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Summary of the Abstract

This article uses Geometric algebra to derive octonions and the Lie exceptional algebra
G2 from calibrations. This is simpler than the usual exterior algebra derivation and
uncovers an invertible element using the calibrations that is used to classify six other
algebras which are found to be related to the symmetries of G2. The 4-form calibration
terms are a subalgebra of Spin(7) and provide a direct construction of G2 for each of the
480 representations of the octonions. This result is extended to 15 dimensions, deriving
another 93 algebras including the sedenions.

Introduction

My poster for AGACSE(2024) introduces a one-to-one relationship between simplices
and Geometric algebras (GA) which are defined to be Clifford algebras of positive sig-
nature. In n-dimensions, GA(n) can be derived from the (n − 1)-simplex which is the
simplest way of connecting n points in a connecting space with one less dimension.
Hence GA can be called the algebra of geometry. The poster also shows the relation-
ship between Pfaffians, the Spin group and simplices. The Pfaffian uses the edges of
the simplex to describe connections that are usually attributed to the anti-derivation in
differential geometry. This paper translates results from differential geometry into GA
which exposes the relationship to the Spin group and uncovers complete classifications
of algebras related to the Cayley-Dickson series. In three dimensions the face of the
triangle or 2-simplex is labeled e123 and translates to GA as ±e123 = ±e1 ∧ e2 ∧ e3.
This 3-form also represents the quaternions under the simplex construction as either a
left-hand or right-hand cycle of three 90◦ rotations. The same concept extends to GA(7).
Differential geometry in seven dimensions uses the Fano plane with arrows to represent
a certain 3-form called a calibration that represents octonions, the next Calyey-Dickson
algebra after quaternions. In GA(7), the Fano plane is interpreted as a projection of the
6-simplex with arrows describing independent 3-cycle rotations. GA allows all combi-
nations of arrows to be analysed uncovering another 6 algebras alongside the octonions.
This construction also works in GA(15) which derives sedenions and another 90 paral-
lel algebras. The 3-form calibration in GA(7) has an associative 4-form, the terms of
which generate a subalgebra of Spin(7) and uncover Lie algebra G2 as automorphisms
that keep certain 3-forms invariant, not just the calibrations. They are easily visualised
as symmetry operations of the 6-simplex, the Cartan root diagram for G2 and can be
isolated from the associative 4-forms. Some of these concepts carry over to GA(15).
The fundamental structure equation for multivector products provides the mapping be-
tween GA and Grassmann or exterior algebga [1, 2],

a1a2a3 . . . an =
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2
]∑
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where pf(A) is the Pfaffian of A and C =
(
n
2i

)
provides combinations, µ, of n indicies

divided into 2i and n − 2i parts and k is the parity of the combination. The Spin
and Pin groups are defined by Harvey [3] as even and odd numbers of unit length
vectors, respectively. Note that it is the associativity provided by the Pfaffian co-factor
expansion that proves GA multivectors are invertible. Associativity also allows pairs
of unit multivectors to form bivectors as rotations equivalent to quaternions so can be
called versors, Rij(θ) = cos( θ

2
) + eijsin(

θ
2
). Even multivectors can be expressed as all

combinations of pairs of points, or edges of the simplex, with equivalent generalised Euler
angles. Denoting 90◦ rotations as Rij =

1
2
(1 + eij) then (1) provides three combinations

of what can be called birotations, RijRkl, RikRjl, RilRjl, i, j, k, l all distinct, which will
all be denoted as Rijkl since they all contain eijkl. This is used later for the derivation of
Lie algebra G2. The Pin group represents reflections and can be taken as a single vector
or any basis element after the rotations are applied. Automorphisms are conjugations,
A′ = MAM−1, where M is a multivector, giving a double covering of the orthogonal
group. Note that conjugation with a single basis, M = ei, is a reflection through all
other bases.

