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2.1 Introduction

A computer scientist first pointed to geometric algebra as a promising way
to ‘do geometry’ is likely to find a rather confusing collection of material,
of which very little is experienced as immediately relevant to the kind of
geometrical problems occurring in practice. Literature ranges from highly
theoretical mathematics to highly theoretical physics, with relatively little
in between apart from some papers on the projective geometry of vision [8].
After perusing some of these, the computer scientist may well wonder what
all the fuss is about, and decide to stick with the old way of doing things, i.e.
in every application a bit of linear algebra, a bit of differential geometry, a bit
of vector calculus, each sensibly used, but ad hoc in their connections. That
this approach tends to split up actual issues in the application into modules
that match this traditional way of doing geometry (rather than into natural
divisions matching the nature of the problem) is seen as ‘the way things are’.

However, if one spends at least a year in absorbing this material, a differ-
ent picture emerges. One obtains increased clarity and prowess in handling
geometry. This is due to being able to do computations without using coordi-
nates; and by having elements of computation which are higher-dimensional
than vectors, and thus collate geometrical coherence. The operators that can
be applied are at the same time more limited in number, and more powerful
in purity and general validity. Through this, one obtains the confidence to
tackle higher-dimensional parameter spaces with the intuition obtained from
3-dimensional geometry. Programs written are magically insensitive to the
dimensionality of the embedding space, or of the objects they act on. The
concept of a ‘split’ endows the limited set of operators with a varied seman-
tics, which begins to suggests an applicability to all geometries one is likely
to encounter.

The hardest part in achieving such a re-appraisal is actually letting go of
the usual geometrical concepts, and embracing new ones. It is not hard to
rewrite, say, linear algebra into geometric algebra; but it is a different matter
altogether to use the full power of geometric algebra to solve problems for
which one would otherwise employ linear algebra. This overhaul of the mind
takes time; and would be greatly aided by material aimed towards computer
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scientists. This will doubtlessly appear, for an evangelical zeal appears to
be common to all who have been touched by geometric algebra, but at the
moment it is scarce.

So geometric algebra can (and will) change computer science; but vice
versa, the need for a clear syntax and semantics for the geometric objects
and operators in a specification language requires a rigor beyond the needs
of its current applications in physics, and this is where computer science
may affect geometric algebra. Imposing this necessary formalization — always
with the applications in mind — reveals some ambiguities in the structure of
geometric algebra which need to be repaired. This paper reports on some
issues encountered when preparing the wealth of geometric algebra for its
application in the computer sciences. They involve simply making the internal
structure explicit (section 2.2); redesigning the operators (even the rather
basic inner product can be improved, in section 2.3); the development of
new techniques to enable the user to adapt the structure to his or her needs
(section 2.4); and making mathematical isomorphisms explicit in applicable
operators (section 2.5).

When this is done, many individual ‘tricks’ occurring in different branches
of classical geometry become unified (this is shown for the ‘meet’ in section
2.6), and therefore implementable in a generic toolbox structuring the think-
ing and increasing the capabilities of the geometrical computer scientist. This
is an ongoing effort; as a consequence, this paper is still directed more towards
the developers of geometric algebra than towards its users. Yet it should help
potential users to assess these exciting new developments in unified geomet-
rical computation.

2.2 The internal structure of geometric algebra

The monolithic term ‘geometric algebra’ hides an internal structure that con-
sists of various levels, each of which are relevant to the computer scientist
desiring to use it in an application. It is important to distinguish them, for
various branches of literature deal with different levels — so you may not find
what you need in any one book or paper. I have found the levels sketched in
table 2.1 useful in expositions on the subject, since they explicitly indicate
the scope of each part of the formalism. They are depicted in a ‘bottom-up’
manner from the mathematics of Clifford algebras (at the basis) to various
applications (at the top). (Some levels and their names are my own sugges-
tions, for the purpose of this paper; I put them in quotes throughout.)

— Clifford algebra
At the basis of all geometric algebra is Clifford algebra. This introduces a
(Clifford) product in a vector space V™ over a field of scalars K, thereby
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Fig. 2.1. Levels in geometric algebra with their operators (non-standard terms in
quotes).

extending it to a 2"-dimensional linear space of multivectors.! This product

is commonly introduced using a bilinear form (,) : V" x V" — K or a

quadratic form @ : V™ — K, to satisfy the axioms:

1. scalars commute with everything: au = ua, for a € K, u € Cl,.

2. vectors x € V™ obey: xx = Q(x) (which is a scalar!).

3. algebraic properties: geometric product is linear in both factors, associa-
tive, and distributive over +. Do not demand commutativity!

Repeated application of the geometric product then produces the basic el-

ements for the whole Clifford algebra, consisting of scalars, vectors, bivec-

tors, etcetera. A big mathematical advantage of the Clifford product is that

it is in principle invertible (the inverse of a vector x is x/Q(x)). This gives

a much richer algebraic structure than other products on vectors (such as

the inner product) — with far-reaching practical consequences. For instance,

a subject that can be studied fully within Clifford algebra, just using the

Clifford product, is n-dimensional rotations, represented by spinors. Ro-

tations are directly represented as elements of the space of the algebra,

! Several levels higher, the geometric semantics of this product suggests itself so
strongly that it has become custom to denote the Clifford product as a ‘geometric
product’; but at this basic level that is not obvious yet, and leads to confusion.
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just as vectors are, rather than as elements of an algebra of mappings on
a vector space (as they are in linear algebra).

When one starts studying the properties and relationships of various Clif-
ford algebras, it turns out that these depend on the signature of the
quadratic form; but in this contribution we will not emphasize this, us-
ing Cl, to denote a Clifford algebra for the vector space V,,, and (slightly
casually) for its space of multivectors.?

