
Marginal Notes for

Hartley & Zisserman’s

‘Multiple View Geometry’

editor: Leo Dorst

March 17, 2008

Abstract

During our reading club discussions, some clarifying remarks came
up. This is a summary of them. In the following HZ stands for Hartley
& Zisserman.

1 Introduction – a Tour

1.1 Points at Infinity (page 2)

Points at infinity are a different term for what we would more commonly call
directions. The statement that two parallel lines intersect at a point at infinity
can then be read as the rather trivial: ‘two parallel lines have a direction in
common’. Two non-parallel lines in the plane have a point in common, we
would say they intersect. Homogeneous coordinates are just a way of making
‘having an element in common’ be a single operation, of which the outcome is an
element that we would call a point if it is of the form (x, y, 1)>, and a direction
if it is of the form (n1, n2, 0)>. HZ prefer to call everything a point, and then a
direction is a point at infinity.

The points at infinity form a hyperplane (in 2D, a line); we would call this
the horizon. A projective transformation can reveal this line as a finite line in
an image – it is a picture of the horizon, and its points would normally be called
vanishing points (where parallel lines meet).

1.2 Oriented Projective Geometry (page 2,26)

The introduction of homogeneous coordinates by mapping a point (x, y)> to
(kx, ky, k)> with k 6= 0 seems fine. But using the same mapping to map rays
loses useful information. A ray travels alongs its carrier line in a certain direc-
tion, and if you can keep this information you will be able to distinguish later
between things in front of or behind the camera, when a ray hits an object from
the outside or the inside, et cetera. It is better for applications to keep track of

1



the sign of k for the embedding of a ray or line. This gives oriented projective
geometry, worked out graphically in pleasant detail by Stolfi [2]. The mathe-
matical structure of projective spaces here does not quite match our needs in
imaging. HZ do not seem to be aware of this, which is a pity.

2 Projective Geometry and 2D Transformations

2.1 Algebra and Coordinates (page 25,26)

Using algebra is not identical to using coordinates; there is an intermediate
level of the algebraic properties with clear geometrical interpretations which
HZ ususally skips, but which we will try to highlight. This level is probably
best described using geometric algebra [1], but can also be made explicit in the
linear algebra notations that HZ use.

2.2 Points and Lines (page 26)

HZ destroy the notational difference between points and lines (hyperplanes in n-
D) by denoting both as column vectors. But since they behave differently under
projective transformations (a point has p 7→ Hp, a line goes like l 7→ H−>l),
you will need to distinguish them in your software.

Other authors denote points by column vectors, and lines (hyperplanes) by
row vectors. That is much more clear, and gets the corresponding transforms
automatically correct. This is an annoying example of clumsiness introduced by
focusing on coordinates too much, whereas a bit more true algebraic structure
would have helped.

2.3 Homogeneous Representations of Mappings (page 34)

It should not surprise us that homogeneous coordinates are useful for imaging,
since they correspond precisely to the algebraic structure of what happens when
you look at something with a pinhole camera. If you gaze at a 3D point x =
(x, y, z)> through a camera with focal length 1, pointed in the e3-direction, the
point maps on the image plane to the 3D point (x/z, y/z, 1)> (or at least, the
image plane as we draw it in front of the camera, as is common). Working in
2D image coordinates, this is the point (x′, y′)> = (x/z, y/z)>. So conversely,
if we have a 2D plane, we can imagine it as an image plane of a camera of one
more dimension, and study all (2+1)-D points that might have mapped onto a
given point. These can then be any multiple k of (x′, y′, 1) - which we could also
see as changing the focal length of the pinhole camera to k. Using homogeneous
coordinates is literally like looking at an n-D space from an perpendicular extra
dimension.

