
The Algebra of Geometry
Abstract Pascal’s triangle is known to relate to both simplices and Clifford algebra with the later providing
a complete representation. This relationship allows each Clifford algebra to be derived from the associated
simplex which exposes the connection to geometry justifying the terminology geometric algebra. Simplices
are also related to Pfaffians and this close connection can be used to explain the Pfaffian structure of the
algebra. An example is the grad operator acting on a product of two vectors to bring all three primary vector
calculus identities into one equation with geometric identification of each component.

1 Simplices
Table 1: Pascal’s Triangle

N V E F · · ·
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
...

...
...

...
...

...
...

...
. . .

The 3-simplex is described by the fifth row of Pascal’s triangle with 4 vertices, 6 edges and 4 faces. We can
go further by putting a point in the middle of the tetrahedron and connecting all vertices to this point. This is
a 4-simplex shown in Figure 1(a) with the internal connections shown as dotted lines. This is described by
the V = 5 row of Table 1, which also indicates that there are 5 tetrahedrons in the next column of the table.

Figure 1: (a) The 4-simplex and (b) labelled 2-simplex with clockwise ordering
Names can be introduced for all these geometric elements in order to make it easier to proceed to higher
dimensions. A single point is designated e1 and two points as e1 and e2 with connecting edge labelled as
e12. With a third vertex, e3, the extra edges are e23 and e31 and the face is e123. This is shown in Figure
1(b) but it is also important to specify the ordering of points. The face e123 shown in Figure 1(b) designates
a clockwise ordering of the points while e321 would show an anticlockwise order. Such an arrow defines a
3-cycle because starting from e1 there are three steps to get back to e1.



Starting with a triangle with face e123 we can add a point, e4, in the middle and connect this to the starting
three points. Figure 2 shows a tetrahedron looking from the top or a projection of the tetrahedron onto the
plane of e123. For clarity only the point labels are shown. The 3-simplex, by Pascal’s triangle, has another
three edges labelled e14, e24 and e34 and four faces, e123, e124, e134 and e234. Later the last element on each
row will be called the pseudoscalar, e1234, in this case, which corresponds to the whole tetrahedron. This is a
good example to show pseudo-symmetry. Removing each vertex from e1234 gives four triangles, e123, e124,
e134 and e234. These are called pseudo-vertices since they match the symmetry shown in Pascal’s triangle.

Returning to the 3-simplex, it can not have four 3-cycles, one for each face, because then the labelling would
be inconsistent. Only two faces can be consistent, so choose the anti-clockwise one from below on the
outside face of Figure 2, e123, and, for example, the side, e143, taken clockwise as marked. The shared
edge has the same direction for the arrows so both 3-cycles can be labelled using e31. No other 3-cycle
can be chosen and keep this consistency on the shared edges. But this scheme provides a constraint on the
3-cycles. Changing e123 to e321 means e143 must also change to e134. When this is applied to the Fano plane
in 7 dimensions we find that keeping the sense of the 3-cycles independent is an important concept. In fact
leaving them undefined generates Clifford algebras and constraining them generates different algebras such
as octonions for the 6-simplex. This shows the tetrahedron can only have one independent 3-cycle and the
notation is used to show a 6-simplex has 7 independent 3-cycles.

Figure 2: The 3-simplex projection

The forms e13, e12, e23 can easily be seen to generate a 3-cycle of 2-forms as each rotates the next in turn,
which is the same as quaternions. The standard way of diagrammatically showing quaternion multiplication
is shown in Figure 3 which demonstrates the 3-cycle. The diagram for −i,−k,−j is also shown to expose the
left-hand screw rule. Quaternions actually generate a negative cross product but this makes sense since these
are “imaginary”. Imaginary is not the appropriate term for these operators since they do not commute and
the term “pure” is used to distinguish such operators and also specifies time-like operations in space-time.