The mathematics of Clifford algebra has been studied sufficiently for all
immediate purposes in computer science, and good accounts exist (try
[13], chapter 1). The style of explanation in such accounts is often ‘per-
mutation of indices’ rather than ‘geometrically motivated construction’, a
consequence of its close (and, to mathematicians, interesting) relationship
to tensor algebra. Although this is somewhat off-putting at first, it does
give a clear indication to the computer scientist of how the basic operations
can be implemented efficiently, and how their syntax is defined independent
of any geometric semantics we might choose to impose later.
‘interior/exterior algebra’

In derivations in Clifford algebra, one often uses commutativity or anti-
commutativity of Clifford products. This occurs so often that it makes sense
to decompose the Clifford product of vectors into a symmetric and anti-
symmetric part under commutation, and use those as higher level ‘macros’
to develop higher level insights. There is an unambiguous and agreed-upon
choice for the anti-symmetric outer product A which is introduced by the
axioms:

1. xAu=32(xu+ux) forx € V" uedll,

2. A is linear in both arguments, and associative. (2.1)

For the symmetric counterpart there are two choices, the inner product “’

or the contraction ‘|’, both agreeing on vectors:
x-u=x]u=3(xu—ux) for x€ V" uedll,,

but differing in action on general multivectors (details later). In geometric

algebra as developed for physics [4], the inner product ‘- is used. We will

argue below why the contraction ‘|’ is preferable since it gives a cleaner

algebraic computational structure, without exceptions or conditions to ge-

ometrically meaningful results.

‘projection algebra’

The fresh contribution of Clifford algebras to the way we compute in geom-

etry is the treatment of higher dimensional subspaces as basic elements of

It is a dilemma, when learning Clifford algebra, whether you should do algebras

of purely Euclidean spaces first (most intuitive!), or learn it in its full generality
from the start (most general!). In any case, you will have to learn non-Euclidean
Clifford algebras eventually, because the projective split (section 2.5 shows that
non-Euclidean Clifford algebras are a very convenient representation for compu-
tations on the affine geometry of purely Euclidean spaces!
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Fig. 2.2. The perpendicular component x,; of a vector x to a subspace charac-
terized by a pseudoscalar A: make the volume x A A, straighten it in your mind
(to view it as geometric product), then factor out A by division — but beware that
division is not commutative, so compute it as x; = (x A A)A™L.

computation. This leads to new geometric and computational insights, and
new methods, even for such basic constructions as, say, the intersection of
two lines (section 2.6). The main consequence is that the use of geomet-
ric algebra makes our algorithms coordinate-free, valid in or extendible to
n-dimensional spaces, and fully specific on direction parity (which is use-
ful for consistent treatment of inside/outside, a famous issue in computer
graphics).

A k-dimensional subspace of a vector space V" is characterized by a pseu-
doscalar i, which is an outer product of k¥ independent vectors in that
subspace:

t=a; ANag A---ANag, with a; € V™. (2.2)

Such a multivector is called simple; its magnitude is the directed volume
spanned by the a;. The subspace spanned by i is denoted G (7). Eq.(2.2) ex-
plains the relevance of the outer product: it codifies ‘linear (in)dependence’
in an operational manner. The interaction of the non-invertible outer prod-
uct with the invertible Clifford product produces compact notation and
computation for algorithms involving orthogonality. For instance, the de-
termination of a vector perpendicular to the subspace G(7) is:

PH(x) = (xAd)it.

This leads to a compact and computable formulation of such algorithms as
‘Gram-Schmidt orthogonalization’. Also, we can construct the dual a* =
al~! of a simple multivector a within a subspace I, and interpret it as the
pseudoscalar of the subspace perpendicular to a in G(I).

These constructions have very intuitive geometrical interpretations (see
figure 2.2); it is at this level that it becomes natural to call the Clifford
product a geometric product.

— ‘algebra of directions’
Closely related to the above, but often used more qualitatively, is the idea of
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union and intersection of subspaces to produce higher or lower dimensional
subspaces. The operations that do this are known as the join and meet
operations. They are a precise extension of set union and set intersection for
directed subspaces; usually, they are treated modulo positive scalar factors
since pseudoscalars signify a directed subspace modulo such a factor. We
will argue in section 2.6 that there is a quantitative structure to these
operations which is very useful in computations, since it determines how
well-conditioned the operations are (similar to the use of the condition
number of a matrix equation in numerical linear algebra) on the basis of
‘distance measures’ between the subspaces.

Join A and meet V of spaces are definable in terms of outer product and
the contraction (or the inner product):

aAb=bAa and aV;b=(ai™')|b,

but their geometrical use involves some care, as we will see in section 2.6.
Hestenes [4] pg. 19 calls this use of geometric algebra an ‘algebra of di-
rections’, since the relationships between the pseudoscalars implement the
lattice of k-dimensional directed subspaces of a vector space V,,.
geometric calculus

Differentiation operators in geometric algebra are associated with multi-
vectors; as a consequence, they have both properties of calculus and of
geometry [4][2]. The geometrical properties need to obey the various prod-
uct rules sketched before for multivectors; so differentiation with respect
to a (multi)vector has commutation rules, decomposition rules, and or-
thogonality properties that fit the above scheme. This leads to a powerful
calculus, which can usefully redo and extend the constructions of differen-
tial geometry. The popular differential forms, for instance, can be viewed
advantageously within the more general framework of geometric algebra.
‘split algebras’

The above gives the framework of basic techniques in geometric algebra.
This needs to be augmented by specific techniques for mapping the geo-
metric structure of an application to a properly identified algebra. This
is the modeling step, which is part of the application domain more than
of the algebraic mathematics. It is of course highly important to applied
computer science.

There is an important construction technique which brings some unifica-
tion in these various required embeddings: Hestenes’ split [7]. This is a
technique in which the geometric algebra of an (n + k)-dimensional space
is used to model the geometry of an n-dimensional space V™. The split
explicitly relates multivectors in the two spaces. The advantage is that the
‘orthogonality algebra’ and ‘directed intersection algebra’ of ¢, (which
were developed for homogeneous, because simple, multivectors), now can
describe the non-homogeneous quantities of projective and affine geometry
in V™ (using a projective split) and of kinematics in V'™ (using a conformal
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split) [7]. Mathematically, the split makes an n-dimensional vector isomor-
phic to, say, an n + 1-dimensional bivector. This is often denoted as ‘=" in
literature. We will see in section 2.5 that to actually use the split in an im-
plementation, it is more proper to be explicit about the mapping relating
the elements of the algebras Cl, x and Cl,.

