
This is the second of a two-part tutorial on
geometric algebra. In part one,1 we intro-

duced blades, a computational algebraic representa-
tion of oriented subspaces, which are the basic elements
of computation in geometric algebra. We also looked
at the geometric product and two products derived
from it, the inner and outer products. A crucial feature
of the geometric product is that it is invertible.

From that first article, you should
have gathered that every vector
space with an inner product has a
geometric algebra, whether or not
you choose to use it. This article
shows how to call on this structure
to define common geometrical con-
structs, ensuring a consistent com-
putational framework. The goal is to
show you that this can be done and
that it is compact, directly computa-
tional, and transcends the dimen-
sionality of subspaces. We will not
use geometric algebra to develop
new algorithms for graphics, but we
hope to convince you that you can
automatically take care some of the
lower level algorithmic aspects,

without tricks, exceptions, or hidden degenerate cases
by using geometric algebra as a language.

Rotations
Geometric algebra handles rotations of general sub-

spaces in Vm through an interesting sandwiching prod-
uct using geometric products. We introduce this
construction gradually.

Rotations in 2D
In the last article, we saw that the ratio of vectors

defines a rotation/dilation operator. Let us do a slight-
ly simpler problem. In Figure 1a, if a and b have the
same norm, what is the vector x in the (a ∧ b) plane that
is to c as the vector b is to a? Geometric algebra phras-
es this as x c–1 = b a–1 and solves it (see Equation 13
from part one1) as

(1)

Here Iφ is the angle in the I plane from a to b, so –Iφ is
the angle from b to a. Figure 1a suggests that we obtain
x from c by a rotation, so we should apparently inter-
pret premultiplying by e–Iφ as a rotation operator in the
I plane.

The vector c in the I plane anticommutes with I: c I =
–I c—showing that I is not merely a complex number,

even though I2 = –1. Using this to switch I and c in Equa-
tion 1, we obtain that the rotation is alternatively repre-
sentable as a postmultiplication:

(2)

What is cI? First, temporarily introduce orthonormal
coordinates {e1, e2} in the I plane, with e1 along c, so
that c ≡ ce1. Then, I = e1 ∧ e2 = e1 e2. Therefore, cI =
ce1e1e2= ce2—it is c turned over a right angle, following
the orientation of the 2-blade I (here anticlockwise). So
c cosφ + cI sinφ is “a bit of c plus a bit of its anticlock-
wise perpendicular,” and those amounts are precisely
right to make it equal to the rotation by φ (see Figure 1b).

   

e

e

− = −

= + =

I

I

φ

φ

φ φ

φ φ

c

c

c Ic

c cI

cos sin

cos sin

x ba c
a

b a b a c

b

a
I c

= ( ) = ⋅ + ∧( )

= −( ) =

−

−

1
2

1
  

 Icos sinφ φ φe c

0272-1716/02/$17.00 © 2002 IEEE

Feature Tutorial

58 July/August 2002

This second part of our

tutorial uses geometric

algebra to represent

rotations, intersections, and

differentiation. We show

how a small set of products

simplifies many geometrical

operations.

Stephen Mann
University of Waterloo

Leo Dorst
University of Amsterdam

Geometric Algebra:
A Computational
Framework For
Geometrical
Applications
Part 2



Angles as geometrical objects
In Equation 1, the combination Iφ is a full indication

of the angle between the two vectors. It denotes not only
the magnitude but also the plane in which the angle is
measured and even the angle’s orientation. If you ask
for the scalar magnitude of Iφ in the plane –I (the plane
from b to a rather than from a to b), it is –φ. Therefore,
the scalar value of the angle automatically gets the right
sign. The fact that the angle as expressed by Iφ is now a
geometrical quantity independent of the convention
used in its definition removes a major headache from
many geometrical computations involving angles. We
call this true geometric quantity the bivector angle. (It is
just a 2-blade, of course, and not a new kind of element,
but we use it as an angle, hence the name).

Rotations in m dimensions
Equation 2 rotates only within the plane I. Generally,

we would like to have rotations in space. For a vector x,
the outcome of a rotation RIφ should be

RIφ x = x⊥ + RIφ x||

where x⊥ and x|| are the perpendicular and parallel com-
ponents of x relative to the rotation plane I, respective-
ly. We have seen that we can separate a vector into such
components by commutation (as in Equations 31 and 32
from part one1). As you can verify, the following formu-
la effects this separation and rotation simultaneously:

rotation over Iφ:  x a RIφx = e–Iφ/2x eIφ/2 (3)

The operator e–Iφ/2, used in this way, is called a rotor.
In the 2D rotation we treated before, x I = –I x, and
moving either rotor to the other side of x retrieves Equa-
tion 2 if x is in the I plane.

Two successive rotations R1 and R2 are equivalent to
a single new rotation R of which the rotor R is the geo-
metric product of the rotors R2 and R1, since

with R = R2R1. Therefore, the combination of rotations
is a simple consequence of the application of the geo-
metric product on rotors—that is, elements of the form
e–Iφ/2 = cos (φ/2) – I sin (φ/2), with I2 = –1. This is true
in any dimension greater than 1 (and even in dimension
1, if you realize that any bivector there is zero, so that
rotations do not exist).

Let us see how it works in 3-space. In three dimensions,
we are used to specifying rotations by a rotation axis a
rather than by a rotation plane I. Given a unit vector a for
an axis, we find the plane as the 2-blade complementary
to it in the 3D space with volume element I3: I = 
a  I3 = aI3 = I3a. A rotation over an angle φ around an
axis with unit vector a is therefore represented by the
rotor e–I3aφ/2.

