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1 The conformal model of Euclidean geometry

CGA (conformal geometric algebra) has the Euclidean structure
‘baked in” at its deepest level. Its properties are most convincingly
introduced by interactive demonstrations.

In this talk, I want to illustrate relationship between algebraic for-
mulation and geometric intuition, and the playful elements of this
new geometrical language.

This really requires software. We wrote our own GAviewer in
Gaigen, which is C+4. But this presentation is about the mathe-
matical model, not about the software.

Three sections to the talk:
1. Introduction of the conformal model
2. A language for Euclidean geometry

3. Structural geometric relationships through versors



2 Spanning oriented ‘rounds’ and ‘flats’

DEMOspanning():

ORIENTED SPANNING

Color coding by ‘grade’ (1=red, 2=blue, 3=green, 4 = yellow). Note
the flat point, a subtly new object — we'll need it.

Geometrically, these objects are oriented, algebraically, this is sim-
ply done by the outer product being anti-commutative.

Containment relationship of these geometrical figures obvious from
their definition: suggests an algebra.



3 Dualization of objects

A subspace can be represented in GA in two ways, which we need
to distinguish sharply:

e DIRECT representation of subspace A:
With point x as probe,

reA <= xNA=0.

e DUAL representation of subspace A:
With point x as probe,

reAd <= x-A"=0.
(with A* = A/I and I the pseudoscalar of the space).
The two are of course equivalent because of the duality relationship:
(xNA) =z A

Duals will be depicted by ‘complementary’ colors. Since the em-

bedding dimension is 5 (we'll see why), the dual of a yellow sphere
(4-blade) is red (1-blade).



Some basic manipulations in Clifford algebra

. Outer product A is anti-commutative for vectors:
x Ay = —y A x, associative and linear.

. Duality laws between inner and outer product:

A-B*=(AANB)" and AAB"=(A-B)

. Distributing the inner product, recursive formula:

a-(bANC)=(a-b)NC —=bA(a-C)

. Geometric product with vector x and blade A:
tA=x-A+axNA

v A=3(xrA—Az) and zAA=1zA+Ax),

. Versors:

e Crade preserving: X +— VXV!

e Compose through geometric product



5 Incidence

Incidence relationships are dual * to spanning:
(ANB) = B*A A"

Or more directly:
ANB=B"-A
This is an oriented incidence. DEMOincidence ()

INCIDENCE

Al = -dual(no-ni/2), A2 = -dual(no-2 ni), A3 = -dual(no-ni),
dynamic{ A12 (A2/15) .A1,7};

dynamic{ A23 (A3/15) .A2,%};

dynamic{ A31 (A1/15) .A3,%};

dynamic{ A123 = (A23/A2).A12,};

Note the automatic occurrence of ‘tmaginary’ rounds. (No com-
plex numbers, but simply rounds with negative ‘radius squared’.)

* But you have to be a bit careful: the dual should be relative to
the smallest common space, known as the join.
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6 Closure under incidence

These ‘nice’ intersections are not all.

What happens when two spheres touch?

sl = pt(-el)-ni/2, s2 = pt( el)-ni/2,
dynamic{ both = dual(sl1”s2),};

These spheres have a common 2-tangent.

What happens with two parallel planes?

pl = el, p2 = e2+ni,
dynamic{ both = dual(p1~p2),};

These planes have a common 2-attitude.

So we have the elements of ‘Euclidean incidence geometry’:
e rounds and dual rounds (both real and imaginary)
e flats and dual flats
® tangents
o attitudes

This is the complete list of objects, we have algebraic closure.



7 Why it works (finally!)

The idea behind the conformal model is to embed the Euclidean
metric in the inner product. Introduce the point at infinity oo.

Now define for two points P, Q represented by vectors p, ¢:
p q
= —3d%(P, Q)

oo-p.oo-q

So oo - p # 0. Distance between p and oo should be infinite:
oo - 00 = 0. Note: p-p =0, so points represented as null vectors.

That’s all! The rest is GA and interfacing.

In this talk we will use normalized points for convenience:

00-p=-—1, so: p-q=—3dp(P,Q).