With these refinements of the monolithic term ‘geometric algebra’ into
various levels of meaning and associated operators, we can better state its
relevance to computer scientists needing to ‘do’ geometry.

Geometric algebra is a collection of computation rules and techniques
relevant to doing computations in models of the geometric aspects of
applications. Its structure contains several distinct but exactly re-
lated levels, each with its own syntax of operators, and an accompa-
nying interpretation. A specific application will probably need them
all; fortunately they are generic in their construction. It is thus ad-
vantageous to connect to this framework, both for unified theoretical
developments and for the actual software performing the calculations.

If our hopes come true, geometric algebra does away with the internal in-
terface problem between geometric computational modules (typically arising
when solving part of one’s application by techniques of linear algebra using
matrices, and then having to translate them to differential forms to treat
other aspects, all proceeded by the projective geometry of processing and
interpreting actual visual observations). It will replace all this with a com-
mon language in which all these specialized modules can communicate, and
in which algorithms can be specified and developed. The modeling problem
(‘which geometric model for which application’) remains, but the choices are
limited (one of the Clifford algebras) and can all be implemented in advance,
in a standard manner, with generic data structures. We can then focus on
what we need to compute in our applications, rather than on how to compute
it.

2.3 The contraction: a better inner product

The Clifford product is the unambiguous basis of all geometric algebra, and
from it are constructed derived products which are useful for ‘orthogonality
algebra’. Using such products, we would expect to prove lemmas which are
universally valid ‘total identities’, into which we can plug any element of
the geometric algebra. The currently used inner product of [4], however, is
riddled with lemmas containing conditions, mostly on the relative grade of its
operands. These problems were recognized (see [4] pg.20), but not resolved
until recently, when Lounesto [9] called attention to a powerful different way
of introducing an inner-product-like operation into geometric algebra. He
calls this the contraction and denotes by ‘|’; his suggestion does not seem
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to have been followed in the applied literature. Yet the contraction may be
a great improvement to geometric algebra, since it simplifies the algebraic
structure without sacrificing any of the geometric meaning — as will now be
shown.

Here is the definition. Assume that you have already defined the Clifford
product based on a bilinear form {,) on vectors, and have based on that
the outer product, as in eq.(2.1): by means of what it does on vectors, and
demanding bilinearity and associativity. Now extend the bilinear form (, ) to
arbitrary multivectors, as follows.

1. For scalars:

(a, 8y = ap for a,fp € K. (2.3)
2. For two multivectors of the form a = a; Aas A---Aay and b =b; Aby A
P /\ bZ:
| det ((ai,bj)) if k=14
(a,b) = { 0 it k£ (24)

Here ((a;,b;)) denotes the matrix of which the (7, j)-th element equals
(ai, bj); its determinant is just used as a convenient shorthand for the
anti-symmetric construction of the bilinear form.

3. The bilinear form is to be linear in both arguments.

Note that this is symmetrical, i.e. {(a,b) = (b,a). As a consequence of the
imposed orthogonality of this extended bilinear form, a set of equalities
(x,a) = (b,a) for all a in (a basis of) C¢,, implies z = b.

With this bilinear form, define the contraction as adjoint to the outer
product:

{uJv,wy = (v,u Aw) for all u,v,w € Cl, (2.5)

(where the reversion u of v is used to absorb some inconvenient signs). Now
one can prove the following properties (see also [9]):

(a) a]B=aB, alJx=ax and x|ja=0, for xeV" a,feK
b) x|y =(x,y) for x,yeV"

() x](uAv)=(x]u) Av+uA(x|v) for xe V" wu,veCll,

(d) (unv)|w=ulw|w), wu,v,well,

Property (a) shows that a contraction involving scalars is not symmetric,
as opposed to their inner product for which [4] explicitly demands o - x =
x - a = 0. Property (b) shows that for vectors the contraction corresponds
with the inner product. Property (c) shows that it is like a derivation, and the
common inner product satisfies it as well. Property (d) is a duality between
outer product and contraction, valid for all multivectors; the corresponding
statement for the inner product has much more limited validity (more about
this below).
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These properties, together with linearity in both arguments, are sufficient
to compute the contraction of any two multivectors, more conveniently than
by the formal definition eq.(2.5). An important difference with the inner prod-
uct -’ is that the contraction ‘|’ is not symmetric in its arguments (property
(a) is one example). This means that many of the useful constructions and
proofs of [4] which use the inner product need to be redone. When we do
so, we find that the conditions under which the proof worked for the inner
product (for instance on the relative grades of arguments) are now elegantly
absorbed in the contraction operator (outside the range of the conditions on -,
the expression with | then automatically produces 0). Thus the useful results
from [4], ch.1 and its sequels are not only ‘rescued’, but also expressed more
concisely. And many results obtain an expanded range of validity, due to the
nice algebraic properties of the new inner product. We give some examples.

Examples:

1. Duality statements. In [4](1-1.25b) we find for homogeneous multivectors
ar, bs, ¢ of grades r, s, t, respectively, the property:

ar-(bs-ct) =(arNbs) ¢, for r+s<tandr,s>0 (2.6)

With the contraction rather than the inner product, we can prove the
much stronger:

u|(v]i) = (uAv)]i, for uwe G(i), v arbitrary. (2.7

Here u and v are general (not just homogeneous!) multivectors, 7 is a pseu-
doscalar (and therefore homogeneous), and the only condition is that w is
in the geometric algebra of the subspace with pseudoscalar ¢. Note that
it is permitted to have v in a space exceeding G(7); if it is, both sides are
0 and hence still equal. Thus this structural property in ‘interior /exterior
algebra’; and the algebras built on it, has a much enlarged scope of valid-
ity. Other duality statements from [4] generalize similarly, we will prove
an example in section 2.4.2. The most extreme is property (d) above
(which is similar to [4](1-2.17b), but now valid for all multivectors u, v,
w).

