
The traditional method of defining geomet-
rical objects in fields like computer graph-

ics, robotics, and computer vision routinely uses vectors
to characterize constructions. Doing this effectively
means extending the basic concept of a vector as an ele-
ment of a linear space by an inner product and a cross
product and by some additional constructions such as

homogeneous coordinates. This
compactly encodes the intersection
of, for instance, offset planes in
space. Many of these techniques
work well in 3D space, but some
problems exist, such as the difference
between vectors and points1 and
characterizing planes by normal vec-
tors (which may require extra com-
putation after linear transformations
because a transformed plane’s nor-
mal vector is not the normal vector’s
transform). Application program-
mers typically fix these problems by
introducing data structures and com-
bination rules, possibly using object-
oriented programming to implement
this patch.2

Yet, deeper issues in programming geometry exist that
many practitioners still accept. For instance, when inter-
secting linear subspaces, it seems unavoidable that we
need to split our intersection algorithms to treat the inter-
section of lines and planes, planes and planes, lines and
lines, and so on in separate pieces of code. After all, the
outcomes themselves can be points, lines, or planes,
which are essentially different in their further processing.

This need not be so. If we could see subspaces as basic
computational elements and do direct algebra with
them, then algorithms and their implementation would
not need to split their cases on dimensionality. For
instance, A ∧ B could be the subspace spanned by the

spaces A and B, and the expression A  B could be the
part of B perpendicular to A. Then, we would always
have the computation rule (A ∧ B)  C = A  (B  C)
because we can compute the part of C perpendicular to
the span of A and B in two steps: perpendicularity to B
followed by perpendicularity to A. Subspaces therefore
have computational rules of their own that we can use
immediately, independent of how many vectors we use
to span them. In this view, we can avoid the split in cases
for the intersection operator because intersection of sub-
spaces always leads to subspaces. We should consider
using this structure because it would enormously sim-
plify the specification of geometric programs.

This article (in parts one and two) intends to convince
you that subspaces form an algebra with well-defined
products that have direct geometric significance.
Researchers can then use this algebra as a language for
geometry, which we claim is a better choice than a lan-
guage always reducing everything to vectors (which are
just 1D subspaces). Along the way, we will see that this
framework lets us divide by vectors (in fact, we can divide
by any subspace), and we will see several familiar com-
puter graphics constructs (such as quaternions, normals,
and Plücker coordinates) that fold in naturally with the
framework and no longer need to be considered clever
but as extraneous tricks. This algebra is called geometric
algebra. Mathematically, it is like Clifford algebra but care-
fully wielded to have a clear geometrical interpretation,
which excludes some constructions and suggests others.
Most literature uses  the two terms interchangeably.

This first article primarily introduces subspaces (the
basic computational element in geometric algebra) and
the products of geometric algebra. We introduce these
ideas but do not always give proofs of what we present.
The proofs we do give are intended to illustrate using
geometric algebra. (Readers can find the missing proofs
in the references.) In part two of this article (to be pub-
lished in a subsequent issue of CG&A), we will give some
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examples of how to use these products in elementary
but important ways and look at more advanced topics
such as differentiation, linear algebra, and homoge-
neous representation spaces.

Because subspaces are the main objects of geometric
algebra, we introduce them first. We then introduce the
geometric product and look at products derived from the
geometric product. Some of the derived products, like
the inner and outer products, are so basic that it is nat-
ural to treat them here also, even though the geometric
product is all we need to do geometric algebra. Other
products are better introduced in the context of their geo-
metrical meaning, so we develop them in part two. This
approach reduces the amount of new notation, but it
might make it seem like geometric algebra must invent
a new technique for every new kind of geometrical oper-
ation we want to embed. This is not the case. All you need
is the geometric product and its (anti-)commutation
properties.