8 Representation of some common elements

e Midplane between points:
rp=x-q = z-(p—q =0
So: p — ¢ is dual representation of midplane.

e Sphere center ¢ radius p:
roc=—5p < x-c—%pr-oo:x-(c—%pQOo):O
S0: ¢ — %pQ oo is dual sphere.

e Sphere center ¢, point a on it:
c—1p°00=c+(a-c)oo=(a-c)oo—(a-o0)c=a-(cAoo)
So: a - (¢ A 00) is dual sphere with center ¢, point a.

e Plane normal n, distance o:

Xx-n=0 <= z-(n+do0)=0

So: n + 0 oo is dual plane.



9 The two sphere representations

Dual representation s of a sphere with center m and point a:
s=a-(mA o)
Direct representation S of the sphere through 4 points a,b,c.d:
S=aANbANcNd.
Their equivalence is a nice demo of the power of CGA ‘reasoning’.
Center m is intersection of 3 dual midplanes (b—a), (c—a), (d—a),
so dual flat center point is:
(mAoo) =(b—a)A(c—a)A(d—a)
This helps use relate the two immediately. Since 0 = x - s,

0 = (z-( )
= xA(a-(mAx))
= A )
=z A(
=z A(aANbANcAd)

This is of the form 0 = z A S. Done! Run DEMOspheres ().

Incidentally, this shows why the representational space is 5-dimensional.
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10 Points in coordinates (but don’t think that way!)

Our inner product definition can be shown to lead to the embedding
of a point with Euclidean position vector p as:

p:0+p+%p2c>o

where o is the point at the origin, p Euclidean position.

So basically like an extra homogeneous coordinate:
p=(p,1,5p°)"

on the 5D basis {0, e, e, €3, 00} with multiplication table:

o | X |00
o| 0 [0]—1
0 [x*] 0
oo||—=1107] 0

The —1 makes 1t all work:

vy = (0+x+1ix00)  (0+y+1iy°o0)

(
= (0+0—=3y)+ (0+x-y+0)+ (—ix*+0+0)
= —3(x—y)

Nice trick: linearization of a squared distance!
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11 Visual demonstration: why blades can be rounds

(Run DEMOhomogeneous () to see how homogeneous coordinates
are extended in GA.)
Visualize the points
_ 1.2
p=0+pti5p o0

for a model of 2-D Euclidean: show Euclidean and oo dimension,
use homogeneous coordinate dimension to enable translated flats.

>

Now run DEMOc2ga_init (), DEMOc2ga x (), DEMOc2ga xy ().
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12 Language: orthogonal specification 1

As for 3D vectors, the inner product is about orthogonality:
A-B=0 < ALlB

(We will not prove this.) You can also use this on the duals:
A" B"=0 <= ALDB

Play with this by plotting value of inner product for two spheres.
DEMOinnerortho ().

What about a point x7
r-A'=0 & 21 A & €A & zNA=0

Since z* is like a sphere of radius zero, it is consistent. This is why
Fuclidean points are small dual spheres (and not small spheres).

Weird, but consistent.
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13 Language: orthogonal specification 2

Make the object X orthogonally cutting three spheres A, B, C'.

(o

(e

X -A=0,s0X Aa=0with a = A" a dual sphere. Similar for
others. So:
X=aANbAc

In particular, if A etc. are spheres of radius zero, we get a circle
containing the points a, b, c.

a = no-ni/2,
b = no-ni/4,
c = no-ni/8,
dynamic{ X = a"b"c,}

The wedge of points (i.e. small dual spheres) gives direct represen-
tations of rounds.
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14 Dual sphere and dual plane revisited

The object p - (¢ A 00) is the dual sphere with center ¢, through p.
We have seen the algebra; now get the ‘language’ aspect:

(p-(cAo0))" =pA(choo)

So this contains point p and is orthogonal to ¢ A oco.

Apparently ‘being orthogonal to ¢ A 00’ is ‘staying equidistant to
c’. We can imagine a flat point as having ‘rays’ to infinity.