2



� � ��

� �����	� � �
�����
� �
���� � �������

Figure 1: (From [1]) The combinations of four points taken in the cross ratio.
Read the GA expression p∧ q as the oriented distance from p to q. The directed
arcs above the line go into the numerator, the directed arcs below the line into
the denominator. The arcs indicate the orientation in which you should measure
the distance as positive. Permutation of the points leads to other diagrams, but
always the division produces the invariant.

2.4 Hierarchy of Transformation (page 37 etc)

A transformation matrix indicates in its i-th column where the i-th basis vector
goes. Basis vectors are (1, 0, 0)>, (0, 1, 0)>, (0, 0, 1)>. In homogeneous coor-
dinates, we would interpret the first two as direction vectors (since the third
component is zero), and the final one as the representation of the point at
the origin (since the final component is 1). In this view, a point (x, y, 1)> =
x (1, 0, 0)>+y (0, 1, 0)>+ (0, 0, 1)> is made by moving x in the e1 direction and
y in the e2-direction, from the origin (0, 0, 1)>.

Specifying a transformation that keeps directions as directions and locations
(i.e., points) as locations implies that the first column (the image of e1) should
end in 0 (for it maps to a direction), the second in 0 (ditto), and the third
should end in 1 (for it maps to a point). That is the form of an affine trans-
formation (and therefore also of a similarity). And if e1 = (1, 0)> rotates to
(cosφ, sinφ)>, that means the first column of the matrix should be the direction
vector (cosφ, sinφ, 0)>. The point at the origin goes to (tx, ty)>, so becomes
the homogeneous point (tx, ty, 1)> – which is indeed the third column of the
similarity matrix.

In a projective transformation, the first column may have a last component
not equal to 0 – that implies that the direction (1, 0, 0)> has become a finite
point. When you take a bird’s eye view picture that includes traintracks towards
the horizon in the e1-direction of your planar coordinates, that is precisely what
happens: direction (= point at infinity in the original planar scene) becomes
finite point (= vanishing point in the picture).

So the last homogeneous coordinate is like a ‘point-bit’: if it is 1, we represent
a point, if it is 0 it is a direction. Of course, it is more than Boolean, its linear
change can be given an interpretation in projective transformations.

3



2.5 Cross Ratio (page 45)

The simplest way to think about a cross ratio is as a ratio of 4 oriented distances,
as in Figure 1 (from [1]). You can really use this constructively. Here is an
exercise from [1]:

• Question: You are to draw a sequence of equidistant telegraph poles
along a straight road in a picture showing the landscape seen in a bird’s
eye view, with the horizon 6 cm from the first pole, and the separation
between first and second pole 1 cm (see figure below). Compute where the
third pole should be. Extend this to computing the location of the k-th
pole. (Hint: Compute the cross ratio of the first two poles to the point at
infinity in a ‘straight’ photograph. Then realize that the cross ratio is a
projective invariant.)

�����

�����

• Answer: Let us solve this for pole k, numbering the poles from zero. We
compute a cross ratio as in Figure 1 for p as pole 0, q as pole 1, r as pole
k and s as the pole at infinity. That cross ratio, as a function of k, is(
(1)(∞− k)

)
/
(
(k − 1)(∞)

)
= 1/(k − 1). (If you are uncomfortable with

∞/∞ = 1, just use the pole numbered googolplex instead.) Since the
cross-ratio is a projective invariant, it should be the same in the picture
we draw. If pole k is drawn as a distance x from pole 0 in the picture, we
should therefore have:

(
(1)(6 − x)

)
/
(
(x − 1)(6)

)
= 1/(k − 1). It follows

that x = 6k/(k + 5) is the location, in centimeters, of pole k. The third
pole (k = 2) should therefore be drawn 5/7 cm further along the line.

2.6 Circular Points (page 52)

The circular points are unique, but they are points in homogeneous coordinates,
using complex coefficients. You are therefore allowed to use complex numbers as
the homogeneous scaling factor. So the point (1, i, 0)> is equivalent to (i,−1, 0)>

(multiply by i) and many other forms. Apart from that, the two circular points
are indeed distinct and unique.