Subspaces as computational elements
As in the classical approach, we start with a real vec-

tor space Vm that we use to denote 1D directed magni-
tudes. Typical usage would be to employ a vector to
denote a translation in such a space to establish the
location of a point of interest. (Points are not vectors,
but their locations relative to a fixed point are.1) We
now want to extend this capability of indicating direct-
ed magnitudes to higher dimensional directions such
as facets of objects, or tangent planes. We will start with
the simplest subspaces—a linear vector space’s proper
subspaces, which are lines, planes, and so on through
the origin—and develop their algebra of spanning and
perpendicularity measures. In part two, we show how
to use the same algebra to treat offset subspaces and
spheres.

Constructing subspaces
We start with a real m-dimensional linear space Vm, of

which the elements are called vectors. Many approach-
es to geometry explicitly use coordinates. Although coor-
dinates are necessary for input and output, and they are
also needed to perform low-level operations on objects,
most formulas and computations in geometric algebra
can work directly on subspaces without resorting to coor-
dinates. Thus, we will always view vectors geometrical-
ly: a vector denotes a 1D direction element, with a certain
attitude or stance in space, and a magnitude, a measure
of length in that direction. We can characterize these
properties by calling a vector a directed line element, as
long as we mentally associate an orientation and mag-
nitude with it—that is, v is not the same as –v or 2v.
These properties are independent of any coordinate sys-
tem, and we will not refer to coordinates, except for times
when we feel a coordinate example clarifies an explana-
tion. The algebraic properties of these geometrical vec-
tors are that they can be added and weighted with real
coefficients in the usual way to produce new vectors, and
they can be multiplied using an inner product to produce
a scalar a ⋅ b. (We use a metric vector space with a well-
defined inner product.)

In geometric algebra, higher dimensional oriented

subspaces are also basic computational elements and
they are called blades. We use the term k-blade for a k-
dimensional homogeneous subspace. Therefore, a vec-
tor is a 1-blade.

A common way to construct a blade is from vectors,
using a product that constructs the span of vectors. This
product is called the outer product (sometimes the
wedge product) and denoted ∧. It is codified by its alge-
braic properties, which we choose to ensure we get m-
dimensional space elements with an appropriate
magnitude (area element for m = 2 and volume ele-
ments for m = 3, see Figure 1). As in linear algebra, such
magnitudes are determinants of matrices representing
the basis of vectors spanning them. But such a defini-
tion would be too specifically dependent on that matrix
representation. Mathematically, a determinant is an
antisymmetric linear scalar-valued function of its vec-
tor arguments. That gives the clue to the outer product’s
rather abstract definition in geometric algebra:

The outer product of vectors a1, …, ak is antisym-
metric, associative, and linear in its arguments. It
is denoted a1 ∧ … ∧ ak, and called a k-blade.

The only thing that is different from a determinant is that
the outer product is not forced to be scalar-valued. This
gives it the capability of representing the attitude of a k-
dimensional subspace element as well as its magnitude.

2-blades in 3D space
Let us see how this works in the geometric algebra of

a 3D space V3. For convenience, let us choose a basis
{e1, e2, e3} in this space, relative to which we denote
any vector. Now compute a ∧ b for a = a1e1 + a2e2 +
a3e3 and b = b1e1 + b2e2 + b3e3. By linearity, we can
write this as the sum of six terms of the form a1b2 e1∧e2

or a1b1 e1∧e1. By antisymmetry, the outer product of
any vector with itself must be zero, so the term with
a1b1 e1∧e1 and other similar terms disappear. Also by
antisymmetry, e2 ∧ e1 = –e1 ∧ e2, so we can group some
terms. You can verify that the final result is
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1 With the outer product of vectors, you can span subspaces. (a) Zero
terms give a 0D subspace (a point). (b) One term gives a 1D subspace (a
vector). (c) Two terms give a 2D subspace, an oriented plane element. (d)
Three terms span an oriented volume element.



