Chapter 1

Objects in contact:
boundary collisions as
geometric wave propagation

Leo Dorst

ABSTRACT We provide a representation in geometric algebra for m-
dimensional boundaries, to describe and analyze the geometry of wave prop-
agation, which is the mathematical essence of collision computations. This
representation of boundaries as direction-dependent rotors in an (m+1,1)-
dimensional Minkowsks: space turns wave propagation into a geometric prod-
uct of rotors; it is in fact a spectral decomposition of the propagation oper-
ation. Some differential-geometric properties of the propagation result are
deried, such as: Gaussian curvatures add harmonically.

Presented at ACACSE’99, Ixtapa, Mexico. Submitted for the
book: Geometric Algebra: A Geometric Approach to Computer
Vision, Quantum and Neural Computing, Robotics and Engi-
neering, eds. E. Bayro-Corrochano, G. Sobczyk, Birkhauser,
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1.1 Introduction

1.1.1 Towards a ‘systems theory’ of collision

The motivation behind this work is the desire to make the computation
of collision-free motions of robots efficiently computable. For translational
motions, the boundary of permissible translations of a reference point is
obtained from the obstacles and the robot by a kind of dilation, ‘thicken-
ing’ the obstacle (see below for details) to produce the forbidden states in
configuration space of translations. The intuitive similarity of this opera-
tion to convolution suggests that we might be able to find a kind of Fourier
transformation, in the sense that we might separate the shapes into inde-
pendent ‘spectral components’ and combine those simply; after which the
collision boundary would be obtained by the inverse transformation. This
would enable the development of a ‘systems theory’ for collisions.

This was indeed done for two-dimensional boundaries [1], using a Leg-
endre transformation and its coordinate-free counterpart (which is related
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to the polar curves of projective geometry). However, using classical dif-
ferential geometry the generalization to the m-dimensional case was not
straightforward. In this Chapter we do it using geometric algebra, which
easily captures the geometric intuition in simple, computable expressions
and allows compact derivations of fairly advanced results.

1.1.2  Collision s like wave propagation

This paper actually treats the mathematics of geometric wave propagation
according to Huygens’ principle, in which points on a wave front become
secondary sources (also called propagators), of which the forward caustic
generates the new wave front. The reason is that for arbitrary shapes of
propagators, the generation of the secondary wave front is mathematically
very closely related to the collision problem which we really want to treat
(but the wave propagation formulation has some advantages).
This can be seen as follows, using Figure 1.1.

e Huygens wave propagation

When we perform a Huygens wave propagation for a finite time in-
terval, we place copies of a ‘propagator’ A at each position on a wave
front B (see Figure 1.1a). By Huygens’ principle, the forward caustic
of these secondary wave fronts then forms the resulting propagated
front, which we denote A®B (see Figure 1.1b). Each point P of B in
this way locally ‘causes’ a point in the result (easiest to see when A is
convex and B is differentiable). By performing a linear approximation
to B at P, it is clear that at every point of the resulting caustic, the
tangent is equal to that of the point which caused it, and equal to
the tangent at the corresponding point of the ‘propagator’ A.

e Collision detection

Now consider Figure 1.1c, which depicts the collision of a movable
object (the robot) A’ with a fixed obstacle B. The position of A’
is indicated by that of its reference point, which is some fixed point
that moves with it (of we would allow rotations, we would need to
specify a reference frame, but for now a reference point is enough).
This point is prevented from moving freely due to the collision at
P. Computing such local contacts for all translational motions of 4’
generates the boundary of the ‘free space’ for the reference point of
A’. A linear approximation shows that the tangents at P of B, A’ and
the reference point at the resulting boundary are proportional (with
the outwardly directed normal vector of A’ at P having an opposite
sense).

This shows that the two operations of wave propagation and collision are
mathematically closely related. Indeed, the boundary of free space in the
collision problem is precisely (—A')®B, i.e. the propagation of B with the
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reference point

(b) (c) of object

FIGURE 1.1. Wave propagation and collision are mathematically sim-
ilar (see text).

propagator —A' = {—a | a € A'}. Thus an analysis of either is applicable
to the other.

In this Chapter, we will use the wave propagation terminology, since
it has the simplest relationship between directed tangents (no opposite
orientations). We first come up with a representation for proper boundaries
which unifies the ‘hypersurface’ aspects of a boundary with the assignment
of a local ‘inside’. Then we analyze the wave propagation in terms of this
representation; it will turn out to be the ‘Fourier-like’ representation we
were looking for, in which wave propagation becomes separable in a simple
operation on the ‘spectral components’ (these are the tangent hypersurfaces
of the objects involved).

