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Abstract
We present Clifford-Steerable Convolutional Neu-
ral Networks (CS-CNNs), a novel class of E(p, q)-
equivariant CNNs. CS-CNNs process multivector
fields on pseudo-Euclidean spaces Rp,q. They
cover, for instance, E(3)-equivariance on R3 and
Poincaré-equivariance on Minkowski spacetime
R1,3. Our approach is based on an implicit
parametrization of O(p, q)-steerable kernels via
Clifford group equivariant neural networks. We
significantly and consistently outperform baseline
methods on fluid dynamics as well as relativistic
electrodynamics forecasting tasks.

1. Introduction
Physical systems are often described by fields on (pseudo)-
Euclidean spaces. Their equations of motion obey various
symmetries, like isometries E(3) of Euclidean space R3 or
relativistic Poincaré transformations E(1, 3) of Minkowski
spacetime R1,3. PDE solvers should respect these symme-
tries. In the case of deep learning based surrogates, this
property is ensured by making the neural networks equiv-
ariant (commutative) w.r.t. the transformations of interest.

A fairly general class of equivariant CNNs covering arbi-
trary spaces and field types is described by the theory of
steerable CNNs (Weiler et al., 2023). The central result
there is that equivariance requires a “G-steerability” con-
straint on convolution kernels, where G = O(n) or O(p, q)
for E(n)- or E(p, q)-equivariant CNNs, respectively. This
constraint was solved and implemented for O(n) (Lang &
Weiler, 2020; Cesa et al., 2022), however, O(p, q)-steerable
kernels are so far still missing.

This work proposes Clifford-steerable CNNs (CS-CNNs),
which process multivector fields on pseudo-Euclidean

*Equal contribution 1AMLab, Informatics Institute, Univer-
sity of Amsterdam 2AI4Science Lab, Informatics Institute, Uni-
versity of Amsterdam 3Anton Pannekoek Institute for Astron-
omy, University of Amsterdam 4AI4Science, Microsoft Research
5ELLIS Unit Linz, Institute for Machine Learning, JKU Linz,
Austria 6NXAI GmbH. Correspondence to: Maksim Zhdanov
<m.zhdanov@uva.nl>.

Preprint. Copyright 2024 by the author(s).

Figure 1. CS-CNNs process multivector fields while respecting
E(p, q)-equivariance. Shown here is a Lorentz-boost O(1, 1) of
electromagnetic data on 1+1-dimensional spacetime R1,1.

spaces Rp,q, and are equivariant to the pseudo-Euclidean
group E(p, q): the isometries of Rp,q. Multivectors are el-
ements of the Clifford (or geometric) algebra Cl(Rp,q) of
Rp,q . Neural networks based on Clifford algebras have seen
a recent surge in popularity in the field of deep learning
and were used to build both non-equivariant (Brandstetter
et al., 2023; Ruhe et al., 2023b) and equivariant (Ruhe et al.,
2023a; Brehmer et al., 2023; Liu et al., 2024) models.

The steerability constraint on convolution kernels is usually
either solved analytically or numerically, however, such so-
lutions are not yet known for O(p, q). Observing that the
G-steerability constraint is just a G-equivariance constraint,
Zhdanov et al. (2022) propose to implement G-steerable ker-
nels implicitly via G-equivariant MLPs. Our CS-CNNs fol-
low this approach, implementing implicit O(p, q)-steerable
kernels via the O(p, q)-equivariant neural networks for mul-
tivectors developed by Ruhe et al. (2023a).

We demonstrate the efficacy of our approach for predict-
ing the evolution of several physical systems. In particular,
we consider a fluid dynamics forecasting task on R2, as
well as relativistic electrodynamics simulations on R3 and
R1,2. CS-CNNs are the first models respecting the full
spacetime symmetries of these problems. They significantly
outperform competitive baselines, including conventional
steerable CNNs and non-equivariant Clifford CNNs. This
result remains consistent over dataset sizes. When evalu-
ating the empirical equivariance error of our approach for
E(2) symmetries, we find that we perform on par with the
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Clifford-Steerable Convolutional Neural Networks

analytical solutions of Weiler & Cesa (2019).

This paper is organized as follows. Section 2 introduces the
theoretical background on which CS-CNNs rely. Our ap-
proach itself is then developed in Section 3, and empirically
evaluated in Section 4. A generalization of CS-CNNs from
flat spacetimes to general pseudo-Riemannian manifolds is
presented in Appendix F.

2. Theoretical Background
The core contribution of this work is to provide a frame-
work for the construction of steerable CNNs for processing
multivector fields on general pseudo-Euclidean spaces. We
provide background on pseudo-Euclidean spaces and their
symmetries in Section 2.1, on equivariant (steerable) CNNs
in Section 2.2, and on multivectors and the Clifford algebra
formed by them in Section 2.3.

2.1. Pseudo-Euclidean spaces and groups

Conventional Euclidean spaces are metric spaces, that is,
they are equipped with a metric that assigns positive dis-
tances to any pair of distinct points. Pseudo-Euclidean
spaces allow for more general indefinite metrics, which relax
the positivity requirement on distances. Pseudo-Euclidean
spaces appear in our theory in two distinct settings. First, the
(affine) base spaces on which feature vector fields are sup-
ported, e.g. Minkowski spacetime, are pseudo-Euclidean.
Second, the feature vectors attached to each point of space-
time are themselves elements of pseudo-Euclidean vector
spaces. We introduce these spaces and their symmetries in
the following.

2.1.1. PSEUDO-EUCLIDEAN VECTOR SPACES

Definition 2.1 (Pseudo-Euclidean vector space). A pseudo-
Euclidean vector space (inner product space) (V, η) of sig-
nature (p, q) is a p+q-dimensional vector space V over
R equipped with an inner product η, which we define as a
non-degenerate1 symmetric bilinear form

η : V × V → R, (v1, v2) 7→ η(v1, v2) (1)

with p and q positive and negative eigenvalues, respectively.

If q=0, η becomes positive-definite, and (V, η) is a con-
ventional Euclidean inner product space. For q ≥ 1, η(v, v)
can be negative, rendering (V, η) pseudo-Euclidean.

Since every inner product space (V, η) of signature (p, q)
has an orthonormal basis, we can always find a linear isome-
try with the standard pseudo-Euclidean space Rp,q ∼= (V, η),
to which we mostly will restrict our attention in this paper:

1Note that we explicitly refrain from imposing positive-
definiteness onto the definition of inner product, in order to include
typical Minkowski spacetime inner products, etc.

Figure 2. Examples of pseudo-Euclidean spaces R2,0 and R1,1.
Colors depict O(p, q)-orbits, given by sets of all points v ∈ Rp,q

with the same squared distance ηp,q(v, v) from the origin.

Definition 2.2 (Standard pseudo-Euclidean vector spaces).
Let e1, . . . , ep+q be the standard basis of Rp+q and define
an inner product of signature (p, q)

ηp,q(v1, v2) := v⊤1 ∆
p,qv2 (2)

in this basis via its matrix representation

∆p,q := diag(1, . . . , 1︸ ︷︷ ︸
p times

, −1, . . . ,−1︸ ︷︷ ︸
q times

) . (3)

We call the inner product space Rp,q := (Rp+q, ηp,q) the
standard pseudo-Euclidean vector space of signature (p, q).

Example 2.3. R3,0 ≡ R3 recovers the 3-dimensional Eu-
clidean vector space with its standard positive-definite inner
product ∆3,0 = diag(1, 1, 1). The signature (p, q) = (1, 3)
corresponds, instead, to Minkowski spacetime R1,3 with
Minkowski inner product ∆1,3 = diag(1,−1,−1,−1) .2

2.1.2. PSEUDO-EUCLIDEAN GROUPS

We are interested in neural networks that respect (i.e., com-
mute with, or are equivariant to) the symmetries of pseudo-
Euclidean spaces, which we define here. For concreteness,
we give these definitions for the standard pseudo-Euclidean
vector spaces Rp,q. Let us start with the two cornerstone
groups that define such symmetries:

Definition 2.4 (Translation groups). The translation group
(Rp,q,+) associated with Rp,q is formed by its set of vectors
and its (canonical) vector addition.

Definition 2.5 (Pseudo-orthogonal groups). The pseudo-
orthogonal group O(p,q) associated to Rp,q is formed by all
invertible linear maps that preserve its inner product,

O(p, q) :=
{
g ∈ GL(Rp,q)

∣∣ g⊤∆p,qg = ∆p,q
}
, (4)

together with matrix multiplication. O(p, q) is compact for
p = 0 or q = 0, and non-compact for mixed signatures.

Example 2.6. For (p, q) = (3, 0), we obtain the usual or-
thogonal group O(3), i.e. rotations and reflections, while
(p, q) = (1, 3) corresponds to the relativistic Lorentz group
O(1, 3), which also includes boosts between inertial frames.

Taken together, translations and pseudo-orthogonal transfor-

2There exist different conventions regarding whether time or
space components are assigned the negative sign.
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mations of Rp,q form its pseudo-Euclidean group, which is
the group of all metric preserving symmetries (isometries).3

Definition 2.7 (Pseudo-Euclidean groups). The pseudo-
Euclidean group for Rp,q is defined as semidirect product

E(p, q) := (Rp,q,+)⋊O(p, q) (5)

with group multiplication defined by (t̃,g̃) · (t,g) =
(t̃+ g̃t, g̃g). Its canonical action on Rp,q is given by

E(p, q)× Rp,q → Rp,q,
(
(t,g), x

)
7→ gx+ t (6)

Example 2.8. The usual Euclidean group E(3) is re-
produced for (p, q) = (3, 0). For Minkowski spacetime,
(p, q) = (1, 3), we obtain the Poincaré group E(1, 3).

2.2. Feature vector fields & Steerable CNNs

Convolutional neural networks operate on spatial signals,
formalized as fields of feature vectors on a base space Rp,q .
Transformations of the base space imply corresponding
transformations of the feature vector fields defined on them,
see Fig. 1 (left column). The specific transformation laws
depend thereby on their geometric “field type” (e.g., scalar,
vector, or tensor fields). Equivariant CNNs commute with
such transformations of feature fields. The theory of steer-
able CNNs shows that this requires a G-equivariance con-
straint on convolution kernels (Weiler et al., 2023). We
briefly review the definitions and basic results of feature
fields and steerable CNNs in Sections 2.2.1 and 2.2.2 below.

For generality, this section considers arbitrary matrix groups
G ≤ GL(Rp,q) and affine groups Aff(G) = (Rp,q,+)⋊G,
and allows for any field type. Section 3 will more specif-
ically focus on pseudo-orthogonal groups G = O(p, q),
pseudo-Euclidean groups Aff(O(p, q)) = E(p, q), and mul-
tivector fields. For a detailed review of Euclidean steerable
CNNs and their generalization to Riemannian manifolds we
refer to Weiler et al. (2023).

2.2.1. FEATURE VECTOR FIELDS

Feature vector fields are functions f : Rp,q →W that assign
to each point x ∈ Rp,q a feature f(x) in some feature vector
space W . They are additionally equipped with an Aff(G)-
action determined by a G-representation ρ on W .

The specific choice of (W,ρ) fixes the geometric “type” of
feature vectors. For instance, W = R and trivial ρ(g) = 1
corresponds to scalars, W = Rp,q and ρ(g) = g describes
tangent vectors. Higher order tensor spaces and representa-
tions give rise to tensor fields. Later on, W =Cl(Rp,q) will
be the Clifford algebra and feature vectors will be multivec-
tors with a natural O(p, q)-representation ρCl.

3As the translations contained in E(p, q) move the origin of
Rp,q , they do not preserve the vector space structure of Rp,q , but
only its structure as affine space.

Definition 2.9 (Feature vector field). Consider a pseudo-
Euclidean “base space” Rp,q . Fix any G ≤ GL(Rp,q) and
consider a G-representation (W,ρ), called “field type”.

Let Γ(Rp,q,W ) := {f : Rp,q →W} denote the vector
space of W-feature fields. Define an Aff(G)-action

▷ρ : Aff(G)× Γ(Rp,q,W )→ Γ(Rp,q,W ) (7)

by setting, for any (t,g) ∈ Aff(G), any f ∈ Γ(Rp,q,W ),
and x ∈ Rp,q ,[
(t,g)▷ρf

]
(x) := ρ(g)f

(
(t,g)−1x

)
= ρ(g)f

(
g−1(x−t)

)
.

Since Γ(Rp,q,W ) is a vector space and ▷ρ is linear, the
tuple

(
Γ(Rp,q,W ),▷ρ

)
forms the Aff(G)-representation

of feature vector fields of type (W,ρ).4

Remark 2.10. Intuitively, (t,g) acts on f by
1. moving feature vectors across the base space, from

points g−1(x− t) to new locations x, and

2. G-transforming individual feature vectors f(x) ∈W
themselves by means of the G-representation ρ(g).

Besides the field types mentioned above, equivariant neural
networks often rely on irreducible, regular or quotient rep-
resentations. More choices of field types are discussed and
benchmarked in Weiler & Cesa (2019).