We cannot simplify this further. Apparently, the
outer product’s axioms let us decompose any 2-blade
in 3D space onto a basis of three elements. This 2-blade
basis (also called bivector basis) {e1 ∧ e2, e2 ∧ e3, e3 ∧
e1} consists of 2-blades spanned by the basis vectors.
Linearity of the outer product implies that the set of 2-
blades forms a linear space on this basis. We will inter-
pret this as the space of all plane elements (or area
elements).

Let us show that a ∧ b has the correct magnitude
for an area element. That is particularly clear if we
choose a specific orthonormal basis {e1, e2, e3}, cho-
sen such that a lies in the e1 direction and b lies in the
(e1, e2) plane—we can always do this. Then, a = ae1,
b = b cosφ e1 + b sinφ e2 (with φ the angle from a to
b), so that

a ∧ b = (ab sinφ) e1 ∧ e2 (2)

This single result contains both the correct magnitude of
the area ab sinφ spanned by a and b and the plane in
which it resides—for we recognize e1 ∧ e2 as the unit
directed area element of the (e1, e2)plane. Because we
can always adapt our coordinates to vectors in this way,
this result is universally valid: a ∧ b is an area element
of the plane spanned by a and b (see Figure 1c). Denot-
ing the unit area element in the (a, b) plane by I, the
coordinate-free formulation is

a ∧ b = (ab sinφ) I (3)

The result extends to blades of higher grades. Each is
proportional to the unit hypervolume element in its sub-
space, by a factor that is the hypervolume.

Volumes as 3-blades
We can also form the outer product of three vectors a,

b, and c. Considering each of those decomposed onto
their three components on some basis in our 3D space,
we obtain terms of three different types, depending on
how many common components occur—for example,
terms like a1b1c1 e1 ∧ e1 ∧ e1, a1b1c2 e1 ∧ e1 ∧ e2, and
a1b2c3 e1 ∧ e2 ∧ e3. Because of associativity and anti-
symmetry, only the last type survives in all its permuta-
tions. The final result is

The scalar factor is the determinant of the matrix with
columns a, b, and c, which is proportional to the signed
volume spanned by them (as is well known from linear
algebra). The term e1 ∧ e2 ∧ e3 is the denotation of
which volume is used as a unit—that spanned by e1, e2,
e3. The order of the vectors gives its orientation, so this
is a signed volume. In 3D space, there is no other choice
for constructing volumes than (possibly negative) mul-
tiples of this volume (see Figure 1d). However, in high-
er dimensional spaces, the volume element’s attitude
must be indicated just as much as we needed to denote
the attitude of planes in 3-space.

Pseudoscalar as hypervolume
Forming the outer product of four vectors a ∧ b ∧ c ∧

d in 3D space will always produce zero because they
must be linearly dependent. The highest order blade
that is nonzero in an m-dimensional space is an m-blade.
For historical reasons, such a blade representing an m-
dimensional volume element is called a pseudoscalar for
that space. Unfortunately, this is a rather abstract term
for the elementary geometric concept of an oriented
hypervolume element.

Scalars as subspaces
To make scalars fully admissible elements of the alge-

bra we have so far, we can define the outer product of
two scalars, and a scalar and vector, by identifying it
with the familiar scalar product in the vector space we
started with: α ∧ β = αβ and α ∧ v = αv.

Because the scalars are constructed by the outer prod-
uct of no vectors at all, we can interpret them geomet-
rically as the representation of 0-dimensional subspace
elements. These are like points with masses. So scalars
are geometrical entities as well, if we are willing to
stretch the meaning of subspace a little. We denote
scalars mostly with Greek lowercase letters.

Linear space of subspaces
So far, we have constructed a geometrically signifi-

cant algebra containing only two operations: the addi-
tion + and the outer multiplication ∧ (subsuming the
usual scalar multiplication). Starting from scalars and a
3D vector space, we have generated a 3D space of 2-
blades and a 1D space of 3-blades (because all volumes
are proportional to each other). In total, therefore, we
have a set of elements that naturally group by their
dimensionality. Choosing some basis {e1, e2, e3}, we
can write what we have as spanned by the set

(4)

Every k-blade formed by ∧ can be decomposed on the
k-vector basis using +. The dimensionality k is often
called the grade or step of the k-blade or k-vector, reserv-
ing the term dimension for the vector space that gener-
ated them. A k-blade represents a k-dimensional
oriented subspace element.