1.1.3 Related problems

In fact, operations similar to wave propagation occur in many places in
science and engineering. In computer graphics, ‘growing’ objects by thick-
ening some specified skeleton shape involves a thickening by spheres (or
other shapes), which is clearly equivalent to one step of Huygens wave
propagation. In image analysis, the field of ‘mathematical morphology’ for
object selection, originally designed to mimic the selective filtering of grains
by sieves, involves extensive use of the ‘dilation’ operation — which is es-
sentially ‘growing’ the object geometrically. The ‘distance transform’ and
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the related techniques of ‘skeletonization’, which involve computing the
shortest distance to the nearest object, are also example of operations with
a wave-propagation-like structure. In robotics, some have approached the
‘path planning problem’ in this manner, with the waves computing the
distance function for the shortest path in the state space of the robot be-
tween initial state and goal state. In milling (carving away excess material
to end up with a desired shape), the carving bit performs a destructive col-
lision with the object to produce the result; the relationship between those
three is again essentially Figure 1.1c. In scanning tunneling microscopy,
an atomic probe (of unknown shape) is moved over an unknown atomic
surface such that voltage between them is constant; this implies a contact
operation on the equi-potential surfaces, which happens according to Fig-
ure 1l.1c, in good approximation. Again, this gives the same relationship
between surface, probe, and measured surface of positions.

Our analysis of the mathematics of geometric wave propagation is in
principle applicable to all these fields. However, most of these applications
contain an essential element which we will not treat here: in sharply con-
cavely curved sections of B, a locally tangent contact of A’ can be precluded
by an intersection of .4’ elsewhere along B. This happens in the central sec-
tion of Figure 1.1b, and part of the caustic then becomes excluded (e.g. you
would not send your milling bit there, it would carve out unwanted sec-
tions). Mathematically, it is easier to treat these parts on a par with the
rest, and in a genuine wave propagation they would be observed. And for
the robotics collision application which motivated this work, these parts
must be treated: if those concave parts of the obstacle B have been ob-
served somehow, a path planning algorithm should already exclude the
corresponding parts of A®B from consideration, even though later obser-
vations of other sections of B may exclude them eventually.

1.2 Boundary geometry

1.2.1 The oriented tangent space

In an m-dimensional Euclidean vector space G*(I,,), with pseudoscalar I,,,,
we consider an object, noting specifically its boundary. This boundary is
an (m—1)-dimensional hypersurface, with locally two ‘sides’: an inside and
an outside. Assume the boundary to be smooth (we will not treat edges in
this Chapter); then at every point p of the boundary, the boundary surface
has a local tangent space with pseudoscalar I[p] of grade m—1 (which we
will mostly denote by I, with p understood; throughout this Chapter we
will use square brackets for non-linear arguments, round brackets for linear
arguments). We may represent this tangent space by a dual vector n (with
again p understood as parameter), defined by the geometric product with
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the inverse pseudoscalar:

n=-II'. (1.1)

The ‘=’ is introduced here to avoid awkward signs later on. We will call n
the normal vector to I. Since we are only interested in rigid body transfor-
mations, we can restrict our treatment to Euclidean geometry, in which the
normal vector is well-behaved (the normal vector of a transformed object is
the transformation of the normal vector), so using duals is permitted. We
wish to denote the notion of ‘inside’ geometrically in the boundary repre-
sentation, to make it more than merely the representation of the boundary
surface. This involves orienting n (and hence I). The usual convention for a
circular blob in 2D (with the usual right-handed pseudoscalar I,) is ‘when
following the contour, the object is at the left-hand side’. So with a tangent I
in the direction of motion, we have II, as inward pointing direction. There-
fore n = —II;1 = IT, is the inward pointing normal vector. We generalize
this to m-dimensional space, deriving the sign of I using Equation (1.1)
from the desire to have n be the locally inward pointing normal vector.
Thus the tangent spaces have been oriented properly, whether represented
by I or by n.

1.2.2 Differential geometry of the boundary

The boundary surface at position p in G'(I,,) has directed tangent I[p];
when we move along the boundary surface, the tangent will change. The
description of these changes can be found in [3](Chapters 4 & 5), and we
briefly repeat and extend the elements relevant to our analysis.

So let n denote the inside pointing local unit normal vector, as a differen-
tiable function of the position p on the boundary (sometimes we will write
n[p]). Its direction can be derived from the first order differential structure
of p!, but its sign must be explicitly determined by our notion of ‘inside’.
The second order differential structure of the boundary is obtained by dif-
ferentiating such a properly oriented n using a vector derivative in some
direction a. We denote the resulting position-dependent linear function by
n. So n : L,[p] — I|p] is defined as the differential of n:

n(a) = (a- d)n, (1.2)

and in our notation we will mostly let the dependence on p be understood
implicitly, occasionally writing n(a)[p] if it needs to be specified. Since
n(a) is a linear function of the vector argument a, we may extend it to
arbitrary multivector arguments as an outermorphism (i.e. a A-preserving
linear operator). Specifically, we can form n(ajaz A ---an,_1), with the

1For example, if the surface of the boundary is implicitly given by a scalar function
¢ as ¢(p) = 0, then n is proportional to 8p¢(p).
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a; forming a basis for the tangent space G!(I[p]) at p. The quantity n(I)
thus denotes the volumetric change of n as we move over a local tangent
volume the size of the tangent pseudoscalar I; the ratio with I (which is the
determinant of the mapping n) is related to the directed Gaussian curvature
k of the boundary at p by:

k= (-1)"'a(MI" =1 (1.3)

(the~ denotes grade inversion), where we obtain an extra sign factor relative
to the standard convention for the definition of x which uses the outward
pointing normal vector, due to the fact that n — —n gives n(I) — n(I) by
Equation (1.2).