Figure 3: Standard Quaternion Geometry

This shows that the quaternions when operating on quaternions do not form a 3-cycle because the triple
product is ijk = −1. To return a quaternion vector back to the start via a 3-cycle, the identification e1 =
i′ = −i is needed so that i′jk = 1. This provides the transformation to a right-hand screw rule shown in
Figure 4. Hence the sense of rotation is fixed for quaternions demonstrating no independence whereas in
Clifford algebra the two sets e13, e32, e21 and e12, e23, e31 are both 3-cycles, describing the two senses of
rotation.
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Figure 4: Quaternion 2-simplex Geometry

2 Pfaffians
The Pfaffian can be defined using a recurrence rule that is only applicable for odd simplices. Here, de Bruijn
shows how to generate an expansion for even simplices and this is later shown to be inherent in Clifford
algebra. It is easy to see that if we add another column to a 4-simplex then the five new terms connect each
4-simplex vertex to the new vertex and a shorthand notation is introduced showing just the lower diagonal
which for the 5-simplex is

e12 e13 e14 e15 e16
e23 e24 e25 e26

e34 e35 e36
e45 e46

e56

= \e12, e23, e34, e45, e56|.

The recurrence relation here expands each signed term of the newly added column with the smaller Pfaffian
without these indices. This is called the cofactor expansion, for n even,

\e12, e23, . . . e(n−1)n| = e1n \e23, e34, . . . , e(n−2)(n−1)|

+
n−2∑
j=2

(−1)(j−1)ejn \. . . , e(j−1)(j+1), . . .|

+ e(n−1)n \e12, e23, . . . , e(n−3)(n−2)|.

(1)

The first and last rows cover j missing in the Pfaffian as the first or last index otherwise j is missing from
the middle of the pairs of indicies. So the criteria is that as j sequences over 1 though (n− 1) then j and n
indices are removed from the original Pfaffian by removing the last column, the row with j as the first index
as well as the column with j as the second index, if it exists. For the 5-simplex above this is

e16 \e23, e34, e45 | − e26 \e13, e34, e45 |+ e36 \e12, e24, e45 | − e46 \e12, e23, e35 |+ e56 \e12, e23, e34|.

The last row of the cofactor expansion applied repeatedly gives the last term of the Pfaffian expansion as

e12e34 . . . e(n−1)n = \e12, 0, e34, 0, . . . , 0, e(n−1)n|, (2)

where all the other terms are zeros. This is an important result when extended to antisymmetric matrices and
can be used to show that the determinant applied to simplices defines the square of the hyper-volume defined
by an (n− 1)-simplex.

A convenient notation is introduced to represent subsets of the full permutation group which uses the square
backets to enumerated all n! permutations of Nn

1 as Pn = [1, 2, . . . , n − 1, n]. Any partition into m and
n−m parts can then be represented using round brackets that fix increasing order within the brackets so that
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an enumeration of combinations is defined as Cn
m = [(1, 2, . . . ,m)(m + 1, . . . , n)]. The multiple partition

into pairs for n even is then denoted Pn
2,2,... = Pn,n = [(1, 2), (3, 4), . . . , (n − 1, n)]. The second index is

used later used to help define Clifford algebra. Pfaffians can be defined using the subset with all the first
indices of each pair also being ordered using extra round brackets as

P ′
n,n = [((1, 2), (3, 4), . . . , (n− 1, n))].

This is because the simplex edges not only represent rotation operations but also the area covered by the
two vectors. Since these are orthonormal the volume is the same no matter which order is chosen, e12e34 =
e13e24 = e14e23, because these define the same hyper-volume. This is extended to arbitrary dimensions and
the cardinality of terms gives Pn,n = n

2 !P
′
n,n.

The anaylsis of Pfaffians used basis vectors which were assumed orthonormal. This is extended to arbitrary
vectors using the exterior algebra which is usually defined as the determinant of n vectors as

a ∧ b ∧ · · · ∧ n = |a,b, . . . ,n| e123...n.

This is called an n-form and for two vectors a and b in the plane e12 with internal angle θ then the 2-form is
a ∧ b = |a||b| sin(θ)e12. Since the determinant of n vectors defines the volume then for n even the Pfaffian
for the simplex for non-orthonormal vectors also defines the volume

|a,b, c,d, . . . ,m,n| e12...n
= a ∧ b ∧ c ∧ d ∧ · · · ∧m ∧ n

= 1
n!