If we allow the scalar-weighted addition of arbitrary
elements in this set of basis blades, we get an 8D linear
space from the original 3D vector space. This space, with
+ and ∧ as operations, is called the Grassmann algebra
of 3-space. In an m-dimensional space, there are (m

k )
basis elements of grade k, for a total basis of 2m elements
for the Grassmann algebra. We use the same basis for
the space’s geometric algebra, although we will con-
struct the objects in it differently.

Products of geometric algebra
The geometric product is the most important prod-

uct of geometric algebra. The fact that we can apply the

1 1 2

1 2 2 3 3 1 1 2 3

3
scalars

vector space

bivector space trivector space
  

 

{ 1 24 34

1 24444 34444 1 24 34

, , , ,

, , ,

e e e

e e e e e e e e e






∧ ∧ ∧ ∧ ∧ 




a b c

e e e

∧ ∧ = − +(
− + − ) ∧ ∧

a b c a b c a b c

a b c a b c a b c

1 2 3 1 3 2 2 1 3

2 3 1 3 1 2 3 2 1 1 2 3   

Tutorial

26 May/June 2002



geometric product to k-blades and that it has an inverse
considerably extends algebraic techniques for solving
geometrical problems. We can use the geometric prod-
uct to derive other meaningful products. The most ele-
mentary are the inner and outer products. We treat the
useful but less elementary products giving reflections,
rotations, and intersection later on in this article and in
more detail in part two.

Geometric product
For vectors in our metric vector space Vm, we define

the geometric product in terms of the inner and outer
product as

ab ≡ a ⋅ b + a ∧ b (5)

So the geometric product of two vectors is an element
of mixed grade; it has a scalar (0-blade) part a ⋅ b and a
2-blade part a ∧ b. Therefore, it is not a blade; rather, it
is an operator on blades. Changing the order of a and b
gives

ba ≡ b ⋅ a + b ∧ a = a ⋅ b – a ∧ b

The geometric product of two vectors is therefore nei-
ther fully symmetric (unlike the inner product) nor fully
antisymmetric (unlike the outer product). However, the
geometric product is invertible.

A simple drawing might convince you that the geo-
metric product is invertible, whereas the inner and outer
product separately are not. In Figure 2, we have a given
vector a. We indicate the set of vectors x with the same
value of the inner product x ⋅ a—this is a plane perpen-
dicular to a. We also show the set of all vectors with the
same value of the outer product x ∧ a—this is the line
of all points that span the same directed area with a
(because for the position vector of any point p = x + λa
on that line, we have p ∧ a = x ∧ a + λa ∧ a = x ∧ a by
the antisymmetry property). Neither of these sets is a
singleton (in spaces of more than one dimension), so
the inner and outer products are not fully invertible. The
geometric product provides both the plane and the line
and lets us determine their unique intersection x, as Fig-
ure 2 illustrates. The geometric product then is thus
invertible—from xa and a, we can retrieve x.

Equation 5 defines the geometric product only for vec-
tors. For arbitrary elements of our algebra, it is defined
using linearity, associativity, and distributivity over addi-
tion. We make it coincide with the usual scalar product
in the vector space, as the notation already suggests.
That gives the following axioms (where α and β are
scalars; x is a vector; and A, B, and C are general ele-
ments of the algebra):

Scalars α β and αx have their usual
meaning in Vm (6)

Scalars commute α A = A α (7)

Vectors x a = x ⋅ a + x ∧ a (8)

Associativity A(BC) = (AB)C (9)

We have thus defined the geometric product in
terms of the inner and outer product, but we claimed
that it is more fundamental than either. Mathemati-
cally, it is more elegant to replace Equation 8 with “the
square of a vector x is a scalar Q(x).” We can then actu-
ally interpret this function Q as the metric of the space,
the same as the one we used in the inner product, and
it gives the same geometric algebra.3 Our choice for
Equation 8 was to define the new product in terms of
more familiar quantities, to aid intuitive understand-
ing of it.