The vector n(a) gives the change in unit normal vector when moving in
the a-direction; this value is unique for the regular surfaces we treat. It is
one of the properties of differentials that n(P(a)) = n(a) for all a (where
P(a) = (a- 0)p is the projection onto the local tangent space) — and so
a unique inverse to n(-) does not exist. Any a that projects to the same
P(a) gives the same value for n; but even when we limit the inverse to have
values in the tangent space G!(I[p]), there may not be a unique solution.
(An example is a cylinder with axis z, where only the component of P(a)
perpendicular to z determines the value of n(a).) Therefore the inverse of
n(-) usually produces a set of vectors in the space with pseudoscalar I,,
based at p (we will denote this space by G!(I,,[p])). We prefer to limit the

values to the local tangent space G!(I[p]), and so define:
n~': G (I[p]) = ¢'(I[p)) : n '(m)={a|n(a) =m}. (1.4)

(In words, n™! gives the set of ‘tangent velocities’ at the point p required
to produce the change m in n.) Such set-valued functions can be added,
using the Minkowski sum (denoted by @) as set addition:

A®B={a+b|a€ A,be B}, (1.5)

where the ‘+’ denotes is the vector addition. Note that if one of the argu-
ments is (), then so is the result.

1.3 The boundary as a geometric object

In the representation of the boundary so far, we required a description of
the position p (of which the differential structure gives us the direction
of the local tangent space, characterizable by I or n) and an orientation
sign to specify ‘inside’ (which then gives the proper sign to I or n). Thus
the boundary is not yet a single geometric object in an embedding space.
In [1], a single representation was found in a homogeneous embedding in
projective (m+1)-space (for m = 2 only); it is actually structurally more
clear to embed in the null-cone of the Minkowski space with Clifford algebra
Clt1,1, and we do so now.
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1.3.1 Embedding in Clp, 11,1

We embed the boundaries of the Euclidean space G1(I,,) through a con-
formal split in the higher dimensional space G'(I,,;2) with pseudoscalar
IL,+2 = El,,. Here E is a bivector defined as

E=eyAe°, (1.6)

where eg and € span the two extra dimensions. We choose them to be two
reciprocal null vectors perpendicular to I,,, so they satisfy

(e0)>=(°)? =0, ep-e"=1, e-I,, =€’ -1, =0. (1.7)

We are therefore in the Clifford algebra (¢, 41,1 of a Minkowski space (with
eo and € spanning the null cone), and E? = 1. As Chapter ?? has shown,
this representation can be used to extend the more commonly used pro-
jective split (with eg as splitting vector) to an isometric embedding of
Euclidean m-space onto the horosphere in G(I,,42). (The horosphere is
the intersection of the null cone with the plane z - e® = 1.) This is powerful
embedding was introduced into geometric algebra in [2] and [5]; Chapter 77
uses the multiplicative split to produce this representation; we prefer the
additive split form the original formulation in [5], though we use €° for
their —e since we want proper reciprocity between eq and €°. In that split,
a point p is represented as the null vector: p’ = eg+p—e°p?/2 (rather than
as the trivector p'E used in Chapter ??). We will use bold for elements
of the algebra G(I,,), and the usual math font for elements of the larger
algebra G(I,n42).

Intuitively, e is the representation of a point at the origin, and —e° is the
representation of (the direction of) the point at infinity. In this Chapter,
we will only need to embed flats, i.e. offset linear subspaces such as 0-
dimensional points, 1-dimensional lines, etc., since those are the tangent
spaces used to describe the boundaries. A flat with tangent I at position p
is represented in the additive split as (see [5]):

AP AI=€e’A(e0+p) AT (1.8)

(leave off ‘€A’ to retrieve the usual homogeneous representation). For
brevity, we will denote ey + p, the homogeneous representation of the point
at p, by p.

Instead of with Equation (1.8), it is somewhat more convenient to work
with its dual in our embedding space G(EL,,):

(e®ApADL'E = —(e°Ap)-nE=p- (e (En))
= p-(e°n)=n—-¢€(p-n)

We define this as the representation R(n)[p] of the boundary at p, so:

R(n)[p]=p-(e"n) =n —€’(p-n). (1.9)



8 Leo Dorst

This represents the flat by its normal vector and its scalar support p-n as
an object in Clp,41,1. This representation is indexed by n, and has an extra
component in the e®-direction; this scalar is the support of the flat. Over all
n occurring in the boundary, this is therefore essentially the extended Gauss
map: the sphere of directions, augmented by a scalar function specifying
the directed support, see [6]. We will soon see that (R(n)[p])? = 1, so that
the extended Gauss-sphere is geometrically embedded as an actual sphere
in Minkowski space (rather than as a scalar-valued function on the tangent
space sphere, which is the usual description).