2.2.2. STEERABLE CNNS

Steerable convolutional neural networks are composed of
layers that are Aff(G)-equivariant, that is, which commute
with affine group actions on feature fields:
Definition 2.11 (Aff(G)-equivariance). Consider any two
G-representations (Win, ρin) and (Wout, ρout). Let L :
Γ(Rp,q,Win)→ Γ(Rp,q,Wout) be a function (“layer”) be-
tween the corresponding spaces of feature fields. This layer
is said to be Aff(G)-equivariant iff it satisfies

L
(
(t,g)▷ρin f

)
= (t,g)▷ρout L(f) (8)

for any (t,g) ∈ Aff(G) and any f ∈ Γ(Rp,q,Win). Equiva-
lently, the following diagram should commute:

Γ(Rp,q,Win) Γ(Rp,q,Wout)

Γ(Rp,q,Win) Γ(Rp,q,Wout)

L

(t,g)▷ρin (t,g)▷ρout

L

(9)

The most basic operations used in neural networks are
parameterized linear layers. If one demands translation

4(Γ(Rp,q,W ),▷ρ

)
is called induced representation IndAff(G)

G ρ
(Cohen et al., 2019a). From a differential-geometric perspective, it
can be viewed as the space of bundle sections of a G-associated
feature vector bundle; see Defs. F.6, F.7 and (Weiler et al., 2023).
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equivariance, these layers are necessarily convolutions
(Weiler et al., 2023)[Theorem 3.2.1]. Similarly, linearity
and Aff(G)-equivariance requires steerable convolutions,
that is, convolutions with G-steerable kernels:

Theorem 2.12 (Steerable convolution). Consider a layer
L : Γ(Rp,q,Win)→ Γ(Rp,q,Wout) mapping between fea-
ture fields of types (Win, ρin) and (Wout, ρout), respectively.
If L is demanded to be linear and Aff(G)-equivariant, then:

1. L needs to be a convolution integral

L
(
fin
)
(u) =

[
K ∗fin

]
(u) :=

∫
Rp,q

K(v)
[
fin(u−v)

]
dv,

parameterized by a convolution kernel

K : Rp,q → HomVec(Win,Wout) . (10)

The kernel is operator-valued since it aggregates input
features in Win linearly into output features in Wout.56

2. The kernel is required to be G-steerable, that is, it
needs to satisfy the G-equivariance constraint7

K(gx) =
1

|det(g)|ρout(g)K(x)ρin(g)
−1 (11)

=: ρHom(g)(K(x))

for any g ∈ G and x ∈ Rp,q. This constraint is dia-
grammatically visualized by the commutativity of:

Rp,q HomVec(Win,Wout)

Rp,q HomVec(Win,Wout)

K

g· ρHom(g)

K

(12)

Proof. See (Weiler et al., 2023)[Theorem 4.3.1].

Remark 2.13 (Discretized kernels). In practice, kernels are
often discretized as arrays of shape(

X1, . . . , Xp+q, Cout, Cin
)

with Cout = dim(Wout) and Cin = dim(Win). The first p+q
axes are hereby indexing a pixel grid on the domain Rp,q,
while the last two axes represent the linear operators in the
codomain by Cout×Cin matrices.

5HomVec(Win,Wout), the space of vector space homomor-
phisms, consists of all linear maps Win →Wout. When putting
Win = RCin and Wout = RCout , this space can be identified with
the space RCout×Cin of Cout×Cin matrices.

6K : Rp,q→HomVec(Win,Wout) itself need not be linear.
7This is in particular not demanding K(v) to be (equivariant)

homomorphisms of G-representations in HomG(Win,Wout), de-
spite (Win, ρin) and (Wout, ρout) being G-representations. Only K
itself is G-equivariant as map Rp,q → HomVec(Win,Wout).

The main takeaway of this section is that one needs to im-
plement G-steerable kernels in order to implement Aff(G)-
equivariant CNNs. This is a notoriously difficult problem,
requiring specialized approaches for different categories of
groups G and field types (W,ρ). Unfortunately, the usual
approaches do not immediately apply to our goal of im-
plementing O(p, q)-steerable kernels for multivector fields.
These include the following cases:

Analytical: Most commonly, steerable kernels are parame-
terized in analytically derived steerable kernel bases.8 So-
lutions are known for SO(3) (Weiler et al., 2018a), O(3)
(Geiger et al., 2020) and any G ≤ O(2) (Weiler & Cesa,
2019). Lang & Weiler (2020) and Cesa et al. (2022) gen-
eralized this to any compact groups G≤U(d). However,
their solutions still require knowledge of irreps, Clebsch-
Gordan coefficients and harmonic basis functions, which
need to be derived and implemented for each single group
individually. Furthermore, these solutions do not cover
pseudo-orthogonal groups O(p, q) of mixed signature,
since these are non-compact.

Regular: For regular and quotient representations, steerable
kernels can be implemented via channel permutations
in the matrix dimensions. This is, for instance, done
in regular group convolutions (Cohen & Welling, 2016;
Weiler et al., 2018b; Bekkers et al., 2018; Cohen et al.,
2019b; Finzi et al., 2020). However, these approaches
require finite G or rely on sampling compact G, again
ruling out general (non-compact) O(p, q).

Numerical: Cohen & Welling (2017) solved the kernel con-
straint for finite G numerically. For SO(2), de Haan et al.
(2021) derived numerical solutions based on Lie-algebra
representation theory. The numerical routine by Shutty
& Wierzynski (2022) solves for Lie-algebra irreps given
their structure constants. Corresponding Lie group irreps
follow via the matrix exponential, however, only on con-
nected groups like the subgroups SO+(p, q) of O(p, q).

Implicit: Steerable kernels are merely G-equivariant maps
between vector spaces Rp,q and HomVec(Win,Wout).
Based on this insight, Zhdanov et al. (2022) parameterize
them implicitly via G-equivariant MLPs. However, to
implement these MLPs, one usually requires irreps, ir-
rep endomorphisms and Clebsch-Gordan coefficients for
each G of interest.

Our approach presented in Section 3 is based on the implicit
kernel parametrization via neural networks by Zhdanov et al.
(2022), which requires us to implement O(p, q)-equivariant
neural networks. Fortunately, the Clifford group equivariant
neural networks by Ruhe et al. (2023a) establish O(p, q)-

8Unconstrained kernels, Eq. (10), can be linearly combined,
and therefore form a vector space. The steerability constraint,
Eq. (11) is linear. Steerable kernels span hence a linear subspace
and can be parameterized in terms of a basis of steerable kernels.
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equivariance for the practically relevant case of Clifford-
algebra representations ρCl, i.e., O(p, q)-actions on multi-
vectors. The Clifford algebra, and Clifford group equivariant
neural networks, are introduced in the next section.

2.3. The Clifford Algebra & Clifford Group
Equivariant Neural Networks

This section introduces multivector features, a specific type
of geometric feature vectors with O(p, q)-action. Multivec-
tors are the elements of a Clifford algebra Cl(V, η) corre-
sponding to a pseudo-Euclidean R-vector space (V, η). The
most relevant properties of Clifford algebras in relation to
applications in geometric deep learning are the following:

• Cl(V, η) is, in itself, an R-vector space of dimension 2d

with d := dim(V ) = p+ q. This allows to use multivec-
tors as feature vectors of neural networks (Brandstetter
et al., 2023; Ruhe et al., 2023b; Brehmer et al., 2023).

• As an algebra, Cl(V,η) comes with an R-bilinear opera-
tion

• : Cl(V, η)×Cl(V, η) → Cl(V, η),

called geometric product.9 We can therefore multiply
multivectors with each other, which will be a key aspect
in various neural network operations.

• Cl(V, η) is furthermore a representation space of the
pseudo-orthogonal group O(V, η) via ρCl, defined in Eq
(19) below. This allows to use multivectors as features
of O(V, η)-equivariant networks (Ruhe et al., 2023a).

A formal definition of Clifford algebras can be found in
Appendix D. Section 2.3.1 offers a less technical introduc-
tion, highlighting basic constructions and results. Sections
2.3.2 and 2.3.3 focus on the natural O(p, q)-action on multi-
vectors, and on Clifford group equivariant neural networks.
While we will later mostly be interested in (V, η)= Rp,q and
O(V, η) = O(p, q), we keep the discussion here general.

2.3.1. INTRODUCTION TO THE CLIFFORD ALGEBRA

Multivectors are constructed by multiplying and summing
vectors. Specifically, l vectors v1, . . . , vl ∈ V multiply to
v1 • . . . • vl ∈ Cl(V, η). A general multivector arises as a
linear combination of such products,

x =
∑

i∈I
ci · vi,1 • · · · • vi,li , (13)

with some finite index set I and vi,k ∈ V and ci ∈ R.

The main algebraic property of the Clifford algebra is that it
relates the geometric product of vectors v ∈ V to the inner
product η on V by requiring:

v • v
!
= η(v, v) · 1Cl(V,η) ∀ v ∈ V ⊂ Cl(V, η) (14)

9The geometric product is unital, associative, non-commutative,
and O(V, η)-equivariant. Its main defining property is highlighted
in Eq. (14). A proper definition is given in Definition D.2, Eq. (73).

name grade k dim
(
d
k

)
basis k-vectors norm

scalar 0 1 1 +1

vector 1 3
e1 +1

e2, e3 −1

pseudovector 2 3
e12, e13 −1

e23 +1
pseudoscalar 3 1 e123 +1

Table 1. Orthonormal basis for Cl(Rp,q) with (p, q) = (1, 2).
“Norm” refers to η̄(eA, eA) = ηA; see Eq. (18).

Intuitively, this means that the product of a vector with itself
collapses to a scalar value η(v, v) ∈ R ⊆ Cl(V, η), from
which all other properties of the algebra follow by bilinearity.
This leads in particular to the fundamental relation10:

v2 • v1 = −v1 • v2 + 2η(v1, v2)·1Cl(V,η) ∀ v1, v2 ∈ V.

For the standard orthonormal basis [e1, . . . , ep+q] of Rp,q

this reduces to the following simple rules:

ei • ej =


−ej • ei for i ̸= j (15a)
η(ei, ei) = +1 for i = j ≤ p (15b)
η(ei, ei) = −1 for i = j > p (15c)

An (orthonormal) basis of Cl(V, η) is constructed by repeat-
edly taking geometric products of any basis vectors ei ∈ V .
Note that, up to sign flip, (1) the ordering of elements in any
product is irrelevant due to Eq. (15a), and (2) any elements
occurring twice cancel out due to Eqs. (15b,15c).

The basis elements constructed this way can be identified
with (and labeled by) subsets A ⊆ [d] := {1, . . . , d}, where
the presence or absence of an index i ∈ A signifies whether
the corresponding ei appears in the product. Agreeing fur-
thermore on an ordering to disambiguate signs, we define

eA := ei1 • ei2 • . . . • eik for A = {i1 < · · ·<ik} ≠ ∅

and e∅ := 1Cl(V,η). From this, it is clear that dimCl(V, η)

= 2d. Table 1 gives a specific example for (V, η) = R1,2.

Any multivector x ∈ Cl(V, η) can be uniquely expanded in
this basis,

x =
∑

A⊆[d]
xA · eA, (16)

where xA ∈ R are coefficients.

Note that there are
(
d
k

)
basis elements eA of “grade” |A|=k,

i.e., which are composed from k out of the d distinct ei ∈ V .
These span d+1 linear subspaces Cl(k)(V, η), the elements
of which are called k-vectors. They include scalars (k=0),
vectors (k=1), bivectors (k=2), etc. The full Clifford
algebra decomposes thus into a direct sum over grades:

Cl(V, η) =

d⊕
k=0

Cl(k)(V, η), dimCl(k)(V, η) =

(
d

k

)
.

10To see this, use v := v1 + v2 in Eq. (14) and expand.
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Given any multivector x, expanded as in Eq. (16), we can
define its k-th grade projection on Cl(k)(V, η) as:

x(k) =
∑

A⊆[d], |A|=k
xA · eA. (17)

Finally, the inner product η on V is naturally extended to
Cl(V, η) by defining η̄ : Cl(V, η)× Cl(V, η)→ R as

η̄(x, y) :=
∑

A⊆[d]
ηA · xA · yA, (18)

where ηA :=
∏

i∈A η(ei,ei) ∈ {±1} are sign factors. The
tuple (eA)A⊆[d] is an orthonormal basis of Cl(V, η) w.r.t. η̄.

All of these constructions and statements are more formally
defined and proven in the appendix of (Ruhe et al., 2023b).

2.3.2. CLIFFORD GRADES AS O(p,q)-REPRESENTATIONS

The individual grades Cl(k)(V, η) turn out to be representa-
tion spaces of the (abstract) pseudo-orthogonal group (19)
O(V, η) :=

{
g ∈GL(V )

∣∣∀v∈V : η(gv,gv)= η(v,v)
}
,

which coincides for (V, η) = Rp,q with O(p, q) in Def. 2.2.
O(V, η) acts thereby on multivectors by individually multi-
plying each 1-vector from which they are constructed with g.

Definition/Theorem 2.14 (O(V, η)-action on Cl(V, η)).
Let (V, η) be a pseudo-Euclidean space, g, gi ∈ O(V, η),
ci ∈ R, vi,j ∈ V , x, xi ∈ Cl(V, η), and I a finite index set.
Define the orthogonal algebra representation

ρCl : O(V, η)→ OAlg (Cl(V, η), η̄)
11 (20)

of O(V, η) via the canonical O(V, η)-action on each of the
contained 1-vectors:

ρCl(g)
(∑

i∈I
ci ·vi1 • . . . • viji

)
(21)

:=
∑

i∈I
ci ·(gvi1) • . . . • (gviji).

