
Geometric algebra:
a computational framework
for geometrical applications

(part II: applications)

Leo Dorst∗and Stephen Mann†

Abstract

Geometric algebra is a consistent computational framework in which to de-
fine geometric primitives and their relationships. This algebraic approach contains
all geometric operators and permits coordinate-free specification of computational
constructions. It contains primitives of any dimensionality (rather than just vec-
tors). This second paper on the subject uses the basic products to represent ro-
tations (naturally incorporating quaternions), intersections, and differentiation. It
shows how using well-chosen geometric algebra models, we can eliminate special
cases in incidence relationships, yet still have the efficiency of the Plücker coordi-
nate intersection computations.

Keywords: geometric algebra, Clifford algebra, rotation reprensentation, quaternions,
dualization, meet, join, Plücker coordinates, homogeneous coordinates, geometric dif-
ferentiation, computational geometry

1 Introduction

This is the second of two papers introducing geometric algebra. In the previous paper,
we introducedblades, a computational algebraic representation oforiented subspaces,
which are the basic element of computation in geometric algebra. We also looked at
the geometric product, and two products derived from the geometric product, the inner
and outer products. A crucial feature of the geometric product is that it is invertible.

From that first paper, you should have gathered that every vector space with an in-
ner product has a geometric algebra, whether you choose to use it or not. This paper
shows how to call upon this structure for the definition of common geometrical con-
structs, ensuring a totally consistent computational framework. The goal is to show
∗Informatics Institute, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
†Computer Science Department, University of Waterloo, Waterloo, Ontario, N2L 3G1, CANADA
0 c©2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this

material for advertising or promotional purposes or for creating new collective works for resale or redistribu-
tion to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

1

2 Leo Dorst and Stephen Mann

you that this can be done, and that it is compact, directly computational, and tran-
scends the dimensionality of subspaces. We will not use geometric algebra to develop
new algorithms for graphics; but we hope to convince you that some of the lower level
algorithmic aspects can be taken care of in an automatic way, without tricks, exceptions
or hidden degenerate cases by using geometric algebra as a language.

In section 2 we show how geometric algebra represents rotations naturally by ele-
ments we recognize as quaternions. In Section 3 we indicate how linear algebra is en-
riched within geometric algebra by the capability to compute directly with subspaces in
a coordinate-free manner. Section 4 briefly touches on the possibility of differentiating
geometric objects. By using an appropriate model of a target geometry, we can extend
the applicability of the geometric algebra approach; two such models for Euclidean
geometry are introduced in Section 5. We give some remarks on implementation in
Section 6, and we conclude the paper with suggestions for futher reading.

2 Rotations

Geometric algebra handles rotations of general subspaces inV m through an interest-
ing ‘sandwiching product’ using geometric products. We introduce this construction
gradually in this section.

2.1 Rotations in 2D

In the last paper, we saw that the ratio of vectors defines a rotation/dilation operator.
Let us do a slightly simpler problem: in Figure 1a, ifa andb have the same norm,
what is the vectorx in the(a,b)-plane that is toc as the vectorb is to a? Geometric
algebra phrases this asx c−1 = b a−1, and solves it as (see eq.(13) from [5])

x = (b a−1) c =
1
|a|2

(b · a + b ∧ a) c =
|b|
|a|

(cosφ− I sinφ)c = e−Iφc (1)

Here Iφ is the angle in theI plane froma to b, so−Iφ is the angle fromb to a.
Figure 1a suggests thatx is obtained fromc by a rotation, so we should apparently
interpret ‘pre-multiplying bye−Iφ’ as arotation operatorin theI-plane.

Let us consider the geometrical meaning of the terms of this rotation op-
eration when re-expressed into its components:

e−Iφ c = c cosφ− Ic sinφ = c cosφ+ cI sinφ

What iscI? Temporarily introduce orthonormal coordinates{e1, e2} in
the I-plane, withe1 alongc, so thatc ≡ c e1. ThenI = e1 ∧ e2 =
e1 e2. ThereforecI = c e1 e1e2 = c e2: it is c turned over a right an-
gle, following the orientation of the 2-bladeI (here anti-clockwise). So
c cosφ+ cI sinφ is ‘a bit of c plus a bit of its anti-clockwise perpendicu-
lar’ – and those amounts are precisely right to make it equal to the rotation
by φ, see Figure 1b.

Geometric Algebra: a Computational Framework 3

���������
	��

�

���������
	
�
���

�

� �����������������������

�! �" �$#%"

&

'

(

Figure 1: (a) The rotation operator as a ratio between vectors; (b) Coordinate-free
specification of rotation.

The vectorc in the I-plane anti-commutes withI: c I = −I c (showing thatI is not
merely a complex number, even thoughI2 = −1). Using this to switchI andc in
eq.(1), we obtain

RIφc = e−Iφc = c eIφ. (2)

The planar rotation is therefore alternatively representable as a post-multiplication.

2.2 Angles as geometrical objects

In eq.(1), the combinationIφ is a full indication of the angle between the two vectors:
it denotes not only the magnitude, but also the plane in which the angle is measured,
and even the orientation of the angle. If you would ask for the scalar magnitude of the
geometrical quantityIφ in the plane−I (the plane ‘fromb to a’ rather than ‘froma
to b’), it is −φ; so the scalar value of the angle automatically gets the right sign. The
fact that the angle as expressed byIφ is now a geometrical quantity independent of
the convention used in its definition removes a major headache from many geometrical
computations involving angles. We call this true geometric quantity thebivector angle
(it is just a 2-blade, of course, not a new kind of element – but we use it as an angle,
hence the name).

