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Abstract

Geometric algebra is a consistent computational framework in which to define
geometric primitives and their relationships. This algebraic approach contains all
geometric operators and permits specification of constructions in a coordinate-free
manner. Thus, the ideas of geometric algebra are important for developers of CAD
systems. This paper gives an introduction to the elements of geometric algebra,
which contains primitives of any dimensionality (rather than just vectors), and an
introduction to three of the products of geometric algebra, the geometric product,
the inner product, and the outer product. These products are illustrated by using
them to solve simple geometric problems.
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1 Introduction

In the usual way of defining geometrical objects in fields like computer graphics,
robotics and computer vision, one uses vectors to characterize the constructions. To
do this effectively, the basic concept of a vector as an element of a linear space is ex-
tended by an inner product and a cross product, and some additional constructions such
as homogeneous coordinates to encode compactly the intersection of, for instance, off-
set planes in space. Many of these techniques work rather well in 3-dimensional space,
although some problems have been pointed out: the difference between vectors and
points [3], and the characterization of planes by normal vectors (which may require ex-
tra computation after linear transformations, since the normal vector of a transformed
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plane is not the transform of the normal vector). These problems are then tradition-
ally fixed by the introduction of data structures and combination rules; object-oriented
programming can be used to implement this patch tidily [6].

Yet there are deeper issues in geometric programming that are still accepted as
‘the way things are’. For instance, when you need to intersect linear subspaces, the
intersection algorithms are split out in treatment of the various cases: lines and planes,
planes and planes, lines and lines, et cetera, need to be treated in separate pieces of
code. After all, the outcomes themselves can be points, lines or planes, and those are
essentially different in their further processing.

Yet this need not be so. If we could see subspaces as basic elements of com-
putation, and do direct algebra with them, then algorithms and their implementation
would not need to split their cases on dimensionality. For instance,A ∧ B could be
‘the subspace spanned by the spacesA andB’, the expressionAcB could be ‘the
part ofB perpendicular toA’; and then we would always have the computation rule
(A∧B)cC = Ac(BcC) since computing the part ofC perpendicular to the span ofA
andB can be computed in two steps, perpendicularity toB followed by perpendicular-
ity to A. Subspaces therefore have computational rules of their own that can be used
immediately, independent of how many vectors were used to span them (i.e. indepen-
dent of their dimensionality). In this view, the split in cases for the intersection operator
could be avoided, since intersection of subspaces always leads to subspaces. We should
consider using this structure, since it would enormously simplify the specification of
geometric programs.

This and a subsequent paper intend to convince you that subspaces form an algebra
with well-defined products that have direct geometric significance. This algebra can
then be used as a language for geometry, and we claim that it is a better choice than
a language always reducing everything to vectors (which are just 1-dimensional sub-
spaces). Along the way, we will see that this framework allows us to divide by vectors
(in fact, we can divide by any subspace), and we will see several familiar computer
graphics constructs (quaternions, normals, Plücker coordinates) that fold in naturally
to the framework and need no longer be considered as clever but extraneous tricks.
This algebra is calledgeometric algebra. Mathematically, it is likeClifford algebra,
but carefully wielded to have a clear geometrical interpretation, which excludes some
constructions and suggests others. In most literature, the two terms are used inter-
changeably.

In this paper, we primarily introduce subspaces (the basic element of computation
in geometric algebra) and the products of geometric algebra. Our intent is to introduce
these ideas, and we will not always give proofs of what we present. The proofs we do
give are intended to illustrate use of the geometric algebra; the missing proofs can be
found in the references. In a subsequent paper, we will give some examples of how
these products can be used in elementary but important ways, and look at more ad-
vanced topics such as differentiation, linear algebra, and homogeneous representation
spaces.

Since subspaces are the main ‘objects’ of geometric algebra we introduce them
first, which we do by combining vectors that span the subspace in Section 2. We then
introduce the geometric product, and look at products derived from the geometric prod-
uct in Section 3. Some of the derived products, like the inner and outer products, are so
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basic that it is natural to treat them in this section also, even though the geometric prod-
uct is all we really need to do geometric algebra. Other products (suchmeet, join, and
rotation through ‘sandwiching’) are better introduced in the context of their geometri-
cal meaning, and we develop them in a subsequent paper. This approach reduces the
amount of new notation, but it may make it seem as if geometric algebra needs to in-
vent a new technique for every new kind of geometrical operation one wants to embed.
This isnot the case: all you need is the geometric product and its (anti-)commutation
properties.