2. Ezpansion of geometric products. In[4](1-1.63) we find for the expansion
of a geometric product bivector B with a multivector w:

Bu=B-u+iBu—uB)+BAu if B=(B);and (u); =0

Note the demand (u); = 0: this formula does not work for vectors. So
we have an identity of which the validity depends on the grade of an
operand. In (subtle) contrast, using the contraction, we can prove:

Bu=Blu+ (Bu—uB)+BAu if B=(B),,

a formula that is now valid for all u, since B|u = 0 for the scalar and
vector parts of u. As before, the contraction operator automatically takes
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care of the conditions. This formula is part of a series of expansion for-
mulas, for a scalar «, vector x and bivector B we get:

au=alu=alAu, xu=xut+xAu
Bu=BJu+ ;(Bu—-uB)+BAu.

Each higher order obtains one more term. In [4], the statement for
bivectors takes the exception stated above, while that for scalars reads
au=a-u+aAu=aAusince a-u = 0 by definition.

3. FEtcetera... Lack of space precludes more examples; but all geometric con-
structions from [4], chapter 1, can be reproduced using the contraction.
This demonstrates that the contraction can also be used as a basis for a
full geometric algebra.

In summary, an equally or more powerful structure is created by using | rather
than -, in which known results are simultaneously generalized and more simply
expressible, without conditional exceptions. This cleaner algebraic structure
will lead lead to simpler geometric software, since no exception handling is
required.?

2.4 The design of theorems and ‘filters’

Since the contraction operator reduces conditions in expressions, it becomes
possible to develop a technique for designing ‘geometric filters’, i.e. expres-
sions in geometric algebra that perform certain desired tasks. I have dubbed
this technique the ‘index set method’, since it designs the filters based on
which independent orthogonal basis vectors (characterized by indices) occur
in input and output of the filter. Such indices may get passed, they may be
cancelled, or they may lead to a 0 result. For instance, in ejes, both indices
1 and 2 occur in the result; in ejese; = —6%62 = ae,, index 1 has been
absorbed in a scalar a; and in e |es, the combination of index 1 for the first
argument and index 2 for the second results in 0 (remember that the e; are
orthogonal). We denote the index set of a simple multivector a by Z(a). De-
spite the index-based nature of this procedure, linearity guarantees that the
final results are coordinate free, independent of the basis on which they were
derived.

Figure 2.3 and 2.4 present the different filters of two and three terms,
using only geometric product, outer product and contraction between terms
(some reduction of the full range was made using the symmetry of geometric
product and outer product on index sets).

3 Moreover, the extended bilinear form permits us to repair some inelegancies in
the common definitions of basic concepts, such as the use of grade operators to
define elementary concepts like the norm of a multivector u by (uu)o. Having
defined the extended bilinear form we can simply define: |u|® = (u, u); the same
in value, but arguably more elegant.
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ab alNb alb

Fig. 2.3. The index sets of the basic products. Notation: ‘1’ denotes that indices
in this subset appear in the result, ‘0’ denotes that indices appearing in this set
make the whole result 0, and ‘%’ denotes that indices in this subset do not appear
in the result (but neither do they make the result zero).

2.4.1 Proving theorems

We can prove identities and their conditions by the following method:

1. First assume that the arguments are simple multivectors.

2. Draw up the outcome diagrams of both sides (using figures 2.3 and 2.4
to compose them quickly).

3. Make a composite diagram retaining only those subsets in which no con-
flict exists between outcomes.

4. In the areas with outcome 0, the identity obviously (but rather trivially)
holds. Construct general simple multivectors for each of the arguments,
taking a representative from each non-zero area, taking care to satisfy
the containment relationships of the diagram’s construction in step 3.
(Details below.)

5. Evaluate both sides of the identity for these sample multivectors. If it
holds the identity has been proved for all simple multivectors; if it does
not, this computation shows which scalar factor to introduce.

6. For those arguments in which the identity is linear, extend it to general
multivectors, within the derived preconditions of step 3.

The method most clearly saves work in step 5, since the exceptional cases
messing up the computations have already been taken out in steps 3 and 4.
This is best illustrated by an example.

2.4.2 Example: proof of a duality

Let us investigate the validity of the identity u A (vw) = (u]v)w, a form of
duality between A and |.

1. We focus first on the identity for simple multivectors a, b, ¢, so on the
identity a A (bc) = (a|b)c.
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2. The diagrams for both sides of the possible identity can be gleaned from
the earlier figures as:

a A (bc) (a]b)c

AN AN
\/ N/
&y @

Cc C

3. The composite diagram must contain the consistent parts of both. We
observe that the parts where Z(a) € Z(c) are not consistent, and therefore
redraw the diagram to exclude this, noting the condition Z(a) C Z(c):

a A (bc) = (a]b)c

«@ b

a

4. To establish the full identity, we now have to inspect the scalar fac-
tors. To do so, take a representative simple multi-vector in each of the
subsets of the diagram that do not lead to a zero result, to compose
a typical example. In our diagram this implies, for instance: a = ax,
b = apbed,, ¢ = apdpcm, with ap = er---eg, by = e€pp1---€pye,
Cm = €hpsdl " Chittm, dn = €kyptm4l " €ktrtmtn; the index of a,
be, cm,, dy, indicates the grade, and the components of each are orthogonal
basic vectors. The reversions in the expressions for b and ¢ were merely
put in for convenience in the computations below; since they only involve
a scalar factor 1 on both sides of the identity, this is permitted.

5. With these sample multivectors, we obtain:

a A (be) = ay A (@rbednardncm) = ar A ((=1)*"(dndn)arbearcm)
= (=1)F*(d,d,) @rar)agbecm,
and
(a)b)e = (ar) (@rbedn))andncm = (axdr)bednagdncm
= (=1)F 0 (g, @) (dpdp ) arbecm.