For example, to compose a rotation R1 around the e1

axis of π/2 with a subsequent rotation R2 over the e2 axis

over π/2, we write out their rotors (using the shorthand
e23 = e2 ∧ e3 = e2 e3 and so on):

and

The total rotor is their product, and we rewrite it back to
the exponential form to find the axis:

Therefore, the total rotation is over the axis a=(e1+
e2 – e3)/√3, over the angle 2π/3.

Geometric algebra permits straightforward general-
ization to the rotation of higher dimensional subspaces.
We can apply a rotor immediately to an arbitrary blade
through the formula

general rotation:   X a R X R–1

This lets you rotate a plane in one operation, for instance,
using a rotation by R (as in the example we just saw):

There is no need to decompose the plane into its span-
ning vectors first.

Quaternions based on bivectors
You might have recognized the last example as strong-

ly similar to quaternion computations. Quaternions are
indeed part of geometric algebra in the following
straightforward manner.

Choose an orthonormal basis {ei}3
i=1. Construct out

   

R Re e

e e e e e e e e

1 2
1

23 31 12 12 23 31 12 31
1
4

1 1

∧( ) =

− − +( ) + + −( ) = −

−

    

R R R

e

≡ = −( ) −( )
= − − +( )
= −

+ −

≡ −

2 1 31 23

23 31 12

3
1 2 3

3

1
2

1 1

1
2

1

1
2

1
2

3
3

3

e e

e e e

I
e e e

I a

                 

                  

                 π/

   
R e2

4 313 2
1

2
= =

−−I e eπ/

   
R e1

4 233 1
1

2
= =

−−I e eπ/

    

R R  

    

2 1 2 1 1
1

2
1

2 1 2 1

1 1

o( ) = ( )
= ( ) ( ) =

− −

− −

x x

x x

R R R R

R R R R R R

IEEE Computer Graphics and Applications 59

(a) (b)

x

c

b

a

I-plane I-planec I

c

Rc = e−Iφ c = ceIφ

1 (a) The rota-
tion operator as
a ratio between
vectors. (b)
Coordinate-free
specification of
rotation.



of that a bivector basis {e12, e23, e31}. Note that these
elements satisfy e2

12=e2
23=e2

31=−1, e12 e23 = e31 (and
cyclic), and also e12 e23 e31 = 1. In fact, setting i ≡ e23,
j ≡ –e31, and k ≡ e12, we find i2 = j2 = k2 = i j k = –1 and
j i = k and cyclic. Algebraically, these objects form a basis
for quaternions obeying the quaternion product, com-
monly interpreted as some kind of 4D complex number
system. To us, there is nothing complex about quater-
nions, but they are not vectors either—they are real 2-
blades in 3-space, denoting elementary rotation planes
and multiplying through the geometric product. There-
fore, visualizing quaternions is straightforward; each is
a rotation plane with a rotation angle, and the bivector
angle concept represents that well.

Of course, in geometric algebra, we can combine
quaternions directly with vectors and other subspaces.
In that algebraic combination, they are not merely a
form of complex scalars; quaternion products are nei-
ther fully commutative nor fully anticommutative (for
example, i e1 = e1 i, but i e2 = –e2 i). It all depends on
the relative attitude of the vectors and quaternions, and
these rules are precisely right to make Equation 3 be the
rotation of a vector.

Linear algebra
In the classical ways of using vector spaces, linear

algebra is an important tool. In geometric algebra, this
remains true; linear transformations are of interest in
their own right or as first order approximations to
more complicated mappings. Indeed, linear algebra is
an integral part of geometric algebra, and it acquires
much extended coordinate-free methods through this
inclusion. We show some of the basic principles in this
article, but you can find more in related literature.2,3

Outermorphisms
When vectors are transformed by a linear transfor-

mation on the vector space, the blades they span can be
viewed to transform as well, simply by the rule “the
transform of a span of vectors is the span of the trans-
formed vectors.” This means that a linear transforma-
tion f: Vm → Vm of a vector space has a natural extension
to the whole geometric algebra of that vector space, as
an outermorphism—that is, as a mapping that preserves
the outer product structure:

f(a1 ∧ a2 ∧ … ∧ ak) ≡ f(a1) ∧ f(a2) ∧ … ∧ f(ak) (4)

Note that this is grade preserving—a k-blade transforms
to a k-blade. We supplement this by stating what the
extension does to scalars, which is simply f(α) = α. Geo-
metrically, this means that a linear transformation
leaves the origin intact.

Linear transformations are outermorphisms, which
explains why we can generalize so many operations
from vectors to general subspaces in a straightforward
manner.

Dual representation
Linear algebra often uses dual representations of

hyperplanes to extend the scope of vector-based opera-
tions. In geometric algebra, dualization is also impor-
tant and in fact is a flexible tool to convert between
viewpoints of spanning and perpendicularity, for arbi-
trary subspaces.

Consider an m-dimensional space Vm and a blade A
in it. The dual of the blade A in Vm is its complement,
definable using the contraction inner product:

where Im is the pseudoscalar of Vm (an m-blade giving
the volume element) and ~⋅ is the reversion (obtained by
reversing the factors of the blade it is applied to and lead-
ing to a grade-dependent sign change).

The characterization of a subspace by a dual blade
rather than by a blade enables manipulation of expres-
sions involving spanning to being about perpendicular-
ity and vice versa. A familiar example in a 3D Euclidean
space is the dual of a 2-blade (or bivector). Using an
orthonormal basis {ei}3

i=1 and the corresponding bivec-
tor basis, we write B = b1e2 ∧ e3 + b2e3 ∧ e1 + b3e1 ∧ e2.
We take the dual relative to the space with volume ele-
ment I3 ≡ e1 ∧ e2 ∧ e3 (that is, the right-handed volume
formed by using a right-handed basis). The subspace of
I3 dual to B is then

(5)

This is a vector, and we recognize it (in this Euclidean
space) as the normal vector to the planar subspace
represented by B (see Figure 2b). So we have normal
vectors in geometric algebra as the duals of 2-blades,
if we would want them—but we will soon see a better
alternative.