2 Subspaces as elements of computation

As in the classical approach, we start with a real vector spaceV m that we use to denote
1-dimensional directed magnitudes. Typical usage would be to employ a vector to
denote a translation in such a space, to establish the location of a point of interest.
(Points are not vectors, but their locations relative to a fixed point are [3].) We now
want to extend this capability of indicating directed magnitudes to higher-dimensional
directions such as facets of objects, or tangent planes. We will start with the simplest
subspaces: the ‘proper’ subspaces of a linear vector space, which are lines, planes,
etcetera through the origin, and develop their algebra of spanning and perpendicularity
measures. In our follow-up paper, we show how to use the same algebra to treat “offset”
subspaces, and even spheres.

2.1 Constructing subspaces

So we start with a realm-dimensional linear spaceV m, of which the elements are
calledvectors. Many approaches to geometry make explicit use of coordinates. While
coordinates are needed for input and output, and while they are also needed to perform
low level operations on objects, most of the formulas and computations in geometric
algebra can work directly on subspaces without resorting to coordinates. Thus, we will
always view vectors geometrically: a vector denotes a ‘1-dimensional direction ele-
ment’, with a certain ‘attitude’ or ‘stance’ in space, and a ‘magnitude’, a measure of
length in that direction. These properties are well characterized by calling a vector a
‘directed line element’, as long as we mentally associate an orientation and magnitude
with it: v is not the same as−v or 2v. These properties are independent of any coor-
dinate system, and in this and in our follow-up paper, we will not refer to coordinates,
except for times when we feel a coordinate example clarifies an explanation.

Algebraic properties of these geometrical vectors are: they can be added and weighted
with real coefficients, in the usual way to produce new vectors; and they can be multi-
plied using aninner product, to produce a scalara · b (in both of these papers, we use
a metric vector space with well-defined inner product).

In geometric algebra, higher-dimensional oriented subspaces are also basic ele-
ments of computation. They are calledblades, and we use the termk-blade for a
k-dimensional homogeneous subspace. So a vector is a 1-blade.

A common way of constructing a blade is from vectors, using a product that con-
structs the span of vectors. This product is called theouter product(sometimes the
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Figure 1:Spanning proper subspaces using the outer product.

wedge product) and denoted by∧. It is codified by its algebraic properties, which
have been chosen to make sure we indeed getm-dimensional space elements with an
appropriate magnitude (area element form = 2, volume elements form = 3; see Fig-
ure 1). As you have seen in linear algebra, such magnitudes are determinants of matri-
ces representing the basis of vectors spanning them. But such a definition would be too
specifically dependent on that matrix representation. Mathematically, a determinant is
viewed as an anti-symmetric linear scalar-valued function of its vector arguments. That
gives the clue to the rather abstract definition of the outer product in geometric algebra:

Theouter productof vectorsa1, · · · ,ak is anti-symmetric, associative and
linear in its arguments. It is denoteda1 ∧ · · · ∧ ak, and called ak-blade.

The only thing that is different from a determinant is that the outer product isnot forced
to be scalar-valued; and this gives it the capability of representing the ‘attitude’ of ak-
dimensional subspace element as well as its magnitude.

2.2 2-blades in 3-dimensional space

Let us see how this works in the geometric algebra of a 3-dimensional spaceV 3. For
convenience, let us choose a basis{e1, e2, e3} in this space, relative to which we
denote any vector. Now let us computea ∧ b for a = a1e1 + a2e2 + a3e3 and
b = b1e1 + b2e2 + b3e3. By linearity, we can write this as the sum of six terms of the
form a1b2e1 ∧ e2 or a1b1e1 ∧ e1. By anti-symmetry, the outer product of any vector
with itself must be zero, so the term witha1b1e1∧e1 and other similar terms disappear.
Also by anti-symmetry,e2 ∧ e1 = −e1 ∧ e2, so some terms can be grouped. You may
verify that the final result is

a ∧ b =

= (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= (a1b2 − a2b1) e1 ∧ e2 + (a2b3 − a3b2) e2 ∧ e3 + (a3b1 − a1b3) e3 ∧ e1 (1)