Let us show by example how we can use these rules
to develop the geometric algebra of 3D Euclidean space.
We introduce, for convenience only, an orthonormal
basis {ei}3

i=1. Because this implies that ei ⋅ ej = δij, we get
the commutation rules

(10)

In fact, the former is equal to ei ∧ ej, whereas the latter
equals ei ⋅ ei. Considering the unit 2-blade ei ∧ ej, we
find its square:

(11)

So a unit 2-blade squares to –1. Continued application
of Equation 10 gives the full multiplication for all basis
elements in the Clifford algebra of 3D space. The resulting
multiplication table is in Table 1 (next page). We can
express arbitrary elements as a linear combination of these
basis elements, so Table 1 determines the full algebra.

Exponential representation. Note that the geo-
metric product is sensitive to the vectors’ relative direc-
tions. For parallel vectors a and b, the outer product
contribution is zero, and ab is a scalar and commuta-
tive in its factors. For perpendicular vectors, ab is a 2-
blade and anticommutative. In general, if the angle
between a and b is φ in their common plane with unit 2-
blade I, we can write (in a Euclidean space)

(12)
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2 Invertibility of the geometric product. The inner
product determines a plane, the outer product deter-
mines a line, but the geometric product determines a
unique vector and is therefore invertible.



using a common rewriting of the inner product and
Equation 3. We have already seen that II = –1, and this
permits the shorthand of the exponential notation (by
the usual definition of the exponential as a converging
series of terms):

(13)

All this might remind you of complex numbers, but it
is different. First, geometric algebra has given a straight-
forward real geometrical interpretation of all elements
occurring in this equation, notably of I as the unit area
element of the common plane of a and b. Second, the
math differs. If I were a complex scalar, it would have
to commute with all elements of the algebra by Equa-
tion 7, but instead, it satisfies aI = –Ia for vectors a in
the I plane. We will use the exponential notation a lot
when we study rotations in part two.

Many grades in the geometric product. Equa-
tion 8 implies that the geometric product of a vector with
itself is a scalar. Therefore, when you multiply two
blades, the vectors in them may multiply to a scalar (if
they are parallel) or to a 2-blade (if they are not). As a
consequence, when you multiply two blades of grade k
and l using the geometric product, the result potential-
ly contains parts of all grades (k + l), (k + l – 2), …, 
(|k – l|+2), |k – l|, depending on how their factors
align. This series of terms contains all information about
the geometrical relationships of the blades—their span,
intersection, relative orientation, and so on.

Inner product of blades
In geometric algebra, we can see the standard inner

product of two vectors as the symmetrical part of their
geometric product:

Just as in the usual definition, this embodies the metric
of the vector space, and we can use it to define distances.
It also codifies the perpendicularity required in projection
operators. Now that we view vectors as representatives of
1D subspaces, we want to extend this metric capability to
arbitrary subspaces. We can generalize the inner product
to general subspaces in several ways. Lounesto3 and Dorst4

explain the mathematically most tidy method. This is the
contraction inner product (denoted  ), which has a clean
geometric meaning. In this intuitive introduction, we pre-
fer to give the geometric meaning first:

A  B is a blade representing the complement
(within the subspace B) of the orthogonal pro-
jection of A onto B. It is linear in A and B, and it
coincides with the usual inner product 
a ⋅ b of Vm when computed for vectors a and b.