2.3 Rotations inm dimensions

The above rotates onlywithin a plane; in general we would like to have rotations in
space. For a vectorx, the outcome of a rotationRIφ should be:

RIφx = x⊥ + RIφx‖,

wherex⊥ andx‖ are the perpendicular and parallel components ofx relative to the
rotation planeI, respectively. We have seen that the separation of a vector into such
components can be done by commutation (as in eq.(31) and eq.(32) from [5]). As you
may verify, the following formula effects this separation and rotation simultaneously

rotation overIφ: x 7→ RIφx = e−Iφ/2 x eIφ/2 (3)

4 Leo Dorst and Stephen Mann

The operatore−Iφ/2, used in this way, is called arotor. In the 2-dimensional rotation
we treated before,x I = −I x, so moving either rotor ‘to the other side ofx’ retrieves
eq.(2) ifx is in theI-plane.

Two successive rotationsR1 andR2 are equivalent to a single new rotationR of
which the rotorR is the geometric product of the rotorsR2 andR1, since

(R2 ◦ R1)x = R2 (R1 xR−1
1)R−1

2 = (R2R1) x (R2R1)−1 = RxR−1,

with R = R2R1. Therefore the combination of rotations is a simple consequence of
the application of the geometric product on rotors, i.e. elements of the forme−Iφ/2 =
cosφ/2 − I sinφ/2, with I2 = −1. This is true in any dimension greater than 1 (and
even in dimension 1 if you realize that any bivector there is zero, so that rotations do
not exist).

Let’s see how it works in 3-space. In 3 dimensions, we are used to speci-
fying rotations by arotation axisa rather than by arotation planeI. Given
a unit vectora for an axis, we find the plane as the 2-blade complemen-
tary to it in the 3-dimensional space with volume elementI3: I = acI3 =
aI3 = I3a. A rotation over an angleφ around an axis with unit vectora is
therefore represented by the rotore−I3aφ/2.

To compose a rotationR1 around thee1 axis ofπ/2 with a subsequent
rotationR2 over thee2 axis overπ/2, we write out their rotors (using the
shorthande23 = e2 ∧ e3 = e2 e3 etc.):

R1 = e−I3e1π/4 =
1− e23√

2
and R2 = e−I3e2π/4 =

1− e31√
2

The total rotor is their product, and we rewrite it back to the exponential
form to find the axis:

R ≡ R2R1 = 1
2 (1− e23) (1− e31) = 1

2 (1− e23 − e31 − e12)

= 1
2 −

1
2

√
3 I3

e1 + e2 + e3√
3

≡ e−I3aπ/3

Therefore the total rotation is over the axisa = (e1 + e2 + e3)/
√

3, over
the angle2π/3.

Geometric algebra permits straightforward generalization to the rotation of higher di-
mensional subspaces: a rotor can be applied immediately to an arbitrary blade through
the formula

general rotation:X 7→ RXR−1

This enables you to rotate a plane in one operation, for instance, using a rotation byR
as in the example above,

R(e1 ∧ e2)R−1 = 1
4 (1− e23 − e31 − e12) e12 (1 + e23 + e31 + e12) = e23

There is no need to decompose the plane into its spanning vectors first.

Geometric Algebra: a Computational Framework 5

2.4 Quaternions: based on bivectors

You may have recognized the example above as strongly similar to quaternion compu-
tations. Quaternions are indeed part of geometric algebra, in the following straightfor-
ward manner.

Choose an orthonormal basis{ei}3i=1. Construct out of that a bivector basis{e12,
e23, e31}. Note that these elements satisfy:e2

12 = e2
23 = e2

31 = −1, ande12 e23 =
e13 (and cyclic) and alsoe12 e23 e31 = 1. In fact, settingi ≡ e23, j ≡ −e31 and
k ≡ e12, we findi2 = j2 = k2 = i j k = −1 andj i = k and cyclic. Algebraically
these objects form a basis for quaternions obeying the quaternion product, commonly
interpreted as some kind of ‘4-D complex number system’. There is nothing ‘complex’
about quaternions; but they are not really vectors either – they are just real 2-blades in
3-space, denoting elementary rotation planes, and multiplying through the geometric
product. Visualizing quaternions is therefore straightforward: each is just a rotation
plane with a rotation angle, and the ‘bivector angle’ concept of Section 2.2 represents
that well.

Of course in geometric algebra, quaternions can be combined directly with vectors
and other subspaces. In that algebraic combination, they are not merely a form of
‘complex scalars’: quaternion products are neither fully commutative nor fully anti-
commutative (e.g.i e1 = e1 i, but i e2 = −e2 i). It all depends on the relative attitude
of the vectors and quaternions, and these rules are precisely right to make eq.(3) be a
rotation of a vector.

3 Linear algebra

In the classical ways of using vector spaces, linear algebra is an important tool. In
geometric algebra, this remains true: linear transformations are of interest in their own
right, or as first order approximations to more complicated mappings. Indeed, linear al-
gebra is an integral part of geometric algebra, and acquires much extended coordinate-
free methods through this inclusion. We show some of the basic principles; much more
may be found in [3] or [11].

3.1 Outermorphisms: spanning is linear

When vectors are transformed by a linear transformation on the vector space, the blades
they span can be viewed to transform as well, simply by the rule: ‘the transform of a
span of vectors is the span of the transformed vectors’. This means that a linear trans-
formationf : V m → V m of a vector space has a natural extension to the whole geo-
metric algebra of that vector space, as anoutermorphism, i.e. a mapping that preserves
the outer product structure:

f(a1 ∧ a2 ∧ · · · ∧ ak) ≡ f(a1) ∧ f(a2) ∧ · · · ∧ f(ak). (4)

Note that this is grade-preserving: ak-blade transforms to ak-blade. We supplement
this by stating what the extension does to scalars, which is simplyf(α) = α. Geomet-
rically, this means that a linear transformation ‘leaves the origin intact.’