Calibrations in GA(7)

Since the number of edges and faces in GA(7) are both divisible by 3 and 7, then 7
independent 3-cycle faces can be selected so that each edge is selected once, called Φ1

here. This defines a cross product, a×b = Φ1a∧b. A natural or primary cross product
can be defined whereby the basis index of each 3-cycle only decreases once

Φ1 = e123 + e145 + e167 + e246 + e257 + e347 + e356. (2)

This is related to what are called forms of the associator calibration by Harvey and
Lawson, [4], which are provided shortly. Firstly looking at the 36 projections of the 6-
simplex there are 30 ways to select 7 independent faces, Φi, 1 ≤ i ≤ 30, called primaries
in natural order, which can be found by enumerating all combinations of 7 of the 35
triples of seven vertices, eliminating those with duplicate edges. Alternatively, applying
90◦ rotations and reflections to Φ1 can be used, as will be carried through later.
Defining the compliment to Φi, Φ

∗
i using the pseudoscalar, generates a 4-form, with will

lead to the form of the coassociative calibration [4],

Φ∗
i = −e1234567 Φi, 1 ≤ i ≤ 30.

This form is related to the Hodge operator acting on Φ as a contraction operator of the
Grassmann algebra. In GA this operation is just multiplication by the pseudovector for
any dimension. Note that the compliment of a single basis provides reflections through
that basis under conjugation.

Lemma. The terms of {1+Φ∗
i } and {1+Φi+Φ∗

i +e1234567}, 1 ≤ i ≤ 30, form commuting
subalgebras of Spin(7) and Pin(7), respectively

Proof. Since the terms of Φi along with the pseudoscalar are closed, the multiplication
of the terms of Φ2

1 contain only the terms of the 4-form coassociative calibration which
has terms that are easily proved to be closed

Φ∗
1 = e1247 + e1256 + e1346 + e1357 + e2345 + e2367 + e4567. (3)



The terms of Φ∗
1 as rotations leave Φ1 invariant because they commute. The permutations

of the indices change the signs and follow the symmetric group S4 that has order 24.
Since there are 7 terms this is the projective group of the cube PSL(2,Z7), isomorphic
to SL(3,Z2), which has order 168 = 7 × 24. The permutations of the 7 vertices of
the 6-simplex is S7 which has order 7! = 30 × 168. Thus the primary forms provide
complete coverage of S7 and the 24 permutations of 4 indices surject to the three rotations
Rijkl, apart from sign. All sign combinations will be considered within 27 = 128 sign
combinations for each primary so the factor of 8 can be removed. Also the factor of 3 for
each of the 7 3-form terms provide changes of arrow directions within the 3-cycle. By
considering just changes of the arrows shown in the Fano plane in Figure 1, the factor of
21 can also be removed. Thus there are (7!/168)× 27 = 3, 840 possible label and arrow
combinations for the Fano plane, which are now considered.

Figure 1: Fano Plane Diagram

The Fano plane diagram shows a projection of the 6-simplex with arrows defined by
Φ1. This diagram is not the usual representation that would define the product rules of
octonions and represents another non-associative algebra that will be exposed shortly.
Changing the sign of e146 in (2) means reversing the arrow on the right hand side of
the diagram and this is now a calibration, representing the octonion multiplication rule.
There are 16 representations of octonions in each primary and denoting any of the 16
as Φi,O and over all primaries as ΦO then the GA statement of the well know exterior
formulation, Φ ∧ Φ∗ = 7e1234567, [4], is

Φ2
O + 7 = (−1)σ6e1234567ΦO. (4)

The exterior terms are the same and remaining contraction terms are related to Φ∗
O due

to the Lemma. The σ factor in (4) is the number of minus signs applied to the primary
and defines a sign parity for the octonions as 8 O+ and 8 O− algebras for σ even or odd
respectively.

Definition. Φi,j, for 1 ≤ i ≤ 30 and 1 ≤ j ≤ 128 is all signed combinations of the 7
terms of each Φi, with the sequence startng with all positive terms, followed by 7 single
minus terms, etc. Thus Φ1,5 = ΦO denotes the O− algebra with e246 negated in Φ1, as
discussed above. It is only necessary to consider the first half of 3-forms because the
second half is just the negation of the first half which swaps the O+ and O− classes,
Φi,129−j = −Φi,j and σ129−j = 7− σj for 1 ≤ j ≤ 64.