We cannot simplify this further. Apparently, the axioms of the outer product permit
us to decompose any 2-blade in 3-dimensional space onto a basis of three elements.
This ‘2-blade basis’ (also called ‘bivector basis’){e1∧e2, e2∧e3, e3∧e1} consists of
2-blades spanned by the basis vectors. Linearity of the outer product implies that the
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set of 2-blades forms a linear space on this basis. We will interpret this as the space of
all plane elements(or area elements).

Let us show thata ∧ b indeed has the correct magnitude for an area element. That
is particularly clear if we choose a specific orthonormal basis{e1, e2, e3}, chosen such
thata lies in thee1-direction, andb lies in the(e1, e2)-plane (we can always do this).
Thena = ae1, b = b cosφ e1 + b sinφ e2 (with φ the angle froma to b), so that

a ∧ b = (a b sinφ) e1 ∧ e2 (2)

This single result contains both the correct magnitude of the areaa b sinφ spanned bya
andb, and the plane in which it resides – for we recognizee1 ∧ e2 as ‘the unit directed
area element of the(e1, e2)-plane’. Since we can always adapt our coordinates to
vectors in this way, this result is universally valid:a∧b is an area element of the plane
spanned bya andb (see Figure 1c). Denoting the unit area element in the(a,b)-plane
by I, the coordinate-free formulation of the above is

a ∧ b = (a b sinφ) I (3)

The result extends to blades of higher grades: each is proportional to the unit hyper-
volume element in its subspace, by a factor that is the hypervolume.

2.3 Volumes as 3-blades

We can also form the outer product ofthreevectorsa, b, c. Considering each of those
decomposed onto their three components on some basis in our 3-dimensional space
(as above), we obtain terms of three different types, depending on how many common
components occur: terms likea1b1c1 e1 ∧ e1 ∧ e1, like a1b1c2 e1 ∧ e1 ∧ e2, and like
a1b2c3 e1 ∧ e2 ∧ e3. Because of associativity and anti-symmetry, only the last type
survives, in all its permutations. The final result is

a ∧ b ∧ c = (a1b2c3 − a1b3c2 + a2b1c3 − a2b3c1 + a3b1c2 − a3b2c1) e1 ∧ e2 ∧ e3.

The scalar factor is the determinant of the matrix with columnsa, b, c, which is pro-
portional to the signed volume spanned by them (as is well known from linear algebra).
The terme1 ∧ e2 ∧ e3 is the denotation of which volume is used as unit: that spanned
by e1, e2, e3. The order of the vectors gives its orientation, so this is a ‘signed volume’.
In 3-dimensional space, there is not really any other choice for the construction of vol-
umes than (possibly negative) multiples of this volume (see Figure 1d). But in higher
dimensional spaces, the attitude of the volume element needs to be indicated just as
much as we needed to denote the attitude of planes in 3-space.

2.4 The pseudoscalar as hypervolume

Forming the outer product offour vectorsa ∧ b ∧ c ∧ d in 3-dimensional space will
always produce zero (since they must be linearly dependent). The highest order blade
that is non-zero in anm-dimensional space is anm-blade. Such a blade, representing
anm-dimensional volume element, is called apseudoscalarfor that space, for histori-
cal reasons; unfortunately a rather abstract term for the elementary geometric concept
of ‘oriented hypervolume element’.
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2.5 Scalars as subspaces

To make scalars fully admissible elements of the algebra we have so far, we can define
the outer product of two scalars, and a scalar and a vector, by identifying it with the
familiar scalar product in the vector space we started with:

α ∧ β = αβ and α ∧ v = αv

Since the scalars are constructed by the outer product of ‘no vectors at all’, we can in-
terpret them geometrically as the representation of ‘0-dimensional subspace elements’.
These are like points with masses. So scalars are geometrical entities as well, if we are
willing to stretch the meaning of ‘subspace’ a little. We will denote scalars mostly by
Greek lower case letters.