This statement determines our inner product unique-
ly. (The resulting contraction inner product differs
slightly from the inner product commonly used in the
geometric algebra literature. The contraction inner
product has a cleaner geometric semantics and more
compact mathematical properties, which makes it bet-
ter suited to computer science. We can express the two
inner products in terms of each other, so this is not a
severely divisive issue. They codify the same geomet-
ric concepts, in just slightly different ways.) The con-
traction inner product turns out not to be symmetrical
or associative. But we do demand linearity to make it
computable between any two elements in our linear
space (not just blades). Note that earlier on we used
only the inner product between vectors a ⋅ b, which we
would now write as a  b.

Here, we just give the rules for computing the
resulting inner product for arbitrary blades, omitting
their derivation. In the following, α and β are scalars;
a and b vectors; and A, B, and C general elements of
the algebra:

Scalars
α  β = α β (14)

Vector and scalar
a  β = 0 (15)

Scalar and vector
α  b = α b (16)

Vectors
a  b is the usual inner product a ⋅ b in Vm (17)

Vector and element
a  (b ∧ B) = (a  b) ∧ B – b ∧(a  B) (18)

Distribution
(A ∧ B)  C = A  (B  C) (19)

As we said, linearity and distributivity over + also
hold, but the inner product is not associative. The inner
product of two blades is again a blade5 (as we would
hope because they represent subspaces and so should
the result). It is easy to see that the grade of this blade is

grade (A  B) = grade (B) – grade (A) (20)

because the projection of A onto B has the same grade as
A, and its complement in B is the codimension of this
projection in the subspace spanned by B. Because no sub-
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Table 1. The multiplication table of the geometric algebra of 3D
Euclidean space, on an orthonormal basis. (For shorthand, 
e12 ≡ e1 ∧ e2 and so forth.)

1 e1 e2 e3 e12 e31 e23 e123

1 1 e1 e2 e3 e12 e31 e23 e123

e1 e1 1 e12 –e31 e2 –e3 e123 e23

e2 e2 –e12 1 e23 –e1 e123 e3 e31

e3 e3 e31 –e23 1 e123 e1 –e2 e12

e12 e12 –e2 e1 e123 –1 e23 –e31 –e3

e31 e31 e3 e123 –e1 –e23 –1 e12 –e2

e23 e23 e123 –e3 e2 e31 –e12 –1 –e1

e123 e123 e23 e31 e12 –e3 –e2 –e1 –1



space has a negative dimension, the contraction A  B is
zero when grade (A) > grade (B) (and this is the main
difference between the contraction and the other inner
product).

When used on blades as (A ∧ B)  C) = A  (B  C),
Equation 19 gives the inner product its meaning of being
the perpendicular part of one subspace inside another.
In words, it would read like this: to get the part of C per-
pendicular to the subspace that is the span of A and B,
take the part of C perpendicular to B; then of that, take
the part perpendicular to A.

Figure 3 gives this example: the inner product of a
vector a and a 2-blade B, producing the vector a  B.
Note that the usual inner product for vectors a and b
has the right semantics. The subspace that is the orthog-
onal complement (in the space spanned by b) of the pro-
jection of a onto b contains only the point at their
common origin and is therefore represented by a scalar
(0-blade) linear in a and b.

With the definition of the inner product for blades,
we can generalize the relationship in Equation 8
between a geometric product and its inner and outer
product parts. For a vector x and a blade A, we have

xA = x  A + x ∧ A (21)

Note that if the first argument x is not a vector, this for-
mula does not apply. In general, the geometric product
of two blades contains many more terms, which we can
write as interleavings of the inner and outer products of
vectors spanning the blades.

Outer product
Once we have the geometric product, it is better to see

the outer product as its antisymmetric part:

and, more generally, if the second factor is a blade,

(22)

This leads to the defining properties we saw before:

Scalars
α ∧ β = α β (23)

Scalar and vector
α ∧ b = α b (24)

Antisymmetry for vectors
a ∧ b = –b ∧ a (25)

Associativity
(A ∧ B) ∧ C = A ∧ (B ∧ C) (26)

(As before, α and β are scalars; a and b are vectors; and
A, B, and C are general elements.) Linearity and dis-
tributivity over + also hold.The grade of a k-blade is the
number of vector factors that span it. Therefore, the

grade of an outer product of two blades is 

grade (A ∧ B) = grade (A) + grade (B) (27)

Of course, the outcome can be 0, so we should view this
zero element of the algebra as an element of an arbitrary
grade. There is then no need to distinguish separate zero
scalars, zero vectors, zero 2-blades, and so forth.

