
Fundamental matrix & Trifocal tensor

• Computation of the Fundamental Matrix F

• Introduction into the Trifocal tensor
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Figure 1: Two-view geometry(a), Tri-view geometry(b).
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The fundamental matrix
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• F relates x to its epipolar line l′ = Fx
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• F relates x to its epipolar line l′ = Fx

• Since x′ must be on l′ we have x′⊤l′ = 0
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The fundamental matrix
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• F relates x to its epipolar line l′ = Fx

• Since x′ must be on l′ we have x′⊤l′ = 0

• Thus x′⊤Fx = 0

• F is singular, of rank 2, det F = 0 and F has seven degrees
of freedom.
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8-point algorithm

x = (x, y, 1) x′ = (x′, y′, 1)

Let f be the vector representation (row-major) of F then

x′⊤Fx = 0 becomes (x′x, x′y, x′, y′x, y′y, y′, x, y, 1)⊤f = 0.

For n corresponding points we get the set of homogeneous
equations:

Af =







x′
1
x1 x′

1
y1 x′

1
y′
1
x1 y′

1
y1 y′

1
x1 y1 1

...
...

...
...

...
...

...
...

...
x′

nxn x′
nyn x′

n y′nxn y′nyn y′n xn yn 1






f = 0.

The least-squares solution can be found using the SVD of A i.e.
f is the singular vector of A with the smallest singular value.
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Enforcing the singularity constraint

F found by solving the set of linear equations does not
guarantee that F has rank 2 and thus is singular.
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Enforcing the singularity constraint

To enforce rank 2 on F , replace F with F ′ where F ′ minimizes
the Frobenius norm ‖F − F′‖Frobenius.

‖M‖2

Frobenius =
min{m,n}
∑

1

σ2

i

with σn being the singular values of M.

This can be solved with the SVD of F .
Given F = UDV⊤and σ1 > σ2 are the two largest singular values

of F then:

F ′ = U







σ1 0 0

0 σ2 0

0 0 0






V ⊤.
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7-point algorithm

• Using the singularity constraint we can also compute F
when A has rank seven and is made of seven point
correspondences.

• In this case the solution to Af = 0 becomes
two-dimensional. The solution is in the form:

F = αF1 + (1 − α)F2

where F1 and F2 are the matrices corresponding to the
generators of the right null-space f1 and f2.

• Note that the singularity constraint enforces det F = 0 thus
det(F = αF1 + (1 − α)F2)=0. This gives a cubic polynomial
in α from which we can solve for α.

• From this we get one or three real solutions for α. Given
these solutions, we can put them in F = αF1 + (1 − α)F2 to
retrieve the F’s.
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Normalization

• When computing the fundamental matrix (using the
algorithms described thus far) normalizing the points is the
key to good performance.
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Normalization

• When computing the fundamental matrix (using the
algorithms described thus far) normalizing the points is the
key to good performance.

• Translate the points so that the centroid of the reference
points is at the origin.

• Scale the points so that the RMS distance of the points
from the origin is

√
2.

• let T and T′ be these appropriate normalization (translation
and scaling) matrices. Then estimate F on the points
xi = Txi and x′i = T′x′

i
.
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Normalization

• When computing the fundamental matrix (using the
algorithms described thus far) normalizing the points is the
key to good performance.

• Translate the points so that the centroid of the reference
points is at the origin.

• Scale the points so that the RMS distance of the points
from the origin is

√
2.

• let T and T′ be these appropriate normalization (translation
and scaling) matrices. Then estimate F on the points
xi = Txi and x′i = T′x′

i
.

• Transform the solution for F back to the unnormalized
frame with F = T′⊤FT.
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The Gold standard method and reprojection

• Make an initial estimate of F using the normalized 8-point
algorithm.
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The Gold standard method and reprojection

• Make an initial estimate of F using the normalized 8-point
algorithm.

• From this F extract two camera matrices P = [I|0] and
P = [[e′]× |e′] with e

′ obtained from F
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The Gold standard method and reprojection

• Make an initial estimate of F using the normalized 8-point
algorithm.

• From this F extract two camera matrices P = [I|0] and
P = [[e′]× |e′] with e

′ obtained from F

• From the correspondences and F estimate the 3D positions
of the real-world points relating to the imaged points.
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The Gold standard method and reprojection

• Make an initial estimate of F using the normalized 8-point
algorithm.

• From this F extract two camera matrices P = [I|0] and
P = [[e′]× |e′] with e

′ obtained from F

• From the correspondences and F estimate the 3D positions
of the real-world points relating to the imaged points.

• Given this 3D points project them back to both image
planes using the estimate of the camera projection
matrices (that were based on F).
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The Gold standard method and reprojection

• Make an initial estimate of F using the normalized 8-point
algorithm.

• From this F extract two camera matrices P = [I|0] and
P = [[e′]× |e′] with e

′ obtained from F

• From the correspondences and F estimate the 3D positions
of the real-world points relating to the imaged points.

• Given this 3D points project them back to both image
planes using the estimate of the camera projection
matrices (that were based on F).

• The difference in the real points and the backprojected
points is what we want to minimize by varying the camera
matrices P and P′ and the coordinates of the 3D points
(and thus also implicitly by varying F).
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The Gold standard method

• Minimize a geometric distance (cost):

where d is differentiable in parameters relating to F, xi and
x′i are the correspondence points and x̂i and x̂′i are their
reprojections given the current F.
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The Gold standard method

• Minimize a geometric distance (cost):
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2 + d(x′i, x̂

′
i)

2,

where d is differentiable in parameters relating to F, xi and
x′i are the correspondence points and x̂i and x̂′i are their
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• Because the cost is differentiable we can locally
approximate it with a linear function.
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where d is differentiable in parameters relating to F, xi and
x′i are the correspondence points and x̂i and x̂′i are their
reprojections given the current F.