2.6 The linear space of subspaces

Collating what we have so far, we have constructed a geometrically significant algebra
containing only two operations: the addition+ and the outer multiplication∧ (subsum-
ing the usual scalar multiplication). Starting from scalars and a 3-dimensional vector
space we have generated a 3-dimensional space of 2-blades, and a 1-dimensional space
of 3-blades (since all volumes are proportional to each other). In total, therefore, we
have a set of elements that naturally group by their dimensionality. Choosing some
basis{e1, e2, e3}, we can write what we have as spanned by the set 1︸︷︷︸

scalars

, e1, e2, e3︸ ︷︷ ︸
vector space

, e1 ∧ e2, e2 ∧ e3, e3 ∧ e1︸ ︷︷ ︸
bivector space

, e1 ∧ e2 ∧ e3︸ ︷︷ ︸
trivector space

 (4)

Every k-blade formed by∧ can be decomposed on thek-vector basis using+. The
‘dimensionality’k is often called thegradeor stepof thek-blade ork-vector, reserv-
ing the termdimensionfor that of the vector space that generated them. Ak-blade
represents ak-dimensional oriented subspace element.

If we allow the scalar-weighted addition of arbitrary elements in this set of basis
blades, we get an 8-dimensional linear space from the original 3-dimensional vector
space. This space, with+ and∧ as operations, is called theGrassmann algebraof
3-space. In anm-dimensional space, there are(mk ) basis elements of gradek, for a
total basis of2m elements for the Grassmann algebra. The same basis is used for the
geometric algebra of the space, although we will construct the objects in it in a different
manner.

3 The Products of Geometric Algebra

In this section, we describe the geometric product, the most important product of ge-
ometric algebra. The fact that the geometric product can be applied tok-blades and
has an inverse considerably extends algebraic techniques for solving geometrical prob-
lems. We can use the geometric product to derive other meaningful products. The most
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Figure 2:Invertibility of the geometric product.

elementary are the inner and outer products, also discussed in this section; the useful
but less elementary products giving reflections, rotations and intersection are treated
later, and in more detail in our follow-up paper.

3.1 The Geometric Product

For vectors in our metric vector spaceV m, the geometric product is defined in terms
of the inner and outer product as

a b ≡ a · b + a ∧ b (5)

So the geometric product of two vectors is an element of mixed grade: it has a scalar
(0-blade) parta · b and a 2-blade parta ∧ b. It is thereforenot a blade; rather, it is an
operator on blades (as we will soon show). Changing the order ofa andb gives

b a ≡ b · a + b ∧ a = a · b− a ∧ b

The geometric product of two vectors is therefore neither fully symmetric (unlike the
inner product), nor fully anti-symmetric (unlike the outer product). However, the geo-
metric product is invertible.

A simple drawing may convince you that the geometric product is indeed invertible,
whereas the inner and outer product separately are not. In Figure 2, we have a given
vector a. We have indicated the set of vectorsx with the same value of the inner
productx · a – this is a plane perpendicular toa. The set of all vectors with the same
value of the outer productx∧a is also indicated – this is the line of all points that span
the same directed area witha (since for the position vector of any pointp = x + λa
on that line, we havep∧ a = x∧ a +λa∧ a = x∧ a by the anti-symmetry property).
Neither of these sets is a singleton (in spaces of more than 1 dimension), so the inner
and outer products are not fully invertible. The geometric product provides both the
plane and the line, and therefore permits determining their unique intersectionx, as
illustrated in the figure. Therefore it is invertible: fromx a anda, we can retrievex.

Eq.(5) defines the geometric productonly for vectors. For arbitrary elements of our
algebra it is defined usinglinearity, associativity and distributivity over addition; and
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we make it coincide with the usual scalar product in the vector space, as the notation
already suggests. That gives the following axioms (whereα andβ are scalars,x is a
vector,A,B,C are general elements of the algebra):

scalars αβ and αx have their usual meaning inV m (6)

scalars commute αA = Aα (7)

vectors x a = x · a + x ∧ a (8)

associativity A (BC) = (AB)C (9)

We have thus defined the geometric product in terms of inner and outer product; yet
we claimed that it is more fundamental than either. Mathematically, it is more elegant
to replace eq.(8) by ‘the square of a vectorx is a scalarQ(x)’. This functionQ can
then actually be interpreted as the metric of the space, the same as the one used in the
inner product, and it gives the same geometric algebra [5]. Our choice for eq.(8) was
to define the new product in terms of more familiar quantities, to aid your intuitive
understanding of it.