6 Leo Dorst and Stephen Mann

The fact that linear transformations are outermorphisms explains why we can gen-
eralize so many operations from vectors to general subspaces in a straightforward man-
ner.

3.2 Dual representation

Dual representations of hyperplanes are often used in linear algebra to extend the scope
of vector-based operations. In geometric algebra, dualization is also important, and in
fact a very flexible tool to convert between viewpoints of spanning and perpendicular-
ity, for arbitrary subspaces.

Consider anm-dimensional spaceV m and a bladeA in it. The dual of the blade
A in V m is its complement, definable using the contraction inner product:

A∗ = AcĨm,

whereIm is the pseudoscalar ofV m (anm-blade giving the volume element) and·̃ is
thereversion(obtained by reversing the factors of the blade it is applied to, and leading
to a mere sign change).

The characterization of a subspace by a dual blade rather than by a blade enables
manipulation of expressions involving ‘spanning’ to being about ‘perpendicularity’ and
vice versa.

A familiar example in a 3-dimensional Euclidean space is the dual of a
2-blade (or bivector). Using an orthonormal basis{ei}3i=1 and the corre-
sponding bivector basis, we write:B = b1e2∧e3 +b2e3∧e1 +b3e3∧e2.
We take the dual relative to the space with volume elementI3 ≡ e1 ∧e2 ∧
e3 (i.e. the ‘right-handed volume’ formed by using a right-handed basis).
The subspace ofI3 dual toB is then

BcĨ3 = (b1e2 ∧ e3 + b2e3 ∧ e1 + b3e1 ∧ e2)c(e3 ∧ e2 ∧ e1)
= b1e1 + b2e2 + b3e3. (5)

This is a vector, and we recognize it (in this Euclidean space) as thenormal
vectorto the planar subspace represented byB, see Figure 2b. So we have
normal vectors in geometric algebra as the duals of 2-blades, if we would
want them – but we’ll soon see a better alternative.

We can use either a blade or its dual to represent a subspace, and it is convenient to
have some terminology. We will say thata bladeB represents a subspaceB if

x ∈ B ⇐⇒ x ∧B = 0 (6)

and thata bladeB∗ dually represents the subspaceB if

x ∈ B ⇐⇒ xcB∗ = 0. (7)

Switching between the two standpoints is done by the distributive relation(A∧B)cC =
Ac(BcC) (which is eq.(19) from [5]), used for a vectorx, a bladeB and a pseudoscalar
I:

(x ∧B)cĨ = xc(BcĨ), (8)

Geometric Algebra: a Computational Framework 7

(a) (b)

�
�����

�

��� �

�
	
��� ��

�

����� �

Figure 2:(a) The dualbB∗ of a bivectorB and the cross product witha; (b) The same
result using the inner product of blades (from [5]).

and by a converse (but conditional) relationship which we state without proof

(xcB)cĨ = x ∧ (BcĨ) if x ∧ I = 0. (9)

If x is known to be in the subspace ofI, we can write these simply as(x ∧B)∗ = xcB∗
and(xcB)∗ = x ∧B∗, which makes the equivalence of the two representations above
obvious.

3.3 The cross product

Classical computations with vectors in 3-space often use the cross product, which pro-
duces from two vectorsa and b a new vectora×××××b perpendicular to both (by the
right-hand rule), proportional to the area they span. We can make this in geometric
algebra as the dual of the 2-blade spanned by the vectors, see Figure 2b:

a×××××b ≡ (a ∧ b)cĨ3

(
= (a ∧ b)∗

)
. (10)

You may verify that computing this explicitly using eq.(1) from [5] and eq.(5) indeed
retrieves the usual expressiona×××××b = (a2b3− a3b2) e1 + (a3b1− a1b3) e2 + (a1b2−
a2b1) e3.

Eq.(10) shows a number of things explicitly that one always needs to remember
about the cross product: there is a convention involved on handedness (this is coded
in the sign ofI3); there are metric aspects since it is perpendicular to a plane (this is
coded in the usage of the inner product ‘c ’); and the construction really only works
in three dimensions, since only then is the dual of a 2-blade a vector (this is coded in
the 3-gradedness ofI3). The vector relationshipa∧ x does not depend on any of these
embedding properties, yet characterizes the(a,x)-plane just as well. In geometric
algebra, we therefore have the possibility of replacing the cross product by a more
elementary construction. Linear algebra gives a good reason for doing so.

8 Leo Dorst and Stephen Mann

3.4 No normal vectors or cross products!

The transformation of an inner product under a linear mapping is more involved than
that of the outer product in eq.(4), for ‘perpendicularity’ is a more complicated concept
to transform than ‘spanning’. The general transformation formula is given in [11], for
blades it becomes

f(AcB) = f −1(A)cf(B),

wheref is theadjoint, defined as the extension of an outermorphism of the linear map-
ping defined for vectors byf(a) · b = a · f(b) (its matrix representation on vectors
would be thetranspose).