We can use either a blade or its dual to represent a
subspace, and it is convenient to have some terminolo-
gy. We will say that a blade B represents a subspace B if

x ∈ B ⇔ x ∧ B = 0 (6)

and that a blade B* dually represents the subspace B if

x ∈ B ⇔ x  B* = 0 (7)

We switch between the two standpoints by using the dis-
tributive relation (A ∧ B)  C = A  (B  C) (which is Equa-

B I

e e e e e e e e e

e e e


 

 

 =

 

˜3

1 2 3 2 3 1 3 1 2 3 2 1

1 1 2 2 3 3

=
∧ + ∧ + ∧( ) ∧ ∧( )

= + +

b b b

b b b

A A I∗ =  ̃ m

Feature Tutorial

60 July/August 2002

(a) (b)

I3

b ≡ B*

a
a

b × a a  B

B B

a ^ B

2 (a) The dual B* of a bivector B and the cross product with a. (b) The
same result using the inner product of blades (from part one1).



tion 19 from part one1) used for a vector x, a blade B,
and a pseudoscalar I:

(8)

and by a converse (but conditional) relationship that we
state without proof

(9)

If x is known to be in the subspace of I, we can write
these simply as (x ∧ B)* = x  B* and (x  B)* = x ∧ B*,
which makes the equivalence of the two representations
obvious.

Cross product
Classical computations with vectors in 3-space

often use the cross product ×, which produces from
two vectors a and b a new vector a × b perpendicular
to both (by the right-hand rule), proportional to the
area they span. We can make this in geometric alge-
bra as the dual of the 2-blade spanned by the vectors
(see Figure 2b):

(10)

You can verify that computing this explicitly using Equa-
tion 1 from part one1 and Equation 5 indeed retrieves
the usual expression a × b = (a2b3 – a3b2)e1 + (a3b1 –
a1b3)e2 + (a1b2 – a2b1)e3.

Equation 10 explicitly shows several things that we
always need to remember about the cross product:

� there is a convention involved on handedness (this is
coded in the sign of I3),

� there are metric aspects because it is perpendicular
to a plane (this is coded in the usage of the inner prod-
uct  ), and

� the construction only works in three dimensions
because only then is the dual of a 2-blade a vector
(this is coded in the 3-gradedness of I3).

The vector product a ∧ b does not depend on any of
these embedding properties yet characterizes the (a, b)
plane just as well. In geometric algebra, we therefore
have the possibility of replacing the cross product by a
more elementary construction. Linear algebra gives a
good reason for doing so.

No normal vectors or cross products
The transformation of an inner product under a lin-

ear mapping is more involved than that of the outer prod-
uct in Equation 4 because perpendicularity is a more
complicated concept to transform than spanning.
Hestenes3 gives the general transformation formula. For
blades, it becomes

where 
-
f is the adjoint, defined as the extension of an out-

ermorphism of the linear mapping defined for vectors
by 

-
f(a)⋅b=a⋅f(b)—its matrix representation on vectors

would be the transpose.
Because of the complexity of this transformation

behavior, we should steer clear of any constructions that
involve the inner product, especially when characteriz-
ing basic properties of geometric objects. The practice of
characterizing a plane by its normal vector—which con-
tains the inner product in its duality—should be avoid-
ed. Under linear transformations, the normal vector of
a transformed plane is not the transform of the plane’s
normal vector. (This is a well-known fact, but it is always
a shock to novices.) Rather, the normal vector is a cross
product of vectors, which transforms as

(11)

where det(f) is the determinant defined by
det(f)=f(Im)I−1

m. (This is a coordinate-free definition
of the determinant of the matrix representation of f.)
The right-hand side of Equation 11 is usually not
equal to f(a) × f(b), so a linear transformation is not
cross-product preserving. Therefore, it is much bet-
ter to characterize the plane by a 2-blade, now that
we can. The 2-blade of the transformed plane is the
transform of the 2-blade of the plane because linear
transformations are outermorphisms preserving the
2-blade construction. Especially when the planes are
tangent planes constructed by differentiation, 2-
blades are appropriate. Under any transformation f,
the construction of the tangent plane depends only
on the first-order linear approximation mapping f of
f. Using blades for those tangent spaces should enor-
mously simplify the treatment of objects through dif-
ferential geometry, especially in the context of affine
transformations.

Intersecting subspaces
Geometric algebra also contains operations to deter-

mine the union and intersection of subspaces. These are
the Join and Meet operations. Several notations exist for
these in the related literature, causing some confusion.
In this article, we will use the set notations ∪ and ∩ to
make the formulas more easily readable.

The Join of two subspaces is their smallest super-
space—that is, the smallest space containing them
both. Representing the spaces by blades A and B, the
Join is denoted A ∪ B. If the subspaces of A and B are
disjoint, their Join is obviously proportional to A ∧ B.
A problem is that if A and B are not disjoint (which is
precisely the case we are interested in), then A ∪ B
contains an unknown scaling factor that is funda-
mentally unresolvable due to the blades’ reshapable
nature (see Figure 3). (Stolfi4 also observed this
ambiguity.) Fortunately, in all geometrically relevant
entities that we compute, it appears that this scalar
ambiguity cancels out.