Similarly, we know that p—q is the dual midplane of p and ¢g. Write
it multiplicatively

p—q=00-(pAq)
and note that we can give it the immediate interpretation: it is a
dual object which contains oo and is orthogonal to p A q.

So we learn. What is - (pAq) 7
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15 Language: orthogonal specification 3

Q: WhatisoAeg Aoo ?

A: Immediately, we see that the points o and oo should be on
it, and that it should cut e;* orthogonally. But that is the origin

plane with normal vector e;. So this is a line in e; direction.

Alternatively, see this as o A (e; A 00), i.e. the point at the ori-
gin with the attitude e; A 0o attached.

Q: What is p A e; A ey?

A: See DEMQOortho ().
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16 Language: orthogonal specification 4

All this is consistent with the incidence operation:
(ANB) = B*AA*

By our semantics, the right hand side is an object orthogonal to A
and B; its dual is in both A and B. (Taking the dual relative to
the join then makes it the largest set common to A and B.)

Q: Specify the contour circle seen on a sphere S from a point p.

A: (sA(s-(pAN0))) =s-(sAN(pAoo)).
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17 A natural language for Euclidean geometry

We get an algebraically founded language for Euclidean elements,
containing precise descriptions of useful (but sloppy) classical ele-
ments.

For instance, the riches of vector-related concepts for 1-directions.
At the origin o:

e ‘normal vector u’ is dual plane u
e ‘direction vector u’ is the attitude u A oo
e ‘tangent vector u’ is o Au

e ‘position vector u’ is the line element o A u A oo

P u u

*——» - ———— P —————— -
p
tangent vector p A (p - (woo)) line vector p A (uoo)

i u
. ou —
L —_—
: —_
: —_—
e
' S
: —_—
:—>
g —_— —_—

Pr— »
'  —

normal vector p - (uoo) free vector uoc
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18 Towards versors: objects as operators

An object can be used as a mirror to act on other objects.
dynamic{mirror: MX = M X/M,}

The object X can be any blade, and so can the mirror M.

REFLECTIONS IN C3GA

Footnote: Structurally OK, but actually, for correct orientation:

X = (=1)* UM XM !
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19 Generalization of classical formulas

In any standard graphics book you find for the reflection of a vector
u in a plane with unit normal n (in the origin!):

u — u—2(u-n)n

Using 3D Euclidean GA we convert this to the versor expression:

u +— —1r1u1r1_1

Embed in CGA: the full ray is /o = o A u A 00, s0

lo=0AuAoo — oA(—nun ')A oo
= (—non_l) A (—n un_l) A (—n oo n_l)

= —n(oAuAoco)n!

— —n/lyn!

since versors are GP preserving and linear, therefore A-preserving.
Same formula it does the whole line!

Now apply a Euclidean rigid body versor A from CGA to move
the situation to general position and orientation. Versors, so:

A(-nlyn ) A~}
= —(AnAH(ALA ) (Ant AT

= —nln!
where ¢ and n are A-transformed line and dual plane. Same for-
mula does any situation of lines and planes. Also, orientation and
position done in one go!

DEMQOreflect ().
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20 Universal operations: exponentials of bivectors

The algebra takes care of the versor properties. You know from 3D
the rotors:

exple; Nexd) = 1+ b (el Aey) + Lo% (e Aey)’ + -+
= (I—36"+- )+ (0 — 36"+ )(e1 A ey)
= cos¢+singe; A ey

Because (e; A ey)? = —1, we get trigonometry.

In CGA we also have translators. Null vector oo is used:
exp(t A oo) =14 (EAoo)+ (6 Ac0)”+-- =1+ (tAoo)
Because (t A 00)? = 0, we get additive properties. Composition:

exp(ty A 00) exp(t; Aoo) = (1 4+t Aoo) (14t Aoo)
= 1l+toNoco+t; ANoco+0
= 1+ (t2+t1) Ao
= exp((t2 + t1) A 00)

And of course we can translate o to any point:
exp(—p A 00/2) 0 exp(p A 00/2) = 0+ p + 1p” ¢

And there are more such versors, for scaling, transversion, loxo-
dromes and other conformal transformations. E.g. scaling:

exp(yo A\ o00) = coshy + sinhy o A 00
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21 Visualizing versor action