Because of the complexity of this transformation behavior, one should steer clear
of any constructions that involve the inner product, especially in the characterization of
basic properties of one’s objects. The practice of characterizing a plane by its normal
vector – which contains the inner product in its duality – should be avoided. Under
linear transformations,the normal vector of a transformed plane is not the transform
of the normal vector of the plane!(this is a well known fact, but always a shock to
novices). The normal vector is in fact a cross product of vectors, which transforms as

f(a×××××b) = f −1(a)×××××f −1(b)/det(f) (11)

wheredet(f) is the determinant defined bydet(f) = f(Im)I−1
m (this is a coordinate-

free definition of the determinant of the matrix representation off). The right hand
side of eq.(11) is usually not equal tof(a)×××××f(b), so a linear transformation is not an
‘innermorphism’. It is therefore much better to characterize the plane by a 2-blade,
now that we can.The 2-blade of the transformed plane is the transform of the 2-blade
of the plane, since linear transformations are outermorphisms preserving the 2-blade
construction. Especially when the planes are tangent planes constructed by differen-
tiation, 2-blades are appropriate: underany transformationf , the construction of the
tangent plane depends only on the first order linear approximation mappingf of f . Us-
ing blades for those tangent spaces should enormously simplify the treatment of objects
through differential geometry, especially in the context of affine transformations.

3.5 Intersecting subspaces

Geometric algebra also contains operations to determine theunionandintersectionof
subspaces. These are thejoin andmeet operations. Several notations exist for these
in the literature, causing some confusion. For this paper, we will simply use the set
notations∪ and∩ to make the formulas more easily readable.

The join of two subspaces is their smallest superspace, i.e. the smallest space con-
taining them both. Representing the spaces by bladesA andB, the join is denoted
A∪B. If the subspaces ofA andB are disjoint, theirjoin is obviously proportional to
A ∧B. But a problem is that ifA andB are not disjoint (which is precisely the case
we are interested in), thenA∪B contains an unknown scaling factor that is fundamen-
tally unresolvable due to the reshapable nature of the blades (discussed in Section 2.2
from [5]), see Figure 3; this ambiguity was also observed in [13]. Fortunately, in all
geometrically relevant entities that we compute, it appears that this scalar ambiguity
cancels.

Geometric Algebra: a Computational Framework 9

�

�

�

� �

�
�

�

Figure 3: The ambiguity of scale formeet M and join J of two bladesA and B.
Both figures are acceptable solutions to the problem of finding a blade representing the
union and intersection of the subspaces of the bladesA andB.

The join is a more complicated product of subspaces than the outer product and
inner product; we can give no simple formula for the grade of the result, and it cannot be
characterized by a list of algebraic computation rules. Although computation of thejoin
may appear to require some optimization process, the smallest superspace is directly
related to the non-zero part of the highest grade in the expansion of the geometric
product, and can therefore be done in constant time [1].

Themeet of two subspacesA andB is their largest common subspace. Given the
join J ≡ A∪B of A andB, we can compute theirmeet A∩B by the property that its
dual (with respect to thejoin) is the outer product of their duals (this is a not-so-obvious
consequence of the required ‘containment in both’). In formula, this is

(A ∩B)cJ̃ = (BcJ̃) ∧ (AcJ̃) or (A ∩B)∗ = B∗ ∧A∗ (12)

with the dual taken with respect to thejoin J.1 This leads to a formula for themeet of
A andB relative to the chosenjoin (use eq.(8)):

A ∩B = (BcJ̃)cA. (13)

Let us do an example.

The intersection of two planes represented by the 2-bladesA = 1
2 (e1+

e2) ∧ (e2 + e3) andB = e1 ∧ e2. (We have normalized them so that
AcÃ = 1 = BcB̃; it gives themeet of these blades a numerical factor
that can be interpreted geometrically.) These are planes in general position
in 3-dimensional space, so theirjoin is proportional toI3. It makes sense
to takeJ = I3. This gives for themeet:

A ∩B = 1
2 ((e1 ∧ e2)c(e3 ∧ e2 ∧ e1))c ((e1 + e2) ∧ (e2 + e3))

= 1
2 e3c ((e1 + e2) ∧ e3)

= − 1
2 (e1 + e2) = − 1√

2
(
e1 + e2√

2
) (14)

1The somewhat strange order in eq.(12) means that thejoin J can be written using themeet M in the
factorizationJ = (AM−1) ∧M ∧ (M−1B), and it corresponds to [13] for vectors.

10 Leo Dorst and Stephen Mann

���

�

������

�

�
	��

Figure 4:An example of themeet

We have expressed the result in normalized form; the numerical factor for
the resulting blade is in fact the sine of the angle between the arguments.
Figure 4 illustrates the answer; as in [13] the sign ofA ∩ B is the right-
hand rule applied to the turn required to makeA coincide withB, in the
correct orientation.

Classically, one computes the intersection of two planes in 3-space by first converting
them to normal vectors, and then taking the cross product. We can see that this gives
the same answer in this non-degenerate case in 3-space, using our previous equations
eq.(9), eq.(8), and noting thatĨ3 = −I3:

(AcĨ3)×××××(BcĨ3) =
(

(AcĨ3) ∧ (BcĨ3)
)
cĨ3 =

(
(BcĨ3) ∧ (AcĨ3)

)
cI3

= (BcĨ3)c
(

(AcĨ3)cI3

)
= (BcĨ3)cA = A ∩B.

So the classical result is a special case of eq.(13), but eq.(13) is much more general: it
applies to the intersection of subspaces ofanygrade, within a space ofanydimension.
Again we see the power of geometric algebra in compact expressions valid for any
grade or dimension.

The norm of themeet gives an impression of the ‘strength’ of the intersection. Be-
tween normalized subspaces in Euclidean space, the magnitude of themeet is the sine
of the angle between them. From numerical analysis, this is a well-known measure for
the ‘distance’ between subspaces in terms of their orthogonality: it is 1 if the spaces are
orthogonal, and decays gracefully to 0 as the spaces get more parallel, before changing
sign. This numerical significance is very useful in applications.