ρCl is well-defined as an orthogonal representation:

linear: ρCl(g)(c1 · x1 + c2 · x2)

= c1 · ρCl(g)(x1) + c2 · ρCl(g)(x2)

composing: ρCl(g2) (ρCl(g1)(x)) = ρCl(g2g1)(x)

invertible: ρCl(g)
−1(x) = ρCl(g

−1)(x),

orthogonal: η̄(ρCl(g)(x1), ρCl(g)(x2)) = η̄(x1, x2)

Moreover, the geometric product is O(V, η)-equivariant,
making ρCl an (orthogonal) algebra representation:

ρCl(g)(x1) • ρCl(g)(x2) = ρCl(g)(x1 • x2). (22)

11OAlg

(
Cl(V, η), η̄

)
is the group of all linear orthogonal trans-

formations of Cl(V, η) that are also multiplicative w.r.t. • .

Cl(V, η)× Cl(V, η) Cl(V, η)

Cl(V, η)× Cl(V, η) Cl(V, η)

•

ρCl(g)×ρCl(g) ρCl(g)

•

(23)

This representation ρCl reduces furthermore to independent
sub-representations on individual k-vectors.
Theorem 2.15 (O(V, η)-action on grades Cl(k)(V, η)). Let
g ∈ O(V, η), x ∈ Cl(V, η) and k ∈ 0, . . . , d a grade.

The grade projection ( ·)(k) is O(V, η)-equivariant:(
ρCl(g)x

)(k)
= ρCl(g)

(
x(k)

)
(24)

Cl(V, η) Cl(k)(V, η)

Cl(V, η) Cl(k)(V, η)

( ·)(k)

ρCl(g) ρCl(g)

( ·)(k)

(25)

This implies in particular that Cl(V, η) is reducible to sub-
representations Cl(k)(V, η), i.e. ρCl(g) does not mix grades.

Proof. Both theorems are proven in (Ruhe et al., 2023a).

2.3.3. O(p,q)-EQUIVARIANT CLIFFORD NEURAL NETS

Based on those properties, Ruhe et al. (2023a) proposed
Clifford group equivariant neural networks (CGENNs). Due
to a group isomorphism, this is equivalent to the network’s
O(V, η)-equivariance.
Definition/Theorem 2.16 (Clifford Group Equivariant NN).
Consider a grade k = 0, ..., d and weights wk

mn ∈ R. A
Clifford group equivariant neural network (CGENN) is con-
structed from the following functions, operating on one or
more multivectors xi ∈ Cl(V, η).

Linear layers: mix k-vectors. For each 1≤m≤ cout:

L(k)
m (x1, . . . , xcin) :=

∑cin

n=1
wk

mn · x(k)
n (26)

Such weighted linear mixing within sub-representations
Cl(k)(V, η) is common in equivariant MLPs.

Geometric product layers: compute weighted geometric
products with grade-dependent weights: (27)

P (k)(x1, x2) :=
∑d

m=0

∑d

n=0
wk

mn ·
(
x
(m)
1

• x
(n)
2

)(k)
This is similar to the irrep-feature tensor products in
MACE (Batatia et al., 2022).

Nonlinearity: As activations, we use A(x) := x ·Φ
(
x(0)

)
where Φ is the CDF of the Gaussian distribution. This is
inspired by GatedGELU from Brehmer et al. (2023).

All of these operations are by Theorems 2.14 and 2.15
O(V, η)-equivariant.
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Figure 3. Implicit Clifford-steerable ker-
nel for (p,q)= (1,1) and cin = cout =1.
It is parameterized by a kernel network
K, producing a field of (cin×cout) multi-
vector valued outputs. These are con-
volved with multivector fields by taking
their (weighted) geometric product at each
location in a convolutional manner. This
is equivalent to a conventional steerable
convolution after expansion to a O(1,1)-
steerable kernel via a kernel head opera-
tion H . For more details and equivariance
properties see the commutative diagram in
Fig. 4. A more detailed variant for R2,0

and O(2) is shown in Fig. 8.

3. Clifford-Steerable CNNs
This section presents Clifford-Steerable Convolutional Neu-
ral Networks (CS-CNNs), which operate on multivector
fields on Rp,q, and are equivariant to the isometry group
E(p, q) of Rp,q. To achieve E(p, q)-equivariance, we need
to find a way to implement O(p, q)-steerable kernels (Sec-
tion 2.2), which we do by leveraging the connection between
Cl(Rp,q) and O(p, q) presented in Section 2.3.

CS-CNNs process (multi-channel) multivector fields

f : Rp,q → Cl(Rp,q)c (28)

of type (W,ρ) = (Cl(Rp,q)c, ρcCl) with c ≥ 1 channels.
The representation

ρcCl =
⊕c

i=1ρCl : O(p, q)→ GL
(
Cl(Rp,q)c

)
(29)

is given by the action ρCl from Definition/Theorem 2.14,
however, applied to each of the c components individually.

Following Theorem 2.12, our main goal is the construction
of a convolution operator

L : Γ
(
Rp,q,Cl(Rp,q)cin

)
→ Γ

(
Rp,q,Cl(Rp,q)cout

)
,

L(fin)(u) :=

∫
Rp,q

K(v)
[
fin(u− v)

]
dv, (30)

parameterized by a convolution kernel

K : Rp,q → HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
(31)

that satisfies the following O(p, q)-steerability (equivari-
ance) constraint12

(32)

K(gv)
!
= ρcout

Cl (g)K(v) ρcinCl (g
−1) =: ρHom(g)(K(v)),

for every g ∈ O(p, q) and v ∈ Rp,q .

As mentioned in Section 2.2.2, constructing such O(p, q)-
steerable kernels is typically hard. To overcome this chal-
lenge, we follow Zhdanov et al. (2022) and implement the

12The volume factor |det g| = 1 drops out for g ∈ O(p, q).

kernels implicitly. Specifically, they are based on O(p, q)-
equivariant “kernel networks”13

K : Rp,q → Cl(Rp,q)cout×cin , (33)

implemented as CGENNs (Section 2.3.3).

Unfortunately, the codomain of K is Cl(Rp,q)cout×cin in-
stead of HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
, as required by

steerable kernels (Eq. 31). To bridge the gap between
these spaces, we introduce an O(p, q)-equivariant linear
layer, called kernel head H . Its purpose is to transform
the kernel network’s output k := K(v) ∈ Cl(Rp,q)cout×cin

into the desired R-linear map between multivector channels
H(k) ∈ HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
. The relation

between the kernel network K, the kernel head H , and the
resulting steerable kernel K := H ◦K is visualized in Figs.
3 and 4.

To achieve O(p,q)-equivariance (steerability) of K=H◦K,
we have to make the kernel head H of a specific form:
Definition 3.1 (Kernel head). A kernel head is a map

H : Cl(Rp,q)cout×cin→ HomVec

(
Cl(Rp,q)cin,Cl(Rp,q)cout

)
k 7→ H(k), (34)

where the R-linear operator

H(k) : Cl(Rp,q)cin → Cl(Rp,q)cout , f 7→ H(k)[ f ],

is defined on each output channel i ∈ [cout] and grade
component k = 0, . . . , d, by: (35)

H(k)[ f ]
(k)
i :=

∑
j∈[cin]

m,n=0,...,d

wk
mn,ij ·

(
k
(m)
ij

• f
(n)
j

)(k)
m,n = 0, . . . , d label grades and j ∈ [cin] input channels.
The wk

mn,ij ∈ R are parameters that allow for weighted
mixing between grades and channels.

Our implementation of the kernel head is discussed in Ap-

13The kernel network’s output Cl(Rp,q)cout·cin is here reshaped
to matrix form Cl(Rp,q)cout×cin .
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Figure 4. Construction and O(p,q)-
equivariance of implicit steerable
kernels K=H ◦K, which are com-
posed from a kernel network K with
cout×cin multivector outputs and a
kernel head H . The whole diagram
commutes. The two inner squares
show the individual equivariance of
K and H , from which the kernel’s
overall equivariance follows.

Rp,q Cl(Rp,q)cout×cin HomVec

(
Cl(Rp,q)cin , Cl(Rp,q)cout

)

Rp,q Cl(Rp,q)cout×cin HomVec

(
Cl(Rp,q)cin , Cl(Rp,q)cout

)

K

K

g·

H

ρcout×cin
Cl (g) ρHom(g)

K

K H

pendix A.5. Note that the kernel head H can be seen as a
linear combination of partially evaluated geometric product
layers P (k)(kij , ·) from (27), which mixes input channels
to get the output channels. The specific form of the kernel
head H comes from the following, most important property:
Proposition 3.2 (Equivariance of the kernel head). The ker-
nel head H is O(p, q)-equivariant w.r.t. ρcout×cin

Cl and ρHom,
i.e. for g ∈ O(p, q) and k ∈ Cl(Rp,q)cout×cin we have:

H
(
ρcout×cin
Cl (g)(k)

)
= ρHom(g)(H(k)). (36)

Proof. The proof relies on the O(p, q)-equivariance of the
geometric product and of linear combinations within grades.
It can be found in the Appendix in Proof E.1.

With these obstructions out of the way, we can now give the
core definition of this paper:
Definition 3.3 (Clifford-steerable kernel). A Clifford-
steerable kernel K is a map as in Eq. (31) that factorizes
as: K = H ◦K with a kernel head H from Eq. (35) and
a kernel network K given by a Clifford group equivariant
neural network (CGENN)14 from Definition/Theorem 2.16:

K = [Kij ]i∈[cout]
j∈[cin]

: Rp,q → Cl(Rp,q)cout×cin . (37)

The main theoretical result of this paper is that Clifford-
steerable kernels are always O(p, q)-steerable:
Theorem 3.4 (Equivariance of Clifford-steerable kernels).
Every Clifford-steerable kernel K =H ◦K is O(p, q)-
steerable w.r.t. the standard action ρ(g)= g and ρHom:

K(gv) = ρHom(g)(K(v)) ∀ g ∈ O(p,q), v ∈ Rp,q

Proof. K and H are O(p, q)-equivariant by Definition/The-
orem 2.16 and Proposition 3.2, respectively. The O(p, q)-
equivariance of the composition K = H ◦K then follows
from Fig. 4 or by direct calculation:

K(gv) = H
(
K(gv)

)
(38)

= H
(
ρcout×cin
Cl (g)(K(v))

)
= ρHom(g)

(
H
(
K(v)

))
= ρHom(g)

(
K(v)

)
.

14More generally we could employ any O(p, q)-equivariant neu-
ral network K w.r.t. the standard action ρ(g)= g and ρcout×cin

Cl .

A direct Corollary of Theorem 3.4 and Theorem 2.12 is now
the following desired result.

Corollary 3.5. Let K=H◦K be a Clifford-steerable kernel.
The corresponding convolution operator L (Eq. (30)) is then
E(p, q)-equivariant; for all fin ∈ Γ

(
Rp,q,Cl(Rp,q)cin

)
:

(t, g)▷ L(fin) = L
(
(t, g)▷ fin

)
∀ (t,g) ∈ E(p, q)

Definition 3.6 (Clifford-steerable CNN). We call a convo-
lutional network (that operates on multivector fields and is)
based on Clifford-steerable kernels a Clifford-Steerable
Convolutional Neural Network (CS-CNN).

Remark 3.7. Brandstetter et al. (2023) use a similar ker-
nel head H as ours in Eq. (35). However, as their im-
plicit kernel network K is not O(p,q)-equivariant, they
only achieve translation equivariance, while our CS-CNNs
are fully E(p,q)-equivariant.

Appendix F generalizes CS-CNNs from flat spacetimes to
general curved pseudo-Riemannian manifolds. Appendix A
provides details on the code implementation of CS-CNNs,
available at https://github.com/maxxxzdn/
clifford-group-equivariant-cnns.

4. Experimental Results
To assess CS-CNNs, we investigate how well they can learn
to simulate dynamical systems by testing their ability to
predict future states given a history of recent states (Gupta
& Brandstetter, 2022). We consider three settings:

• Fluid dynamics on R2 (incompressible Navier-Stokes);
• Electrodynamics on R3 (Maxwell’s equations);
• Electrodynamics on R1,2 (Maxwell’s equations).

Only the last setting is properly incorporating time into 1+2-
dimensional spacetime, while the former two are treating
time steps improperly as feature channels. The improper
setting allows us to compare our method with prior work,
which was not able to incorporate the full spacetime sym-
metries E(1, n), but only the spatial subgroup E(n) (which
is also covered by CS-CNNs).

Data & Tasks: For fluid dynamics and electrodynamics
forecasting on R2 ≡ R2,0 and R3 ≡ R3,0, respectively, the
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Figure 5. Left: Mean squared errors (MSEs) on various PDE forecasting tasks (one-step loss). CS-ResNets significantly outperform all
baselines regardless of the volume of training data. Right: Relative equivariance error for O(2), measuring how well the models commute
with group actions. Note that the axis label is logarithmic.

Figure 6. Left: target and pre-
dicted fields on R(2,0) for
Navier-Stokes when rotated by
90◦. CS-ResNet (ours) is
trained on only 64 trajecto-
ries, the basic ResNet on 5120.
Right: relative difference be-
tween target (upper row) and
predicted fields on R(1,2) for
Maxwell 2D under arbitrary re-
flections.

goal is to predict the next state given 4 previous time steps.
The input consists of scalar pressure and vector velocity
fields for the former, and vector electric and bivector mag-
netic fields for the latter. For electrodynamics on R1,2, the
model is given 16 time steps in the past, and should predict
16 steps to the future. In this case, the entire electromagnetic
field forms a bivector (Orbán & Mira, 2020). More details
on the datasets are found in Appendix C.1.