1.3.2 Boundaries represented in G(E1,,)

We view a boundary as a collection of tangent flats, and assume throughout
this Chapter that this collection is differentiable; so we limit ourselves to
‘regular boundaries’ in this sense. (This does not preclude the treatment
of swallowtail catastrophes in the propagation result, as we will show in
Section 1.4.5 — despite the characterization of such a curve in classical
differential geometry as non-regular.)

Since the representation Equation (1.9) contains n explicitly, we will view
the boundary as ‘indexed by n’. We are then required to view the positions
p as a function of n, so we write p[n] — we use square brackets since p is
not linear in n. Also, this is not a single-valued function, since the same
tangent may occur at different locations if the object is not convex. Once
we have done this, the representation becomes a set-valued function of n
only, which we denote by R(n4) for a boundary A — though we mostly
omit the subscript if the context is clear.

The representation R(n) has some very nice properties:

o representation commutes with differentiation
We have to be careful here, since it depends whether we differentiate
R(n)[p] relative to variations in p (defining n as a function of p)
or in n (with p as a function of n). Differentiating relative to n, we
obtain:

(m-8a)R(n)[p[n]] = (m-9x)(p[n]- (e"n))
= 2(2( m)) - (e"n) + p[n] - (°m)
= p[n]- (€*m) = R(m)[p[n]], (1.10)

which gives the commutative relationship between differentiation and
representation: (m-8y)R(n) = R((m - dy)n). It is convenient to use
a shorthand for the differential, as in [3]: define R(a) = (a-8n)R(n),
then

R(m)[p] = R(m)[p]-
(Be careful to use both expressions at the same value of p[n], not at
p[m]!) Since we need to preserve the norm of n for the representation



1. Objects in contact 9

(n? = 1), we will only use differentials for which 0 = (m - 8,)n? =
m - n, i.e. m is perpendicular to n.

On the other hand, taking the derivative of R(n)p] to p yields

(a-8p)R(n)[p] = (a-8p)(p-("nlp)]))
P(a) - (¢°n) + p- (¢’n(a))
= p-(e’n(a)) = R(n(a))[p],

so that now R(-) needs to be evaluated at n(a) rather than at a.

any tangent multivector u based at p is represented as R(n(u))[p]
The derivation above shows that a tangent vector a at p is represented
as R(n(a))[p]; since this is linear in a we can extend it as an outermor-
phism to any tangent blade at p, and then by linearity to any tangent
multivector. For a scalar a, this gives R(n(a))[p] = R(a)[p] = a, as
it should.

any multivector u from the differential space based at p is represented
as R(u)[p]

This result is very useful, but a bit hard to formulate. By the differ-
ential tangent space at p we mean the space G!(n(I)); the differential
space at p is then the space spanned by n and the differential tangent
space. Equation (1.10) shows that the vectors m from the differential
tangent space are represented as R(m)[p]. This is a linear map, and
can be extended by outermorphism to all of the differential tangent
space. But since n is represented by R(n)[p], which is of the same
form, we can even extend the representation to any multivector of
G(n An(I)) based at p, i.e. any multivector of the differential space
at p. So the representation of such a u at p is p- (e®u). For a scalar
a, this gives R(a)[p] = @, as it should.

the representation at p commutes with the geometric product
For scalars, this holds by linearity. For vectors m; and my in the
differential space at p:

R(m;)R(mz) = (p-(e"my)) (p- (e°my))
(m1 - €0P : m1) (mz - eop : mz)
= mumy — e’ ((p-m;)my; —m;(p-my)) +0
(mym;) — € (p- (mymy)) = p - (e’(m;m,))

R(m;ms,).

This result for vectors extends naturally to the whole geometric al-
gebra of the differential space at p. Note how this uses €®e® = 0; this
is why we like the embedding in Minkowski space. This specifically
means that the representation is isometric; for instance (R(n))” =
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R(n?) = R(1) = 1, so all R(n) reside on a sphere in Minkowski
space; this is the embedding of the extended Gaussian sphere of di-
rections we referred to earlier.

We can derive a similar result for the tangent space at p: the repre-
sentation of elements of the tangent algebra also commutes with the
geometric product; however, we will not need that in this Chapter.

the representation is invertible if kK # 0

Observe that p = eg + p is perpendicular to the representation of
any of the elements of the differential space at p, since p - R(u) =
p-(p- (e®u)) = (pAp)-(e®u) = 0. This gives m independent conditions,
and thus determines p, if and only if the differential tangent space
n(I) is (m — 1)-dimensional (perpendicularity to n provides the one
extra condition required). Since n(I) = kI by Equation (1.3), and I
is known to be (m — 1)-dimensional for the regular surfaces we study,
this requires that k # 0.