4 Differentiation

Geometric algebra has an extended operation of differentiation, which contains the
classical vector calculus, and much more. It is possible to differentiate with respect

Geometric Algebra: a Computational Framework 11

to a scalar or a vector, as before, but now also with respect tok-blades. This enables
efficient encoding of differential geometry, in a coordinate-free manner, and gives an
alternative look at differential shape descriptors like the ‘second fundamental form’
(it becomes an immediate indication of how the tangent plane changes when we slide
along the surface). This would lead us too far, but we will show two examples of
differentiation.

4.1 Scalar differentiation of a rotor

Suppose we have a rotorR = e−Iφ/2 (whereIφ is a function of timet), and use
it to produce a rotated versionX = RX0R

−1 of some constant bladeX0. Scalar
differentiation with respect tot gives (using the chain rule and commutation rules)

d
dtX = d

dt (e
−Iφ/2X0e

Iφ/2)

= − 1
2
d
dt (Iφ)(e−Iφ/2X0e

Iφ/2) + 1
2 (e−Iφ/2X0e

Iφ/2) ddt (Iφ)

= 1
2 (X d

dt (Iφ)− d
dt (Iφ) X)

= X× d
dt (Iφ) (15)

using the commutator product× defined in geometric algebra as the shorthandA×B ≡
1
2 (AB−BA); this product often crops up in computations with Lie groups such as the
rotations.

The simple expression that results assumes a more familiar form whenX is a vector
x in 3-space, the attitude of the rotation plane is fixed so thatd

dtI = 0, and we introduce
a scalar angular velocityω ≡ d

dtφ. It is then common practice to introduce the vector

dual to the plane as the angular velocity vectorωωωω, soωωωω ≡ ωIcĨ3 = ωI/I3. Therefore
ωI = ωωωωI3, which equalsωωωωcI3. Using the fact thatx×B = 1

2 (x B−B x) = xcB for
a vectorx and a 2-bladeB, we obtain

d
dtx = x× d

dt (Iφ) = x× (ωωωωcI3) = xc(ωωωωcI3) = (x ∧ωωωω)cI3 = ωωωω×××××x

where××××× is the vector cross product. As before when we treated other operations, we
find that an equally simple geometric algebra expression is much more general; here
eq.(15) describes the differential rotation ofk-dimensional subspaces inn-dimensional
space, rather than merely of vectors in 3-D.

4.2 Vector differentiation of spherical projection

Suppose that we project a vectorx on the unit sphere by the functionx 7→ P(x) =
x/|x|. We compute its derivative in thea direction, denoted as(a·∂x)P(x) or Pa(x), as
a standard differential quotient and using Taylor series expansion. Note how geometric
algebra permits compact expression of the result, with geometrical significance:

(a · ∂x)
x
|x|

≡ lim
λ→0

1
λ

(
x + λa
|x + λa|

− x
|x|

)
= lim
λ→0

1
λ

(
x + λa

|x|
√

1 + 2λa · x−1
− x
|x|

)
= lim

λ→0

(x + λa)(1− λa · x−1)− x
λ|x|

=
a− x(a · x−1)

|x|

12 Leo Dorst and Stephen Mann

�
�������	�

�
���	� �

Figure 5:The derivative of the spherical projection.

=
(a ∧ x) x−1

|x|

We recognize the result as the rejection ofa by x (Section 4.1 from [5]), scaled ap-
propriately. The sketch of Figure 5 confirms the outcome. You may verify in a similar
manner that(a · ∂x)x−1 = −x−1 a x−1, and interpret geometrically.

For more advanced usage of differentiation relative to blades, the interested reader
is referred to the tutorial of [3], which introduces these differentiations using examples
from physics, and the application paper [12].

5 Models of geometry

Several standard models of geometry can be expressed in geometric algebra. The ad-
vantage of doing so is an increase in expressive power, and a structural integration of
seeminglyad hocconstructions into the geometry. Here we look at geometric algebra
representations of homogeneous coordinates and Plücker coordinates, and a model of
Euclidean geometry that naturally handles spheres.

5.1 The homogeneous model

So far we have been treating only homogeneous subspaces of the vector spaceV m,
i.e. subspaces containing the origin. We have spanned them, projected them, and ro-
tated them, but we have not moved them out of the origin to make more interesting
geometrical structures such as lines floating in space. We construct those now, by ex-
tending the thoughts behind ‘homogeneous coordinates’ to geometric algebra. It turns
out that these elements of geometry can also be represented by blades, in a represen-
tational space with an extra dimension. The geometric algebra of this space then turns
out to give us precisely what we need. In this view, more complicated geometrical
objects do not require new operations or techniques in geometric algebra, merely the
standard computations in a higher dimensional space.

Thehomogeneous modelin geometric algebra extends the usual ‘homogeneous co-
ordinates’ model from linear algebra, which works merely on vectors. That model is

Geometric Algebra: a Computational Framework 13

often described as augmenting a 3-dimensional vectorv with coordinates[v1, v2, v3]
to a 4-vector[v1, v2, v3, 1]. That extension makes non-linear operations such as trans-
lations implementable as linear mappings.

Following the approach of this paper, we have to give the(m + 1)-dimensional
‘homogeneous space’ into which we embed ourm-dimensional Euclidean space a full
geometric algebra. Let the unit vector for the extra dimension be denoted bye. This
vector must be perpendicular to all regular vectors in the Euclidean spaceEm, soe ·
x = 0 for all x ∈ Em. We also need to definee · e to make our algebra complete.
This involves some dilemmas that are only fully resolvable in the double homogeneous
model of Section 5.3. For now we can takee · e = 1. We lete denote ‘the Euclidean
point at the origin’.

Let us now represent the subspaces of interest into this model, simply by using the
structure of its geometric algebra.