∑
µ∈Pn

(−1)σaµ1eµ1bµ2eµ2cµ3eµ3dµ4eµ4 . . .mµmeµmnµneµn

= 1
(n/2)!

∑
µ∈Pn,n

(−1)σ(aµ1eµ1 ∧ bµ2eµ2)(cµ3eµ3 ∧ dµ4eµ4) . . . (mµmeµm ∧ nµneµn)

=
∑

µ∈P ′
n,n

(−1)σ(aµ1eµ1 ∧ bµ2eµ2)(cµ3eµ3 ∧ dµ4eµ4) . . . (mµmeµm ∧ nµneµn)

=
∖
|a,b|, |c,d|, . . . , |m,n|

∣∣ e12...n
= ±V e12...n.

Another important result is that the cofactor expansion can be expressed more generally as a division of not
just of the last column but as a division between any number of terms[2]. This is analogous to the Laplace
expansion for determinants.

3 Geometric Algebra
The cofactor expansion of Pfaffians shows that simplices, like Pfaffians, have terms describing connections
between each dimension. The recursion relation of Pascal’s triangle shows each row contains the r-forms of
the previous row plus all these as (r + 1)-forms. This is described by the Pfaffian with a ∧ b components
and the expansion defining the hyper-volume covered by the vectors and we have seen that this is defined
by exterior algebra. Clifford algebra contains this exterior part but also contains a contraction part, as show
by the 2-vector or versor1 expanded using the fundamental product of vectors, ab = a · b + a ∧ b. Each
product in Pascal’s recurrance relation involves a contraction giving (r − 1)-forms in the example above.
This is again a Pfaffian but consisting of dot products of all the vectors which is related to the metric tensor
and for an orthonormal basis is zero.

1The versor is Hamilton’s term for quaternion rotations. But since the multiplication of two vectors defines a rotation and the
rotation plane is independent of other dimensions then it is appropriate to call it a versor
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It is shown in [1, 2] that adding contractions to the external products introduces a metric on the structure of
simplices described by the fundamental expansion of Clifford multivectors

a1 a2 a3 . . .an =

[n
2
]∑

i=0

∑
µ∈C

(−1)σ \aµ1· aµ2 , . . . ,aµ2i−1· aµ2i | aµ2i+1 ∧ · · · ∧ aµn (3)

where C =
(
n
2i

)
provides combinations, µ, of n indicies divided into 2i and n − 2i parts and σ is the parity

of the combination. This naturally incorporates the Pfaffian trick used by de Bruijn for even simplices.

Importantly, [2] uses the general Laplace-like Pfaffian expansion to prove that the product of two multivectors
expands to the same expansion of the whole multivector,

a1 a2 . . .ar+s = (a1 a2 . . .ar)(ar+1 ar+2 . . .ar+s). (4)

This result proves the fundamental operation of multivectors, Ã = rMr−1, which operates on a multivector
in the same way as it operators on each vector.

The Pfaffian expansion also works for the differential operator called the grad vector,

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ · · ·+ en

∂

∂xn
.

This extends the usual vector identities to arbitrary dimensions and the Jacobian matrix becomes

∇a = (∇ · a+∇∧ a) =
∂aj
∂xi

eiej ,

which is more appropriately called the Jacobian tensor since is contains co-variant and contra-variant com-
ponents. Applying this to a shifted vector a′ = a + ∆a generates an operator that reproduces the shifted
vector a′ = (∇a′)a.

The divergence, ∇ · a = ∂a1
∂x1

+ · · · + ∂an
∂xn

, is the change of length of the stream vectors in all dimensions.
The curl ∇× a = e321∇∧ a generalises to the 2-form curl as all the vector product cross terms

∇∧ a = e12(
∂a2
∂x1

− ∂a1
∂x2

) + · · ·+ e(n−1)n(
∂an

∂xn−1
− ∂an−1

∂xn
),

which is seen to be the rotation of a stream as a′ moves away from the origin.