Subspace objects without shape. We reiterate
that the outer product of k-vectors gives a bit of k-space,
in a manner that includes the space element’s attitude,
orientation (or handedness), and magnitude. Equation
3 conveys this for a 2-blade a ∧ b.

Yet a ∧ b is not an area element with well-defined
shape, even though we are tempted to draw it as a par-
allelogram (as in Figure 1c). For instance, by the outer
product’s properties, a ∧ b = a ∧ (b + λa), for any λ, so
a ∧ b is just as much the parallelogram spanned by a and
b + λa. Playing around, you find that you can move
around pieces of the area elements while still maintain-
ing the same product a ∧ b. So really, a bivector does not
have any fixed shape or position; it is just a chunk of a
precisely defined amount of 2D directed area in a well-
defined plane. It follows that the 2-blades have an exis-
tence of their own, independent of any vectors that we
might use to define them.

We will take these nonspecific shapes made by the
outer product and force them into shape with carefully
chosen geometric products. This will turn out to be a pow-
erful and flexible technique to get closed coordinate-free
computational expressions for geometrical constructions.

Linear (in)dependence. Note that if three vectors
are linearly dependent, they satisfy

a, b, c, linearly dependent  ⇔ a ∧ b ∧ c = 0

We interpret the latter immediately as the geometric
statement that the vectors span a zero volume. This makes
linear dependence a computational property rather than
a predicate—three vectors can be almost linearly depen-
dent. The magnitude of a ∧ b ∧ c obviously involves the
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3 The inner product of blades: the inner product of a
vector and a plane is a perpendicular vector in the
plane. (The corkscrew denotes the orientation of the
space’s volume element.)



determinant of the matrix (a b c), so this view corre-
sponds with the usual computation of determinants to
check degeneracy.

Solving geometric equations
The geometric product is invertible, so dividing by a

vector has a unique meaning. We usually do this through
multiplication by the inverse of the vector. Because mul-
tiplication is not necessarily commutative, we must be
careful; there is a left and right division. As you can ver-
ify, the unique inverse of a vector a is 

because that is the unique element that satisfies a–1a =
1 = aa–1. In general, an element A has the inverse

where ~A is the reverse of A, obtained by switching its
spanning factors for each grade in A. So if A is a k-
blade a1 ∧ a2 ∧ … ∧ ak, then ~A = ak ∧ … ∧ a2 ∧ a1.
You can verify that A ~A is a scalar (and in Euclidean
space, even a positive scalar, which we can consider to be
the norm squared of A; if it is zero, the element A has no
inverse, but this does not happen for blades in Euclidean
spaces).

Invertibility is a great help in solving geometric prob-
lems in a closed coordinate-free computational form.
The common procedure is as follows: we know certain
defining properties of objects in the usual terms of per-
pendicularity, spanning, rotations, and so on. These give
equations typically expressed using the derived prod-
ucts. We combine these equations algebraically, with
the goal of finding an expression for the unknown object
involving only the geometric product; then division
(permitted by the invertibility of the geometric prod-
uct) should provide the result.

Let us illustrate this with an example. Suppose we want
to find the component x⊥ of a vector x perpendicular to
a vector a. The perpendicularity demand is clearly

x⊥  a = 0

A second demand is required to relate the magnitude
of x⊥ to that of x. Some practice in seeing subspaces in
geometrical problems reveals that the area spanned by
x and a is the same as the area spanned by x⊥ and a
(see Figure 4a). We express this using the outer prod-
uct: x⊥ ∧ a = x ∧ a.