Let us show by example how these rules can be used to develop the geometric
algebra of 3-dimensional Euclidean space. We introduce, for convenience only, an
orthonormal basis{ei}3i=1. Since this implies thatei·ej = δij , we get the commutation
rules

eiej =
{
−ejei if i 6= j

1 if i = j
(10)

In fact, the former is equal toei ∧ ej , whereas the latter equalsei · ei. Considering the
unit 2-bladeei ∧ ej , we find its square:

(ei ∧ ej)2 = (ei ∧ ej) (ei ∧ ej) = (ei ej) (ei ej)
= ei ej ei ej = −ei ei ej ej = −1 (11)

So a unit 2-blade squares to−1. Continued application of eq.(10) gives the full mul-
tiplication for all basis elements in the ‘Clifford algebra’ of 3-dimensional space. The
resulting multiplication table is given in Figure 3. Arbitrary elements are expressible as
a linear combination of these basis elements, so this table determines the full algebra.

3.1.1 Exponential representation

Note that the geometric product is sensitive to the relative directions of the vectors:
for parallel vectorsa andb, the outer product contribution is zero, anda b is a scalar
and commutative in its factors; for perpendicular vectors,a b is a 2-blade, and anti-
commutative. In general, if the angle betweena andb isφ in their common plane with
unit 2-bladeI, we can write (in a Euclidean space)

a b = a · b + a ∧ b = |a| |b| (cosφ+ I sinφ) (12)

using a common rewriting of the inner product, and eq.(3). We have seen above that
I I = −1, and this permits the shorthand of the exponential notation (by the usual
definition of the exponential as a converging series of terms)

a b = |a| |b| (cosφ+ I sinφ) = |a| |b| eIφ. (13)
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C̀ 3 1 e1 e2 e3 e12 e31 e23 e123

1 1 e1 e2 e3 e12 e31 e23 e123

e1 e1 1 e12 −e31 e2 −e3 e123 e23

e2 e2 −e12 1 e23 −e1 e123 e3 e31

e3 e3 e31 −e23 1 e123 e1 −e2 e12

e12 e12 −e2 e1 e123 −1 e23 −e31 −e3

e31 e31 e3 e123 −e1 −e23 −1 e12 −e2

e23 e23 e123 −e3 e2 e31 −e12 −1 −e1

e123 e123 e23 e31 e12 −e3 −e2 −e1 −1

Figure 3: The multiplication table of the geometric algebra of 3-dimensional Euclidean
space, on an orthonormal basis. Shorthand:e12 ≡ e1 ∧ e2, etcetera.

All this is reminiscent of complex numbers, but it really is different. Firstly, geomet-
ric algebra has given a straightforward real geometrical interpretation to all elements
occurring in this equation, notably ofI as the unit area element of the common plane
of a andb. Secondly, the math differs: ifI were a complex scalar, it would have to
commute withall elements of the algebra by eq.(7), but instead it satisfiesa I = −I a
for vectorsa in theI-plane. We will use the exponential notation a lot when we study
rotations, in our follow-up paper.

3.1.2 Many grades in the geometric product

It is a consequence of the definition of the geometric product that ‘a vector squares to
a scalar’: the geometric product of a vector with itself is a scalar. Therefore when you
multiply two blades, the vectors in them may multiply to a scalar (if they are parallel)
or to a 2-blade (if they are not). As a consequence, when you multiply two blades of
gradek and` using the geometric product, the result potentially contains parts of all
grades(k + `), (k + ` − 2), · · · , (|k − `| + 2), |k − `|, just depending on how their
factors align. This series of terms containsall the information about the geometrical
relationships of the blades: their span, intersection, relative orientation, etc.