4



3 Chapter 3

3.1 What’s in a Name (pg 65)

This book refers to projective transformations as collineations. Some other
books, often based in French research, call them homographies. The terms are
identical. Other terms used are projectivities (again, the same) and perspectivi-
ties (these are different in that they make a distinction between rays entering the
eye from the front and from behind, which is of course what we would actually
want).

3.2 Nullspaces and Spans (pg 67)

The (right-) nullspace is sometimes called the kernel of a transformation. It is
expressed as a span of some basis vectors. These English terms in linear alge-
bra are almost equivalent to defining products on vectors, for they are linearly
related to the vectors you put into them. In 3D, for instance, if you have two
vectors a and b, then make the matrix with these vectors as columns: [a,b],
and ask for the nullspace of the transpose, then you have:

nullspace[a,b]> = span{a× b},

for you are asking for vectors that are perpendicular to both a and b, and those
are of course a mulptiples of the cross product. This chapter does a lot of similar
things, for more vectors, in different dimensions.

Linear algebra has no structural way of defining the nullspace as a product,
because it has no algebraic way of representing higher dimensional subspaces
as elements of computation. Geometric algebra (or Grassmann-Cayley algebra)
does, and in it a∧b is the quantitative oriented 2-D space elements spanned by
a and b. That construction generalizes to arbitrary dimensions and subspaces.
The nullspace of the transpose is a characterization of that subspace by vec-
tors that are perpendicular to the subspace. In GA, that would be explicitly
indicated as a× b = (a ∧ b)∗ (the dual of the span).

By the way, the left nullspace of a matrix A is defined as the set of vectors
satisfying x>A = 0.

3.3 The Meaning of Plücker Coordinates (pg 70-73)

HZ do not talk about the geometrical meaning of the Plücker coordinates at all,
even though that is very straightforward. The 6 Plücker coordinates of a line
can be written as two vectors [a,m] (or a multiple of this pair), where a is the
unit direction vector of the line, and m its moment, characterizing the origin
plane in which the line resides, and its distance. See Figure 2. The Plücker
condition is then simply the demand that the moment is perpendicular to the
direction vector: a ·m = 0.

5



Figure 2: Plücker coordinates of a line in 3D. (From [1].)

The line through two points characterized by two vectors p and q is simply
characterized by the Plücker coordinates:

[a,m] = [p− q,p× q],

and this corresponds to the Plücker matrix
0 m3 −m2 a1

−m3 0 m1 a2

m2 −m1 0 a3

−a1 −a2 −a3 0


When you compare this to the HZ text, you see that the order and signs in
their definition of Plücker coordinates in (3.11) is completely garbled, though
all elements are there.

3.4 Twisted Cubic (pg 75)

What HZ call a twisted cubic is just a local representation of the simplest truly
3-D curve. Locally developing any trajectory in terms of its time parameter
θ gives that representation. I would never view that as the generalization of
a conic (that really is twisted!), but as the straightforward generalization of a
local curve representation.

The parametrization of the same curve does not affect how you interpret
it as a point set, so θ can be deformed on all sorts of ways. HZ permit only
distortion by projective transformation, which supposedly makes sense in the
context of their representation (even though it is a restriction).

3.5 A Typo (pg 84)

There is a rather obvious type 3 lines above Result 3.10: replace Ω∞ by Q?
∞.

6



3.6 A Matter of Definition

Equation (3.25) and similar equations: this is not just a way to compute the
cosine, it is the only way to define it within the non-metric context.

4 Estimation of 2D Projecctive Transformations

4.1 DLT (pg.90)

For an n ×m matrix, acting on m × 1 vectors, all vector components need to
go somewhere. This is expressed in a relationship between the dimensionality
of the image (the somewhere that vectors end up in) and the kernel (nullspace,
the vectors that go to zero) of the matrix:

dim(im(A)) + dim(ker(A)) = m

The dimension of the image is the rank. Therefore an 8 × 9 matrix of rank 8
has a 1-dimensional nullspace.

