
Closed-form inverse kinematics solutions for a class of serial robots
without spherical wrist using conformal geometric algebra

Arnau Marzabala and Isiah Zaplanaa

a Institute of Industrial and Control Engineering
Universitat Politècnica de Catalunya
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Summary of the Abstract

One of the most well-known applications of geometric algebra in engineering is providing
a compact formulation of the kinematics of serial robotic manipulators. However, the use
of geometric algebra in the field of robotics is still in its early stages, and there are still
several open problems that can be addressed with this elegant and compact formulation.
In this context, this work introduces a strategy based on conformal geometric algebra to
solve the inverse kinematics problem for a class of six degrees-of-freedom (DOF) robotic
manipulators without a spherical wrist, for which it is known that the inverse kinemat-
ics problem generally does not have an analytical solution. Inverse kinematics involves
computing the set of all values for the joint variables (i.e., the configurations) that make
the end-effector of the robot have a given position and orientation in three-dimensional
space. To achieve this, a purely geometric strategy extending already existing contribu-
tions for the case where the robot has a spherical wrist is proposed. In particular, a point
is assigned to each joint of the robot so that the problem reduces to computing the set of
all possible joint positions for a given desired position and orientation of the end-effector
of the robot. These points are found by defining and manipulating several geometric
entities such as lines, planes, and spheres. Finally, validation with a real robot of the
considered class is demonstrated both in simulation and experimentation.

Introduction, motivation and state of the art

A serial robot is, geometrically speaking, a sequence of rigid structural elements, called
links, connected to each other by motor-driven kinematic pairs, called joints. Each joint
provides relative motion between the two consecutive links it connects. An important
component is the free end of the last link, called the end-effector of the robot. Its
importance lies in the fact that all the tools the robot needs to carry out its programmed
tasks, such as painting tools, screwdrivers, robotic hands, or grippers, among others, are



placed on the end-effector. Therefore, it is essential to know: (1) where the end effector
is located (i.e., what its position and orientation are in R3) for each robot configuration,
and (2) which configuration or configurations of the robot cause its end-effector to have
certain predefined position and orientation. The first problem is known as the problem
of forward kinematics, and the second as the problem of inverse kinematics.

A serial robot is said to have a spherical wrist if the rotation or translation axes of its
last three joints intersect at a single point or are parallel. While forward kinematics is
a straightforward problem to tackle for any type of serial robot, inverse kinematics can
be challenging when robots have more than six degrees of freedom or lack a spherical
wrist.

Pieper’s theorem [7] establishes that the inverse kinematics of serial robots with a spher-
ical wrist always have an analytical solution. Furthermore, Pieper’s theorem is construc-
tive in the sense that closed-form solutions are explicitly derived for any type of robot
with a spherical wrist. However, if there is misalignment between any of the axes of
the last three joints (as shown in Figure 1), then the robot no longer has a spherical
wrist, and therefore, Pieper’s theorem cannot be applied. To solve the inverse kinemat-
ics problem in these cases, [6] developed a method based on the use of homogeneous
matrices that are used to construct the forward kinematics of the robot. In fact, given
the kinematic identity:

T 1
U · T 2

1 · · ·T n
n−1 = T n

U , (1)

where T n
U is the homogeneous transformation matrix describing the position and ori-

entation of the end-effector with respect to its base, and where T i
i−1 only depends on

the joint variable qi, Paul’s method consists of analyzing each of the following matrix
equations:

T i
i−1 · · ·T n

n−1 =
(
T i−1
i−2

)−1 · · ·
(
T 1
0

)−1 · T n
0 for i = 2, . . . , n (2)

with the aim of isolating known trigonometric equations that can be analytically solved
for one or more joint variables. However, the large number of different combinations
along with the complications to analytically solve arbitrary trigonometric equations
make this method unsuitable for kinematic chains with non-trivial geometry. Most of the
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Figure 1: An example of a serial robot with an offset between the n−2 and n−1 joints.

works on inverse kinematics for robots without a spherical wrist found in the literature
focus on numerical methods or particular geometric methods [4, 5, 11, 14]. Although the
latter can only be applied to the specific robots for which they have been designed, they



provide the complete set of solutions, unlike the former which only approximate one of
the solutions. However, geometric methods are difficult to design, especially for robots
without a spherical wrist. This is one of the reasons why conformal geometric algebra
can be useful for addressing this problem. For instance, the works of [1, 2, 3, 9, 10] solve
the inverse kinematics of different types of robots using conformal geometric algebra.
The idea developed in all of them is to assign one point to each joint of the robot and
then define various geometric objects whose intersections coincide with these points.
This approach allows for the calculation of the joint variables and, in turn, the determi-
nation of the configuration or configurations associated with a predefined position and
orientation of the end-effector. However, none of the mentioned contributions address
the problem of inverse kinematics for robots without a spherical wrist using conformal
geometric algebra.

Therefore, this work extends all these previous contributions. In particular, its extends
a previous study by one of the authors [12]. Specifically, we introduced a first solution
to the problem for a particular class of robots without a spherical wrist, which do not
actually correspond to any existing industrial robot. The intention was to pave the
way for more specific solution strategies by demonstrating how this problem could be
approached. Indeed, the same concept is applied in this work, but the developed solution
strategy is differs from the one presented there. In addition, the strategy developed in
this work has been validated with a real robot, both in simulation and experimentation.

