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holds for an arbitrary orthonormal system {u;}. From (z,¥ [ wuz) =
(z, Iz), we obtain the following identity for an arbitrary vector and an arbi-
trary orthonormal system {u;}:

n

> (wi,z)’ = [z (2:64)

i=1

Let {A;} be the eigenvalues of (nn)-matrix 4, and {u;} the correspond-
ing eigensystem. Since {u;} is an orthonormal system, the matrix U =
(u1, w2, -, uy,) is orthogonal. Eq. (2.62) is equivalent to

a9

where A is the diagonal matrix with diagonal elements Ay, Ay, ..., A, in that
order; we write
A = diag(Ar, Aa, .y An). (2.66)

From eq. (2.65), we obtain
UTAU = 4, (2.67)

which is called the diagonalization of A. Applying the fourth of egs. (2.2) and
eq. (2.12) to eq. (2.65), we obtain the following identities:
trd =5 _ A, det A =] A (2.68)
i=1 i=1

From the spectral decomposition (2.62), the kth power AF for an arbitrary
integer k > 0 is given by

AF = Z Af i (2.69)
i=1

This can be extended to an arbitrary polynomial p(z):

p(A) = p(A)uiu]. (2.70)
f=1
If A is of full rank, its inverse A™' is given by
Al = Z %u;ug—. (2.71)
i=1 7

This can be extended to an arbitrary negative power of A (see the third of
eqgs. (2.21)):

= 1
A-_k = E X—ku;ug—. (2.72)
i=1
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2.2.2 Generalized inverse

An (nn)-matrix A is positive definite if its eigenvalues are all positive, and
is positwe semi-definite if its eigenvalues are all nonnegative; it is negative
definite if its eigenvalues are all negative, and is negative semi-definite if its
eigenvalues are all nonpositive.

For a positive semi-definite (nn)-matrix A, eq. (2.69) can be extended to
arbitrary non-integer powers A7, ¢ > 0. In particular, the “square root” VA
of A is defined by

VA = Z V] . (2.73)
i=1

It is easy to see that (VA)? = A. If A is positive definite, eq. (2.69) can be
extended to arbitrary negative non-integer powers such as A~2/%,
Let {ry,...,r}; denote the linear subspace spanned (or generated) by 7y,
vy T, 1€, the set of all vectors that can be expressed as a linear combination
l - . .
> ;= Citi for some real numbers ¢y, ..., ¢;. A positive semi-definite (nn)-
matrix of rank r (< n) has the following spectral decomposition:

&
A=) Nua], A>0, i=1,..r (2.74)
i=1
Let the symbol R"™ denote the n-dimensional space of all n-vectors. The
r-dimensional subspace
R4 = {15, CR? (2.75)

is called the range (or tmage space) of A, for which the set {u,, ..., u,} is an
orthonormal basis. The (n — r)-dimensional subspace

Ng ={trs15-Un} CR" (2.76)

is called the null space of A, for which the set {e,41, ..., w,} is an orthonormal
basis. The n-dimensional space is the direct sum of R4 and N4, each being
the orthogonal complement of the other:

R"=R4 &Ny, Rg LNy (2.77)

This definition implies
Py, A= APy, = A. (2.78)

The (Moore-Penrose) generalized (or pseudo) inverse'® A~ of A is defined

10The Moore-Penrose generalized inverse is often denoted by At in order to distinguish
it from the generalized inverse in general, which is defined as the matrix X that satisfies
AXA = A and denoted by A~. The generalized inverse we use throughout this book is
always the Moore-Penrose type, so we adopt the generic symbol A~. The symbol At will
be given another meaning (see Section 2.2.6).
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By with SVD, not
: o 1 h harder for
seudo-inverse rankr || 47 =)  —wu/. mue
|p udo-inv | ;f\f general A (2.121)

Evidently, the generalized inverse A~ coincides with the inverse A~' if A is
of full rank. From this definition, the following relationships are obtained (see
egs. (2.50) and (2.63)):

(A7) = A, Py, A" = A Py, = A",
A A=AA"=Py,. (2.80)
From egs. (2.78) and (2.80), we obtain

—>AA A=A, ATAA =A". (2.81)

The rank and the generalized inverse of a matrix are well defined concepts
in a mathematical sense only; it rarely occurs in finite precision numerical
computation that some eigenvalues are precisely zero. In computing the gen-
eralized inverse numerically, the rank of the matrix should be predicted by
a theoretical analysis first. Then, the matrix should be modified so that it
has the desired rank. Let A be a positive semi-definite (nn)-matrix of rank
v let A= D0 . Aiwgu] Ay > -0 > A, > 0, be its spectral decomposition.
Its rank-constrained generalized inverse (A)_ of rank r' (< r) is defined by

(A =) —uw]. (2.82)

From this definition, the following identities are obtained:
(A);A=AA)L =Py, , (A7AA)=(4);. (2.83)

Let A be an (nn)-matrix, and B an (mm)-matrix. Let S and T be nm-

matrices. Even if A and B are not of full rank, the matrix inversion formula
(2.22) holds in the form

(A+ Py, SBT Py,)”" =A" —A S(B™ + PMBTTA_SPNB)‘TTA_J

(2:84)
provided that matrix 4 + PNASBTTPMA has the same rank as A and
matrix B” + Py, TTA_SPNB has the same rank as B~. We call eq. (2.84)
the generalized matriz inversion formula.