4.2 Algebraic Distance (pg. 93)

The formula at the bottom is of course not valid in general. x1 and x2 must
be the standard homogeneous 3D representations of two 2D points, with a 1 as
third coordinate. Then you can derive the formula simply. But all this context
means that it is not necessarily ‘more briefly’.

4.3 Geometric and Algebraic Distance (pg.96)

The relationship between algebraic and geometric distance is relatively simple,
with only the (unknowable) homogeneous factors wi needed for correction. But
since these factors are not part of reality, the algebraic distance is somewhat
unrealistic. You can more or less (not exactly as Leo suggested) imagine it
as the distance between two representative points on the homogeneous 3D ray
representing 2D points.

4.4 Gold Standard (pg.114)

HZ appear to mix some ideas here, for their convenience, putting a RANSAC
initialization inside their Gold Standard algorithm. It would have been nicer
to keep things totally pure. But since it is only initialization, Table 4.1 is still
usable enough.

4.5 RANSAC (pg.118)

The algorithm given is not quite the original RANSAC, the re-estimation step
iii is not original (but often done).

7



4.6 Pre-emptive RANSAC

The most expensive step of RANSAC is to compare the rest of the data to a
model based on the few selected inliers. Nowadays, there is a method that can
perform a greedy search on this fit, allowing early abortion. This is called ‘pre-
emptive RANSAC’, and a reference is Preemptive RANSAC for Live Structure
and Motion Estimation, by David Nistér (2003).

5 Algorithm Evaluation and Error Analysis

5.1 RMS (pg.133)

Without the factor of 1/2, this would be precisely the average distance. We
wonder why they put it in.

5.2 X (pg.134)

MZ go into math mode here. The notations M , N , X are not really specific,
although their constant illustration with 2D estimation then causes some con-
fustion. In that illustration, M = 8 (the number of true degrees of freedom
in H), N = 2K when using K data points to establish correspondence, and X
corresponds to the primed x′i in the second image.

5.3 The function f (pg.134)

There was some confusion about the definition of f and its argument P̄. In
the case studied, the P̄ contains the (8) variables in H̄, but the function f is
also determined by X̄ as its parameters. One could denote this dependence as
f(H̄; X̄).

5.4 Nσ2 (pg.134)

The Nσ2 is not just a ‘notation’, it is the exact result.

5.5 Unfortunate drawing? (pg.135)

Drawing 5.2 appears to do the linear approximation at a maximum, or a ridge,
of the SM -surface. That makes for a clear picture, but it is actually a location
where the linearization is rather bad.

5.6 MLE (pg.135)

The actual MLE estimator should be the point closest to X on the surface S
in the proper metric on RN . If the surface is locally planar at X̄, this can be
approximated by the projection onto the tangent plane at X̄. HZ call this the
MLE, but it would have been better to call it ’linearized MLE’ or some such
term.

8



5.7 Convergence (pg.138)

It is very strange to base a convergence criterion on (5.7). All this equality
would test is if Pythagoras is valid, i.e. if the angle between X− X̄ and X̂− X̄
is a right angle. It would be better to make this a proper angle computation,
now the result depends on the magnitude of the Xs (if one compares different
estimators at the same X that might be OK). Also, all one would test is if
the estimator converges to the ‘linearized MLE’ (see previous remark). The
bullets indeed modify the strong claim, but in a manner that makes one doubt
its usefulness.

5.8 Typo (pg.145)

Halfway page 145, ‘an 8-dimensional surface SP ’ should be ‘an 8-dimensional
surface SM ’.

5.9 Monte Carlo (pg.149)

A lot more might have been said about the Monte Carlo method, which needs
to be used properly. Does anyone have a tutorial reference?