The Join is a more complicated product of sub-
spaces than the outer product and inner product. We
can give no simple formula for the grade of the result
and cannot characterize it with a list of algebraic
computation rules. Although computation of the Join

f f f  fa b a b× ×( ) = ( ) ( ) ( )− −1 1 det

  
f  f  fA B A B ( ) = ( ) ( )−1

  
a b a b I a b× ≡ ∧( ) = ∧( )








∗
        ˜3

  
x B I x B I x I           if  ( ) = ∧( ) ∧ =˜ ˜ 0

  
x B I x B I∧( ) = ( )     ˜ ˜

IEEE Computer Graphics and Applications 61



may appear to require some optimization process,
the smallest superspace is directly related to the
nonzero part of highest grade in the expansion of the
geometric product and can therefore be done in con-
stant time.5

The Meet of two subspaces A and B is their largest
common subspace. Given the Join J ≡ A ∪ B of A and B,
we can compute their Meet A ∩ B by the property that
its dual (with respect to the Join) is the outer product
of their duals. In formula, this is

or

(12)

with the dual taken with respect to the Join J. (The
somewhat strange order in Equation 12 means that
the Join J can be written using the Meet M in the fac-
torization J = (AM–1) ∧ M ∧ (M–1B), and it corre-
sponds to Stolfi4 for vectors.) This leads to a formula
for the Meet of A and B relative to the chosen Join (use
Equation 8):

(13)

Let us do an example: the intersection of two planes
represented by the 2-blades A=1–2 (e1+e2)∧(e2+e3) and

B = e1 ∧ e2. (We have normalized them so that
AÃ=1=BB̃; it gives the Meet of these blades a numer-
ical factor that we can interpret geometrically.) These
are planes in general position in 3D space, so their Join
is proportional to I3. It makes sense to take J = I3. For the
Meet, this gives

(14)

We have expressed the result in normalized form. The
numerical factor for the resulting blade is in fact the sine
of the angle between the arguments. Figure 4 illustrates
the answer. As in Stolfi,4 the sign of A ∩ B is the right-
hand rule applied to the turn required to make A coin-
cide with B, in the correct orientation.

Classically, we usually compute the intersection of
two planes in 3-space by first converting them to nor-
mal vectors and then taking the cross product. This gives
the same answer in this nondegenerate case in 3-space,
using our previous Equation 9, Equation 8, and noting
that Ĩ3=−I3:

So the classical result is a special case of Equation 13,
but Equation 13 is much more general; it applies to the
intersection of subspaces of any grade, within a space
of any dimension.

The norm of the Meet gives an impression of the
intersection strength. Between normalized subspaces
in Euclidean space, the magnitude of the Meet is the
sine of the angle between them. From numerical
analysis, this is a well-known measure for the distance
between subspaces in terms of their orthogonality—
it is 1 if the spaces are orthogonal and decays grace-
fully to 0 as the spaces get more parallel, before
changing signs. This numerical significance is useful
in applications.

Differentiation
Geometric algebra has an extended operation of dif-

ferentiation, which contains the classical vector cal-
culus and much more. It is possible to differentiate with
respect to a scalar or vector, as before, but now also
with respect to k-blades. This enables efficient encod-
ing of differential geometry, in a coordinate-free man-
ner and gives an alternative look at differential shape

A I B I A I B I I

B I A I I

B I A I I

B I A A B

 ×     

   

    

  

˜ ˜ ˜ ˜ ˜

˜ ˜

˜ ˜

˜

3 3 3 3 3

3 3 3

3 3 3

3

( ) ( ) = ( ) ∧( )( )
= ( ) ∧( )( )
= ( ) ( )( )
= ( ) = ∩

   

  

   

 

  

A B

e e e e e e e e e

e e e e

e e
e e

∩ =

= ∧ ∧ ∧ + ∧ +

= + ∧

= − + = −
+

( ) ( )( ) ( ) ( )( )
( )( )

( )










   

  

   

1

2
1

2

1

2

1

2 2

1 2 3 2 1 1 2 2 3

3 1 2 3

1 2
1 2

  



  
A B B J A∩ = ( )   ˜

 
A B B A∩( ) = ∧

∗ ∗ ∗

  
A B J B J A J∩( ) = ( ) ∧( )     ˜ ˜ ˜

Feature Tutorial

62 July/August 2002

B
J

A
M

e1

e2

e3

A ∩ B A

B

4 An example
of the Meet of
two planes.

M

B J

A

3 The ambiguity of scale for Meet
M and Join J of two blades A and B.
Both figures are acceptable solu-
tions to the problem of finding a
blade representing the union and
intersection of the subspaces of the
blades A and B.



descriptors like the second fundamental form. (It
becomes an immediate indication of how the tangent
plane changes when we slide along the surface.) This
would lead us too far, but we will show two examples
of differentiation.

A rotor’s scalar differentiation
Suppose we have a rotor R = e–Iφ/2 (where Iφ is a func-

tion of time t) and use it to produce a rotated version X
= RX0R–1 of some constant blade X0. Using the chain
rule and commutation rules, scalar differentiation with
respect to t gives

(15)

using the commutator product ⊗ defined in geometric
algebra as the shorthand A ⊗ B ≡ 1/2(AB−BA). This
product often crops up in computations with continu-
ous groups such as the rotations.

The simple expression that results assumes a more
familiar form when X is a vector x in 3-space and when
the attitude of the rotation plane is fixed so that dI/dt =0.
We introduce a scalar angular velocity ω ≡ dφ/dt, and
the vector dual to the plane as the angular velocity vec-
tor w, so w ≡ωI Ĩ3=ωI/I3. Therefore, ωI = wI3, which
equals w I3. Using the fact that x ⊗B=1/2(xB−
Bx)=xB for a vector x and a 2-blade B, we obtain

where × is the vector cross product. As before, when we
treated other operations, we find that an equally simple
geometric algebra expression is more general. Here
Equation 15 describes the differential rotation of k
dimensional subspaces in n dimensional space, rather
than merely of vectors in 3D.

