of a
distance to denote the proximity of the station P to the forbidden region. To validate the sensitivity
of the proposed algorithms, a series of simulations have been proposed. The simulation framework
is designed within a square area measuring 4 by 4 square metres, incorporating two unique config-
urations for three known points. Gaussian noise is introduced into the angles, characterised by a
zero mean and two distinct standard deviations. The algorithms use these modified angles as input
to determine the estimated position of the unknown point. The discrepancy in position (∆d) is
quantified by the Euclidean distance between the exact and estimated location of the point P .

The study performs 1000 iterations for each position to determine the standard deviation of
the position error. Figure 4 shows the standard deviation of the position error and the mean error
measure 1/D in the first and second rows, in that order.
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Figure 4: Error analysis for two point configurations. Config #1 is an equilateral triangle, while in
config #2 the points are collinear. Both configurations have been tested with standard deviation
σ = 0.01 and σ = 0.1. The three GA methods (VGA, CollinsCGA, and CassiniCGA) are compared
based on their position error (first row) and metric 1/D (second row), respectively.



4.1 Discussion of the results

The simulations performed are in agreement with those reported in the literature and support the
case studies of each of the three methods presented. Fig. 4 shows the different point configurations,
where the forbidden circle is clearly identifiable due to the increase in standard deviation of the
position error as it is approached. Minimal errors are observed inside the circle, while errors increase
with distance outside the circle.

All methods produce identical position error plots, indicating consistency and conformity with
the results obtained by most algorithms to solve the resection problem. This confirms that the
sensitivity to calculate the position of the point P , even with noisy measured angles, is independent
of the method used and unique, as discussed in references [4] and [2]. The metric 1/D can be used
as an indicator of proximity to the forbidden circle. When dealing with aligned beacons, the value of
D should be used directly. In other cases, the similarity between this metric and the position error
suggests that the former can approximate the latter if a function of the other problem parameters
is applied.

5 Conclusions

This article presents a novel approach to solving the resection problem in two dimensions using con-
formal geometric algebra (CGA). The CGA framework allowed for a more intuitive understanding
and efficient solution of the resection problem compared to existing algebraic techniques.

The proposed method leveraged the ability of CGA to transition between different reference
frames without requiring coordinate transformations. This eliminated the need for multiple cal-
culation steps and complex algebraic manipulations that are characteristic of traditional algebraic
solutions. Through extensive numerical simulations, we have demonstrated the validity and ef-
ficacy of our GA-based approach, achieving accuracy comparable to that of established algebraic
techniques, while significantly improving computational efficiency and providing valuable geometric
insights.

Our findings suggest that the geometric algebra framework has strong potential to solve resection-
type problems not only in surveying and geodesy but also in computer graphics, robotics, computer
vision, and navigation. By exploiting geometric relationships between entities, CGA paves the way
for more intuitive solutions that unify computations involving different geometric primitives.
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