Architectures: We evaluate four architectures:

• Clifford-Steerable ResNets15 (E(p,q)-equivariant);
• conventional ResNets (translation equivariant);
• Clifford ResNets (translation equivariant);
• Steerable ResNets (E(n)-equivariant).

The basic ResNet architecture is described in Appendix C.
Clifford, Steerable, and our CS-ResNets are constructed by
substituting conventional convolutions, respectively, with
Clifford convolutions from (Brandstetter et al., 2023), O(n)-
steerable convolutions from (Weiler & Cesa, 2019; Cesa
et al., 2022), and our Clifford-Steerable convolutions from
Section 3. All models scale the number of channels to match
the parameter count of the basic ResNet.

15This is a variant of CS-CNNs with residual connections.

Results: We evaluate the models on various training set
sizes and report mean-squared error (MSE) losses. As
shown in Fig. 5, our CS-ResNets outperform the baselines
on all tasks and across all dataset sizes, with particularly
high advantage on modeling Maxwell’s equations. Our
CS-ResNets are extremely sample-efficient: In the Navier-
Stokes experiment, they require only 64 trajectories to out-
perform the basic ResNet trained on 80× more data.

The Maxwell dataset on spacetime R1,2 is naturally de-
scribed by the space-time algebra Cl(R1,2) (Hestenes,
2015). Time appears here as a grid dimension, not as a
channel, contrary to the previous experiments. The light
cone structure of CS-CNN kernels (Fig. 4) ensures the mod-
els’ consistency across different inertial frames of reference.

Equivariance error: Finally, we asses the models’ E(2)-
equivariance. We do this by measuring the relative error
|x−y|
|x+y| between (1) the output computed from a transformed
input; and (2) the transformed output, given the original in-
put. Quantitative results are reported in Fig. 5 (right), while
Fig. 6 compares the output fields visually. As expected,
the error for non-equivariant models is much larger than
for the equivariant networks. The non-zero error of both
E(2)-equivariant models is due to numerical artefacts.
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5. Conclusions
We presented Clifford-Steerable CNNs, a new theoretical
framework for E(p,q)-equivariant convolutions on pseudo-
Euclidean spaces like Minkowski-spacetime. CS-CNNs
process fields of multivectors – geometric features which
naturally occur in many areas of physics. The required
O(p,q)-steerable convolution kernels are implemented im-
plicitly via Clifford group equivariant neural networks. This
makes so far unknown analytic solutions for the steerability
constraint unnecessary. CS-CNNs significantly outperform
baselines on a variety of physical dynamics tasks.

From the viewpoint of general steerable CNNs, there are
some limitations:

• First, there exist more general field types (O(p,q)-rep-
resentations) than multivectors, for which CS-CNNs do
not provide steerable kernels. For connected Lie groups,
like the subgroups SO+(p,q), these types can in principle
be computed numerically (Shutty & Wierzynski, 2022).

• Second, CGENNs and CS-CNNs rely on equivariant oper-
ations that treat multivector-grades Cl(k)(V, η) as “atomic”
features. However, it is not clear whether grades are al-
ways irreducible representations, that is, there might be
further equivariant degrees of freedom which would treat
irreducible sub-representations independently.

• We observed that the steerable kernel spaces of CS-CNNs
are not necessarily complete, that is, certain degrees of
freedom might be missing. However, we show in Ap-
pendix B how they are recovered by composing multiple
convolutions.

• O(p, q) and their group orbits on Rp,q are for p, q ̸= 0
non-compact; for instance, the hyperbolas in spacetimes
R1,q extend to infinity. In practice, we sample convolu-
tion kernels on a finite sized grid as shown in Fig. 3.
This introduces a cutoff, breaking equivariance for large
transformations. Note that this is an issue not specific to
CS-CNNs, but it applies e.g. to scale-equivariant CNNs
as well (Bekkers, 2020; Romero et al., 2020).

Despite these limitations, CS-CNNs excel in our experi-
ments.

A major advantage of CGENNs and CS-CNNs is that they
allow for a simple, unified implementation for arbitrary sig-
natures (p,q). This is remarkable, since steerable kernels
usually need to be derived for each symmetry group indi-
vidually. Furthermore, our implementation applies both to
multivector fields sampled on pixel grids and point clouds.

CS-CNNs are, to the best of our knowledge, the first con-
volutional networks that respect the full symmetries E(p,q)
of Minkowski spacetime or any other pseudo-Euclidean
spaces. Even more generally, CS-CNNs are readily ex-
tended to arbitrary curved pseudo-Riemannian manifolds,
and such convolutions will necessarily rely on O(p,q)-

steerable kernels. For more details see Appendix F and
(Weiler et al., 2023). They could furthermore be adapted
to steerable PDOs (partial differential operators) (Jenner &
Weiler, 2022), which would connect them to the multivec-
tor calculus used in mathematical physics (Hestenes, 1968;
Hitzer, 2002; Lasenby et al., 1993).

Broader impact
The broader implications of our work are primarily in the
improved modeling of PDEs, other physical systems, or
multi-vector based applications in computational geometry.
Being able to model such systems more accurately can lead
to better understanding about the physical systems govern-
ing our world, while being able to model such systems more
efficiently could greatly improve the ecological footprint of
training ML models for modeling physical systems.

Acknowledgement
This research was supported by Microsoft Research
AI4Science. All content represents the opinion of the au-
thors, which is not necessarily shared or endorsed by their
respective employers/sponsors.

References
Batatia, I., Kovacs, D. P., Simm, G., Ortner, C., and Csányi,
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Appendix

A. Implementation details
This appendix provides details on the implementation of
CS-CNNs.16

Before detailing the Clifford-steerable kernels and convolu-
tions, we first define the following “kernel shell” operation,
which is used twice in the final kernel computation. Re-
call that given the base space Rp,q equipped with the inner
product ηp,q , we have a Clifford algebra Cl(Rp,q). We want
to compute a kernel that maps from cin multivector input
channels to cout multivector output channels, i.e.,

K : Rp,q → HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
. (39)

K is defined on any v ∈ Rp,q , which allows to model point
clouds. In this work, however, we sample it on a grid of
shape X1, . . . , Xp+q , analogously to typical CNNs.

A.1. Clifford Embedding

We briefly discuss how one is able to embed scalars and
vectors into the Clifford algebra. This extends to other
grades such as bivectors.

Let s ∈ R and v ∈ Rp,q. Using the natural isomorphisms
E(0) : R ∼−→ Cl(Rp,q)(0) and E(1) : Rp,q ∼−→ Cl(Rp,q)(1),
we embed the scalar and vector components into a multivec-
tor as

m := E(0)(s) + E(1)(v) ∈ Cl(Rp,q) . (40)

This is a standard operation in Clifford algebra computa-
tions, where we leave the other components of the multi-
vector zero. We denote such embeddings in the algorithms
provided below jointly as “CL EMBED([s, v])”.

A.2. Scalar Orbital Parameterizations

Note that the O(p, q)-steerability constraint

K(gv)
!
= ρcout

Cl (g)K(v) ρcinCl (g
−1) =: ρHom(g)(K(v))

∀ v ∈ Rp,q, g ∈ O(p, q)

couples kernel values within but not across different O(p, q)-
orbits

O(p, q).v := {gv | g ∈ O(p, q)} (41)

= {w | η(w,w) = η(v, v)} .
The first line here is the usual definition of group orbits,
while the second line makes use of the Def. 2.5 of pseudo-
orthogonal groups as metric-preserving linear maps.

16https://github.com/maxxxzdn/
clifford-group-equivariant-cnns

In the positive-definite case of O(n), this means that the
only degree of freedom is the radial distance from the origin,
resulting in (hyper)spherical orbits. Examples of such ker-
nels can be seen in Fig. 8. Other radial kernels are obtained
typically through e.g. Gaussian shells, Bessel functions, etc.

In the nondefinite case of O(p, q), the orbits are hyper-
boloids, resulting in hyperboloid shells for e.g. the Lorentz
group O(1, 3) as in Fig. 3. In this case, we extend the
input to the kernel with a scalar component that now relates
to the hyperbolic (squared) distance from the origin.

Specifically, we define an exponentially decaying ηp,q-
induced (parameterized) scalar orbital shell (analogous to
the radial shell of typical Steerable CNNs) in the following
way. We parameterize a kernel width σ and compute the
shell value as

sσ(v) = sgn (ηp,q(v, v)) · exp
(
−|η

p,q(v, v)|
2σ2

)
. (42)

The width σ ∼ U(0.4, 0.6) is, inspired by (Cesa et al., 2022),
initialized with a uniform distribution. Since ηp,q(v, v) can
be negative in the nondefinite case, we take the absolute
value and multiply the result by the sign of ηp,q(v, v). Com-
putation of the kernel shell (SCALARSHELL) is outlined
in Function 1. Intuitively, we obtain exponential decay for
points far from the origin. However, the sign of the in-
ner product ensures that we clearly disambiguate between
“light-like” and “space-like” points. I.e., they are close in Eu-
clidean distance but far in the ηp,q-induced distance. Note
that this choice of parameterizing scalar parts of the kernel
is not unique and can be experimented with.

A.3. Kernel Network

Recall from Section 3 that the kernel K is parameterized by
a kernel network, which is a map

K : Rp,q → Cl(Rp,q)cout×cin (43)

implemented as an O(p, q)-equivariant CGENN. It consists
of (linearly weighted) geometric product layers followed by
multivector activations.

Let {vn}Nn=1 be a set of sampling points, where N :=
X1 · . . . ·Xp+q . In the remainder, we leave iteration over n
implicit and assume that the operations are performed for
each n. We obtain a sequence of scalars using the kernel
shell

sn := sσ(vn) . (44)

The input to the kernel network is a batch of multivectors

xn := CL EMBED([sn, vn]) . (45)
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Function 1 SCALARSHELL

input ηp,q , v ∈ Rp,q , σ.
s← sgn (ηp,q(v, v)) · exp

(
− |ηp,q(v,v)|

2σ2

)
return s

Function 2 CLIFFORDSTEERABLEKERNEL

input p, q Λ, cin, cout, (vn)
N
n=1 ∈ Rp,q , CGENN

output k ∈ R(cout·2d)×(cin·2d)×X1×···×Xp+q

# Weighted Cayley.
for i = 1 . . . cin, o = 1 . . . cout, a, b, c = 1 . . . p+ q do

wc
oiab ∼ N (0, 1√

cin·N
) # Weight init.

W c
oiab ← Λc

ab · wc
oiab

end for

σ ∼ U(0.4, 0.6) # Init if needed.
# Compute scalars.
sn ← SCALARSHELL(ηp,q, vn, σ)
# Embed s and v into a multivector.
xn ← CL EMBED ([sn, vn])

# Evaluate kernel network.
kio
n := CGENN(xn)

# Reshape to kernel matrix.
k ← RESHAPE (k, (N, cout, cin))

# Compute kernel mask.
for i = 1 . . . cin, o = 1 . . . cout, k = 0 . . . p+ q do

σkio ∼ U(0.4, 0.6) # Init if needed.
sknoi ← SCALARSHELL(ηp,q, vn, σkio)

end for

k
(k)
noi ← k

(k)
noi · sknoi # Mask kernel.

# Kernel head.
kc
noib ←

∑2d

a=1 k
a
noi ·W c

oiab # Partial weighted
geometric product.

# Reshape to final kernel.
k ← RESHAPE

(
k,
(
cout · 2d, cin · 2d, X1, . . . , Xp+q

))
return k

Function 3 CLIFFORDSTEERABLECONVOLUTION

input Fin, (vn)
N
n=1, ARGS

output Fout

Fin ← RESHAPE(Fin, (B, cin · 2d, Y1, . . . , Yp+q))

k ← CLIFFORDSTEERABLEKERNEL((vn)
N
n=1 , ARGS)

Fout ← CONV(Fin,k)
Fout ← RESHAPE(Fout, (B, cout, Y1, . . . , Yp+q, 2

d))
return Fout

I.e., taking s and v together, they form the scalar and vec-
tor components of the CEGNN’s input multivector. We
found including the scalar component crucial for the correct
scaling of the kernel to the range of the grid.

Let i = 1, . . . , cin and o = 1, . . . , cout be a sequence of
input and output channels. We then have the kernel network
output

knoi := K(vn)oi := CGENN(xn)oi , (46)

where knoi ∈ Cl(Rp,q) is the output of the kernel network
for the input multivector xn (embedded from the scalar sn
and vector vn). Once the output stack of multivectors is
computed, we reshape it from shape (N, cout · cin) to shape
(N, cout, cin), resulting in the kernel matrix

k ← RESHAPE (k, (N, cout, cin)) , (47)

where now k ∈ Cl(Rp,q)N×cout×cin . Note that kn ∈
Cl(Rp,q)cout×cin is a matrix of multivectors, as desired.

A.4. Masking

We compute a second set of scalars which will act as a
mask for the kernel. This is inspired by Steerable CNNs
to ensure that the (e.g., radial) orbits of compact groups
are fully represented in the kernel, as shown in Figure 8.
However, note that for O(p, q)-steerable kernels with both
p, q ̸= 0 this is never fully possible since O(p, q) is in
general not compact, and all orbits except for the origin
extend to infinity. This can e.g. be seen in the hyperbolic-
shaped kernels in Figure 4.