3.2 An inner product of blades

In geometric algebra, the standard inner product of two vectors can be seen as the
symmetrical part of their geometric product:

a · b = 1
2 (a b + b a)

Just as in the usual definition, this embodies the metric of the vector space and can
be used to define distances. It also codifies the perpendicularity required in projection
operators. Now that vectors are viewed as representatives of 1-dimensional subspaces,
we of course want to extend this metric capability to arbitrary subspaces. The inner
product can be generalized to general subspaces in several ways. The tidiest method
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mathematically is explained in [2] [5]; this leads to thecontractioninner product (de-
noted by ‘c ’), which has a clean geometric meaning. In this intuitive introduction, we
prefer to give the geometric meaning first.

AcB is a blade representing the complement (within the subspaceB) of
the orthogonal projection ofA onto B; it is linear in A andB; and it
coincides with the usual inner producta · b of V m when computed for
vectorsa andb.

The above determines our inner product uniquely.1 It turns out not to be symmetrical
(as one would expect since the definition is asymmetrical) and also not associative. But
we do demand linearity, to make it computable between any two elements in our linear
space (not just blades). Note that earlier on we used only the inner product between
vectorsa · b, which we would now write asacb.

We will just give the rules by which to compute the resulting inner product for
arbitrary blades, omitting their derivation (essentially as in [5]). In the followingα, β
are scalars,a andb vectors andA,B, C general elements of the algebra.

scalars αcβ = αβ (14)

vector and scalar acβ = 0 (15)

scalar and vector αcb = αb (16)

vectors acb is the usual inner producta · b in V m (17)

vector and element ac(b ∧B) = (acb) ∧B − b ∧ (acB) (18)

distribution (A ∧B)cC = Ac(BcC) (19)

As we said, linearity and distributivity over+ also hold, but the inner product isnot
associative. The inner product of two blades is again a blade [1] (as one would hope,
since they represent subspaces and so should the result). It is easy to see that the grade
of this blade is

grade (AcB) = grade (B)− grade (A) , (20)

since the projection ofA ontoB has the same grade asA, and its complement inB
the ‘co-dimension’ of this projection in the subspace spanned byB. Since no subspace
has a negative dimension, the contractionAcB is zero whengrade (A) > grade (B)
(and this is the main difference between the contraction and the other inner product).

When used on blades as(A ∧ B)cC = Ac(BcC), rule eq.(19) gives the inner
product its meaning of being the perpendicular part of one subspace inside another. In
words it would read something like: ‘to get the part ofC perpendicular to the subspace
that is the span ofA andB, take the part ofC perpendicular toB; then of that, take
the part perpendicular toA’.

Figure 4 gives an example: the inner product of a vectora and a 2-bladeB, pro-
ducing the vectoracB. Note that the usual inner product for vectorsa andb has the

1The resulting contraction inner product differs slightly from the inner product commonly used in the
geometric algebra literature. The contraction inner product has a cleaner geometric semantics, and more
compact mathematical properties, and that makes it better suited to computer science. The two inner products
can be expressed in terms of each other, so this is not a severely divisive issue. They ‘algebraify’ the same
geometric concepts, in just slightly different ways. See also [2].
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Figure 4: The inner product of blades. The corkscrew denotes the orientation of the
trivector.

right semantics: the subspace that is the orthogonal complement (in the space spanned
by b) of the projection ofa ontob contains only the point at their common origin, and
is therefore represented by ascalar(0-blade) linear ina andb.

With the definition of the inner product for blades, we can generalize the relation-
ship eq.(8) between a geometric product and its inner and outer product parts. For a
vectorx and a bladeA, we have:

x A = xcA + x ∧A. (21)

Note that if the first argument is not a vector, this formula does not apply. In general,
the geometric product of two blades contains many more terms, which may be written
as interleavings of the inner and outer product of the vectors spanning the blades.