We choose to visualize a versor by its ‘trail’ after repeated action
on an object.

dynamic{ vtrail(V,A,30),}
V = exp(- el™ni/2);
A = no,

Rotation is exponent of dual line:

X = no, y = no,
dynamic{L: line
dynamic{V: V

X"y ni,};
exp(dual (1ine)/10);};

To make a screw, compose it with a translation:
dynamic{V: V = exp(-e1°ni/10) exp(dual(line)/10);};
Or couple a rotation and a translation:

dynamic{V: V = exp(-(y-x)~ni/10) exp(dual(line)/10);};

At all times, you can change A, for all objects transform the same:
planes, spheres, dual planes, circles, etc.
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22 A robot

Use these elements to represent and animate a PUMA robot.

Run DEMOpuma init (), dynamic{puma(atime) ;}, animate.
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23 Rigid body motions as ratios of flats

A translation versor is a ratio of two flat points:

pl = no, label(pl);

p2 = no, label(p2);
dynamic{ol: ol = pl~°ni,};
dynamic{o02: 02 = p2°ni,};
dynamic{V: V = 02/01;};
dynamic{vtrail(V,A),}

A rotation versor is a ratio of two (dual) planes:

nl = (e3ga) el, label(nl);
n2 = (e3ga) e2, label(n2);
dynamic{ol: ol = pl.(nl"ni),};
dynamic{o02: 02 = p2.(n2°ni),};

General rigid body motions (screws) are ratios of lines:

pl°ni°ni,}
p2°n2°ni,}

dynamic{ol: ol
dynamic{o2: 02

Can find more general transformations in this way.
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24 Why versors are essential

A proper geometrical system has a nice transformation property:
any object made by any construction should transform covariantly
under the symmetries A of the system:

XoY = AXoY)=A(X)oAY)

Recipe: If you have a geometry characterized by symmetries, find a
GA model in which those symmetry operations are represented as
versors. Base all operations on (sums of ) geometric products. This
gives automatically a structure-preserving geometrical system.

XoY=XY = (AXAH(AYA H=AXY)A!

(and linear). So all permissible constructions are covariant. You
can’t go wrong. This is extremely convenient in programming.

Using versors, objects and their relationships transform identi-
cally — so the geometric relationship is preserved.
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25 Non-Euclidean versors

The conformal model is overkill for Euclidean operations, but it is
the smallest algebra in which their symmetries become versors.

We get other versors too, in fact, all conformal transformations.
Here's a sample, the loxodromic transformation generated by:

V =exp(oAe;+ 00 A ey)

[t is nice that all these are now available in n-D.

LOXODROME
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26 Euclidean Projection: unusual

Set up a projector and play with it. Note how non-flat points
project.

dynamic{PX = (X.P)/P,};

P = dual(no-ni/2),

X = (no+ni/10)"e27e3,

dynamic{AX = alpha( dual(P)"X, 0.2)}; // has X, hits P straight

Plane on a sphere gives a sticking out dual sphere, which indeed
hits P straight and therefore is ‘in’ P.

Q: Specify the sphere S containing a circle C as equator.

A:ltis " = ((oo A C)/C, rejection of oo from C.
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27 But, is it worth it? A 2001 ray tracer application

Basic operations:

model | features rendering
3D LA | vectors and matrices only 1.0 X
3D GA | quaternions, subspaces direct 2.5 X
4D LA | homogeneous pts, lines ad hoc 1.0 x
4D GA | affine subspaces, univ.lin.map 3.0 X
5D GA | spheres and circles, RBMs as versors 5.7 X
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28 Conclusion

e In CGA, we have a consistent and compact framework for Eu-
clidean geometry:.

e The equations strongly suggest a specification /construction lan-
guage — its nouns, its verbs.

e [t should help to adapt our thinking to these new primitives
and relations.

e Playing with software helps build this intuition.
e For uncorrupted students, it is easy and natural.

e But even we can still learn this...

Tutorials and GAviewersoftware for the DEMOs will appear on:

http : //www.science.uva.nl/ga/
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