For equivariance to hold in practice, whole orbits would
need to be present in the kernel, which is not possible if
the kernel is sampled on a grid with finite support. This
is not specific to our architecture, but is a consequence of
the orbits’ non-compactness. The same issue arises e.g. in
scale-equivariant CNNs (Romero et al., 2020; Worrall &
Welling, 2019; Ghosh & Gupta, 2019; Sosnovik et al., 2020;
Bekkers, 2020; Zhu et al., 2019; Marcos et al., 2018; Zhang
& Williams, 2022). Further experimenting is needed to
understand the impact of truncating the kernel on the final
performance of the model.

We invoke the kernel shell function again to compute a mask
for each k = 0, . . . , p+ q, i = 1, . . . , cin, o = 1, . . . , cout.
That is, we have a weight array σkio, initialized identically
as earlier, which is reused for each position in the grid.

sknio := sσkio
(vn) . (48)

We then mask the kernel by scalar multiplication with the
shell, i.e.,

k
(k)
kio ← k

(k)
nio · sknio . (49)
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A.5. Kernel Head

Finally, the kernel head turns the “multivector matri-
ces” into a kernel that can be used by, for example,
torch.nn.ConvNd or jax.lax.conv. This is done
by a partial evaluation of a (weighted) geometric prod-
uct. Let µ, ν ∈ Cl(Rp,q) be two multivectors. Recall that
dimCl(Rp,q) = 2p+q = 2d.

(µ • ν)C =
∑

A

∑
B
µA · νB · ΛC

AB , (50)

where A,B,C ⊆ [d] are multi-indices running over the 2d

basis elements of Cl(Rp,q). Here, Λ ∈ R2d×2d×2d is the
Clifford multiplication table of Cl(Rp,q), also sometimes
called a Cayley table. It is defined as

ΛC
A,B =

{
0 if A△B ̸= C

sgnA,B ·η̄(eA∩B , eA∩B) if A△B = C
.

(51)

Here, △ denotes the symmetric difference of sets, i.e.,
A△B = (A \B) ∪ (B \A). Further,

sgnA,B := (−1)nA,B , (52)

where nA,B is the number of adjacent “swaps” one needs
to fully sort the tuple (i1, . . . , is, j1, . . . , jt), where A =
{i1, . . . , is} and B = {j1, . . . , jt}. In the following, we
identify the multi-indices A, B, and C with a relabeling a,
b, and c that run from 1 to 2d.

Altogether, Λ defines a multivector-valued bilinear form
which represents the geometric product relative to the cho-
sen multivector basis. We can weight its entries with pa-
rameters wc

oiab ∈ R, initialized as wc
oiab ∼ N (0, 1√

cin·N
).

These weightings can be redone for each input channel and
output channel, as such we have a weighted Cayley table
W ∈ R2d×2d×2d×cin×cout with entries

W c
oiab := Λc

abw
c
oiab . (53)

Given the kernel matrix k, we compute the kernel by partial
(weighted) geometric product evaluation, i.e.,

kc
noib ←

∑2d

a=1
ka
noi ·W c

oiab . (54)

Finally, we reshape and permute kc
noib from shape

(N, cout, cin, 2
d, 2d) to its final shape, i.e.,

k ← RESHAPE
(
k,
(
cout · 2d, cin · 2d, X1, . . . , Xp+q

))
.

This is the final kernel that can be used in a convolutional
layer, and can be interpreted (at each sample coordinate)
as an element of HomVec

(
Cl(Rp,q)cin ,Cl(Rp,q)cout

)
.

The pseudocode for the Clifford-steerable kernel
(CLIFFORDSTEERABLEKERNEL) is given in Function 2.

A.6. Clifford-steerable convolution:

As defined in Section 3, Clifford-steerable con-
volutions can be efficiently implemented with
conventional convolutional machinery such as
torch.nn.ConvNd or jax.lax.conv (see Function
3 (CLIFFORDSTEERABLECONVOLUTION) for pseudocode).
We now have a kernel k ∈ R(cout·2d)×(cin·2d)×X1×···×Xp+q

that can be used in a convolutional layer. Given batch size
B, we now reshape the input stack of multivector fields
(B, cin, Y1, . . . , Yp+q, 2

d) into (B, cin · 2d, Y1, . . . , Yp+q).
The output array of shape (B, cout · 2d, Y1, . . . , Yp+q) is
obtained by convolving the input with the kernel, which
is then reshaped to (B, cout, Y1, . . . , Yp+q, 2

d), which can
then be interpreted as a stack of multivector fields again.

B. Completeness of kernel spaces
In order to not over-constrain the model, it is essential to
parameterize a complete basis of O(p,q)-steerable kernels.
Comparing our implicit O(2,0) = O(2)-steerable kernels
with the analytical solution by (Weiler & Cesa, 2019), we
find that certain degrees of freedom are missing; see Fig. 8.

However, while these degrees of freedom are missing in a
single convolution operation, they can always be recovered
by applying two consecutively convolutions. This suggests
that the overall expressiveness of CS-CNNs is (at least for
O(2)) not diminished. Moreover, two convolutions with
kernels K̂ and K can always be expressed as a single convo-
lution with a composed kernel K̂∗K. As visualized below,
this composed kernel recovers the full degrees of freedom
reported in (Weiler & Cesa, 2019):

Figure 7.

The following two sections discuss the initial differences
in kernel parametrizations and how they are resolved by
adding a second linear or convolution operation. Unless
stated otherwise, we focus here on cin = cout = 1 channels
to reduce clutter.
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CS-CNN parametrization

out
in scalar vector pseudoscalar

1
[
e1, e2

]⊤
e12

1 ws
ssRs(r)

[
1
]

ws
vvRv(r)

[
− sin(ϕ) cos(ϕ)

]
∅[

e1
e2

]
wv

vsRv(r)

[
−sin(ϕ)
cos(ϕ)

]
wv

svRs(r)

[
1 0

0 1

]
wv

vpRv(r)

[
cos(ϕ)

sin(ϕ)

]

e12 ∅ wp
vvRv(r)

[
cos(ϕ) sin(ϕ)

]
wp

spRs(r)
[
1
]

complete e2cnn parametrization (Weiler & Cesa, 2019)

out
in 1

[
e1, e2

]⊤
e12

1 Rs
s(r)

[
1
]

Rs
v(r)

[
− sin(ϕ) cos(ϕ)

]
∅[

e1
e2

]
Rv

s(r)

[
−sin(ϕ)
cos(ϕ)

]
Rv

v(r)

[
1 0

0 1

]
, R̂v

v(r)

[
cos(2ϕ) sin(2ϕ)

sin(2ϕ) − cos(2ϕ)

]
Rv

p(r)

[
cos(ϕ)

sin(ϕ)

]

e12 ∅ Rp
v(r)

[
cos(ϕ) sin(ϕ)

]
Rp

p(r)
[
1
]

Figure 8. Comparison of the parametrization of O(2)-steerable kernels in CS-CNNs (top and middle) and e2cnn (bottom). While the
e2cnn solutions are proven to be complete, CS-CNN seems to miss certain degrees of freedom:

(1) Their radial parts are coupled in the components highlighted in blue and green, while escnn allows for independent radial parts. By
“coupled” we mean that they are merely scaled relative to each other with weights wk

mn from the weighted geometric product operation in
the kernel head H , where m labels grade K(m) of the kernel network output while n, k label input and output grades of the expanded
kernel in HomVec

(
Cl(Rp,q), Cl(Rp,q)

)
;

(2) CS-CNN is missing kernels of angular frequency 2 that are admissible for mapping between vector fields; highlighted in red.

As explained in Appendix B, these missing degrees of freedom are recovered when composing two convolution layers. A kernel
corresponding to the composition of two convolutions in a single one is visualized in Fig. 7.
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B.1. Coupled radial dependencies in CS-CNN kernels

The first issue is that the CS-CNN parametrization implies a
coupling of radial degrees of freedom. To make this precise,
note that the O(2)-steerability constraint

K(gv)
!
= ρcout

Cl (g)K(v) ρcinCl (g
−1) ∀ v ∈ R2, g ∈ O(2)

decouples into independent constraints on individual O(2)-
orbits on R2, which are rings at different radii (and the
origin); visualized in Fig. 2 (left). (Weiler et al., 2018a;
Weiler & Cesa, 2019) parameterize the kernel therefore in
(hyper)spherical coordinates. In our case these are polar
coordinates of R2, i.e. a radius r ∈ R≥0 and angle ϕ ∈ S1:

K(r, ϕ) := R(r)κ(ϕ) (55)

The O(2)-steerability constraint affects only the angular
part and leaves the radial part entirely free, such that it can
be parameterized in an arbitrary basis or via an MLP.

e2cnn: Weiler & Cesa (2019) solved analytically for com-
plete bases of the angular parts. Specifically, they derive
solutions

Kk
n(r, ϕ) = Rk

n(r)κ
k
n(ϕ) (56)

for any pair of input and output field types (irreps of grades)
n and k, respectively. This complete basis of O(2)-steerable
kernels is shown in the bottom table of Fig. 8.

CS-CNNs: CS-CNNs parameterize the kernel in terms of
a kernel network K : Rp,q → Cl(Rp,q)cout×cin , visualized
in Fig. 8 (top). Expressed in polar coordinates, assuming
cin = cout = 1, and considering the independence of K
on different orbits due to its O(2)-equivariance, we get the
factorization

K(r, ϕ)(m) = Rm(r)κm(ϕ) , (57)

where m is the grade of the multivector-valued output. As
described in Appendix A.5 (Eq. (53)), the kernel head oper-
ation H expands this output by multiplying it with weights
W k

mn = Λk
mnw

k
mn, where wk

mn ∈ R are parameters and
Λk
mn ∈ {−1, 0, 1} represents the geometric product relative

to the standard basis of Rp,q. Note that we do not consider
multiple in or output channels here. The final expanded
kernel for CS-CNNs is hence given by

Kk
n(r, ϕ) =

∑
m

W k
mnK(r, ϕ)(m) (58)

=
∑
m

Λk
mnw

k
mnRm(r)κm(ϕ) .

These solutions are listed in the top table in Fig. 8, and
visualized in the graphics above.17

17The parameter Λk
mn appears in the table as selecting to which

entry k, n of the table grade K(r, ϕ)(m) is added (optionally with
minus signs).

Comparison: Note that the complete solutions by (Weiler
& Cesa, 2019) allow for a different radial part Rk

n for
each pair of input and output type (grade/irrep). In con-
trast, the CS-CNN parametrization expands coupled radial
parts Rm, additionally multiplying them with weights wk

mn

(highlighted in the table in blue and green). The CS-CNN
parametrization is therefore clearly less general (incom-
plete).

Solutions: One idea to resolve this shortcoming is to make
the weighted geometric product parameters themselves radi-
ally dependent,

wk
mn : R≥0 → R, r 7→ wk

mn(r) , (59)

for instance by parameterizing the weights with a neural net-
work. This would fully resolve the under-parametrization,
and would preserve equivariance, since O(2)-steerability
depends only on the angular variable.

However, doing this is actually not necessary, since the
missing flexibility of radial parts can always be resolved
by running a convolution followed by a linear layer (or a
second convolution) when cout > 1. The reason for this is
that different channels i = 1, . . . , cout of a kernel network
K : R → Cl(R)cout×cin do have independent radial parts.
Their convolution responses in different channels can by
a subsequent linear layer be mixed with grade-dependent
weights. By linearity, this is equivalent to immediately mix-
ing the channels’ radial parts with grade-dependent weights,
resulting in effectively decoupled radial parts.

B.2. Circular harmonics order 2 kernels

A second issue is that the CS-CNN parametrization is miss-
ing a basis kernel of angular frequency 2 that maps between
vector fields; highlighted in red in the bottom table of Fig. 8.
However, it turns out that this degree of freedom is repro-
duced as the difference of two consecutive convolutions (∗),
one mapping vectors to pseudoscalars and back to vectors,
the other one mapping vectors to scalars and back to vectors,
as suggested in the (non-commutative!) computation flow
diagram below:

pseudo vector

vector ⊖ vector

scalar vector

∗
∗

∗
∗

As background on the angular frequency 2 kernel, note that
O(2)-steerable kernels between irreducible field types of an-
gular frequencies j and l contain angular frequencies |j − l|
and j + l – this is a consequence of the Clebsch-Gordan de-
composition of O(2)-irrep tensor products (Lang & Weiler,
2020). We identify multivector grades Cl(R2,0)(k) with the

17
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following O(2)-irreps:1819

scalars ∈ Cl(R2,0)(0) ↔ trivial irrep (j=0)

vectors ∈ Cl(R2,0)(1) ↔ defining irrep (j=1)

pseudo-scalars ∈ Cl(R2,0)(2) ↔ sign-flip irrep (j=0)

Kernels that map vector fields (j=1) to vector fields (l=1)
should hence contain angular frequencies |j− l| = 0 and
j+ l = 2. The latter is missing since O(2)-irreps of order 2
are not represented by any grade of Cl(R2,0).