So when k # 0, we have a proportional image of the full-rank tan-
gent space at p present as the tangent space to our representation
at R(n)[p]. The perpendicularity of p to this and to n gives m con-
straints, and is therefore sufficient to determine p by duality in the
embedding space of R(n) A R(I) = R(n AI) = R(=L,) = —R(In.).
And indeed:

e Ap=-R(I,)I'E. (1.11)

This is the flat of the point at p, so that p is retrievable as: p =
eo - (R(Im)I’lE) — e, the usual formula in the additive split. The

m

computation of Equation (1.11) is straightforward:

—R(I)(EL,)™" = —(p-(°In)) I'E = —pA (°1,I,' E)
= —p/\(eOE)Z—(p/\eO)ZEO/\p.

(When & # 0, the dual of the largest possible tangent space of the
representation produces a flat of equivalent positions with the same
local shape as at p; for instance, for a cylinder we obtain a line parallel
to its axis. This need not be a disadvantage, since we will see that
all such points behave similarly under wave propagation; this thus
allows for effective lumping in propagation algorithms. We plan to
investigate that.)

We thus have (in those non-flat cases) in R(n) = n—e®(p[n]-n) an invertible
representation of a boundary in terms of a ‘spectrum’ of tangent directions
indexed by n (or dually by I), with ‘amplitude’ p[n] - n marked off in the
e®-direction. The advantage of the embedding space is that the original
boundary and its dual representation reside in the same space G(EL,,),
so that the transition between them is purely algebraic, and geometric

(through perpendicularity).
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1.5.8 Ezxample: a spherical boundary

Let us do an example: the representation of m-dimensional boundaries of
which the surface is a sphere — we’ll be interested in spherical blobs and in
spherical holes.

The position of points on a sphere with center ¢ and radius p can be
defined by the scalar function equation ¢(p) = 0, with ¢(p) = (p—c)? —p?.
Differentiation to p yields for the unit normal vector n:

n:i|3p¢(p) .

9p6(p)| ol

This needs to be oriented properly to point inwards. For a spherical blob,
the inward pointing normal is positively proportional to ¢—p, for a spherical
hole to p — c¢. We can therefore use the radius p of the sphere to indicate
which it is; we prefer to denote blobs by a positive radius, holes by a
negative radius, so we obtain

as the inward pointing normal for a spherical boundary, whether hole or
blob. Then to make R(n), we need to express p in terms of n, which is
simply p = ¢ — pn. This gives:

R(n)=n—e’(p-n)=n—e(c-n—p)

as the representation of the spherical boundary. This representation satisfies
R(n)?> = 1 and c¢- R(n) = p (with ¢ = ey + ¢); so in the embedding
space it is on the intersection of the Gaussian sphere in Minkowski space
with the plane with normal vector ¢, at distance p. This is illustrated in
Figure 1.2a for the 2-dimensional case of the circular blob. The Minkowski
sphere looks like a cylinder to our Euclidean eyes; the intersection with
the plane ¢- R(n) = p gives the tilted ellipse depicted. Figure 1.2b depicts
the circular hole and its representation, which simply has the opposite sign.
This cylinder is the Gauss sphere representation, but now in a space shared
with the original curve, which makes the dual (i.e. perpendicular) nature
of the representation explicit.
We may check the differential relationships:

Rm) = (m-8y,)(n—e(c-n—p)
= m-e€’(c-m)=(e+c—pn)-("m)="R(m),

since m - n = 0. (Note that R(m) should not be interpreted as m — €°(c -

m — p), simply substituting m for n in the expression for R(n); the latter
is shorthand for R(n)[p[n]] and we need R(m)[p[n]], not R(m)[p[m]]!)
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p-curve

(a) a circular blob

(b) a circular hole

FIGURE 1.2. The representation of a circular hole and a blob in G(I,).
For the p-curve the vertical axis denotes eg; since p = eg + p, this curve
resides in the plane e’ -z = 1 which is indicated. For the R(n) curves,
the vertical axis is e°, and the curve resides on the extended Gaussian
sphere ’R(n)2 =1, which due to the Minkowski geometry of G, 1,1 looks
like a Euclidean cylinder in this projection. The curves have been made
into cones to better indicate their spatial nature, and to help show that
p = eo + p is everywhere perpendicular to R(I.) = R(n) A R(I). Since
eo-e® =1, the axes e¢; and e° are parallel under the duality involved in
the representation, which is why we can draw them this way.
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To retrieve position and curvature from the representation, we take the
derivative in the embedding space. With the above, we obtain through
outermorphism:

R(I,) =R0)AR(-I) =1, — eo(c - L, + pI)
and then for the dual of this:

~R(I,)I;'E

—E+ec- L) 'E+pelIl'E
—~E+e(cA1E —pe’n
= —E+¢e(c—pn)=e’A(e+c—pn).