• Points: A point at a locationp is made by translation of the point at the origin
over the Euclidean vectorp. This is done by addingp to e. This construction
therefore gives the representation of the pointP at locationp as the vectorp in
(m+ 1)-dimensional space:

p = e+ p

This is just a regular vector in the(m+ 1)-space, now interpretable as a Eu-
clidean point. It is of course no more than the usual ‘homogeneous coordinates’
method in disguise:p has coordinates[p1, p2, p3, 1] on the orthonormal basis
{e1, e2, e3, e}. We will denote points of them-dimensional Euclidean space in
script, the vectors and blades in the corresponding vector space inbold, and vec-
tors and blades in the(m + 1)-dimensional homogeneous space initalic. You
can visualize this construction as in Figure 6a (necessarily drawn form = 2).

These vectors in(m+1)-dimensional space can be multiplied using the products
in geometric algebra. Let us consider in particular the outer product, and form
blades.

• Lines:To represent a line, we compute the 2-blade spanned by the representative
vectors of two points:

p ∧ q = (e+ p) ∧ (e+ q) = e ∧ (q− p) + p ∧ q (16)

We recognize the vectorq − p, and the area spanned byp andq. Both are
elements that we need to describe an element of the directed line through the
pointsP andQ. The former is thedirection vectorof the directed line, the latter
is an area that we will call themomentof the line throughp andq. It specifies
the distance to the origin, for we can rewrite it to a rectangle spanned by the
direction(q− p) and theperpendicular support vectord:

p ∧ q = p ∧ (q− p) = d (q− p) (17)

whered ≡ (p ∧ (q − p))(q − p)−1 = (p ∧ q)(q − p)−1 is the rejection ofp
by q−p. We can therefore rewrite the same 2-bladep∧ q in various ways, such
asp∧ q = p∧ (q−p) = d (q−p) (with de+ d), separating the positional part

14 Leo Dorst and Stephen Mann

�����
�

���
	
��

���
� �����
� ���� ��������
�

	

� � � ��
	

�����

Figure 6:Representing offset subspaces ofEm in (m + 1)-dimensional space. In (c),
v ≡ q− p.

p or d and the purely Euclidean directional partv ≡ q − p, see Figure 6c. The
elementp ∧ q contains all these potential interpretations in one data structure,
which may be constructed in all of these ways.

Temporarily reverting to the cross product to make a connection with a classical
representation, we can rewrite eq.(16) as

p ∧ q = e ∧ (q− p) + p ∧ q = (p− q) e+ (p×××××q) I3 (18)

We recognize the six Plücker coefficients[p − q; p×××××q] characterizing the line
by its direction vectorv = q− p and its ‘moment’ vectorm = p×××××q as

` = −ve+ mI3

The six coefficients[−v1,−v2,−v3,m1,m2,m3] of the line in this representa-
tion are in fact the coefficients of a 2-blade on the bivector basis{e1e, e2e, e3e,
e2e3, e3e1, e1e2}. This integrates the Plücker representation fully into the ho-
mogeneous model (for which it was indeed historically designed). We will see
that the compact and efficient Plücker intersection formulas are now straightfor-
ward consequences of themeet operation in geometric algebra.

• Hyperplanes:If we have an(m − 1)-dimensional hyperplane characterized as
x · n = δ, this can be written as(e + x) · (n − δe) = 0, so asx · (n −
δe) = 0. Thereforen − δe is the dual of the blade representing the hyperplane.
The dualA∗ of a bladeA in the homogeneous model is obtained relative to the
pseudoscalare ∧ I3 = e I3 of the full space asA∗ = Ac(eI3)−1 = Ac(eI3) =
A (eI3), so we get

(n− δe) (e I3) = neI3 − δI3

This has the usual four Plücker coefficients[n1, n2, n3,−δ], but on the trivec-
tor basis{−e2e3e, −e3e1e,−e1e2e, e1e2e3}, clearly different from the vector
basis for points.

We can of course also construct the blade representing the hyperplanedirectly
(rather than dually), givenm points on it, namely as the outer product of the
vectors representing those points.

Geometric Algebra: a Computational Framework 15

• And beyond:These ways of making offset planar subspaces extend easily. An
element of the oriented plane through the pointsP, Q andR is represented by
the 3-bladep∧ q∧ r, and so on for higher dimensional ‘offset’ subspaces – if the
space has enough dimensions to accommodate them. The blades we construct
in this way can always be rewritten in the formA = dA, whereA is a purely
Euclidean blade, andd is a vector of the forme+ d, with d a Euclidean vector.
We should interpretA as the direction element, and its grade therefore denotes
the dimensionality of the flat subspace represented byA. The vectord represents
the closest point to the origin (so thatd is the perpendicular support vector).

• Scalar distances:A small surprise is that even a0-blade (i.e. a scalar) is useful:
it is the representation of a scalar distance in the Euclidean space (with a sign,
but without a direction), as we will see in the next section. Such distances are of
course regular elements of geometry, so it is satisfying to find them on a par with
position vectors, direction vectors and other elements of higher dimensionality
as just another case of a representing blade in the homogeneous model of a flat
Euclidean space.

Having such a unified representation for the various geometrical elements implies that
computations using them are unified as well: they have just become operations on
blades in(m+ 1)-space, blissfully ignorant of what different geometrical situations
these computations might represent. This opens the way to caseless computation in
geometrical algorithms.