To solve this issue, it seems like one would have to replace
the CEGNNs underlying the kernel network K with a more
general O(2)-equivariant MLP, e.g. (Finzi et al., 2021).
However, it can as well be implemented as a succession
of two convolution operations. To make this claim plausi-
ble, observe first that convolutions are associative, that is,
two consecutive convolutions with kernels K and K̂ are
equivalent to a single convolution with kernel K̂ ∗K:

K̂ ∗
(
K ∗ f

)
=
(
K̂ ∗K

)
∗ f (60)

Secondly, convolutions are linear, such that

α(K̂ ∗ f) + β(K ∗ f) =
(
αK̂ + βK

)
∗ f (61)

for any α, β ∈ R.

Using associativity, we can express two consecutive convo-
lutions, first going from vector to scalar fields via

Ks
v(r, ϕ) = Rs

v(r)
(
− sin(ϕ) cos(ϕ)

)
(62)

then going back from scalars to vectors via

Kv
s(r, ϕ) = Rv

s(r)

(− sin(ϕ)
cos(ϕ)

)
(63)

as a single convolution between vector fields, where the
combined kernel is given by:

Σv
v := Kv

s ∗Ks
v (64)

=


∗( )

=




We can similar define a convolution going from vector to
pseudoscalar fields via

Kp
v(r, ϕ) = Rp

v(r)
(
cos(ϕ) sin(ϕ)

)
(65)

18As mentioned earlier, multivector grades may in general not
be irreducible, however, for (p, q) = (2, 0) they are.

19There are two different O(2)-irreps corresponding to j = 0
(trivial and sign-flip); see (Weiler et al., 2023)[Section 5.3.4].

and back to vector fields via

Kv
p(r, ϕ) = Rv

p(r)

(
cos(ϕ)

sin(ϕ)

)
(66)

as a single convolution with combined kernel:

Πv
v := Kp

v ∗Kv
p (67)

=


∗( )

=




By linearity, we can define yet another convolution between
vector fields by taking the difference of these kernels, which
results in:

Πv
v − Σv

v =


 (68)

Such kernels parameterize exactly the missing O(2)-
steerable kernels of angular frequency 2; highlighted in red
in the bottom table in Fig. 8. This shows that the missing
kernels can be recovered by two convolutions, if required.

The “visual proof” by convolving kernels is clearly only sug-
gestive. To make it precise, it would be required to compute
the convolutions of two kernels analytically. This is easily
done by identifying circular harmonics with derivatives of
Gaussian kernels; a relation that is well known in classical
computer vision (Lindeberg, 2009).

C. Experimental details
Model details: For ResNets, we follow the setup of Wang
et al. (2020); Brandstetter et al. (2023); Gupta & Brand-
stetter (2022): the ResNet baselines consist of 8 residual
blocks, each comprising two convolution layers with 7× 7
(or 7× 7× 7 for 3D) kernels, shortcut connections, group
normalization (Wu & He, 2018), and GeLU activation func-
tions (Hendrycks & Gimpel, 2016). We use two embedding
and two output layers, i.e., the overall architectures could be
classified as Res-20 networks. Following (Gupta & Brand-
stetter, 2022; Brandstetter et al., 2023), we abstain from
employing down-projection techniques and instead main-
tain a consistent spatial resolution throughout the networks.
The best models have approx. 7M parameters for Navier-
Stokes and 1.5M parameters for Maxwell’s equations, in
both 2D and 3D.

Optimization: For each experiment and each model, we
tuned the learning rate to find the optimal value. Each model
was trained until convergence. For optimization, we used
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Adam optimizer (Kingma & Ba, 2014) with no learning
decay and cosine learning rate scheduler (Loshchilov &
Hutter, 2017) to reduce the initial value by the factor of
0.01. Training was done on a single node with 4 NVIDIA
GeForce RTX 2080 Ti GPUs.

C.1. Datasets

We obtain the Navier-Stokes data from Gupta & Brandstet-
ter (2022), based on ΦFlow (Holl et al., 2020), on a grid
with spatial resolution 128 x 128 (∆x = 0.25, ∆y = 0.25),
and temporal resolution of ∆t = 1.5 s. For validation and
testing, we randomly selected 1024 trajectories from corre-
sponding partitions. We obtain the 3D Maxwell’s equations
from Brandstetter et al. (2023) on a grid with spatial reso-
lution of 32× 32× 32(∆x = ∆y = ∆z = 5 · 10−7), and
temporal resolution of ∆t = 50s. In Cl(R3,0), E is a vector,
and B is a bivector. The size of validation and test partitions
is 128. We generate the data for the 2D Maxwell’s equations
using finite-difference time-domain (FDTD) (Taflove et al.,
2005) simulations20. We perform simulations on a closed
domain with periodic boundary conditions on a grid with a
spatial resolution of 128× 128 (∆x = ∆y = 2 · 10m−7),
and temporal resolution of ∆t = 65 µs. We randomly place
4 different light sources outside a box, emitting light with
different amplitude and phase shifts, causing the resulting E
and B fields to interfere with each other. We confirm energy
is conserved and downsample the resulting simulations to a
spatial resolution of 32× 32 (∆x = ∆y = 8 · 10m−7). In
Cl(R1,2), the electromagnetic field forms a bivector (Orbán
& Mira, 2020). The size of validation as well as test parti-
tions was 128.

D. The Clifford Algebra
For completeness purposes and to complement Section 2.3,
in this sections, we give a short and formal definition of
the Clifford algebra. For this, we first need to introduce the
tensor algebra of a vector space.

Definition D.1 (The tensor algebra). Let V be finite di-
mensional R-vector space of dimension d. Then the tensor
algebra of V is defined as follows:

Tens(V ) :=

∞⊕
m=0

V ⊗m (69)

= span {v1 ⊗ · · · ⊗ vm |m ≥ 0, vi ∈ V } ,

where we used the following abbreviations for the m-times
tensor product of V for m ≥ 0:

V ⊗m := V ⊗ · · · ⊗ V︸ ︷︷ ︸
m-times

, V ⊗0 := R. (70)

20We use https://github.com/flaport/fdtd

Note that the above definition turns (Tens(V ),⊗) into a
(non-commutative, infinite dimensional, unital, associative)
algebra over R. In fact, the tensor algebra (Tens(V ),⊗) is,
in some sense, the biggest algebra generated by V .

We now have the tools to give a proper definition of the
Clifford algebra:

Definition D.2 (The Clifford algebra). Let (V, η) be a finite
dimensional innner product space over R of dimension d.
The Clifford algebra of (V, η) is then defined as the following
quotient algebra:

Cl(V, η) := Tens(V )/I(η), (71)

I(η) :=
〈
v ⊗ v − η(v, v) · 1Tens(V )

∣∣v ∈ V
〉

(72)

:= span
{
x⊗

(
v ⊗ v − η(v, v) · 1Tens(V )

)
⊗ y∣∣∣ v ∈ V, x, y ∈ Tens(V )

}
,

where I(η) denotes the two-sided ideal of Tens(V ) gen-
erated by the relations v ⊗ v ∼ η(v, v) · 1Tens(V ) for all
v ∈ V .

The product on Cl(V, η) that is induced by the tensor prod-
uct ⊗ is called the geometric product • and will be denoted
as follows:

x1 • x2 := [z1 ⊗ z2], (73)

with the equivalence classes xi = [zi] ∈ Cl(V, η), i = 1, 2.

Note that, since I(η) is a two-sided ideal, the geomet-
ric product is well-defined. The above construction turns
(Cl(V, η), •) into a (non-commutative, unital, associative)
algebra over R.

In some sense, (Cl(V, η), •) is the biggest (non-
commutative, unital, associative) algebra (A, •) over R
that is generated by V and satisfies the relations v • v =
η(v, v) · 1A for all v ∈ V .

It turns out that (Cl(V, η), •) is of the finite dimension 2d

and carries a parity grading of algebras and a multivector
grading of vector spaces, see (Ruhe et al., 2023b) Appendix
D. More properties are also explained in Section 2.3.

From an abstract, theoretical point of view, the most impor-
tant property of the Clifford algebra is its universal property,
which fully characterizes it:

Theorem D.3 (The universal property of the Clifford alge-
bra). Let (V, η) be a finite dimensional innner product space
over R of dimension d. For every (non-commutative, unital,
associative) algebra (A, ∗) over R and every R-linear map
f : V → A such that for all v ∈ V we have:

f(v) ∗ f(v) = η(v, v) · 1A, (74)
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there exists a unique algebra homomorphism (over R):

f̄ : (Cl(V, η), •)→ (A, ∗), (75)

such that f̄(v) = f(v) for all v ∈ V .

Proof. The map f : V → A uniquely extends to an algebra
homomorphism on the tensor algebra:

f⊗ : Tens(V )→ A, (76)

given by:

f⊗

(∑
i∈I

ci · vi,1 ⊗ · · · ⊗ vi,li

)
:=
∑
i∈I

ci · f(vi,1) ∗ · · · ∗ f(vi,li). (77)

Because of Equation (74) we have for every v ∈ V :

f⊗ (v ⊗ v − η(v, v) · 1Tens(V )

)
= f(v) ∗ f(v)− η(v, v) · 1A (78)
= 0, (79)

and thus:

f⊗(I(η)) = 0. (80)

This shows that f⊗ then factors through the thus well-
defined induced quotient map of algebras:

f̄ : Cl(V, η) = Tens(V )/I(η)→ A (81)

f̄([z]) := f⊗(z). (82)

This shows the claim.

Remark D.4 (The universal property of the Clifford alge-
bra). The universal property of the Clifford algebra can
more explicitely be stated as follows:

If f satisfies Equation (74) and x ∈ Cl(V, η), then we can
take any representation of x of the following form:

x =
∑
i∈I

ci · vi,1 • · · · • vi,li , (83)

with any finite index sets I , any li ∈ N and any coefficients
c0, ci ∈ R and any vectors vi,j ∈ V , j = 1, . . . , li, i ∈ I ,
and, then we can compute f̄(x) by the following formula:

f̄(x) =
∑
i∈I

ci · f(vi,1) ∗ · · · ∗ f(vi,li), (84)

and no ambiguity can occur for f̄(x) if one uses a different
such representation for x.

Example D.5. The universal property of the Clifford alge-
bra can, for instance, be used to show that the action of the
(pseudo-)orthogonal group:

O(V, η)× Cl(V, η)→ Cl(V, η), (85)
(g, x) 7→ ρCl(g)(x), (86)

given by:

ρCl(g)

(∑
i∈I

ci · vi,1 • · · · • vi,li

)
:=
∑
i∈I

ci · (gvi,1) • · · · • (gvi,li), (87)

is well-defined. For this one only would need to check
Equation (74) for v ∈ V :

(gv) • (gv) = η(gv, gv) · 1Cl(V,η) (88)
= η(v, v) · 1Cl(V,η), (89)

where the first equality holds by the fundamental relation
of the Clifford algebra and where the last equality holds
by definition of O(V, η) ∋ g. So the linear map g : V →
Cl(V, η), by the universal property of the Clifford algebra,
thus uniquely extends to the algebra homomorphism:

ρCl(g) : Cl(V, η)→ Cl(V, η), (90)

as defined in Equation (87). One can then check the remain-
ing rules for a group action in a straightforward way.

More details can be found in (Ruhe et al., 2023b) Appendix
D and E.

E. Proofs

Proof E.1 for Proposition 3.2 (Equivariance of the kernel
head). Recall the definition of the kernel head:

H : Cl(Rp,q)cout×cin→ HomVec

(
Cl(Rp,q)cin,Cl(Rp,q)cout

)
k 7→ H(k) =

[
f 7→ H(k)[ f ]

]
, (91)

which on each output channel i ∈ [cout] and grade compo-
nent k = 0, . . . , d, was given by:

H(k)[ f ]
(k)
i :=

∑
j∈[cin]

m,n=0,...,d

wk
mn,ij ·

(
k
(m)
ij

• f
(n)
j

)(k)
,

with:
wk

mn,ij ∈ R ,

k = [ki,j ]i∈[cout]
j∈ [cin]

∈ Cl(Rp,q)cout×cin ,

f = [f1, . . . , fcin ] ∈ Cl(Rp,q)cin .

20



Clifford-Steerable Convolutional Neural Networks

Clearly, H(k) is a R-linear map (in f). Now let g ∈ O(p, q).
We are left to check the following equivariance formula:

H
(
ρcout×cin
Cl (g)(k)

) ?
= ρHom(g)

(
H(k)

)
(92)

:= ρcout

Cl (g)H(k) ρcinCl (g
−1).

We abbreviate

s := ρcinCl (g
−1)( f) ∈ Cl(Rp,q)cin ,

Q := ρcout×cin
Cl (g)(k) ∈ Cl(Rp,q)cout×cin .

First note that we have for j ∈ [cin]:

ρCl(g)(sj) = fj . (93)

We then get:[
ρHom(g)

(
H(k)

)
[ f ]
](k)
i

=
[
ρcout

Cl (g)
(
H(k)

[
ρcinCl (g

−1)( f)
])](k)

i

=
[
ρcout

Cl (g)
(
H(k) [s]

)](k)
i

= ρCl(g)
([

H(k) [s]
](k)
i

)
= ρCl(g)

(∑
j∈[cin]

m,n=0,...,d

wk
mn,ij ·

(
k
(m)
ij

• s
(n)
j

)(k))

=
∑

j∈[cin]
m,n=0,...,d

wk
mn,ij ·

([
ρCl(g)(kij)

](m) •
[
ρCl(g)(sj)

](n))(k)

=
∑

j∈[cin]
m,n=0,...,d

wk
mn,ij ·

(
Q

(m)
ij

• f
(n)
j

)(k)
=
[
H(Q)[ f ]

](k)
i

=
[
H
(
ρcout×cin
Cl (g)(k)

)
[ f ]
](k)
i

.