We retrieve p in terms of n from this by:
— 0 —
p=co-(°A(eo+c—pn)) —ey=c—pn,

which is indeed the set of positions on the spherical boundary with inward
pointing normal n.

By the way, note that n(a) = (a- 8p)n[p] = —a/p, by Equation (1.3.3).
Therefore the Gaussian curvature is, by Equation (1.3), & = n(I)I"! =
1/p™ 1, as it should be.

1.3.4 Boundaries as direction-dependent rotors

The equation for R(n)[p] can be written in an interesting alternative form:

Rm)lp] = n—e"(p-n)=(1—-e"p/2)n(1+¢’p/2)
= exp(—e’p/2)n exp(e’p/2).

Thus the n-representation can be constructed from a normal vector n via
the general rotor equation U(x) = UxU !, using the n-dependent rotor

U =Ty, = exp(—e’p[n]/2) = 1 — e°p[n]/2. (1.12)

This is the versor T}, of a translation over p[n] in the standard homogeneous
model of a Euclidean space G1(I,,,) in the Minkowski space G!(EL,), see
[5]. In this view, we can see an object boundary (as represented by R(n)) as
an n-dependent translation p[n] applied to the unit normal vector n. Since
the latter is the representation of a point blob at the origin as a (trivial)
function of its orientation, this provides the view:

Any object boundary can be represented as a deformation by
orientation-dependent translation of a point blob at the origin.

Non-convex objects may have a particular inward pointing normal vector
n at different points p, so for those the function p[n] should be considered
set-valued.
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boundary operation

boundary rotor (spectrum) |

null-boundary (a point blob) 1

arbitrary boundary creation Toln] = exp(—e’p[n]/2)
translation over t T Ton] = exp(—€°t/2) Ty
rotation (center c, rotor R) ReR Tpm] = (R — €°(c:R)) Ty
mirroring in hyperplane, support d | Mg Ty = (d — €°d?/2) Tppm]
point reflection in ¢ Pe Tpin] = (Im — €°(c-1n)) Tpin]
wave propagation by boundary Tq | T4in] Tpn]

FIGURE 1.3. The boundary rotor Tj[,] associated with common oper-
ations on the boundary.

1.3.5 The effect of Euclidean transformations

When a boundary is subjected to a transformation, its representation must
change. If we represent the boundary as a rotor, the transformed rotors un-
der common Euclidean operations transform in a straightforward manner,
according to the rules in Figure 1.3 (ignore the entry of wave propagation
for now). These are easily proved by keeping track of what happens to the
position and its differential (which gives n). As an example we treat the
rotation of a boundary.

When the boundary rotates around c over a bivector angle character-
ized by a rotor R (we use boldface since this rotor is in G(I,,)), then
p becomes (R(p — ¢)R™" + ¢). This is achieved on its versor T}, by:
Ty = To(R(T_.Tp)R™1), as is easily verified. Differentiating yields that n
is rotated as well, to n’ = RnR ™. The R(n)-representation of the rotated
boundary is achieved by applying Ty to n' as a versor, which yields:

Zp’ (n') = Tpl n'T&l
(T.RT TpR™) RnR~ ! (T.RT .T,R™) "
= (T.RT_)TpnT; ' (TRT ).

Therefore the total result can be achieved by the application of a new
versor to n, i.e. we can bring the representation in a standard form which
can immediately be used with the original, unrotated boundary, or other
boundaries thus represented. This is a pleasant surprise! This new versor
is Tp left-multiplied by:

TRT_. = (1-€e%/2)R(1+€%/2) =R —€’(c-R)=R.r  (1.13)

and that is the entry in Figure 1.3 for rotation. The other entries are derived
similarly.
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ASB

FIGURE 1.4. The definition of wave propagation.
1.4 Wave propagation of boundaries

1.4.1 Definition of propagation

Propagation combines two boundaries A and B to produce a boundary
A®B according to the following rules (which can be taken as the definition
of propagation, or alternatively derived from a formulaic definition as in

[1]):
Propagation definition:

e The resulting position vector after combining a point p 4
on A and a point ps on B is the position p4 + ps:

PAss =PAtPs (1.14)

e The points p 4 and pp must have the same inward pointing
normal vector (to A and B, respectively), and this is also
the inward pointing normal vector at the resulting position
in the resulting boundary. Symbolically:

N 4558[PAss] = na[pa] = nslps). (1.15)

These conditions together fully determine the propagation result and the
dependence of its geometrical properties on the geometrical properties of

A and B.

1.4.2 Propagation in the embedded representations

Since R(n) is an invertible description of a boundary, if we can construct
the representation of the wave propagation result then we know what the
resulting boundary is. But this is extremely simple, since the representation
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lends itself to direct implementation of the definition of propagation of
Equation (1.14) and Equation (1.15).