5.2 Caseless subspace interactions in the homogeneous model

Themeet andjoin in the homogeneous model function just as you would expect, pro-
viding the intersection of lines, planes, etc. Writing these out in their (Plücker) coordi-
nates retrieves the familiar compact formulas for the coefficients of the result, but now
accompanied by automatic evaluation of the basis on which these coefficients should
be interpreted. That provides immediate identification of the kind of intersection, in a
manner so well integrated that it suggests we might compute on without intermediate
interpretation. This leads to caseless geometrical algorithms in which the dimension-
ality of intermediate results does not affect the data flow.

Even though the actual computation is a caselessmeet applied to blades, let us
see what is going on in detail in some typical situations. Following the internal com-
putational combination of the Plücker-like coefficients shows how the algebra of the
basis elements takes care of the proper intersection computation, at a small additional
expense compared to the usual implementation using ‘pre-compiled’ tables of intersec-
tion formulas.

1. Line and plane:Themeet of a line` and a planeπ∗ = n−δe in general position
is computed as:

` ∩ π = π∗c` = (n− δe)c(−ve+ mI3)
= −(n · v)e+ nc(mI3)− δv + 0 = −(n · v)e+ (n ∧m)I3 − δv
= −(n · v)e+ (m×××××n− δv)

16 Leo Dorst and Stephen Mann

This is the correct result, representing a point at the location(δv+n×××××m)/(n·v)
in its homogeneous (Plücker) coordinates. Note how the orthogonality relation-
ships between the basis elements automatically kill the potential term involving
δ andm. But the fact that this term is zerois computed, and that is a slight
inefficiency relative to the direct implementation of the same result from a table
with Plücker formulas. It is the computational price we pay for the membership
of the full geometric algebra.

2. Two lines:Themeet of two lines in general position is a measure of their signed
distance (remember that in this model a dual is made through right-multiply by
eI3, so the dual of the line−v2e+ m2I3 is−v2I3 + m2e):

`1 ∩ `2 = `∗2c`1 = (−v2I3 + m2e)c(−v1e+ m1I3) = m2 · v1 + v2 ·m1,

retrieving the well-known compact Plücker way of determining how lines pass
each other in space; three tests on the signs of such quantities representing the
edges of a triangle determine efficiently whether a ray hits the triangle. Again the
basis orthogonality relationships have made terms containingm1 ·m2 or v1 ·v2

equal to zero.

The directional outcomes are accompanied by numerical factors (such asn · v in the
first example) relating to the numerical significance of the computation. These are an
intrinsic part of the computation of the object, not just secondary aspects that need to
be thought of separately (with the danger of beingad hoc) or that need be computed
separately (costing time).

5.3 The double homogeneous model

An embedding of Euclidean space into a representational space oftwoextra dimensions
and its geometric algebra has been recently shown to be very powerful and simplify-
ing [10]. Thisdouble homogeneous modelof Euclidean space embeds the Euclidean
distance properties into the fabric of the algebra used to compute with it.

• The inner product is defined in terms of the Euclidean distancedE between
points: p · q = − 1

2d
2
E(P,Q). That means that the representational space has

a rather special metric, since it follows thatp · p = 0 for any vectorp. Only
when one assigns a special point as the origin can one define vectors denoting
the relative position of a point: such a vectorp does of course have a non-zero
norm. But all computations can be specified without ever introducing such an
origin.

• The outer product constructs spheres: ak-blade represents a Euclidean(k−1)-
sphere. As a consequence,p ∧ q is the ordered point pair(P,Q), p ∧ q ∧ r
the circle throughP,Q andR. This provides ‘Pl̈ucker coordinates for spheres’.
The dual of the(m+1)-blade representing anm-sphere inEm is a vector in the
double homogeneous representation space whose coefficients immediately pro-
vides center and radius of the sphere. Flat subspaces are represented as spheres
through infinity, and this is possible because one of the two extra representational
dimensions is a vector representing the point at infinity.

Geometric Algebra: a Computational Framework 17

• The sandwiching by the geometric product gives not only rotations, but all con-
formal mappings, including translation and spherical inversion. (This is why the
double homogeneous model is sometimes called theconformal model.)

• The meet of two blades is interpretable as intersectingk-spheres inm-space,
and its embedding again reduces the separate cases that would need to be distin-
guished for such intersections.

This model looks appropriate for many computer graphics applications, and we are
currently developing it further for practical usage. It is a truly coordinate-free model,
in which all operations of Euclidean geometry can be specified without ever referring
to an origin.

6 Some remarks on implementation

The geometric algebra of anm-dimensional vector space contains nicely linear objects
(the blades) that can be represented on a basis which should contain2m elements (since
we need(mk) for eachk-blade). The various products are all linear, and can be imple-
mented using matrix products of2m × 2m matrices. That may be straightforward, but
it is obviously inefficient in both space and time. This is even more urgent when we
use the homogeneous model in which anm-dimensional Euclidean space requires an
(m + 1)-dimensional geometric algebra in the homogeneous model, or the(m + 2)-
dimensional double homogeneous model. It seems a lost cause.

However, the recognition that the important elements are blades and their products
suggests a more efficient implementation. When two blades multiply by inner or outer
product, a blade of unique grade results. This suggests designing a data representation
for the elements of geometric algebra that permits easy retrieval of their grades, and
also to automatically generate optimized code for the inner and outer multiplication
of blades of specific gradesk and`. The geometric product generates a more general
element of a mixed, but still limited, set of grades|`−k|, |`−k|+2, · · · k+`. Division
requires inversion, but this is closely related to the much simpler operation of reversion,
simply switching the signs of certain grades. The structural membership of an element
to the larger geometric algebra, with its benefit of unified relationships between the
various operations, is then merely paid for by a grade-dependent jump to a piece of
code; when processing data in a batch mode with many similar operations, this would
not slow down things significantly.