Sketch of the solution strategy

In this section, we present a summary of the main building blocks of the proposed closed-
form solution for the inverse kinematics of a six degrees of freedom serial robot without
a spherical wrist using conformal geometric algebra.

The starting point is the predefined position, denoted by p6, and orientation, denoted by
R6, of the end-effector. We can assume that p6 is already the null vector representation
of the predefined position, whereas R6 is the rotor encoding the predefined orientation.
Then, point p5 can be obtained directly by a translation of point p6 along the z-axis of
the predefined orientation, a translation of distance −d6, which is the length of the last
link. Therefore, p5 = T 6

5 p6T̃
6
5 , where:

T 6
5 = 1− d6

e∞z6
2

Additionally, p1, which lies between links 1 and 2, is not affected by any of the joint
variables. Hence, similarly to p5, p1 can be obtained by a translation of point p0 along
the z-axis of the reference frame a distance d1, which is the length of the first link.
Therefore, p1 = T 0

1 p0T̃
0
1 , with:

T 0
1 = 1 + d1

e∞e3
2

To obtain p4 we proceed as follows. The Euclidean point p4 should lie on the intersection
between an sphere with center p5 and radius d5 (the length of the fifth link), a plane



with normal vector v56 = p6 − p5 that contains p5, and a vertical plane that contains
p5 with δ = d4, the length of the fourth link. The inner representation of the first two
geometric elements is straightforward:

Π5 = v56 + (p5 · v56)e∞, S5 = p5 −
1

2
d5

2e∞ (3)

We now intersect the following three elements, whose inner representations are:

Sm = m− 1

2
dm

2e∞, S0 = e0 −
1

2
d4

2e∞, Πxy = e3 (4)

where dm is the norm of the middle point of the projection of the segment Op5 to the
x − y plane. The intersection is the bivector Btan = (Sm ∧ S0 ∧ Πxy)

∗, which is the
outer representation of the pair of points v1,v2 representing the normal vectors of the
two possible vertical planes that contains p5 and have a distance d4 to the origin. The
inner representations of these two planes is:

Π4 = vi + d4e∞ i = 1, 2

Then, p4 can be extracted from the bivector B4 = (Π5∧S5∧Π4)
∗. Note that since there

are two possible vertical planes Π4 and each bivector B4 represents a pair of points, in
total we have four different possibilities for p4.

Now, p3 can be easily found as the translation along v4 an amount d4 of any of the
possible p4 points. If we define:

T 4
3 = 1− d4

e∞v4

2

then p3 = T 4
3 p4T̃

4
3 . Therefore, we also have four different p3 points. The last step involves

defining the following geometric entities for each possible point p3:

S1 = p1 −
1

2
a2

2e∞

S3 = p3 −
1

2
a3

2e∞

Π = (p0 ∧ p1 ∧ p3 ∧ e∞)∗

(5)

where a2 and a3 denote the lengths of the second and third links, respectively. The inter-
section of these three geometric entities, B2 = (S1∧S3∧Π)∗, is the outer representation
of the two possible values for p2. Since two p2 points have been obtained for each of the
four p3 and p4 points, a total of eight different solutions for the inverse kinematics will
be obtained. This constitutes the set of all possible solutions, expressed in terms of the
predefined position and orientation of the end-effector of the robot, i.e., a closed-form
solution for this problem.

Once all points have been calculated, it is possible to compute the values of the joint
variables, for which the following additional geometric entities are needed:

Π∗
XZ = e0 ∧ e1 ∧ e2 ∧ e∞

Π∗ = p0 ∧ p1 ∧ p3 ∧ e∞

L∗
01 = p0 ∧ p1 ∧ e∞

L∗
12 = p1 ∧ p2 ∧ e∞

L∗
23 = p2 ∧ p3 ∧ e∞

L∗
34 = p3 ∧ p4 ∧ e∞

L∗
45 = p4 ∧ p5 ∧ e∞

L∗
56 = p5 ∧ p6 ∧ e∞

L∗
x6 = p6 ∧ p′6 ∧ e∞

(6)



Here, point p′6 is the point p6 plus the unit vector corresponding to the x-axis of the
predefined orientation of the end-effector. Finally, the angles can be computed as follows:

q1 = ∠(ΠXZ ,Π)

q2 = ∠(L01, L12)

q3 = ∠(L12, L23)

q4 = ∠(L23, L45)

q5 = ∠(L34, L56)

q6 = ∠(L45, Lx6)

(7)

Validation

The validation was performed with a Universal Robot 5 (UR5), illustrated in Figure
2. This robot has six degrees of freedom and an offset between the fifth and sixth
joint axes, which is incompatible with a spherical wrist. The developed solution was
implemented in Python using the Clifford library1 and validated in simulation using
Gazebo, a widely-used open-source robotics simulation software. For experimentation,
the Mobile Anthropomorphic Dual-Arm Robot (MADAR), a mobile platform equipped
with two UR5 robots [8], was utilized. Two videos showcasing the simulation results can
be viewed here: Simulation trial 1, and Simulation trial 2.

Figure 2: 3D model of the selected robot for validation, the UR5 robot.
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