Let pa[n] be defined as: pa[n] = {x € A | n4[x] = n}, so as the
set of all positions of the boundary where the inward normal vector is n;
and similarly for pg[]. Then the propagation result of R(n4) = ng —
e®(pa[n4] -n4) and R(ng) = ng — €°(ps[ns] - np) is by Equation (1.15)
indexed by the same normal vector n, and

R(nyes) = n—e (pagsn]-n)
= n—¢° ((pa[n] ® ps[n)) - n)
= n—e’((pa[n]-n) ® (ps[n] - n)). (1.16)

So basically, the € components add up at the same n (we must use @ since
p[n] is a set-valued function).
In the direction-dependent rotor representation of boundaries, we get:

Tppsin] = 1—e¢’(pa[n]® psln])/2
= (1 — eOpA[n]/Z) (1 — eOpB[n]/Z)
= Tpum) Tps[n-

Therefore wave propagation is represented as the product of boundary rotors
(at least if we overload the geometric product to work on sets of rotors, a
straightforward extension).

1.4.3 A systems theory of wave propagation and collision

The above is analogous to what the Fourier transformation does for con-
volution: the convolution of two signals becomes multiplication of their
frequency spectra (a complex number A(w) exp(i¢(w)) for each frequency
w); propagation of two boundaries has become multiplication of their ‘di-
rection spectra’ Ty (a rotor exp(—e’p[n]/2) for each direction n).

This algebraic analogy permits a transfer of ideas from linear systems
theory to the treatment of wave propagation, collision detection, and the
other related problems of Section 1.1.3. For instance, for linear systems
the delta-function is the function with which convolution reproduces the
convolution kernel; it is the input function which allows measurement of the
system’s response function (for instance, the image of a point source gives
the optical transfer function of a camera). In wave propagation, the point
at the origin plays the same role: propagation from it provides the shape
of the propagator; in robotics, you could measure the shape of the robot
by tracking the position of a reference point as the robot collides with an
infinitely thin pole at the origin. This is because its versor representation
equals 1, or equivalently R(n) = n); so this is the ‘delta-boundary’ for
propagation.
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In linear systems theory, if a delta-function is not available as a probe
one may hope to reconstruct the system’s response function by determin-
ing the common multiplicative factor in the Fourier transformation of a
sufficiently rich set of responses (through a Wiener filter); this can then
be used to sharpen that data by deconvolution. Similarly, given sufficiently
rich collision data, one could determine a common multiplicative versor
(or common additive n-dependent function in the R(n)-representation) by
a similar procedure. This would enable determination of the shape of the
atomic probe in the STM example of Section 1.1.3, and then of the actual
unknown atomic surface by a ‘de-dilation’ of the measured surface. (But to
do this fully, one would need to treat the unobservable parts of the colli-
sion boundary around the swallowtail catastrophes of Figure 1.1b properly
— which we have not done yet.)

Such direct transfer of techniques from linear systems theory is possible
because we have found a characteristic ‘spectral’ representation, which en-
ables us to replace the involved effects of the collision operation as local
operations in the spectral domain.

1.4.4 Matching tangents

The rotor result shows the algebraic analogy with the Fourier approach to
convolution; but the equivalent ‘addition of e®-components’ is actually sim-
pler to implement. However, either result is somewhat deceptively simple,
since the demand that both p4 and pg be written in terms of the same
n may require an inversion and a reparametrization of either or both to
obtain p as a function of n valid over a finite domain (if the boundaries
were originally given in terms of parametrized position). Yet this can be
done, if necessary numerically; and then the result is useful to construct
the resulting boundary (in its n-based representation form), and to derive
its properties. Collision detection and wave propagation (and the other,
equivalent operations mentioned in the introduction) can be done fully in
this representation. (In some applications such as radar observations, the
representation R(n) = n—e°(p-n) is even measured directly: a radar yields
the distance (p - n) of a tangent plane perpendicular to the direction n of
the outgoing beam.) It is only when one desires the result to be drawn
as a positional surface again that the rather involved inversion formula
Equation (1.11) needs be invoked.

1.4.5 Ezamples of propagation

For a sphere at ¢ with radius p, we found in Section 1.3.3 the representation
R(n) = n — €%(c - n — p). Therefore the dilation of two spheres (index 1
and 2) yields:

R(n) = n—eo(cl'n—Pl)—eo(Cz'n—Pz) =n—¢° ((e1 +¢2) -n— (p1 + p2)),
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which is immediately recognizable as the sphere with center (c¢; + ¢2) and
radius (p1 + p2). This is what we would expect as the result; but note that
it is also valid for spherical holes (p negative). The propagation of a hole
with radius p by a blob with radius p is a point (with radius zero). Or, in
terms of robot collision avoidance, a spherical robot of radius p in a hole
with radius p cannot move, its only permissible position is (¢; + c2).