We combine these two equations to form a geomet-

ric product. In this example, just adding the two equa-
tions works, yielding

x⊥  a + x⊥ ∧ a = x⊥ a = x ∧ a

This one equation contains the full geometric relation-
ship between x, a, and the unknown x⊥. Geometric
algebra solves this equation through division on the
right by a:

x⊥ = (x ∧ a)/a = (x ∧ a) a–1 (28)

We rewrote the division by a as multiplication by the
subspace a–1 to clearly show that we mean division on
the right.

This is an example of how the indefinite shape x ∧ a
spanned by the outer product is just the right element
to generate a perpendicular to a vector a in its plane,
through the geometric product. Note that Equation 28
agrees with the well-known expression x⊥ using the
inner product of vectors:

(29)

The geometric algebra expression using outer product
and inverse generalizes immediately to arbitrary sub-
spaces A.

Projecting subspaces
We generalize this technique as the decomposition of

a vector to an arbitrary blade A, using the geometric
product decomposition of Equation 21:

x = (xA)A–1 = (x  A)A–1 + (x ∧ A)A–1 (30)

We can show that the first term is a blade fully inside
A—it is the projection of x onto A. Likewise, we can
show that the second term is a vector perpendicular to
A, sometimes called the rejection of x by A. The projec-
tion of a blade X of arbitrary dimensionality (grade)
onto a blade A is given by

projection of X onto A:   X a (X  A)A–1

Geometric algebra often allows such a straightforward
extension to arbitrary dimensions of subspaces, with-
out additional computational complexity. (We will see
why when we treat linear mappings in part two.)

Reflecting subspaces
The reflection of a vector x relative to a fixed vector a

can be constructed from the decomposition of Equation
30 (used for a vector a) by changing the sign of the rejec-
tion (see Figure 4b). We can rewrite this in terms of the
geometric product:

(x  a)a–1 – (x ∧ a)a–1 = (a  x + a ∧ x ) a–1

= axa–1 (31)

So the reflection of x in a is the expression axa–1 (see
Figure 4b), and the reflection in a plane perpendicular

  
x x a a xa x a a x

x a
a a

a⊥
− −= ∧( ) = − ⋅( ) = −

⋅
⋅

  1 1

Tutorial

30 May/June 2002

x⊥ = (x^a)/a

x^a

(x.a)/a

a

x

a

x

axa−1

(a) (b)

4 (a) Projecting
and rejecting x
relative to a. 
(b) Reflecting
x in a.

a
a

a a
− =1

~

A
A

A A
− =1

 ~



to a is then –axa–1. (We will see this sandwiching oper-
ator in more detail in part two.)

We can extend this formula to the reflection of a blade
X relative to the vector a. This is

reflection in vector a:  X a aXa–1

and even to the reflection of a blade X in a k-blade A,
which turns out to be

general reflection:   X a –(–1)k AXA–1

Note that these formulas let us do reflections of sub-
spaces without first decomposing them into constituent
vectors. It gives the possibility of reflecting a polyhedral
object by directly using a facet representation, rather
than acting on individual vertices.

Vector division
With subspaces as basic computational elements, we

can directly solve equations in similarity problems such
as Figure 5 suggests:

Given two vectors a and b, and a third vector c,
determine x so that x is to c as b is to a—that is,
solve x : c = b : a.

In geometric algebra the problem reads x c–1 = b a–1,
and through right multiplication by c, the solution is

x = (ba–1) c (32)

This is a computable expression. For instance, with a =
e1, b = e1 + e2, and c = e2 in the standard orthonor-
mal basis, we obtain

In part two, we will develop this into a method to han-
dle rotations.

Conclusion
In this article, we’ve introduced blades and three

products of geometric algebra. The geometric product is
the most important because it is the only one that is
invertible. We hope that this introduction has given
readers a hint of geometric algebra’s structure. In part
two, we will show how to wield these products to con-
struct operations like rotations and look at more
advanced topics such as differentiation, linear algebra,
and homogeneous representations. �
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