Differentiation of spherical projection
Suppose that we project a vector x on the unit sphere

by the function x aP(x)=x/|x|. We compute its
derivative in the a direction, denoted as (a ⋅ ∂x)P(x)
or Pa(x), as a standard differential quotient and using
Taylor series expansion. Note how geometric algebra
permits compact expression of the result, with geo-
metrical significance:

We recognize the result as the rejection of a by x, scaled
appropriately (see the “Projecting subspaces” section
from part one1). Figure 5 confirms the outcome. You can
verify in a similar manner that (a ⋅ ∂x)x–1 = –x–1 ax–1

and interpret geometrically.
For more advanced usage of differentiation relative

to blades, see the Doran et al.2 tutorial, which introduces
these differentiations using examples from physics, and
the Lasenby et al.6 application paper.

Models of geometry
Geometric algebra can help us express several stan-

dard models of geometry. The advantage of doing so is
an increase in expressive power and a structural inte-
gration of seemingly ad-hoc constructions into the
geometry. Here we look at geometric algebra represen-
tations of homogeneous coordinates and Plücker coor-
dinates as well as a model of Euclidean geometry that
naturally handles spheres.

Homogeneous model
So far we have been treating only homogeneous sub-

spaces of the vector space Vm—that is, subspaces con-
taining the origin. We have spanned them, projected
them, and rotated them, but we have not moved them
out of the origin to make more interesting geometrical
structures such as lines floating in space. We construct
those now, by extending the ideas behind homogeneous
coordinates to geometric algebra. It turns out that such
elements of geometry can also be represented by blades,
in a representational space with an extra dimension.
The geometric algebra of this space gives us precisely
what we need. In this view, more complicated geomet-
rical objects do not require new operations or tech-

  

    

   

 

 

a
x

x

x a

x a

x

x

x a

x a x

x

x

x a a x x

x

a x a x

x

x⋅∂( ) ≡
+
+

−














=
+

+ ⋅
−

















=
+( ) − ⋅( ) −

=
− ( )

=

→

→ −

→

−

−

lim

lim

lim

λ

λ

λ

λ
λ
λ

λ
λ

λ

λ λ

λ

0

0 1

0

1

1

1

1

1 2

1

 aa x x

x

∧( ) −1

   

d
dt

d
dt

x x I x w I

x w I x w I w x

= ⊗ ( ) = ⊗( )
= ( ) = ∧( ) = ×

φ 

  

 

   

3

3 3

   

d
dt

d
dt

e e

d
dt

e e

e e
d
dt

d
dt

d
dt

d
dt

o

o

o

X X

I X

X I

X I I X

X I

I I

I I

I I

= ( )
= − ( )( )

+ ( ) ( )
= ( ) − ( )









= ⊗ ( )

−

−

−

φ φ

φ φ

φ φ

φ

φ

φ φ

φ

/ /

/ /

/ /

2 2

2 2

2 2

1
2
1
2

1
2

  

  

IEEE Computer Graphics and Applications 63

P(x)

Pa(x)

x

a

5 The deriva-
tive of the
spherical
projection.



niques, merely the standard computations in a higher
dimensional space.

The homogeneous model is often described as aug-
menting a 3D vector v with coordinates [v1, v2, v3] to a
4-vector [v1, v2, v3, 1]. That extension makes nonlinear
operations such as translations implementable as linear
mappings.

We give the (m + 1)-dimensional homogeneous space
into which we embed our m-dimensional Euclidean space
a full geometric algebra. Let the unit vector for the extra
dimension be denoted by e. This vector must be perpen-
dicular to all regular vectors in the Euclidean space Em, so
e  x = 0 for all x ∈ Em. We also need to define e  e to make
our algebra complete. This involves some dilemmas that
are only fully resolvable in the double homogeneous
model, which we explain later on. For now, we can take 
ee = 1. We interpret e as the Euclidean point at the origin.

Let us now represent the subspaces of interest into
this model, simply by using the structure of its geomet-
ric algebra.

Points. A point at a location p is made by translat-
ing the point at the origin over the Euclidean vector p.
We do this by adding p to e. This construction gives the
representation of the point P at location p as the vector
p in (m + 1)-dimensional space:

p = e + p

This is a regular vector in the (m + 1)-space, now inter-
pretable as a Euclidean point. It is of course no more
than the usual homogeneous-coordinates method in dis-
guise—p has coordinates [p1, p2, p3, 1] on the ortho-
normal basis {e1, e2, e3, e}. We will denote points of the
m-dimensional Euclidean space in script, the vectors
and blades in the corresponding vector space in bold,
and vectors and blades in the (m + 1)-dimensional
homogeneous space in italic. You can visualize this con-
struction as in Figure 6a (necessarily drawn for m = 2).

We can multiply these vectors in (m + 1)-dimension-
al space using the products in geometric algebra. Let us
consider in particular the outer product and form blades.

Lines. To represent a line, we compute the 2-blade
spanned by the representative vectors of two points:

p ∧ q = (e + p) ∧ (e + q) = e ∧ (q – p) + p ∧ q (16)

We recognize the vector q – p and the area spanned by
p and q. Both are elements that we need to describe an
element of the directed line through the points P and Q.

The former is the direction vector of the directed line;
the latter is an area that we call the moment of the line
through p and q. It specifies the distance to the origin, for
we can rewrite it to a rectangle spanned by the direction
(q – p) and the perpendicular support vector d:

p ∧ q = p ∧ (q – p) = d(q – p) (17)

where d ≡ (p ∧ (q – p))(q – p)–1 = (p ∧ q)(q – p)–1 is
the rejection of p by q – p. We can therefore rewrite the
same 2-blade p ∧ q in various ways, such as p ∧ q = p ∧
(q – p) = d(q – p) (with d = e + d), separating the posi-
tional part p or d and the purely Euclidean directional
part v ≡ q – p (see Figure 6c). The element p ∧ q con-
tains all these potential interpretations in one data struc-
ture, which we can construct in all these ways.