3.3 The outer product

We have already seen the outer product in Section 2, where it was used to construct the
subspaces of the algebra. Once we have the geometric product, it is better to see the
outer product as its anti-symmetric part:

a ∧ b = 1
2 (a b− b a)

and, slightly more general, if the second factor is a blade:

a ∧B = 1
2

(
a B + (−1)grade(B)B a

)
, (22)

This leads to the defining properties we saw before (as before,α, β are scalars,a,b are
vectors,A,B,C : are general elements):

scalars α ∧ β = αβ (23)

scalar and vector α ∧ b = αb (24)

anti-symmetry for vectors a ∧ b = −b ∧ a (25)

associativity (A ∧B) ∧ C = A ∧ (B ∧ C) (26)
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Linearity and distributivity over+ also hold.
The grade of ak-blade is the number of vector factors that span it. Therefore the

grade of an outer product of two blades is simply

grade (A ∧B) = grade (A) + grade (B) . (27)

Of course the outcome may be0, so this zero element of the algebra should be seen
as an element of arbitrary grade. There is then no need to distinguish separate zero
scalars, zero vectors, zero 2-blades, etcetera.

3.3.1 Subspace objects without shape

We reiterate that the outer product ofk-vectors gives a ‘bit ofk-space’, in a manner
that includes the attitude of the space element, its orientation (or ‘handedness’) and its
magnitude. For a 2-bladea ∧ b, this was conveyed in eq.(3).

Yeta∧b is not an area element with well-defined shape, even though one is tempted
to draw it as a parallelogram (as in Figure 1c). For instance, by the properties of the
outer product,a∧b = a∧(b+λa), for anyλ, soa∧b is just as much the parallelogram
spanned bya andb+λa. Playing around, you find that you can move around pieces of
the area elements while still maintaining the same producta ∧ b; so really, a bivector
does not have any fixed shape or position, it is just a chunk of a precisely defined
amount of 2-dimensional directed area in a well-defined plane. It follows that the 2-
blades have an existence of their own, independent of any vectors that one might use
to define them.

We will take these non-specific shapes made by the outer product and ‘force them
into shape’ by carefully chosen geometric products; this will turn out to be a power-
ful and flexible technique to get closed coordinate-free computational expressions for
geometrical constructions.

3.3.2 Linear (in)dependence

Note that if three vectors are linearly dependent, they satisfy

a,b,c linearly dependent⇐⇒ a ∧ b ∧ c = 0.

We interpret the latter immediately as the geometric statement that the vectors span
a zero volume. This makes linear dependence a computational property rather than a
predicate: three vectors can be ‘almost linearly dependent’. The magnitude ofa∧b∧c
obviously involves the determinant of the matrix(a b c), so this view corresponds with
the usual computation of determinants to check degeneracy.

4 Solving geometric equations

The geometric product is invertible, so ‘dividing by a vector’ has a unique meaning.
We usually do this through ‘multiplication by the inverse of the vector’. Since multi-
plication is not necessarily commutative, we have to be a bit careful: there is a ‘left
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division’ and a ‘right division’. As you may verify, the unique inverse of a vectora is

a−1 =
a

aca

since that is the unique element that satisfies:a−1 a = 1 = a a−1. In general, a blade
A has the inverse

A−1 =
Ã

AcÃ

whereÃ is the reverseof A, obtained by switching its spanning factors: ifA =
a1 ∧a2 ∧ · · · ∧ak, thenÃ = ak ∧ · · · ∧a2 ∧a1. The reverse ofA differs fromA by a

sign(−1)
1
2k(k−1). You may verify thatAcÃ is a scalar (and in Euclidean space, even

a positive scalar, which can be considered as the ‘norm squared’ ofA; if it is zero, the
bladeA has no inverse, but this does not happen in Euclidean vector spaces).

Invertibility is a great help in solving geometric problems in a closed coordinate-
free computational form. The common procedure is as follows: we know certain defin-
ing properties of objects in the usual terms of perpendicularity, spanning, rotations
etcetera. These give equations typically expressed using the derived products. You
combine these equations algebraically, with the goal of finding an expression for the
unknown object involving only the geometric product; then division (permitted by the
invertibility of the geometric product) should provide the result.

Let us illustrate this by an example. Suppose we want to find the componentx⊥ of
a vectorx perpendicular to a vectora. The perpendicularity demand is clearly

x⊥ca = 0.

A second demand is required to relate the magnitude ofx⊥ to that ofx. Some practice
in ‘seeing subspaces’ in geometrical problems reveals that the area spanned byx and
a is the same as the area spanned byx⊥ anda, seee Figure 5a. This is expressed using
the outer product:

x⊥ ∧ a = x ∧ a.