5.10 Inverse via SVD (pg.592)

The remark below A5.3 seems to say that computing the inverse of an m × n
matrix A is expensive via the SVD method if n << m. But in that case, one
just does the SVD of A>, which is related in a straightforward manner to that
of A. Daniel remarks that both ‘taking the inverse’ and ‘making the SVD’ are
of the order O(m3), though Golub and Van Loan give a constant factor of about
20 more for the SVD.

6 Camera Models

6.1 Camera Rotation and Translation (pg.155)

HZ are a bit sloppy when specifying the matrix (6.6). In this formula, the
translation is measured by C̃ (camera center in world coordinates), whereas the
R matrix is the orientation of the world frame relative to camera coordinates.
Had they been consistent and used the rotation matrix to denote the rotation
of the camera frame relative to the world frame, the matrix would have been[
R C̃
0 1

]
.

6.2 Vertigo Effect (pg.166)

Apparently, some of you watch the tour de France (why?), where this effect
appears when a motorcycle camera zooms in on a cyclist while the motor cycle

9



slows down.

6.3 World Origin in Affine Cameras (pg.167)

It puzzled us that the world origin should play such an important role in an
affine camera. The world origin has no absolute meaning. How do we resolve
this?

6.4 Weak Perspective (pg.170)

Who can give the derivation that connects the geometrical interpretation of
Fig.6.8 with the weak perspective formula (6.25)?

6.5 d and C

In the camera models, a confusion may arise between d and C in infinite and
finite cameras. The relationship in given in Table 6.1, and the distinction would
really disappear if we would treat d as ‘the camera center infinity’.

7 Computation of the Camera Matrix

7.1 Critical Configurations (pg.179-180)

Condition (i) is surprising, and not explained. Condition (ii) is somewhat hard
to parse, but seems to mean: the points may lie in a plane (which is obviously
degenerate), but even lifting some of them off the plane may retain degeneracy
if those still all lie in a single straight line through the camera center.

7.2 Restricted Camera Estimation (pg.185)

Daniel remarked that the principal point may be 50 pixels off for 1000× 1000,
and that this depends on the lens. Principal points may need to be re-estimated
often, especially when using zoom lenses or automatic motion stabilization cam-
eras.

7.3 Reduces Measurement Matrix (pg.186)

Using Â reduces the complexity for LM (the linear method is still as expensive).
Olaf used to use it, but for RANSAC he found that and here I cannot decypher
my notes, Olaf please send me your remark again.

7.4 Radial Distortion (pg.191)

If the principal point is estimated well, the distortion should be an even function
of r (the distance to the principal point). Other authors (like Zhang) use the
model L(r) = 1 + κ1r

2 + κ2r
4 + · · · . Is this a typo in HZ?

10



8 More Single View Geometry

8.1 A Star of Planes (pg.197)

How can a two-parameter family have a three-dimensional basis? We don’t
know.

8.2 An Unlikely House (pg.203)

You should redraw the 3D house in Fig.8.5.

8.3 Short Calculation (pg.203 line -4)

Olaf’s short calculation used that the skew was zero, and he wondered whether
that generalizes. Who knows?

8.4 Rotation Angle from Matrix (pag.204)

A simpler way to get a rotation angle from a matrix is through: φ = (acos(trace(R))−
1)/2. The sign of the angle is determined by the chosen orientation for the ro-
tation axis.

8.5 Calibration (pg.211)

Zhang gives a more down-to-earth derivation of (8.12) and then relates it to the
absolute conic (possibly because H or Z were reviewers of his paper). We will
see this later when Daniel treats Zhang.

8.6 Vanishing Points (pg.213)

Olaf points out that HZ could avoid treating vanishing points as a special case,
within the projective context. But at least they finally give some intuition on
them.