• Because the cost is differentiable we can locally
approximate it with a linear function.

• This means we can use Gauss-Newton, gradient descent
or preferably Levenberg-Marquardt to iteratively find a
solution.
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A comparison
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Automatic computation ofF

Look at Hartley and Zisserman page 291 Algorithm 11.4.
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UsingF for image rectification

Look at Hartley and Zisserman page 307 Algorithm 11.12.3
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The Trifocal tensor

/

l
/

l
l / /

L

/ /

C

C

C

• For three camera’s the trifocal tensor is what the
Fundamental matrix is for two camera’s.
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• For three camera’s the trifocal tensor is what the
Fundamental matrix is for two camera’s.

• It captures the complete (projective)geometric relations
between the three views.
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• It captures the complete (projective)geometric relations
between the three views.

• It is uniquely defined by the internal and external camera
properties.
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• For three camera’s the trifocal tensor is what the
Fundamental matrix is for two camera’s.

• It captures the complete (projective)geometric relations
between the three views.

• It is uniquely defined by the internal and external camera
properties.

• However, it can be computed directly from image
correspondence without knowledge of the internal and
external camera matrices.
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The Trifocal tensor
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• Image lines back project to scene planes.
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The Trifocal tensor
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• Image lines back project to scene planes.
• In general three planes do not intersect in a single line.
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• Image lines back project to scene planes.
• In general three planes do not intersect in a single line.
• Thus, the fact that three image lines correspond to the

same scene line, provides a geometric constraint.
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The Trifocal tensor

/

l
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l
l / /
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C

C

Three corresponding image lines: l ↔ l′ ↔ l′′

Camera matrices (3x4) for the three views:
P = [I |0] , P′ = [A |a4 ] , P′′ = [B |b4 ]

a4 = e′ and b4 = e′′ are the epipoles arising from the first camera
center C thus: e′ = P′C and e′′ = P′′C
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The Trifocal tensor

/

l
/

l
l / /
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The lines: l ↔ l′ ↔ l′′ back project to the planes:

π = P⊤l =

(

l

0

)

, π′ = P′⊤l′ =

(

A⊤l′

a⊤
4
l′

)

,

π′′ = P′′⊤l′′ =

(

B⊤l′′

b⊤
4
l′′

)

.
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The Trifocal tensor
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l / /
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The planes π, π′ and π′′ coincide in the line L

This can be expressed algebraically with:
M = [π, π′, π′′] , det (M) = 0
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The Trifocal tensor
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/

l
l / /

L

/ /
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C

C

M = [m1,m2,m3] =

[

l A⊤l′ B⊤l′′

0 a⊤
4
l′ b⊤

4
l′′

]

Since det (M) = 0 The columns must be linearly dependent.

Thus, m1 = αm2 + βm3
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The Trifocal tensor
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M = [m1,m2,m3] =

[

l A⊤l′ B⊤l′′

0 a⊤
4
l′ b⊤

4
l′′

]

Since the bottom left element of M = 0 it follows that:

α = k(b⊤
4
l′′) and β = −k(a⊤

4
l′)
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The Trifocal tensor
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M = [m1,m2,m3] =

[

l A⊤l′ B⊤l′′

0 a⊤
4
l′ b⊤

4
l′′

]

For the top three vectors of M this gives:

l = (b⊤
4
l′′)A⊤l′ − (a⊤

4
l′)B⊤l′′ = (l′′⊤b4)A

⊤l′ − (l′⊤a4)B
⊤l′′
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The Trifocal tensor
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For the i-th element of we have:

li = l′′⊤(b4a
⊤
i
)l′ − l′⊤(a4b

⊤
i
)l′′

li = l′⊤(aib
⊤
4
)l′′ − l′⊤(a4b

⊤
i
)l′′
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The Trifocal tensor
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li = l′⊤(aib
⊤
4
)l′′ − l′⊤(a4b

⊤
i
)l′′

Ti = aib
⊤
4
− a4b

⊤
i

li = l′⊤Til
′′
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The Trifocal tensor
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The set of the three matrices T1,T2,T3 constitute the trifocal
tensor in matrix notation.

l⊤ = (li = l′⊤T1l
′′, li = l′⊤T2l

′′, li = l′⊤T3l
′′) =

l′⊤
[

T1 T2 T3

]

l′′
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Line-Line-Line correspondence
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l⊤ = l′⊤
[

T1 T2 T3

]

l′′
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Point-Line-Line correspondence

/

X

l

C
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l//

x//

l′⊤
(

∑

i

xiTi

)

l′′ = 0
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Point-Line-Point correspondence

/

/ /

C

C

Cx

x/ /
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x/

X

L

l′⊤
(

∑

i

xiTi

)

[x′′]× = 0
⊤
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Point-Point-Point correspondence

/

/ /

x

x / /

X

x /

C

C

C

[x′]×

(

∑

i

xiTi

)

[x′′]× = 03×3
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Extracting the fundamental matrix

/

l
/

l
l / /

L

/ /

C

C

C

F21 = [e′]× [T1,T2,T3]e
′′
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Retrieving the camera matrices

/
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/ /
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C

P′ = [[T1,T2,T3]e
′′ |e′ ]
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Retrieving food
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