Note that we repeatedly made use of the rules in Defini-
tion/Theorem 2.14 and Theorem 2.15, i.e. the linearity, com-
position, multiplicativity and grade preservation of ρCl(g).
As this holds for all m, k and f we get the desired equation,

ρHom(g)(H(k)) = H(ρcout×cin
Cl (g)(k)), (94)

which shows the claim.

F. Clifford-steerable CNNs on
pseudo-Riemannian manifolds

In this section we will assume that the reader is already fa-
miliar with the general definitions of differential geometry,
which can also be found in Weiler et al. (2021; 2023). We

will in this section state the most important results for deep
neural networks that process feature fields on G-structured
pseudo-Riemannian manifolds. These results are direct
generalizations from those in Weiler et al. (2023), where
they were stated for (G-structured) Riemannian manifolds,
but which verbatim generalize to (G-structured) pseudo-
Riemannian manifolds if one replaces O(d) with O(p, q)
everywhere.

Recall, that in this geometric setting a signal f on the
manifold M is typically represented by a feature field
f : M → A of a certain “type”, like a scalar field, vector
field, tensor field, multi-vector field, etc. Here f assigns to
each point z an n-dimensional feature f(z) ∈ Az

∼= Rn.
Formally, f is a global section of a G-associated vector
bundle A with typical fibre Rn, i.e. f ∈ Γ(A), see Weiler
et al. (2023) for details. We can consider Γ(A) as the vector
space of all vector fields of type A. A deep neural network
F on M with N layers can then, as before, be considered
as a composition:

F : Γ(A0)
L1→ Γ(A1)

L2→ Γ(A2)
L3→ · · · LN→ Γ(AN ), (95)

where L1, . . . , LN are maps between the vector spaces of
vector fields Γ(Aℓ), which are typically linear maps or sim-
ple fixed non-linear maps.

For the sake of analysis we can focus on one such linear
layer: L : Γ(Ain)→ Γ(Aout).

Our goal is to describe the case, where L is an integral
operator with an convolution kernel21 such that: i.) it is
well-defined, i.e. independent of the choice of (allowed)
local coordinate systems (covariance), ii.) we can use the
same kernel K (not just corresponding ones) in any (al-
lowed) local coordinate system (gauge equivariance), iii.) it
can do weight sharing between different locations, meaning
that the same kernel K will be applied at every location,
iv.) input and output transform correspondingly under global
transformations (isometry equivariance).

The isometry equivariance here is the most important prop-
erty. Our main results in this Appendix will be that isometry
equivariance will in fact follow from the first points, see
Theorem F.27 and Theorem F.32.

Before we introduce our Clifford-steerable CNNs on gen-
eral pseudo-Riemannian manifolds with multi-vector fea-
ture fields in Appendix F.2, we first recall the general theory
of G-steerable CNNs on G-structured pseudo-Riemannian
manifolds in total analogy to Weiler et al. (2023) in the next
section, Appendix F.1.

21Note that a convolution operator L(f)(u) =∫
K(u, v)f(v) dv can be seen as a continuous analogon to

a matrix multiplication. In our theory K will need to depend on
only one argument, corresponding to a circulant matrix.
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F.1. General G-steerable CNNs on G-structured
pseudo-Riemannian manifolds

For the convenience of the reader, we will now recall the
most important needed concepts from pseudo-Riemannian
geometry in some more generality, but refer to Weiler et al.
(2023) for further details and proofs.

We will assume that the curved space M will carry a (non-
degenerate, possibly indefinite) metric tensor η of signature
(p, q), d = p+ q, and will also come with “internal symme-
tries” encoded by a closed subgroup G ⊆ GL(d).

Definition F.1 (G-structure). Let (M,η) be pseudo-
Riemannian manifold of signature (p, q), d = p + q, and
G ≤ GL(d) a closed subgroup. A G-structure on (M,η)
is a principle G-subbundle ι : GM ↪→ FM of the frame
bundle FM over M . Note that GM is supposed to carry
the right G-action induced from FM :

◁ : GM ×G→ GM, [ei]i∈[d] ◁ g :=

∑
j∈[d]

ej gj,i


i∈[d]

,

(96)

which thus makes the embedding ι a G-equivariant embed-
ding.

Definition F.2 (G-structured pseudo-Riemannian manifold).
Let G ≤ GL(d) be closed subgroup. A G-structured pseudo-
Riemannian manifold (M,G, η) of signature (p, q) - per def-
inition - consists of a pseudo-Riemannian manifold (M,η)
of dimension d = p+ q with a metric tensor η of signature
(p, q), and, a fixed choice of a G-structure ι : GM ↪→ FM
on M .

We will denote the G-structured pseudo-Riemannian mani-
fold with the triple (M,G, η) and keep the fixed G-structure
ι : GM ↪→ FM implicit in the notation, as well as the cor-
responding G-atlas of local tangent bundle trivializations:

AG =

{
(ΨA, UA)

∣∣∣∣π−1
TM (UA)

∼−−→
ΨA

UA × Rd

}
A∈I

(97)

where I is an index set and UA ⊆ M are certain open
subsets of M .

Remark F.3. Note that for any given G ≤ GL(d) there
might not exists a corresponding G-structure GM on (M,η)
in general. Furthermore, even if it existed it might not be
unique. So, when we talk about such a G-structure in the
following we always make the implicit assumption of its
existence and we also fix a specific choice.

Definition F.4 (Isometry group of a G-structured pseu-
do-Riemannian manifold). Let (M,G, η) be a G-structured
pseudo-Riemannian manifold. Its (G-structure preserving)

isometry group is defined to be:

Isom(M,G, η)

:=
{
ϕ : M

∼−→M diffeo | ∀z ∈M, v ∈ TzM.

ηϕ(z)(ϕ∗,TM (v), ϕ∗,TM (v)) = ηz(v, v),

ϕ∗,FM (GzM) = Gϕ(z)M
}
. (98)

The intuition here is that the first condition constrains ϕ to
be an isometry w.r.t. the metric η. The second condition
constrains ϕ to be a symmetry of the G-structure, i.e. it
maps G-frames to G-frames.

Remark F.5 (Isometry group). Recall that the (usual/full)
isometry group of a pseudo-Riemannian manifold (M,η) is
defined as:

Isom(M,η)

:=
{
ϕ : M

∼−→M diffeo | ∀z ∈M, v ∈ TzM.

ηϕ(z)(ϕ∗,TM (v), ϕ∗,TM (v)) = ηz(v, v)
}
. (99)

Also note that for a G-structured pseudo-Riemannian man-
ifold (M,G, η) of signature (p, q) such that O(p, q) ≤ G
we have:

Isom(M,G, η) = Isom(M,η). (100)

Definition F.6 (G-associated vector bundle). Let (M,G, η)
be a G-structured pseudo-Riemannian manifold and let
ρ : G → GL(n) be a left linear representation of G. A
vector bundle A over M is called a G-associated vector
bundle (with typical fibre (Rn, ρ)) if there exists a vector
bundle isomorphism over M of the form:

A ∼−→ (GM × Rn) /∼ρ =: GM ×ρ Rn, (101)

where the equivalence relation is given as follows:

(e′, v′) ∼ρ (e, v)

:⇐⇒ ∃g ∈ G. (e′, v′) = (e◁ g, ρ(g−1)v). (102)

Definition F.7 (Global sections of a fibre bundle). Let πA :
A → M be a fibre bundle over M . We denote the set of
global sections of A as:

Γ(A) := {f : M → A|∀z ∈M.f(z) ∈ Az} , (103)

where Az := π−1
A (z) denotes the fibre of A over z ∈M .

Remark F.8 (Isometry action). For a G-associated vector
bundleA = GM×ρRn and ϕ ∈ Isom(M,G, η) we can de-
fine the induced G-associated vector bundle automorphism
ϕ∗,A on A as follows:

ϕ∗,A : A → A, (104)
ϕ∗,A (e, v) := (ϕ∗,GM (e), v) . (105)
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With this we can define a left action of the group
Isom(M,G, η) on the corresponding space of feature fields
Γ(A) as follows:

▷ : Isom(M,G, η)× Γ(A)→ Γ(A), (106)

ϕ▷ f := ϕ∗,A ◦ f ◦ ϕ−1 : M → A. (107)

To construct a well-behaved convolution operator on M we
first need to introduce the idea of a transporter of feature
fields along a curve γ : I →M .

Remark F.9 (Transporter). A transporter TA on the vector
bundle A over M takes any (sufficiently smooth) curve
γ : I → M with I ⊆ R some interval and two points
s, t ∈ I , s ≤ t, and provides an invertible linear map:

Ts,t
A,γ : Aγ(s)

∼−→ Aγ(t), v 7→ Ts,t
A,γ(v). (108)

TA is thought to transport the vector v ∈ Aγ(s) at location
γ(s) ∈M along the curve γ to the location γ(t) ∈M and
outputs a vector ṽ = Ts,t

A,γ(v) in Aγ(t).

For consistency we require that TA satisfies the following
points for such γ:

1. For s ∈ I we get: Ts,s
A,γ

!
= idAγ(s)

: Aγ(s)
∼−→ Aγ(s),

2. For s ≤ t ≤ u we have:

Tt,u
A,γ ◦Ts,t

A,γ
!
= Ts,u

A,γ : Aγ(s)
∼−→ Aγ(u). (109)

Furthermore, the dependence on s, t and γ shall be “suffi-
ciently smooth” in a certain sense.

We call a transporter TTM on the tangent bundle TM a
metric transporter if the map:

Ts,t
TM,γ : (Tγ(s)M,ηγ(s))

∼−→ (Tγ(t)M,ηγ(t)) (110)

is always an isometry.

To construct transporters we need to introduce the notion
of a connection on a vector bundle, which formalized how
vector fields change when moving from one point to the
next.

Definition F.10 (Connection). A connection on a vector
bundle A over M is an R-linear map:

∇ : Γ(A)→ Γ(T∗M ⊗A), (111)

such that for all c : M → R and f ∈ Γ(A) we have:

∇(c · f) = dc⊗ f + c · ∇(f), (112)

where dc ∈ Γ(T∗M) is the differential of c.

A special form of a connection are affine connections, which
live on the tangent space.

Definition F.11 (Affine connection). An affine connection
on M (or more precisely, on TM ) is an R-bilinear map:

∇ : Γ(TM)× Γ(TM)→ Γ(TM), (113)
(X,Y ) 7→ ∇XY, (114)

such that for all c : M → R and X,Y ∈ Γ(TM) we have:

1. ∇c·XY = c · ∇XY ,

2. ∇X(c · Y ) = (∂Xc) · Y + c · ∇XY ,

where ∂Xc denotes the directional derivative of c along X .

Remark F.12. Certainly, an affine connection can also be
re-written in the usual connection form:

∇ : Γ(TM)→ Γ(T∗M ⊗ TM). (115)

Every connection defines a (parallel) transporter TA.

Definition/Lemma F.13 (Parallel transporter of a connec-
tion). Let ∇ be a connection on the vector bundle A
over M . Then ∇ defines a (parallel) transporter TA for
γ : I = [s, t]→M as follows:

Ts,t
A,γ : Aγ(s)

∼−→ Aγ(t), v 7→ f(t), (116)

where f is the unique vector field f ∈ Γ(γ∗A) with:

1. (γ∗∇)(f) = 0,

2. f(s) = v,

which always exists. Here γ∗ denotes the corresponding
pullback from M to I .

For pseudo-Riemannian manifolds there is a “canonical”
choice of a metric connection, the Levi-Cevita connection,
which always exists and is uniquely characterized by its two
main properties.

Definition/Theorem F.14 (Fundamental theorem of pseu-
do-Riemannian geometry: the Levi-Civita connection). Let
(M,η) be a pseudo-Riemannian manifold. Then there ex-
ists a unique affine connection ∇ on (M,η) such that the
following two conditions hold for all X,Y, Z ∈ Γ(TM);

1. metric preservation:

∂Z (η(X,Y )) = η(∇ZX,Y ) + η(X,∇ZY ). (117)

2. torsion-free:

∇XY −∇Y X = [X,Y ], (118)

where [X,Y ] is the Lie bracket of vector fields.
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This affine connection is called the Levi-Cevita connection
of (M,η) and is denoted as ∇LC.

Remark F.15 (Levi-Civita transporter). Let (M,G, η) be a
pseudo-Riemannian manifold with Levi-Cevita connection
∇LC.

1. The corresponding Levi-Cevita transporter TTM on
TM is always a metric transporter, i.e. it always in-
duces (linear) isometries of vector spaces:

Ts,t
TM,γ : (Tγ(s)M,ηγ(s))

∼−→ (Tγ(t)M,ηγ(t)).

(119)

2. Furthermore, the Levi-Cevita transporter extends to
every G-associated vector bundle A as TA.

3. For every G-associated vector bundle A, every curve
γ : I → M and ϕ ∈ Isom(M,G, η), the Levi-Cevita
transporter TA,γ always satisfies:

ϕ∗,A ◦ TA,γ = TA,ϕ◦γ ◦ϕ∗,A. (120)

Definition F.16 (Geodesics). Let M be a manifold with
affine connection ∇ and γ : I → M a curve. We call γ a
geodesic of (M,∇) if for all t ∈ I we have:

∇γ̇(t)γ̇(t) = 0, (121)

i.e. if γ runs parallel to itself.