9 Epipolar Geometry

9.1 Derivation of Lemma 9.11

The step ‘[a]×(kÃ− A) = 0 and so (kÃ− A) = av> for some v’ is not completely
trivial, but if you apply both sides to a vector y you see that this becomes
equivalent to stating that a× a = 0.

11



9.2 The Essential Matrix (pg.257)

As Olaf said, to roboticists the essential matrix is more essential than the more
fundamental fundamental matrix, because we often have one calibrated camera
with which we have to understand the world. The derivation of the essential
matrix can de done fairly directly once you realize that x̂>[t]×Rx = 0 can
be rewritten to x̂ · (t × Rx) = det(x̂ t Rx) = 0 and therefore expresses the
coplanarity of x′, t and Rx (all vectors that can be considered to reside in the
primed coordinate system). That is basically Fig.9.1.a, where the calibration
allows us to consider t, x and x̂ as absolute directions in space.

11 Computation of the Fundamental Matrix

11.1

The Frobenius norm between matrices is just the square root of the sum of
squared differences between corresponding matrix elements. It is the same as
the Euclidean distance between the matrices written as vectors (as we often
do in solving equations). It is therefore an algebraic distance, not necessarily
meaningful to the geometric interpretation of the matrix. The Frobenius norm
of a matrix can be rewritten in terms of the sum of the squares of the singular
values, which helps in its interpretation.

11.2 The minimum case (pg.281)

The general solution would be αF1 + βF2, but as always the scale of F is
immaterial so we can take the affine combination αF1 +(1−α)βF2 and not lose
anything.

11.3 Algebraic Minimization

Gijs noted an issue: if you want to apply Levenberg-Marquardt, you need a
Jacobian. What is the Jacobian in this section? it is also not specified in
Algorithm 11.2.

11.4 Envelope of Epipolar lines (pg.300)

The step from (11.12) to (11.13) had me puzzled, but it is simply a matter of
applying the definition of the squiggled ms to rewrite them to the unsquiggled
ones, and similar for Σ according to the definition just below (11.11).

12



15 The Trifocal Tensor

15.1 Tensor Notation

Finally, on page 376, HZ make a distinction between points and hyperplanes,
as column or row vectors. This is very convenient, as it makes tranformations
universal. For instance, performing a homography H on a point x is in matrix
form Hx, whereas the same homography applied to a hyperplane (line in 2D)
Π is in matrixform H>Π. so you, and your software, need to know whether the
vectors were intended to represent points or lines. This is extra administration,
and extra code.

In tensor notation, this is completely unnecessary. A point is characterized
on a frame {ei} as x = xiei, and a hyperplane on the reciprocal frame as
Π = πiei. The transformation of either is according the formula xi 7→ xj = Hj

i x
i

or πj 7→ πi = Hj
i πj . The tensor Hj

i therefore transforms either. No extra code,
no reason for bugs causing inconsistency (which are moreover hard to trace if
you have not even had the discipline to pick your data structures carefully, for
coordinate representations do not contain enough information to tell you what
is going on geometrically).

Tensors can be extended to transform arbitrary linear elements such as 3D
lines when using Plücker coordinates, where they should incorporate the natural
transformation law H(Λ) = H(x ∧ y) ≡ H(x) ∧H(y), where ∧ denotes the join
operation for linear elements (in this case making a line Λ out of two points
x and y). You need the slightly more general framework of Grassmann-Cayley
algebra to represent such elements naturally. If you need metric properties,
upgrade to the next level, which is geometric algebra.

16 Appenddix 6: Iterative Estimation Methods

16.1 Newton’s method (pg.598)

The dual explanation of Newton’s method is a bit confusing. The first time, they
use the model f to define the error and derive the corresponding least squares
problem. The second explanation is intended to be more general, starting from
an error cost function g (which they relate to the f just before). We will later
see how to manipulate such cost functions, so this is a useful abstraction.

16.2 Gradient Descent (pg.599)

It is a bit surprising that the conjugated gradient method is not mentioned. It
can avoid the zigzagging, see figure 3.