Temporarily reverting to the cross product to make a
connection with a classical representation, we can
rewrite Equation 16 as

p ∧ q = e ∧ (q – p) + p ∧ q = (p – q)e + (p × q)I3 (18)

We recognize the six Plücker coefficients [p – q; p ×
q], characterizing the line by its direction vector v = 
q – p and its moment vector m = p × q as 

l = –ve + mI3

The six coefficients [–v1, –v2, –v3, m1, m2, m3] of the line
in this representation are the coefficients of a 2-blade on
the bivector basis {e1e, e2e, e3e, e2e3, e3e1, e1e2}. This
integrates the Plücker representation fully into the homo-
geneous model (for which it was historically designed).
We will see that the compact and efficient Plücker inter-
section formulas are now straightforward consequences
of the Meet operation in geometric algebra.

Hyperplanes. If we have an (m – 1)-dimensional
hyperplane characterized as x  n = δ, this can be written
as (e + x)  (n – δe) = 0, so x  (n – δe) = 0. Therefore, n
– δe is the dual of the blade representing the hyperplane.
The dual A* of a blade A in the homogeneous model is
obtained relative to the pseudoscalar e ∧ I3 = eI3 of the
full space as A* = A (eI3)–1 = A (eI3) = A(eI3), so we get

(n – δe)(eI3) = neI3 – δI3

This has the usual four Plücker coefficients [n1, n2, n3,
–δ], but on the trivector basis {–e2e3e, –e3e1e, –e1e2e,
e1e2e3}—it is clearly different from the vector basis for
points.

Feature Tutorial

64 July/August 2002

(a) (b) (c)

e p

P
p P

pe
q

Q

p ^ q

p ^ v

EmEm

P

pe

Q
Em

v

v

6 Representing offset subspaces of
Em in (m + 1) dimensional space. (a)
A point P denoted by a vector p with
Euclidean part p. (b) A line element
is represented by the bivector
formed as the outer product of two
points. (c) Reshaping the bivector
shows the correspondence with
Plücker coordinates; here, v ≡ q – p.



Of course, we can also construct the blade represent-
ing the hyperplane directly (rather than dually), given
m points on it—namely, as the outer product of the vec-
tors representing those points.

And beyond. These ways of making offset planar
subspaces extend easily. An element of the oriented
plane through the points P, Q, and R is represented by
the 3-blade p ∧ q ∧ r and so on for higher dimensional
offset subspaces—if the space has enough dimensions to
accommodate them. The blades we construct this way
can always be rewritten in the form A = dA, where A is
a purely Euclidean blade and d is a vector of the form 
e + d, with d a Euclidean vector. We should interpret A
as the direction element, so its grade denotes the dimen-
sionality of the flat subspace represented by A. The vec-
tor d represents the closest point to the origin (so that
d is the perpendicular support vector).

Scalar distances. A small surprise is that even a 0
blade (that is, a scalar) is useful; it is the representation of
a scalar distance in the Euclidean space (with a sign but
without a direction), as we will see in the next section.
Such distances are of course regular elements of geome-
try, so it is satisfying to find them on a par with position
vectors, direction vectors, and other elements of higher
dimensionality as just another case of a representing blade
in the homogeneous model of a flat Euclidean space.

Caseless subspace interactions
Having such a unified representation for the vari-

ous geometrical elements implies that computations
using them are unified as well; they have just become
operations on blades in (m + 1)-space, blissfully igno-
rant of what different geometrical situations these
computations might represent. This opens the way to
caseless computation in geometrical algorithms.

The Meet and Join in the homogeneous model func-
tion just as you would expect, providing the intersec-
tion of lines, planes, and so forth. Writing these out in
their (Plücker) coordinates retrieves the familiar com-
pact formulas for the coefficients of the result, but
they are now accompanied by automatic evaluation
of the basis on which these coefficients should be
interpreted. That provides immediate identification
of the kind of intersection in a manner so well inte-
grated that it suggests we might continue our compu-
tation without intermediate interpretation. This leads
to caseless geometrical algorithms in which the
dimensionality of intermediate results does not affect
the data flow.

Even though the actual computation is a caseless
Meet applied to blades, let us see what is going on in
detail in some typical situations. Following the inter-
nal computational combination of the Plücker-like
coefficients shows how the algebra of the basis ele-
ments takes care of the proper intersection computa-
tion, at a small additional expense compared to the
usual implementation using precompiled tables of
intersection formulas. (We write the contraction of
vectors as the classical inner product to show the cor-
respondence clearly.)

� Line and plane. The Meet of a line l and a plane π* =
n – δe in general position is computed as

l ∩ π = π* l = (n – δe)  (–ve + mI3)
= –(n ⋅ v)e + n  (mI3) – δv + 0
= –(n ⋅ v)e + (n ∧ m)I3 – δv
= –(n ⋅ v)e + (m × n – δv)

This is the correct result, representing a point at the
location (δv + n × m)/(n ⋅ v) in its homogeneous
(Plücker) coordinates. Note how the orthogonality
relationships between the basis elements automati-
cally kill the potential term involving δ and m. But the
fact that this term is zero is computed, and that is a
slight inefficiency relative to the direct implementa-
tion of the same result from a table with Plücker for-
mulas. It is the computational price we pay for the
membership of the full geometric algebra.