This establishes that the two results are indeed identical under the con-
dition found in step 3:

a A (bc) = (a|b)e if Z(a) C Z(c). (2.8)
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The two sides in eq.(2.8) are linear in all arguments. The precondition
assumes that all indices in Z(a) are in Z(c). The simplest linear extension
is obtained by keeping c simple, making it in effect the pseudoscalar
1 of the space in which a and its linear extensions u reside. Then the
precondition Z(a) C Z(c) extends to u € G(i). Thus we have proved an
identity for two general multivectors u and v and a pseudoscalar i of the
u-space:

uA (i) = (u|v)i if ue€G@) (2.9)
By carefully keeping track of indices, further extensions of the result for

simple multivectors may be possible, but they are hard to phrase and are
less useful because of that.

It should be clear that we can use the method also to come up with new the-
orems — this now becomes a routine exercise for any practitioner of geometric
algebra (as it should be).

2.4.3 Filter design to specification

Since ‘filters’ are merely ‘useful expressions’, their method of design is very
similar:

1.
2.
3.

4.
5.

Focus first on simple multivectors.

Specify the desired outcome set in terms of a diagram.

Identify this diagram in an exhaustive table of outcomes (such as figure
2.3 or 2.4). It may be a sub-diagram of an entry.

Identify the conditions on the arguments that select this (sub-)diagram.
These conditions, applied to the equation defining the diagram, give the
desired ‘filter’ expression.

2.4.4 Example: the design of the meet operation

We illustrate the design of the important directed intersection operator in the
‘algebra of directions’.

1.

The desired outcome of the intersection on two index sets Z(a) and Z(b)
is that indices ‘pass’ when they are in the intersection of the index sets,
are indifferent when in either of them, and zero outside. This is thus:
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2. Such a filter cannot be made by simply combining the two index sets;
all possibilities of that were indicated in figure 2.3, and it is not among
them. Thus we look in the three-argument filters of figure 2.4. We find
the desired possibility as a subset of the diagram of (ab)]c:

(ab)]c (ac)|b

AN AN
\/ \/
ST I I

C C

(We interchanged the dummy filter parameters b and ¢, to make the
parameters and diagram correspond with our choice under step 1.)

3. {From this diagram, we produce the desired result by demanding: Z(a) C
Z(c) and Z(b) C Z(c). So ¢ must contain both a and b in this sense; the
simplest is if ¢ is a pseudoscalar for the space containing both @ and c.
The new diagram is:

(ai)]b
Q0D

4. This shows that a non-trivial result (i.e. non-zero) is only achieved when
1 is a pseudoscalar of the smallest space containing both a and b. Then
(ai)]b is a pseudoscalar for the subspace common to G!(a) and G'(b),
since it contains only indices from Z(a) N Z(b).

The operation we have constructed in this example is proportional to the
meet of subspaces, conventionally defined by a V; b = (ai~!)|b (which differs
by an admissible scalar sign from our filter); more about this, its geometrical
interpretations and the importance of scalar factors in section 2.6.

2.5 Splitting algebras explicitly

As we stated in section 2.2, ‘splitting’ is a generic operation that helps in
translating geometrical structures in an application to an appropriate Clifford
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algebra. A split is based on the following fact: the space of k-vectors in a
Clifford algebra C/,, contains (}) elements. The identity

()-(1)-(3)

suggests that k-vectors of the Clifford algebra (/,4+1 could be mapped onto
(k — 1)-vectors and k-vectors in the algebra C/,,. We can indeed make this
explicit. An important example is the split of a k-vector a of Cl, ;1 relative
to a fixed vector eg in (¢,41, which can be considered as a decomposition
according to the identity:

a=-¢ey" A(eola) +eyt](eo Aa). (2.11)

In this equation, egla is a (k — 1) vector in Cl, 1, which is moreover con-
strained to the n-dimensional subspace G(ep*), perpendicular to ey (Proof:
eo(eo]a) = (eoAeg)|a = 0]a = 0). The second term ey * |(egAa) is a k-vector
in this same subspace (Proof: eg|(eg"](eo A a)) = (eo Aeg')|(eo A a) = 0).
Thus if we identify this subspace with the vector space generating the lower-
dimensional Clifford algebra (/,,, then we have explicitly constructed a map-
ping from C¢,,4+1 onto C¢,,. We follow custom in denoting the elements of C/,, or
its isomorphic subspace in bold font, the other elements of (¢, ;1 in normal
math font.

Doing the split for k¥ = 1, we see that a vector z of Cf, 1 corresponds to
a vector x in ¢, of the form eg'|(eg Az)/a, with a a scalar or scalar-valued
function.* This gives, conversely:

T = (eglja:)eo + ax = xpeo + ax (2.12)

(defining zg = eg '1z). By choosing different a, we can implement different
splits. A particularly useful way is the projective split obtained by setting
a =29 = ey " |x. This gives:

egN\Nx egN\Nx

eol

) = eo(

In the projective split, any x representing a vector x can thus be written as
a member of a 1-scalar-parameter family of representatives, namely as some
scalar multiple of the vector ey + x. It is called ‘projective’ since it is useful
in doing projective geometry (see [7]), but it has other uses too. For some of
those, we must perform the projective split embedding in a canonical way,
representing x by z = eg + X, taking the arbitrary constant zo in eq.(2.13)
equal to 1; since zop = eg ! |z, we can view this as an embedding to the
hyperplane eg ™|z = 1 in Cl,41. For some other embeddings, we require
normalization of higher-order pseudoscalars.

r=x0(eo+x) and x=ey"|( ) (2.13)

—1
e lz

4 There is a second way to embed vectors, using k& = 2: out of x, construct a
bivector e5 ' Az, then map that according to the first term of eq.(2.11) as eg | (e5 ' A
). The result is equal to e ' |(eo A ), and thus the same; this second way may
seem more indirect, but it is actually sounder algebraically, see [7].