Work is underway on an efficient implementation which capitalizes on these struc-
tural properties of geometric algebra [6]. First results look very promising indeed,
getting close to the usual efficiency of the geometrical computations, but in a simpler
code without exceptions orad hocdata structures, and naturally integrating computa-
tional techniques which classically belong to different realms than vector/matrix alge-
bra (such as quaternions and Plücker coordinates).

18 Leo Dorst and Stephen Mann

7 Conclusion

This two-part introduction of geometric algebra intends to alert you to the existence
of a small set of products that appears to generate all geometric constructions in one
consistent framework. Using this framework can simplify the set of data structures
representing objects since it inherently encodes all relationships and symmetries of the
geometrical primitives in those operators. While there are many interesting facets to
geometric algebra, we would like to highlight the following:

• Division by subspaces; having a geometric product with an inverse allows us
to divide by subspaces, increasing our ability to manipulate algebraic equations
involving vectors.

• Subspaces are basic elements of computation; thus, no special representations
are needed for subspaces of dimension greater than 1 (e.g., tangent planes), and
we can manipulate them like we manipulate vectors.

• Generalization; expressions for operations on subspaces are often as simple as
those for vectors (especially true for linear operations), and as easy to compute.

• Caseless computation; degenerate cases are computed automatically, results re-
main interpretable, and the computation allows us to test the numerics of the
solution.

• Quaternions; in geometric algebra, quaternions are subsumed and become a nat-
ural part of the algebra, with no need to convert between representations to per-
form rotations.

• Plücker coordinates; Plücker coordinates and the concise expressions they give
for the interactions of lines, planes, etc. are subsumed and extended.

This paper only covers some of what we felt to be the most important or useful ideas
of geometric algebra as it relates to computer graphics. Many topics have been left out,
including a description of more geometries (the homogeneous model implements and
generalizes the Grassmann spaces of [8], the double homogeneous model implements
and generalizes projective spaces); and a lot more can be said about differentiation and
coordinate-free differential geometry. The reader may be able to glean the connec-
tions from the suggested further reading (see below), but an accessible explanation for
computer graphics of such issues still needs to be given.

Further reading

There is a growing body of literature on geometric algebra. Unfortunately much of the
more readable writing is not very accessible, being found in specialized books rather
than general journals. Little has been written with computer science in mind, since the
initial applications have been to physics. No practical implementations in the form of
libraries with algorithms yet exist (though there are packages for Maple [2] and Matlab
[7] that can be used as a study-aid or for algorithm design). We would recommend the
following as natural follow-ups on this paper:

Geometric Algebra: a Computational Framework 19

• GABLE: a Matlab package for geometric algebra, accompanied by a tutorial [7].

• The introductory chapters of ‘New Foundations of Classical Mechanics’ [9].

• An introductory course intended for physicists [3].

• An application to a basic but involved geometry problem in computer vision,
with a brief introduction into geometric algebra [12].

• Papers showing how linear algebra becomes enriched by viewing it as a part of
geometric algebra [4, 11].

Read them in approximately this order. We are working on texts more specifically
suited for a computer graphics audience; these may first appear as SIGGRAPH courses.

Acknowledgments

This work was supported in part by the Netherlands Organization for Scientific Re-
search and by the Natural Sciences and Engineering Research Council of Canada.

References

[1] T.A. Bouma, L. Dorst, H. Pijls, Geometric Algebra for Subspace Op-
erations, submitted to Applicandae Mathematicae, preprint available at
http://xxx.lanl.gov/abs/math.LA/0104159 .

[2] A. Lasenby, M. Ashdown et al.,GA package for Maple V, 1999, at
http://www.mrao.cam.ac.uk/˜clifford/software/GA/

[3] C. Doran and A. Lasenby,Physical Applications of Geometric Algebra, 2001, at
http://www.mrao.cam.ac.uk/˜clifford/ptIIIcourse/

[4] C. Doran, A. Lasenby, S. Gull,Chapter 6: Linear Algebra, in: Clifford (Geomet-
ric) Algebras with applications in physics, mathematics and engineering, W.E.
Baylis (ed.), Birkḧauser, Boston, 1996.

[5] L.Dorst, S.mann,Geometric algebra: a computational framework for geometri-
cal applications (part 1: algebra), IEEE Computer Graphics and Applications, to
appear, 2002.

[6] D. Fontijne,GAIGEN, a Geometric Algebra Implementation Generator,
carol.wins.uva.nl/˜fontijne/gaigen/

[7] L.Dorst, S.Mann, T.A.Bouma, GABLE: a Geometric AlgeBra Learning Environ-
ment,www.science.uva.nl/˜leo/GABLE/

[8] R. Goldman,The Ambient Spaces of Computer Graphics and Geometric Model-
ing, IEEE Computer Graphics and Applications, vol.20, pp. 76–84, 2000.

20 Leo Dorst and Stephen Mann

[9] D. Hestenes,New foundations for classical mechanics, 2nd edition, D. Reidel,
Dordrecht, 2000.

[10] D. Hestenes,Old wine in new bottles, in: Geometric Algebra: A Geometric Ap-
proach to Computer Vision, Quantum and Neural Computing, Robotics and En-
gineering, Bayro-Corrochano, Sobczyk, eds, Birkhäuser, 2001, Chapter 24, pp.
498-520.

[11] D. Hestenes,The design of linear algebra and geometry, Acta Applicandae Math-
ematicae 23: 65-93, 1991.

[12] J. Lasenby, W. J. Fitzgerald, C. J. L. Doran and A. N. Lasenby.New Geometric
Methods for Computer Vision, Int. J. Comp. Vision 36(3), p. 191-213 (1998).

[13] J. Stolfi,Oriented projective geometry, Academic Press, 1991.