Definition. ρi,j =
1
4
(3e1234567 − (−1)σΦi,j), where, if Φi,j = ΦO then ρi,j = ρO.

This is a better way to represent (4) since ρO is invertible, ρ−1
O = −ρO because ρ2O = −1,

and it allows all Φi,j to be classified as one of 6 algebras, S2,S4,S5,S6,S7 or S8, with 4,
8, 10, 12, 14 or 16 unique non-associative triple products, respectively. These are called
the sub-octonion algebras for reasons discussed later.



Theorem 1. Classification Theorem

2e1234567(ρ
2
i,j + 1) =

{
0, or

±ϕk + (−1)σΦi,j

(5)

where ϕk, 1 ≤ k ≤ 7, called the remainder, is one of the terms of Φi. For convenience
the 0 is also called the remainder and represents octonions. The classification scheme
for non-octonion algebras is shown in Table 1.

Table 1: Primary Table and Classification Map
i Φi Classes Remainder

1 e123 + e145 + e167 + e246 + e257 + e347 + e356 (S4, 2S12, 4S14) −e246
2 e123 + e145 + e167 + e247 + e256 + e346 + e357 (S4, 2S12, 4S14) −e357
3 e123 + e146 + e157 + e245 + e267 + e347 + e356 (S4, 2S14, 2S12, 2S14) −e157
4 e123 + e146 + e157 + e247 + e256 + e345 + e367 (S4, 4S14, 2S12) −e146
5 e123 + e147 + e156 + e245 + e267 + e346 + e357 (S4, 2S14, 2S12, 2S14) −e346
...

...
...

...

Proof. The proof does not show a class equivalence between the remainder and the sub-
octonion algebras but demonstrates how the progression over the first 8 Φ1,j, 1 ≤ j ≤ 8,
using automorphisms from the derived Cayley table permutations, steps through each
remainder and verifies the number of non-associative triple products. This is repeated
for each primary to uncover 6 unique algebras. It is straight forward to prove complete
coverage over all Φi,j, 9 ≤ j ≤ 128, by finding series with the same remainder, and hence
the same non-associativity, including octonions.

The reason why ρ1,5 is invertible is because Φ∗
1,5 = 1 − 8σ where σ = 1

8
(1 − e1247)(1 +

e1357)(1− e4567). These are 3 independent idempotents defining the projection operator
σ2 = σ which means

(ρ∗1,5)
2 = (1

4
(3 + Φ∗

1,5))
2

= (1− 2σ)2

= 1.

This works for most of the 35 combinations of 3 terms from Φ∗
i,O for all calibrations.

It does not work for the sub-octonion algebra representations nor for positions (1, 2, 7),
(1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6), (3, 4, 7) or (5, 6, 7).
In GA(15) using hexadecimal so eF is the 15th dimension and e123456789ABCDEF is the
imaginary pseudoscalar then the first primary is
Φ = e123 + e145 + e167 + e189 + e1AB + e1CD + e1EF + e246 + e257 + e28A + e29B + e2CE

+e2DF + e347 + e356 + e38B + e39A + e3CF + e3DE + e48C + e49D + e4AE + e4BF + e58D
+e59C + e5AF + e5BE + e68E + e69F + e6AC + e6BD + e78F + e79E + e7AD + e7BC.

Following the procedure above generates 93 unique algebras and one with a maximal
252 non-associative triple products. This corresponds to the middle term, e48C, being
negated which is analogous to Φ1,5 and in this case generates the sedenion algebra, S,
which has 252 non-associative triple products. Sedenions are power-associative so have
zero divisors. The split octonions have 24 zero divisors related to the idempotents and
12 of these do not involve the number one. The sub-octonion algebras are also power
associative and, although having different numbers of non-associative triples, each have
12 overlapping, zero divisors. Hence the name sub-octonion. The 90 algebras alongside
the sedonions could be called sub-sedenion algebras.