The Pfaffian expansion (3) for a three multivector product is

abc = a(b · c) + (a · b)c− (a · c)b+ a ∧ b ∧ c. (5)

This can be separated as abc = a(b·c)+a(b∧c). The wedge product from exterior algeba is well defined as
being the exterior part of any multivector product but the dot product has no equivalent since the multivector
product is semi-graded with the Pfaffian expansion in (3) providing terms of grade n, n−2, n−4, . . . , 0 or 1.
These are divided in half by symmetric and anti-symmetric products of (4). Here we limit ourselves to
expansion and contraction of a vector product with a term M of single grade m,

a ∧M =
1

2
(aM+ (−1)mMa) and a ·M =

1

2
(aM− (−1)mMa).

This means the product with scalars are external, a(b · c) = a ∧ (b · c), and since a× b = e321a ∧ b then

a ∧ (b ∧ c) = a ∧ (e123b× c) = a · (b× c)e123, (6)
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because when the e123 term is removed from the wedge product it changes from a 2-form to a 1-form thus
changing the symmetry to generate a dot product. Another vector identity is a×(b×c) = (a ·c)b−(a ·b)c
so the 3 multivector becomes

abc = a(b · c)− a× (b× c) + a · (b× c)e123.

Now we can proceed to the gradient operator applied to a versor
∇ab = ∇(a · b+ a ∧ b) = ∇(|a||b| cos(ϕ) + |a||b|Iab sin(ϕ)), (7)

where Iab = a∧b
ab⊥

and b⊥ is perpendicular to a so that I2ab = −1. This can be compared to the Pfaffian
expansion (5) with ∇ giving change terms applicable within the plane and those exterior to it that move
the plane by operating on Iab. Taking the last term of (5) then differential geometry has ∇ ∧ a ∧ b =
(∇ ∧ a) ∧ b − a ∧ (∇ ∧ b). This is called an anti-derivation because the operator must apply to both
components but under the exterior product the sign changes when it is applied to b. This is the same as the
pseudoscalar (or complex) vector calculus identity ∇ · (a× b) = (∇× a) · b− a · (∇× b) using (6).

The middle two terms of (5) again use an anti-derivation which is the same as the vector calculus identity
∇× (a× b) = a(∇ · b)− b(∇ · a)− (a · ∇)b+ (b · ∇)a.

Hence the Pffafian expansion in (5) as a derivation provides
∇ab = ∇(a · b)−∇× (a× b) +∇ · (a× b)e123,

where the first term is the change of the cos term in (7), the middle term is the change to the sin term within
the plane and the last term is the change to a ∧ b external to the plane. This equation is equivalent to the
tensor formulation with the advantage of using vector notation to expose the geometry and make the concepts
more accessible to students.

The geometric interpretation is more that just a teaching aid. It is well known that Maxwell’s four equations
of electro-magnetism can be represented as one equation in geometric algebra. This can be done using
scalars in 3-D or in space-time with the introduction of a time dimension, e0, where e20 = −1. This provides
more information because the pseudoscalar in space-time, e0123, can be used to represent the four Maxwell’s
equations for monopoles. The equation has the symmetry that multiplying by the space-time pseudoscalar
swaps the roles of the monopole and normal 4-current and swaps the electric and magnetic fields. This leads
to an equation with a solution which has a gauge transformation between the 4-current and monopole term.

Adding another space dimension, e4, to space-time generates a commuting, imaginary pseudoscalar, e01234,
that can be used to provide solutions to Dirac’s equation. Normally, i is used, but is there geometric infor-
mation being lost in this assignment? The positive signature 7-D geometric algebra also has an imaginary,
commuting pseudoscalar and this algebra has properties related to the geometry of octonions. Each time two
dimensions, with one positive and one negative signature, are added to such algebras, another commuting,
imaginary pseudoscalar is obtained. There are many algebras that naturally incorporate i and the geometric
interpretation is not being considered. Although e123 is not commuting within seven dimensions, distin-
guishing it from e1234567 is necessary and easily done in geometric algebra and may provide insights not
easily seen in the tensor formulation.
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