2. Honing geometric algebra 17

The basic usefulness of the projective split is that the embedding of (/,
into Cl, 1 simplifies computations. Take, for instance, the equation for the
set of points on a directed line from p to q in V,, of C/,,. This set is

{xeVu|[(x-p)A(a—p)=0} (2.14)

(for this is the set of all points x such that x — p and q — p have the same
direction). Under the projective split, this set is represented by the bivector
¢ = p A g (with p and ¢ the representations of p and q, respectively), in
the sense that x is on the line iff its representative x is in the space of this
pseudoscalar /:

x-p)A(a-p)=0 <= zA(PAg=0, (2.15)

as is easily verified. This result extends to higher order affine linear subspaces:
they are simple multivectors of (¢, 41, to be interpreted by the projective split.
It generalizes the ‘trick’ of homogeneous coordinates (well-known in applied
linear algebra) from mere vectors to all of the higher-dimensional subspaces.

In the literature on projective splits (such as [7],[12]), the actual embed-
ding is hidden in isomorphisms stating the equivalence of certain bivectors
in Cl,+1 and vectors in Cl,. As a consequence, the grades of the various ele-
ments get confusing (a bivector can be ‘equal’ to a vector!), and the operation
A acquires a meaning which subtly changes with the operands (if you write
x = e Az and y = ey A y, then formally x Ay = 0 for any x, y!). The
above shows that there is no need for this: we can make the mappings totally
explicit. The resulting cleaner algebraic structure leads to cleaner software.?

2.6 The rich semantics of the meet operation

We are now ready to discuss the meet operation from the ‘algebra of direc-
tions’ in more detail and to apply it to the intersection of directed affine
linear subspaces by combining it with the projective split interpretation.

In literature, the meet is often treated as a ‘qualitative’ operation. The
reason is probably that its most useful application is when a and b in a V; b
are pseudoscalars, and that these in turn have their most useful application
when they are considered the representatives of affine subspaces in the pro-
jective split. Since the projective split contains an arbitrary scalar for the
embedding (such as zo in eq.(2.13)), this then leads one to the neglect of
all scalar factors (or, when done more carefully, all positive scalar factors)
[12]. This qualitative approach, however, is also necessarily binary: subspaces
either intersect or they don’t, and there is no measure of the relevance of
the intersection. This is a problem in applications where geometrical data

5 This corresponds in spirit to Stolfi’s careful treatment of the implementation of
oriented projective geometry [14]. He also recommends the introduction of a 0

for every grade k (denoted 0%), to make all theorems on grades universally valid.
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has an associated uncertainty. For instance, when intersecting two observed
planes that are almost co-directional, the location of the intersecting line is
ill-determined and this should be expressed in the error margin; it may even
require the observed planes to be considered as two observations of the same
plane, making the intersection line physically meaningless. We thus need a
way to express ‘intersection strength’ as well as the intersection result.

Traditionally, the ‘meet’ operation is just taken as providing the intersec-
tion subspace, and not the intersection strength. We now show that it can
give both, with the magnitude of the meet giving such diverse measures of
intersection strength as the distance measure between subspaces (known from
numerical linear algebra), and even (in the explicit projective split interpre-
tation of subspaces of /,,11) the Euclidean distance between non-intersecting
affine subspaces in Cl,!

2.6.1 Meeting pseudoscalars

We first need to understand the meet in more detail, especially being more
careful about scalar factors (including signs) than is common in literature.

For pseudoscalars a and b, the meet a V; b is a pseudoscalar of their
intersection, with a sign and magnitude that depends on those of a, b and
i. For the standard definition a V; b = (ai~!)|b, involving the inverse of the
pseudoscalar, this is as follows.

Let a and b be simple multivectors with a common factor c. Then
defining i through:

i=(bc ) AcA(cta) (2.16)
we have:
aV;b=c (2.17)

(The proof is straightforward using the methods of section 2.4.1; the use of
i~! in the meet causes the somewhat unfortunate reversion of the arguments
in the definition of i.)° Note that there is no such thing as ‘the’ meet of
a and b; replacing ¢ by —c gives an opposite sign. It is therefore necessary
always to denote the pseudoscalar relative to which the meet is taken, and
any suggestion that it can be omitted or defined objectively from a and b
(such as found in [12]) is wrong.

There is less confusion about the join A of two spaces, an operation that
is used to give a pseudoscalar for the common subspace spanned by two pseu-
doscalars a and b. If a and b have no common factors (so the corresponding
subspaces have only the point 0 in common), then the join is given by:

® The above can be used to correct an error in Pappas [12], who uses a
pseudoscalar and decomposition that should have made his meet equal to

(—1)Brade(4")(grade(O)+grade(B)) =1 pather than C, in his notation.
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aAb=bAa (2.18)

(the reversal of the arguments is done to prevent stray signs when using this
in combination with the meet, and is again due to the use of i~! in the
definition of the meet.) The join is then a directed union of the subspaces.

If a and b do have a common subspace, then an objective definition of
their join can not be given ([6],pg.34): there is an ambiguity of sign which
can not be resolved explicitly, as in the case of the meet (see [14] for a clear
explanation of this counterintuitive issue). Thus a directed union can then
not exist, and eq.(2.18) correctly yields 0 (the only pseudoscalar representing
a non-directed subspace).

For readers familiar with the wonderfully illustrated book on oriented
projective geometry by Stolfi [14], note that his meet (denoted there by A,
presumably following [1]) differs from the above standard definition in geo-
metric algebra. He defines it [14] pg. 50 (modulo a positive scalar) through
equations which in our notation would effectively read:

aNib=c <= i=(ac)AcA(c D) (2.19)
Thus Stolfi’s meet a A; b is identical to our meet b V; a (same i!) — and
similarly, his join a V b is identical to our join bAa. His delightful graphic

constructions are therefore applicable to the ‘algebra of directions’ with a
simple interchange of the operands.