For pseudo-Riemannian manifolds (M,η) we will typically
use the Levi-Cevita connection∇LC to define geodesics.

Definition/Lemma F.17 (Pseudo-Riemannian exponential
map). For a manifold M with affine connection∇, z ∈M
and v ∈ TzM there exists a unique geodesic γz,v : I =
(−s, s)→M of (M,∇) with maximal domain I such that:

γz,v(0) = z, γ̇z,v(0) = v. (122)

The ∇-exponential map at z ∈M is then the map:

expz : T◦
zM →M, expz(v) := γz,v(1), (123)

with domain:

T◦
zM := {v ∈ TzM | γz,v(1) is defined} . (124)

For pseudo-Riemannian manifolds (M,η) we will call the
exponential map expz defined via the Levi-Cevita con-
nection ∇LC the pseudo-Riemannian exponential map of
(M,η) at z ∈M .

Remark F.18. For a pseudo-Riemannian manifold (M,η)
the differential d expz |v : TvTzM → Texpz(v)

M is the

identity map on TzM at v = 0 ∈ TzM : d expz |v=0
!
=

idTzM : TzM = T0TzM → Texpz(0)
M = TzM .

Furthermore, there exist an open subset Uz ⊆ TzM such
that 0 ∈ Uz and expz : Uz → expz(Uz) ⊆ M is a diffeo-
morphism and expz(Uz) ⊆M is an open subset.

Notation F.19. For a transporter TA for a vector bundle
on (M,∇) we abbreviate for z ∈M and v ∈ T◦

zM :

Tz,v := TA,γ−
z,v

: Aexpz(v)
∼−→ Az, (125)

where γ−
z,v : [0, 1]→ M is given by γ−

z,v(t) := expz((1−
t) · v).
Definition F.20 (Transporter pullback, see Weiler et al.
(2023) Def. 12.2.4). Let (M,η) be a pseudo-Riemannian
manifold and A a vector bundle over M . Furthermore,
let expz denote the pseudo-Riemannian exponential map
(based on the Levi-Civita connection) and TA any trans-
porter on A. We then define the transporter pullback:

Exp∗z : Γ(A)→ C(T◦
zM,Az), (126)

Exp∗z(f)(v) := Tz,v

(
f(expz(v))︸ ︷︷ ︸
∈Aexpz(v)

)
∈ Az. (127)

Lemma F.21 (See Weiler et al. (2023) Thm. 13.1.4). For
G-structured pseudo-Riemannian manifold (M,G, η) and
G-associated vector bundle A, z ∈M , ϕ ∈ Isom(M,G, η)
and f ∈ Γ(A) we have:

Exp∗z(ϕ▷ f) = ϕ∗,A ◦ [Exp∗ϕ−1(z)(f)] ◦ ϕ−1
∗,TM , (128)

provided the transporter map TA satisfies Equation (120).

Weight sharing for the convolution operator I boils down to
the use of a template convolution kernel K, which is then
applied/re-used at every location z ∈M .

Definition F.22 (Template convolution kernel). Let M be
a manifold of dimension d and Ain and Aout two vector
bundles over M with typical fibres Win and Wout, resp. A
template convolution kernel for (M,Ain,Aout) is then a
(sufficiently smooth, non-linear) map:

K : Rd → HomVec(Win,Wout), (129)

that is sufficiently decaying when moving away from the ori-
gin 0 ∈ Rd (to make all later constructions, like convolution
operations, etc., well-defined).

The G-gauge equivariance of a convolution operator I is
encoded by the following G-steerability of the template
convolution kernel.

Definition F.23 (G-steerability convolution kernel con-
straints). Let G ≤ GL(d) be a closed subgroup and
(M,G, η) be a G-structured pseudo-Riemannian manifold
of signature (p, q), d = p + q, and Ain and Aout two G-
associated vector bundles with typical fibre (Win, ρin) and
(Wout, ρout), resp. A template convolution kernel K for
(M,Ain,Aout):

K : Rd → HomVec(Win,Wout), (130)
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will be called G-steerable if for all g ∈ G and v ∈ Rd we
have:

K(gv) =
1

|det g| ρout(g)K(v) ρin(g)
−1 (131)

=: ρHom(g)(K(v)). (132)

Remark F.24. Note that the G-steerability of K is ex-
pressed through Equation (131), while the G-gauge equiv-
ariance of K will, more closely, be expressed through the
re-interpretation in Equation (132).

Definition F.25 (Convolution operator, see Weiler et al.
(2023) Thm. 12.2.9). Let (M,G, η) be a G-structured
pseudo-Riemannian manifold and Ain and Aout two G-
associated vector bundles over M with typical fibres
(Win, ρin) and (Wout, ρout) and K a G-steerable template
convolution kernel, see Equation (131). Let fin ∈ Γ(Ain)
and consider a local trivialization (ΨC , UC) ∈ AG around
z ∈ UC ⊆ M (which locally trivializes Ain and Aout).
Then we have a well-defined convolution operator:

L : Γ(Ain)→ Γ(Aout), fin 7→ L(fin) := fout, (133)

given by the local formula:

fC
out(z) :=

∫
Rd

K(vC)
[
[Exp∗z fin]

C(vC)
]
dvC , (134)

where Exp∗z is the transporter pullback from Definition F.20,
where expz denotes the pseudo-Riemannian exponential
map (based on the Levi-Cevita connection∇LC) and TAin

any transporter satisfying Equation (120) (e.g. parallel
transport based on ∇LC).

Remark F.26 (Coordinate independence of the convolution
operator). The coordinate independence of the convolution
operator L : Γ(Ain)→ Γ(Aout) comes from the following
covariance relations and Equation (131).

If we use a different local trivialization (ΨB , UB) ∈ AG

in Equation (134) with z ∈ UB ∩ UC then there exists a
g ∈ G such that:

vC = g vB ∈ Rd, (135)

dvC = |det g| · dvB , (136)

[Exp∗z fin]
C(vC) = ρin(g) [Exp

∗
z fin]

B(vB) ∈Win,
(137)

fC
out(z) = ρout(g)f

B
out(z) ∈Wout. (138)

So, fout : M → Aout is a well-defined global section in
Γ(Aout).

We are finally in the place to state the main theorem of this
section, stating that every G-steerable template convolution
kernel leads to an isometry equivariant convolution operator.

Theorem F.27 (Isometry equivariance of convolution op-
erator, see Weiler et al. (2023) Thm. 13.2.6). Let G ≤
GL(d) be closed subgroup and (M,G, η) be a G-structured
pseudo-Riemannian manifold of signature (p, q) with d =
p + q. Let Ain and Aout be two G-associated vector bun-
dles with typical fibres (Win, ρin) and (Wout, ρout). Let
K be a G-steerable template convolution kernel, see Equa-
tion (131). Consider the corresponding convolution op-
erator L : Γ(Ain) → Γ(Aout) given by Equation (134),
where expz denotes the pseudo-Riemannian exponential
map (based on the Levi-Cevita connection∇LC) and TAin

any transporter satisfying Equation (120) (e.g. parallel
transport based on ∇LC).

Then the convolution operator L : Γ(Ain) → Γ(Aout) is
equivariant w.r.t. the G-structure preserving isometry group
Isom(M,G, η): for every ϕ ∈ Isom(M,G, η) and fin ∈
Γ(Ain) we have:

L(ϕ▷ fin) = ϕ▷ L(fin). (139)

So the main obstruction for constructing a well-behaved
convolution operator L are thus the kernel constraints Equa-
tion (131), which are generally notoriously difficult to
solve, especially for continuous non-compact groups G like
O(p, q).

F.2. Clifford-steerable CNNs on pseudo-Riemannian
manifolds

Let (M,η) be a pseudo-Riemannian manifold of signature
(p, q) and dimension d = p+ q.

Then (M,η) carries a unique O(p, q)-structure OM in-
duced by η. The intuition is that OM consists of all or-
thonormal frames w.r.t. η. In fact, the choice of an O(p, q)-
structure on M is equivalent to the choice of a metric η of
signature (p, q) on M . That said, we will now restrict to the
structure group G = O(p, q) everywhere in the following.

We will further restrict to multi-vector feature fields Ain :=
Cl(TM,η)cin and Aout := Cl(TM,η)cout , which we first
need to formalize properly.

Definition F.28 (Clifford algebra bundle). Let (M,η) be
a pseudo-Riemannian manifold. Then the Clifford algebra
bundle over M is defined (as a set) as the disjoint union of
the Clifford algebras of the corresponding tangent spaces:

Cl(TM,η) :=
⊔
z∈M

Cl(TzM,ηz). (140)

Cl(TM, η) becomes an algebra bundle over M with the
standard constructions of local trivialization and bundle
projections.

Lemma F.29. Let (M,η) be a pseudo-Riemannian manifold
of signature (p, q) and dimension d = p + q. We have an
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algebra bundle isomorphism over M :

Cl(TM,η) ∼= OM ×ρCl
Cl(Rp,q), (141)

where ρCl : O(p, q) → OAlg(Cl(Rp,q), η̄p,q) is the usual
action of the orthogonal group O(p, q) on Cl(Rp,q) by ro-
tating all vector components individually. In particular, the
Clifford algebra bundle Cl(TM,η) is an O(p, q)-associated
algebra bundle over M with typical fibre Cl(Rp,q).

Definition F.30 (Multivector fields). A multivector field
on M is a global section f ∈ Γ(Cl(TM,η)c) for some
c ∈ N, i.e. a map f : M → Cl(TM,η)c that assigns
to every point z ∈ M a tuple of multivectors: f(z) =
[f1(z), . . . , fc(z)] ∈ Cl(TzM,ηz)

c.

Remark F.31 (The action of the isometry group on multivec-
tor fields). Let ϕ ∈ Isom(M,η) then ϕ is a diffeomorphic
map ϕ : M

∼−→ M such that for every z ∈ M the differen-
tial map is an isometry:

ϕ∗,TM,z : (TzM,ηz)
∼−→ (Tϕ(z), ηϕ(z)). (142)

We can now describe the induced map ϕ∗,Cl(TM,η) via the
general construction on associated vector fields, see Re-
mark F.8, with help of the identification Equation (141):

ϕ∗,Cl(TM,η) : OM ×ρCl
Cl(Rp,q)→ OM ×ρCl

Cl(Rp,q),

ϕ∗,Cl(TM,η)(e, x) = (ϕ∗,FM (e), x),
(143)

or we can look at the fibres directly, z ∈M :

ϕ∗,Cl(TM,η),z : Cl(TzM,ηz)→ Cl(Tϕ(z)M,ηϕ(z)),

ϕ∗,Cl(TM,η),z

(∑
i∈I

ci · vi,1 • · · · • vi,ki

)
=
∑
i∈I

ci · ϕ∗,TM,z(vi,1) • · · · • ϕ∗,TM,z(vi,ki
). (144)

With this we can define a left action of the isometry group
Isom(M,η) on the corresponding space of multivector
fields Γ(Cl(TM,η)c) as follows:

▷ : Isom(M,η)× Γ(Cl(TM,η)c)→ Γ(Cl(TM,η)c),
(145)

ϕ▷ f := ϕ∗,Cl(TM,η)c ◦ f ◦ ϕ−1 : M → Cl(TM,η)c.
(146)

We are now in the position to state the main theorem of this
section.

Theorem F.32 (Clifford-steerable CNNs on pseudo-Rie-
mannian manifolds are gauge and isometry equivariant).
Let (M,η) be a pseudo-Riemannian manifold of signature
(p, q) and dimension d = p + q. We consider (M,η) to

be endowed with the structure group G = O(p, q). Con-
sider multi-vector feature fields Ain = Cl(TM,η)cin and
Aout = Cl(TM,η)cout over M .

Let K = H ◦K be a Clifford-steerable kernel, the same
template convolution kernel as presented in the main paper
in Section 3:

K : Rp,q → HomVec (Cl(Rp,q)cin ,Cl(Rp,q)cout) , (147)

where K : Rp,q → Cl(Rp,q)cout×cin is the kernel network,
a Clifford group equivariant neural network with (cin · cout)
number of Clifford algebra outputs, and, where H is the
O(p, q)-equivariant kernel head:

H : Cl(Rp,q)cout×cin → HomVec (Cl(Rp,q)cin ,Cl(Rp,q)cout) .
(148)

Then K is automatically O(p, q)-steerable, i.e. for g ∈
O(p, q), v ∈ Rp,q we have22:

K(gv) = ρcoutCl (g)K(v) ρcinCl (g)
−1. (149)

Furthermore, the corresponding convolution operator L :
Γ(Ain)→ Γ(Aout), given by Equation (134), is equivariant
w.r.t. the full isometry group Isom(M,η): for every ϕ ∈
Isom(M,η) and fin ∈ Γ(Ain) we have:

L(ϕ▷ fin) = ϕ▷ L(fin). (150)

Remark F.33. A similar theorem to Theorem F.32 can be
stated for orientable pseudo-Riemannian manifolds (M,η)
and structure group G = SO(p, q), if one reduces the Clif-
ford group equivariant neural network parameterizing the
kernel network K to be (only) SO(p, q)-equivariant.

22Note that the factor | det g|−1 does not appear here, in contrast
to the general formula in Equation (131), because |det g| = 1
anyways for all g ∈ O(p, q).
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