Figure 1.5a depicts the wave propagation on a parabolic concave bound-
ary, and it was generated by adding the representations of a parabola
(x-e) = L(x-e)? (with ‘inside’ in the (—e;)-direction) and a circu-
lar blob, and then ‘inverting’ the result to a positional boundary. Note the
occurrence of swallowtail catastrophes in some of the wave fronts. Classi-
cally, these have been considered hard to treat, and even non-differentiable;
however they are fully differentiable in our directed representation of the
tangent space. In fact, these spatial cusps correspond to inflection points
in the n-representation, and are thus nothing more unusual than a sign
change in the curvature of R(n). This is illustrated in Figure 1.5b, which
shows how the boundaries and their representations coexist in (¢, 41,1. The
depiction is similar to Figure 1.2, but we have rescaled R(n) and drawn
its intersection with the plane e; = —1, where it is in fact the Legen-
dre transformation of the boundary, see [1]. (In this example, we obtain
n' — 1e°(n? — 1) where n' = n/(n-e;).) The shift in €° (by the radius p of
the circle, since the centered circular blob has R(n) = n+e%p) results in the
development of inflection points in the representation, which correspond to
the cusps. The locations where the boundary surface self-intersects (impor-
tant for the analysis of the ‘millability’ of surfaces) correspond to non-local
properties of the representation; the intersection point at %(1 + p?)ey for
p > 1 corresponds to a straight part of the convex hull of R(n) (for some
more details see [1]).

1.4.6 Analysis of propagation

Now that we have a convenient representation of wave propagation, we can
derive many properties of the geometry of the result, for instance:

The propagated boundary C = A®B obeys the ‘velocity law’
which relates velocities on the propagated boundary to those on
the propagators:

n 2 s(M)[Pa®ps] = ny' (m)[pa] ® ng' (m)[ps].  (1.17)

The result is () for m not in the common range of n 4(-)[p.A]
and ng(-)[ps].

Proof: Introduce three tangent vectors a, b and c, to measure the derivative
on each of the surfaces, and use the chain rule of [3] to rewrite them in terms of
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fo

representation of fo —

representatio

eo-plane

representation of fo —

FIGURE 1.5. Circular wave propagation of the parabola-shaped
boundary fo (see text for explanation).
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derivatives of p[n]: a =Pa(a) = (a- 8p)pa = (n4(a) - n) pa[n] and similarly
b = Ps(b) = (b - 8p)ps = (ng(b) - ) piln] and ¢ = Pe(e) = (¢ Bp)pc =
(ne(e) - On) pe[n]. Now select these such that n,(a) = ng(b) = n.(c) = m.
We then find from the above that these tangents add as position vectors: ¢ =
(m - 8p)pc[n] = (m - 8p) (pa[n] + ps[n]) = a+ b. Our selection of m implies
that a € n,'(m), b € n;'(m) and ¢ € n;'(m); therefore, over all possibilities
of choosing a and b given ¢, we obtain n;'(m) = n'(m) ® nz"(m). The right
hand side produces () for any element not common to both sets contributing
to the Minkowski sum; hence only elements in both ranges contribute — which
implies that m must be in the common range of n4(-) and ng(-) at pa and ps,
respectively.

This interaction of the local differential geometries can produce involved re-
sults, especially for surfaces with torsion. However, there is an interestingly
simple property when we ‘lump’ over all tangent directions at p:

In m-dimensional wave propagation, Gaussian curvatures add
reciprocally:

kel =k, + KRG (1.18)

(locally, at every triple of corresponding points).

Proof: Extending Equation (1.17) as a linear outermorphism to all of G(I) at
;\é'as(l) =n_"(I)+ng'(I) for each triple of cor-
responding points. The Gaussian curvature is related to n(I) by Equation (1.3):
n(I) = kI™', so that n™'(I) = I/k, at each point, and Equation (1.18) follows
after division by I. ]

the appropriate points we get: n

One of the consequences is that locally flat parts (where k = 0) stay locally
flat after propagation.

1.5 Conclusions

This Chapter demonstrates that the rather involved operation of wave front
propagation in m-dimensional space can be represented as a geometric
product of direction-dependent rotors. These rotors represent boundaries
in Euclidean m-space, within a Minkowski space of dimension (m + 1,1),
as direction-dependent translations of the point object at the origin. This
representation combines well with Euclidean operations on the boundaries,
as Figure 1.3 showed. We plan to use it to analyze differential properties
of the propagation operation (some first results were shown).
Alternatively, and computationally somewhat more convenient, propa-
gation can be represented as an addition of scalar support functions on
the Gauss sphere of directions; in our representation this is a sphere in
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Minkowski space, with the support function geometrically represented as
the €°-component. Such representation have been used before (e.g. [6]); but
their relevance for the propagation-type interactions of boundaries appears
to be new; and we now have them for arbitrary dimensionality.

We hope to apply this spectral representation of wave propagation to
some of the practical problems of Section 1.1.3 which have, in essence, the
same mathematical structure; notably to the prevention of robot collisions
which was our original motivation.
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