2.6.2 Meets of affine subspaces

Affinely translated subspaces of (¢, are represented by pseudoscalars of C/,, 1
under the projective split; the meet of these pseudoscalars can then be inter-
preted in terms of quantities of (/,, as signifying the directed intersection of
affine subspaces.

When we compute the meet of two non-homogeneous linear subspaces of
a space G(i), represented as a = (ep +a) A A and b = (eg + b) A B of G(epi)
in the homogeneous projective split representation, we obtain:

aVesi b
= (((eo +a) AA)i teo )] ((eo + b) AB)
=eo(AV;B) + (KV?(b/\B)%—(a/\A) ViB)

= (eo (AV;(bAB) + (anA)ViB) (AViB) ™) A (A Vi B),

where the last step assumes that (A V;B) is invertible; which is the case if i is
at most a pseudoscalar for the smallest common subspace of A and B. Under
this condition, the projective split interpretation of the result of the meet is
thus an affine subspace with directional pseudoscalar (A V; B), translated

over the position vector (K Vo(bAB)+ (aAA) Vi B) (AviB) "7

" These results correct an error in the published version of this paper in Geometric
Computing with Clifford Algebra, eds. G. Sommer and E. Bayro-Corrochano,
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Fig. 2.5. The directed intersection of two lines in R?

Example: The directed intersection of two lines in ]R?: ¢ = egAu+U
and m = eg A v+ V in the projective split representation, see figure
2.5. We compute, with i taken as a pseudoscalar for IR?:
p=_{Veim=—eo(W*|v) +U*|V+U*|v
=eo(v]u*) — (u* AV*)i+ U’y
=eo(vAu)" = V*u+ Utv.
Since (v A u)” is scalar, this corresponds to the intersection point:
v U*
u—+ \%
(uAv)* (vAu)"

p:

if (v Au)” is non-zero. Figure 2.5 graphically demonstrates the cor-
rectness of this result.

The geometric algebra framework validates the intersection results in any
dimension, and in a computational representation that does not require ex-
ceptional data structures: points, lines, planes, etcetera are all admissible
outcomes.

2.6.3 Scalar meets give distances between subspaces

We have seen in eq.(2.17) that the meet a V; b normally gives a pseudoscalar
as its result, and that this is interpretable as the space of intersection of a
and b. There is also an interpretation when the result of the meet is a scalar.
The subspaces then intersect in the origin only; i.e. they are complementary
in the smallest common space (with pseudoscalar i), though not necessarily
orthogonal. When the meet is a scalar, we can rewrite it as:

Springer 2000; an error of simplification was made in the last two lines of the
derivation of a Ve,i b above.



2. Honing geometric algebra 21

Fig. 2.6. The Euclidean distance between two affine subspaces in IR™ whose ranks
add to n+ 1.

aVy = @’ b= (a*]b,1) = (b,a*) = (a*,b) = (a", ) = (bla",1) = b]a’
= (bAra),

Thus in such a case, the meet equals the volume of the commonly spanned
space, relative to the standard pseudoscalar i. This is a useful measure if
we take all pseudoscalars involved (a, b and i) to be wunit pseudoscalars.
Then the meet varies continuously from 1 to —1, and is zero when the two
subspaces have some subspace in common (they do not necessarily coincide:
any common factor in a and b makes b A a equal to zero). We can interpret
the values %1 as: the subspaces are orthogonal in the embedding space G (7).
The magnitude of a scalar meet of unit pseudoscalars is thus a measure for
the ‘parallelism’ of the spaces they represent.

Example: Consider two vectors x and y in IR? with pseudoscalar 4.
Then x V;y = (y Ax)" = (—|y||x]i sing)i~! = |x]||y]| sin ¢, with ¢
the angle from x to y in ¢. If both are unit vectors this yields sin ¢.
Thus the meet has the largest absolute value, 1, when x and y are
orthogonal (with +1 when y is in the positive direction from x, so
y = xi, and —1 for the opposite direction), and goes continuously to
zero when x and y become more and more parallel.

In linear algebra, a commonly used distance measure between subspaces is the
sine of the angle between them, see e.g. [3]. It can be shown by generalization
from the 1-dimensional example above that this is indeed what (b A a)” is, for
unit a, b and 4. Thus the meet contains this common practice in numerical
linear algebra, casting an interesting light on its essential nature.

2.6.4 The Euclidean distance between affine subspaces

If we are in a projective split representation, a and b in (¢, represent affinely
translated linear subspaces of C/,. If these subspaces are complementary in
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Cl,+1 as in the previous section, then their meet is scalar; this complemen-
tarity means their ranks in (¢, add up to n + 1. For two such spaces (a
point and a line in 2-D, two lines in 3-D) we can define their (directed) dis-
tance in Cl,, as the length of the (directed) mutual perpendicular connecting
them. This turns out to be proportional to the meet of their projective split
representatives!

Let us write the affine subspace represented by the pseudoscalar a as
the translation by a vector a of a subspace with unit pseudoscalar A, i.e.
the set {(x —a) A A = 0}. Its canonical projective split representation is
a = (ep +a) A A, and similarly for b we have b = (eg + b) A B. Let i be the
unit pseudoscalar of (¢, and I = epi the pseudoscalar for C/, 1 (note the
order!). Then with the assumed complementarity of a and b in I, their meet
relative to [ is:

aVib=0BAa) ' = ((eg+b)ABA(ep+a) ANA)T?
=(egABAaAA+bABAeAA)?
=e(BAaAnA-—BAbAA!
=(BAaAA-BAbAA)! (2.20)

This is a quantity that is entirely computable in C/,,. It is proportional to the
orthogonal directed Fuclidean distance between the two subspaces represented
by a and b, by a proportionality factor of (B A A)i~! (which is the ‘distance’
between the directional elements in the sense of section 2.6.3). This is depicted
in figure 2.6: the expression in brackets is a difference of two volumes in i-
space, which can be viewed as being spanned by B, A and a vector in the
direction of their perpendicular connection; the difference relative to is the
directed length of this vector.