These two equations should be combined to form a geometric product. In this example,
it is clear that just adding them works, yielding

x⊥ca + x⊥ ∧ a = x⊥ a = x ∧ a.

This one equation contains the full geometric relationship betweenx, a and the un-
known x⊥. Geometric algebra solves this equation through division on the right by
a:

x⊥ = (x ∧ a)/a = (x ∧ a) a−1. (28)

We rewrote the division bya as multiplication by the subspacea−1 to show clearly
that we mean ‘division on the right’.

This is an example of how the indefinite shapex ∧ a spanned by the outer product
is just the right element to generate a perpendicular to a vectora in its plane, through
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Figure 5:(a) Projection and rejection ofx relative toa. (b) Reflection ofx in a.

the geometric product. Note that eq.(28) agrees with the well-known expression ofx⊥
using the inner product of vectors:

x⊥ = (x ∧ a) a−1 = (x a− x · a) a−1 = x− x · a
a · a

a. (29)

The geometric algebra expression using outer product and inverse generalizes immedi-
ately to arbitrary subspacesA.

4.1 Projection of subspaces

We generalize the above as the decomposition of a vector to an arbitrary bladeA, using
the geometric product decomposition of eq.(21):

x = (x A) A−1 = (xcA) A−1 + (x ∧A) A−1 (30)

It can be shown that the first term is a blade fully insideA: it is the projectionof x
onto A. Likewise, it can be shown that the second term is a vector perpendicular to
A, sometimes called therejectionof x by A. The projection of a bladeX of arbitrary
dimensionality (grade) onto a bladeA is given by the extension of the above, as

projection ofX ontoA: X 7→ (XcA) A−1

Geometric algebra often allows such a straightforward extension to arbitrary dimen-
sions of subspaces, without additional computational complexity. We will see why
when we treat linear mappings in our follow-up paper.

4.2 Reflection of subspaces

The reflectionof a vectorx relative to a fixed vectora can be constructed from the
decomposition of eq.(30) (used for a vectora), by changing the sign of the rejection
(see Figure 5b). This can be rewritten in terms of the geometric product:

(xca) a−1 − (x ∧ a) a−1 = (acx + a ∧ x) a−1 = a x a−1. (31)
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Figure 6:Ratios of vectors

So the reflection ofx in a is the expressiona x a−1, see Figure 5b; the reflection in a
plane perpendicular toa is then−a x a−1. (We will see this ‘sandwiching’ operator in
more detail in our follow-up paper.)

We can extend this formula to the reflection of a bladeX relative to the vectora,
this is simply

reflection in vectora: X 7→ a X a−1.

and even to the reflection of a bladeX in ak-bladeA, which turns out to be

general reflection:X 7→ − (−1)k A X A−1.

Note that these formulas permit you to do reflections of subspaces without first decom-
posing them in constituent vectors. It gives the possibility of reflecting a polyhedral
object by directly using a facet representation, rather than acting on individual vertices.

4.3 Vector division

With subspaces as basic elements of computation, we can directly solve equations in
similarity problems such as indicated in Figure 6:

Given two vectorsa andb, and a third vectorc, determinex so thatx is
to c asb is toa, i.e. solvex : c = b : a.

In geometric algebra the problem readsx c−1 = b a−1, and through right-multiplication
by c, the solution is immediately

x = (b a−1) c. (32)

This is a computable expression. For instance, witha = e1, b = e1 +e2 andc = e2 in
the standard orthonormal basis, we obtainx = ((e1 + e2) e−1

1 )e2 = (1− e1 e2)e2 =
e2 − e1. In the follow-up paper, we’ll develop this into a method to handle rotations.

5 Summary

In this paper, we have introduced blades and three products of geometric algebra. The
geometric product is the most important: it is the only one that is invertible. All three
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products can operate directly on blades, which represent subspaces of arbitrary dimen-
sion. We hope that this introduction has given you a hint of the structure of geometric
algebra. In the next paper, we will show how to wield these products to construct oper-
ations like rotations, and we will look at more advanced topics such as differentiation,
linear algebra, and homogeneous representations.
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