� Two lines. The Meet of two lines in general position is
a measure of their signed distance (remember that in
this model a dual is made through a right-multiply by
eI3, so the dual of the line –v2e + m2I3 is –v2I3 + m2e):

retrieving the well-known compact Plücker way of
determining how lines pass each other in space. Three
tests on the signs of such quantities representing the
edges of a triangle determine efficiently whether a
ray hits the triangle. Again, the basis orthogonality
relationships have made terms containing m1 ⋅ m2 or
v1 ⋅ v2 equal to zero.

The directional outcomes are accompanied by numer-
ical factors (such as n ⋅ v in the first example) relating to
the computation’s numerical significance. These are an
intrinsic part of the object’s computation, not just sec-
ondary aspects we need to think of separately (with the
danger of being ad hoc) or that we need to compute sep-
arately (costing time).

Double homogeneous model
Hestenes7 has recently shown that embedding of

Euclidean space into a representational space of two extra
dimensions and its geometric algebra is powerful and sim-
plifying. This double homogeneous model of Euclidean
space embeds the Euclidean distance properties into the
fabric of the algebra used to compute with it.

� The inner product is defined in terms of the Euclidean
distance dE between points: p⋅q=− 1–2 d2

E(P,Q). That
means that the representational space has a rather
special metric because it follows that p ⋅ p = 0 for any
vector p. Only when we assign a special point as the
origin can we define vectors denoting the relative posi-
tion of a point—such a vector p does of course have a
nonzero norm. But we can specify all computations
without ever introducing such an origin.

� The outer product constructs spheres—a k-blade rep-

l l l l e e1 2 2 1 2 3 2 1 1 3

2 1 2 1

∩ = = − +( ) − +( )
= ⋅ + ⋅

∗   v I m v m I

m v v m

IEEE Computer Graphics and Applications 65



resents a Euclidean (k – 1)-sphere. As a consequence,
p ∧ q is the ordered point pair (P, Q) and p ∧ q ∧ r is the
circle through P, Q, and R. This provides Plücker coor-
dinates for spheres. The dual of the (m + 1)-blade rep-
resenting an m-sphere in Em is a vector in the double
homogeneous representation space, which has coef-
ficients that immediately provide the sphere’s center
and radius. Flat subspaces are represented as spheres
through infinity. This is possible because one of the
two extra representational dimensions is a vector rep-
resenting the point at infinity.

� The sandwiching by the geometric product gives rota-
tions and all conformal mappings, including transla-
tion and spherical inversion. This is why the double
homogeneous model is often called the conformal
model.

� The Meet of two blades is interpretable as intersecting
k-spheres in m-space, and its embedding again
reduces the separate cases that would need to be dis-
tinguished for such intersections.

This model looks appropriate for many computer
graphics applications, and we are currently developing
it further for practical usage. It is a truly coordinate-free
model, in which we can specify all operations of Euclid-
ean geometry without ever referring to an origin.

Implementation
The geometric algebra of an m-dimensional vector

space contains nicely linear objects (the blades) that can
be represented on a basis that should contain 2m ele-
ments (because we need (m

k) for each k blade). The var-
ious products are all linear, and we can implement them
using matrix products of 2m × 2m matrices. That might be
straightforward, but it is obviously inefficient in both
space and time. This is even more urgent when we use
the homogeneous model in which an m-dimensional
Euclidean space requires an (m + 1)-dimensional geo-
metric algebra, or the (m + 2)-dimensional double
homogeneous model. It seems a lost cause.

However, recognizing that the important elements are
blades and their products suggests a more efficient
implementation. When two blades multiply by an inner
or outer product, a blade of unique grade results. This
suggests designing a data representation for the ele-
ments of geometric algebra that permits easy retrieval
of their grades and also automatically generating opti-
mized code for the inner and outer multiplication of
blades of specific grades k and l. Their geometric prod-
uct generates a more general element of a mixed, but still

limited, set of grades |l – k|, |l – k| +2, … k + l. Division
requires inversion, but this is closely related to the much
simpler operation of reversion—simply switching the
signs of certain grades. The structural membership of an
element to the larger geometric algebra, with its benefit
of unified relationships between the various operations,
is then merely paid for by a grade-dependent jump to a
piece of code. When processing data in a batch mode
with many similar operations, this would not slow down
things significantly.

Work is underway on an efficient implementation
that capitalizes on these structural properties of geo-
metric algebra.8 Our first results look promising and are
getting close to the usual efficiency of the geometrical
computations—but in a simpler code without excep-
tions or ad-hoc data structures—and naturally inte-
grating computational techniques that classically belong
to different realms than vector/matrix algebra (such as
quaternions and Plücker coordinates).

Conclusion
This two-part introduction to geometric algebra

intends to alert you to the existence of a small set of prod-
ucts that appears to generate all geometric constructions
in one consistent framework. Using this framework can
simplify the set of data structures representing objects
because it inherently encodes all relationships and sym-
metries of the geometrical primitives in those operators.
Although there are many interesting facets to geometric
algebra, we would like to highlight the following:

� Division by subspaces. Having a geometric product
with an inverse lets us divide by subspaces, increas-
ing our ability to manipulate algebraic equations
involving vectors.

� Subspaces are basic elements of computation. Thus, no
special representations are needed for subspaces of a
dimension greater than 1 (for example, tangent
planes), and we can manipulate them like we manip-
ulate vectors.

� Generalization. Expressions for operations on subspaces
are often as simple as those for vectors (that is especially
true for linear operations) and as easy to compute.

� Caseless computation. Degenerate cases are comput-
ed automatically, results remain interpretable, and
the computation lets us test the solution’s numerics.

� Quaternions. In geometric algebra, quaternions are
subsumed and become a natural part of the algebra,
with no need to convert between representations to
perform rotations.

� Plücker coordinates. Geometric algebra subsumes and
extends Plücker coordinates and the concise expressions
they give for the interactions of lines, planes, and so on.