16.3 Sparseness (pg.602-608)

Daniel treated this sparsely, it is a rather specialized subject. How to split
one’s parameter matrix depends very much on the application. Olaf’s robot

13



Figure 3: (From http://en.wikipedia.org/wiki/Conjugate gradient method) The
red line is iterative conjugated gradients, the green line is iterative gradient de-
scent.

localization does it for image data not visible in all frames; Daniel’s skeleton
estimation has some hierarchical sparseness in teh kinematic chain parameters.
But it is good to know that fairly structural methods to treat the sparseness
are available when we need them.

16.4 Robust Cost Functions (pg 616)

The inpendence of the outliers for a cost function that becomes linear (as in
L1, Huber and pseudo-Huber) may require some explanation. If you have a 1D
data set of localized points xi, and want to find the a location that minimizes
the squared distance with all points, then this is the average, or mean, location.
If you want to minimize the absolute distance, then this is done by the middle
point (if the total number of points is odd) or by any location between the two
‘middle points’ (if you have an even number). In the latter case, any location
between those will do: if you shift a bit, what you lose on the left you gain
on the right. The location hence depends not on the precise location of the
data points, whether outliers or not, just on the location of the middle points.
Therefore a linear cost function is insensitive to outliers. More precisely: their
location does not matter at all, and whether they lie to the left or the right of
the ensemeble only influences the result a bit – but even then, the optimum only
shifts to the next ’middle’ point(s), and is still determined by the core data.

14



16.5 RANSAC/Huber (pg.620)

We wondered about the combination of RANSAC and Huber. Nowadays, people
use RANSAC to focus on a data set in which many outliers are already removed,
say to go from 30% outliers to 10%. Then one can use a Huber-like cost function
for the iterative optimization. But one could mix the methods using Huber
within RANSAC, or RANSAC after the Huber step. We do not know whether
this might improve results or convergence speed. Olaf found the paper by Thor
and Muray useful [3].

16.6 Sinc (pg.625)

The sinc in line 3 is not a typo, the definition is sinc(x) = sin(x)/x. But Leo
suspects that the proper normalization to get a unit vector would necessitate a
factor of 1/2 in front of the sinc.

17 The Zhang paper

17.1 Availability

Zhang’s method, including corner detection for the calibration patterns, was
implemented by Bouguet, as a toolbox in Matlab and later in OpenCV. It
includes non-uniform radial distortion, though Daniel tells us that those are
mostly zero for normal cameras and lenses.

17.2 General remarks

In Daniel’s experience, it is important to estimate different internal camera
parameters for fx and fy. Allowing this leeway gives better 3D reconstruction.
The camera center can be considerably different from the middle of the image.
Anything more than about 10 pixels has a significant effect. Zhang claims
that a slant of about 45 degrees gives the best calibration results, but this is in
simulation; when preceded by a corner detection, a more straight-on view would
probably be optimal. Olaf remarks that fish-eye lenses may not be describable
with a single viewpoint.

17.3 Orthogonalization

Zhang computes r1 and r2, then from them r3, and makes an orthonormal
set from those three using the SVD. A simpler, more insighful, and cheaper
method to achieve the exactly same result is to ‘spread the legs’ of r1 and r2

geometrically to make them right-angled (Daniel’s modification), and compute
r3 from the result.

15



References

[1] Leo Dorst, Daniel Fontijne, Stephen Mann, Geometric Algebra for Com-
puter Science, Morgan Kaufmann, 2007.

[2] Jorge Stolfi, Oriented Projective Geometry, Academic Press, 1991.

[3] P.H.S.Torr and D.W.Murray, The Development and Compari-
son of Robust Methods for Estimating the Fundamental Matrix,
http://www.robots.ox.ac.uk/ActiveVision/Publications/
torr murray ijcv1997/torr murray ijcv1997.html.

16