We thus find yet another classical distance measure embedded in the
intersection operation of geometric algebra. Note that eq.(2.20) is valid in
any finite-dimensional space, and coordinate free. It is thus well-suited for
implementation in a generic geometric software package!

2.6.5 The use of geometric algebra

The meet was designed as a straightforward ‘directed intersection operation’
for geometric algebra in section 2.6. The examples show that it has a seman-
tics that depends on the modeling step which translates an application to
appropriate geometric algebra. This is an instance of an important principle:
there is no unique interpretation of Clifford algebra or geometric algebra.®
This is not a weakness of geometric algebra, but rather a sign of its
strength: a limited number of generic constructions in the mathematically
consistent theory of geometric algebra suffices to implement what used to

8 Hestenes frequently points out that the use of a bilinear form in the Clifford
algebra does not automatically imply that it only applies to metric spaces: it all
depends on how you use it.
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be seen as disparate geometrical tricks in different applications. If you view
geometric algebra as giving an exhaustive library of advanced computational
techniques, then once you have made the mapping between your applica-
tion and geometric algebra, the meaning of these techniques is automatic,
and gives a complete set of internally consistent operators in the applica-
tion. This seeming restriction will prevent you from going astray (not just
anything is permitted) and can help to inspire you (since it gives advanced
and consistent constructive techniques). Also, since these can be defined in
generic terms of Clifford algebra, they need only be implemented once — the
only responsibility of the practising computer scientist is then the explicit im-
plementation of the mapping between the application and this generic body.
After that, computations are automatic.

Having said that, we need to show that the library of techniques in ge-
ometric algebra is indeed sufficient for such purposes, and extend it where
possible. The challenge is not necessarily to do new things using geometric
algebra (though that is always nice!), but rather to show that a single frame-
work encompasses all previously known results, and does so compactly. To
mathematicians, this is not a very exciting task; to computer scientists and
physicists, its completion would be immensely gratifying. It would give us
a box of integrated geometrical power tools which we could use to perceive,
describe and direct objects in the world without being hampered by interface
problems between incompatible sets of mathematical instruments (as we now
so often are).

2.7 Geometrical models of multivectors

We have seen how we could understand some of the formulas coming out of
our ‘meet’ computations by drawing a picture of the situation, and repre-
senting the multivectors involved by directed lines, directed areas, directed
volumes, etc. Once you have done this for a while, you will find that this tends
to reverse: the pictures soon become a natural construction tool for the de-
sign of formulas and algorithms. Unfortunately, few authors using geometric
algebra appear to find a need for such pictorial explanations and construc-
tions (an exception is [5]). Why? Any explanation of a powerful framework
for ‘doing geometry’ that does not contain pictures must be less than con-
vincing to the intended audience! In my experience, pictorial constructions
such as figure 2.2 immediately instill a desire to learn more about geometric
algebra in an audience of novices, and they are therefore immensely helpful.

It may indeed be possible to give a proper grammar for the construction
of these pictures, which would turn this into a sound design procedure, and
one that could be taught to the graphically inclined. There is some work to be
done, though, to find a proper pictorial model: are vectors better viewed as
emanating from the origin (i.e. as positions), or should we treat them as ‘free
vectors’ (i.e. as directions)? Should we represent a bivector as a reshapeable
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homogeneous plane element of a certain magnitude (as in [10]) or as a stack
of planes with a stacking density (as in [11])? Do the answers depend on the
‘model’ of the geometry we are using (e.g. the ‘free vector’ image for affine
directions, the ‘fixed vectors’ for their projective split representation)?

Whatever the answers, they are worth some research: the use of pictorial
representations by proponents of differential forms (e.g. [11]) has helped them
in ‘spreading the faith’, since the pictures effectively convey the intuition be-
hind the computations and instill confidence in their consistency. Geometric
algebra and geometric calculus could and should use a similar route to speedy
introduction to a wider audience.

2.8 Conclusions

Clifford algebra is not useful by itself; it is just a consistent mathematical
structure. Its surprising power comes from the discovery that this structure
can be used to represent very many geometrical phenomena; indeed, maybe
even all of geometry. It does so in geometric algebra which reorganizes the
structure of Clifford algebra at various levels, guided by geometrical signifi-
cance (see figure 2.1). This provides a framework that is immediately com-
putational, rather than an arcane abstraction (not to be confused with al-
gebraic geometry!). This has clear advantages: it unites geometry, and this
is very important to the computer sciences, for a unified framework mini-
mizes conversion between modules. It also gives a richer conceptual structure
to design geometric algorithms, mainly since we do not need to express ev-
erything in terms of vectors (or, worse, coordinates) before we can make it
computable. This makes advanced geometrical techniques more accessible to
non-geometers.

In this contribution I argued that the user-oriented development of geo-
metric algebra requires some new approaches, or changes in emphasis:

— it is insightful to the novice to convey explicitly the ordering of geometric
ideas involved in turning Clifford algebra into geometric algebra (section
2.2);

— the algebraic structure of geometric algebra should be cleaned up to make
operators operand-independent; we demonstrated this principle in the sub-
stitution of the contraction for the inner product (section 2.3), and in the
totally explicit formulation of the mapping implementing the projective
split isomorphism (section 2.5)

— we need a convenient design strategy to construct geometric ‘filters’ tuned
to specific purposes, empowering the users to develop their own ‘theory’ as
needed (section 2.4);

— we need to map traditionally useful concepts to their counterparts in ge-
ometrical algebra; and conversely, we should interpret the basic operators
in geometric algebra in classical terms (section 2.6)
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— it would be helpful to have a standardized pictorial representation of the
basic concepts (section 2.7)

A lot of the work that has been done in geometric algebra is immediately
relevant to these goals; notably the work of Hestenes and his followers, who
have focussed on spreading the faith among physicists and mathematicians.
Similar work now needs to be undertaken to promote its application to the
geometrical issues in such computer sciences as vision, graphics and robotics.
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