This article only covers some of what we feel are the
most important or useful ideas of geometric algebra as it
relates to computer graphics. We have left out many top-
ics, including a description of more geometries (the homo-
geneous model implements and generalizes the
Grassmann spaces of Goldman9 and the double homoge-
neous model implements and generalizes projective
spaces), and we could say a lot more about differentiation

Feature Tutorial

66 July/August 2002

Correction
Due to a printing error, the indices in Equation

11 of part one1 are unreadable. The equation
should read

e e e e e e e e e e

e e e e e e e e

i j i j i j i j i j

i j i j i i j j

∧( ) = ∧( ) ∧( ) = ( ) ( )
= = − = −

2

1

  



and coordinate-free differential geometry. You should be
able to glean the connections from the “Further Reading”
sidebar, although an accessible explanation for computer
graphics of such issues is still necessary. �

Acknowledgments
The Netherlands Organization for Scientific Research

and the Natural Sciences and Engineering Research
Council of Canada supported this work in part.

References
1. L. Dorst and S. Mann, “Geometric Algebra: A Computa-

tional Framework for Geometrical Applications (Part 1),”
IEEE Computer Graphics and Applications, vol. 22, no. 3,
May/June 2002, pp. 24-31.

2. C. Doran and A. Lasenby, Physical Applications of Geomet-
ric Algebra, 2001, http://www.mrao.cam.ac.uk/~clifford/
ptIIIcourse/.

3. D. Hestenes, “The Design of Linear Algebra and Geometry,”
Acta Applicandae Mathematicae, vol. 23, 1991, pp. 65-93.

4. J. Stolfi, Oriented Projective Geometry, Academic Press, San
Diego, 1991.

5. T.A. Bouma, L. Dorst, and H. Pijls, “Geometric Algebra for
Subspace Operations,” to be published in Acta Applicandae
Mathematicae, preprint available http://xxx.lanl.gov/abs/
math.LA/0104159.

6. J. Lasenby et al., “New Geometric Methods for Computer
Vision,” Int’l J. Computer Vision, vol. 36, no. 3, 1998, pp.
191-213.

7. D. Hestenes, “Old Wine in New Bottles,” Geometric Alge-
bra: A Geometric Approach to Computer Vision, Quantum
and Neural Computing, Robotics, and Engineering, E. Bayro-
Corrochano and G. Sobczyk, eds., Birkhäuser, Boston,
2001, pp. 498-520.

8. D. Fontijne, GAIGEN: A Geometric Algebra Implementation
Generator, http://carol.wins.uva.nl/~fontijne/gaigen/.

9. R. Goldman, “The Ambient Spaces of Computer Graphics
and Geometric Modeling,” IEEE Computer Graphics and
Applications, vol. 20, no. 2, Mar./Apr. 2000, pp. 76-84.

Stephen Mann is an associate pro-
fessor in the School of Computer Sci-
ence at the University of Waterloo. He
has a BA in computer science and
pure mathematics from the Univer-
sity of California, Berkeley, and a
PhD in computer science and engi-

neering from the University of Washington. His research
interests are in splines and the mathematical foundations
of computer graphics.

Leo Dorst is an assistant professor at
the Informatics Institute at the Uni-
versity of Amsterdam. His research
interests include geometric algebra
and its applications to computer sci-
ence. He has an MSc and PhD in the
applied physics of computer vision

from Delft University of Technology, The Netherlands.

Readers may contact Stephen Mann at the School of Com-
puter Science, Univ. of Waterloo, 200 University Ave. W,
Waterloo, Ontario, Canada, email smann@uwaterloo.ca.

For further information on this or any other computing
topic, please visit our Digital Library at http://computer.
org/publications/dlib.

IEEE Computer Graphics and Applications 67

Further Reading
There is a growing body of literature on

geometric algebra. Unfortunately, much of the
more readable writing is not very accessible and
in specialized books rather than general journals.
Researchers have written little with computer
science in mind because the initial applications
have been to physics. We recommend the
following as natural follow-ups to this article:

� Gable, a Matlab package for geometric algebra,
accompanied by a tutorial.1

� An application software generator Gaigen.2

� The introductory chapters of New Foundations
of Classical Mechanics.3

� An introductory course intended for physicists.4

� An application to a basic but involved geome-
try problem in computer vision, with a brief
introduction into geometric algebra.5

� Papers showing how linear algebra becomes
enriched by viewing it as a part of geometric
algebra.6,7

Read them in approximately this order. We are
working on texts more specifically suited for a
computer graphics audience, which may first
appear as Siggraph courses.

References
1. L. Dorst, S. Mann, and T.A. Bouma, GABLE: A Geomet-

ric Algebra Learning Environment, http://www.science.
uva.nl/~leo/GABLE/.

2. D. Fontijne, GAIGEN: A Geometric Algebra Implemen-
tation Generator, http://carol.wins.uva.nl/~fontijne/
gaigen/.

3. D. Hestenes, New Foundations for Classical Mechan-
ics, 2nd ed., D. Reidel, Dordrecht, 2000.

4. C. Doran and A. Lasenby, Physical Applications of Geo-
metric Algebra, 2001, http://www.mrao.cam.ac.
uk/~clifford/ptIIIcourse/.

5. J. Lasenby et al., “New Geometric Methods for Com-
puter Vision,” Int’l J. Computer Vision, vol. 36, no. 3,
1998, pp. 191-213.

6. C. Doran, A. Lasenby, and S. Gull, “Linear Algebra,”
Clifford (Geometric) Algebras with Applications in
Physics, Mathematics, and Engineering, W.E. Baylis,
ed., Birkhäuser, Boston, 1996.

7. D. Hestenes, “The Design of Linear Algebra and
Geometry,” Acta Applicandae Mathematicae, vol. 23,
1991, pp. 65-93.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