Construction of G2

The first birotation from R1234 is R12R34 =
1
2
(1 + e12 + e34 + e1234). This separates into

α = 1
2
(1+e1234) and β = 1

2
(e12+e34) so that R12R34 = α+β. Note that R12 and R47 are

symmetric in the Fano diagram. Applying one generates another primary but applying
the next returns to the previous primary. This can be seen as a symmetry of the Fano
plane. Alternatively, they both have the same action so that β = (e12 + e47)/2 acts
identically. This is true in general otherwise R1234 would be inconsistent. It is easy to
see that for any Rijkl, i, j, k, l all distinct and eijkl a term of Φ∗

i , then α commutes with
Φi and βΦi = Φ′β where Φ′

i = Φi,j for some j. This provides the following identities for
any Rijkl with distinct indices, α2 = α, β2 = α − 1, αβ = βα = 0. We can also prove
that βΦ′

i,O = βΦi,O.

Theorem 2. Automorphism Theorem

RjklmΦi,ORmlkj = Φ′
i,O , where ejklm is a term of Φ∗

i , and
Φ′

i,O = Φi,O, if ejklm is a term of Φ∗
i,O

Proof.
RjkRlmΦi,ORmlRkj = (α + β)Φi,O(α− β)

= αΦi,O − β2Φ′
i,O

= αΦi,O − (α− 1)Φ′
i,O

= Φ′
i,O

With β having the correct parity then βΦi,O = Φi,Oβ.

This means α plays no part in the transformation and β can be isolated. Defining a
parity for β leads to the construction of Lie algreba G2 shown in Table 2 for Φ1,64. Such
a construction leads to a unique identification of the terms of G2 apart from overall sign
showing that the GA construction is a sufficient definition of G2.

Table 2: G2 Relationship to Φ∗
1

Φ∗
1,64 term Normal Rotations Mixed Rotations Outer Rotations

e1247 C = (e12 + e47)/2 E = (e14 − e27)/2 F = (e17 + e24)/2
e1256 C + J = (e12 + e56)/2 −D = (e15 − e26)/2 −G = (e16 + e25)/2
e1346 −B = (e13 + e46)/2 E − L = (e14 − e36)/2 −G−N = (e16 + e34)/2
−e1357 −B − I = (e13 − e57)/2 −D −K = (e15 + e37)/2 −M = (e17 − e35)/2
−e2345 A = (e23 − e45)/2 F +M = (e24 + e35)/2 N = (e25 − e34)/2
−e2367 A+H = (e23 − e67)/2 −K = (e26 + e37)/2 −L = (e27 − e36)/2
−e4567 H = (e45 − e67)/2 I = (e46 + e57)/2 −J = (e47 − e56)/2

The Bryant form for the representation of the octonions, [5], can be partially mapped
to the Cartan form via matrix representations to give, for example,

E − L = X1 − Y1, D +K = X2 − Y2, H = Y3 −X3.

These partially match the symmetry of the roots of the Cartan Root diagram for G2.
From the classification theorem, if there is a remainder then only this remainder com-
mutes with the invertible form and hence the sub-octonion algebra. This represents one
of the six axes on the root diagram. But if there is no remainder then all Φ∗

i terms
commute and we get octonions and the full symmetry of the G2 root diagram.



Figure 2: Cartan Root Diagram for G2

Summary

The diffential geometry notation and formulations can be expressed by GA and its
connection to the geometry of simplices provides further insights. It is further enhanced
by the invertible form related to the calibrations that uncovers a relationship to Spin(7)
and a connection to three factor spinors. This extends the Pauli and Dirac spinors to a
relationship with octonions. There are intriguing extensions of these results to GA(15)
and sedenions and potentially GA(31), which also has an imaginary pseudoscalar.
The Pfaffian validates the formulation of the Spin group and leads to a derivation of
Lie algebra G2. Again the geometric insights are apparent and the connection to the
sub-octonion algebras as partial G2 symmetries indicates that there is much more to be
learnt. This includes an understanding of zero divisors which are related to ideals of the
algebra for split octonions but this is not the case for the sub-octonions.
This work was verified with the use of geometric algebra, quaternion and octonion/sedenion
calculators written in Python. Quaternions were used to verify the Clifford calculator
using Euler angles and these generalise to 15 dimensions and have been compared to ma-
trix expansions of rotations for up to 7 dimensions. The github URL for the calculators
is https://github.com/GPWilmot/geoalg.
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