2.2.3  Rayleigh quotient and quadratic form

For an (nn)-matrix A, the expression (u, Au)/||u|? is called the Rayleigh
quotient of vector u for A. Let Ay, and Anax be, respectively, the largest
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and the smallest eigenvalues of A. The following inequality holds for an
arbitrary nonzero vector w:

e A (2.85)

o ol
A'I'I'lll'l = ”u”z i
The left equality holds if u is an eigenvector of A for eigenvalue A.;,; the
right equality holds if u is an eigenvector for eigenvalue A,ax.

The Rayleigh quotient (w, Aw)/||u|? is invariant to multiplication of u
by a constant and hence is a function of the orientation of w: if we put n =
N[u], then (u, Au)/||u]|* = (n, An), which is called the quadratic form in n
for A. Eq. (2.85) implies

”rrlllligl(n, An) = Aams ”rrrllﬁii(l(n, An) = Ajpax. (2.86)
The minimum is attained by any unit eigenvector n of A for eigenvalue Anpin;
the maximum is attained by any unit eigenvector n for eigenvalue Apay. It
follows that an (nn)-matrix A is positive definite if and only if (r, Ar) > 0
for an arbitrary nonzero vector r; it is positive semi-definite if and only if
(r, Ar) > 0 for an arbitrary n-vector r.

For an arbitrary mn-matrix B, the matrix B "Bis symmetric (see the
second of eq. (2.2)). It is also positive semi-definite since (r, B' Br) = || Br||?
> 0 for an arbitrary n-vector r. If B is an nn-matrix of full rank, equality
holds if and only if = 0. For an (nn)-matrix A, its square root VA is also
symmetric (see eq. (2.73)). We can also write A = \/ZT VA. From these

observations, we conclude the following:

o Matrix A is positive semi-definite if and only if there exists a matrix B
such that A = B B.

e Matrix A is positive definite if and only if there exists a nonsingular
matrix B such that A = B'B.

e If A is a positive semi-definite (nn)-matrix, matrix B AB is a positive

semi-definite (mm)-matrix for any nm-matrix B.

2.2.4  Nonsingular generalized eigenvalue problem

Let A be an (nn)-matrix, and G a positive semi-definite (rnn)-matrix. If there
exists a nonzero vector w and a scalar A such that

(2.87)

the scalar A is called the generalized eigenvalue of A with respect to G the
vector u is called the corresponding generalized eigenvector. The problem of
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computing such u and A is said to be nonsingular if G is of full rank, and
singular otherwise.

Consider the nonsingular generalized eigenvalue problem. Eq. (2.87) can
be rewritten as (AG — A)u = 0, which has a nonzero solution u if and only
if function

(I)A G(A) = |\G — Al (2.88}

has a zero: ¢4 G( ) = 0. The function ¢4 () is an nth degree polynomial
in A and is called the generalized characteristic polynomial of A with respect
to G. The equation ¢4 (A) = 0 is called the generalized characteristic
equation of A with respect to G and has n roots {)\;} (with multiplicities
counted). The generalized eigenvalue problem with respect to I reduces to
the usual eigenvalue problem.

The generalized eigenvalues {);} of A with respect to G are all real. The
corresponding generalized eigenvectors {u;} can be chosen so that

(ui, Guj) = &ij, (2.89)

which implies

(u,—, Au.j) = AJ-J;_,-. (290)
Let us call the set {u;} so defined the generalized eigensystem of the (nn)-
matrix with respect to the positive definite (nn)-matrix G. Let U =
(ug,...,u,) and A = diag(\;,...,A,), respectively. Egs. (2.89) and (2.90)
can be rewritten as

U'GU =1, UTAU = A. (2.91)

By multiplying the first equation by GU from the left and U'G from the
right, the following generalized spectral decomposition is obtained:

A=GUAU'G = Z 2i(Gui)(Gu,)T. (2.92)

i=1

The number of nonzero generalized eigenvalues is equal to the rank of 4. If
A is positive definite, {\;} are all positive; if A is positive semi-definite, {A;}
are all nonnegative.

The generalized eigenvalue problem Au = AGwu reduces to an ordinary
eigenvalue problem as follows. Let C = G~'/% and @ = C ™ 'u (see egs. (2.71)
and (2.73)). It is easy to see that eq. (2.87) can be written as

Aw = A\, A=CAC. (2.93)

If an eigenvector & of A is computed, the corresponding generalized eigenvec-
tor is given by
u = Ca. (2.94)
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The expression (u, Au)/(u, Gu) for an (nn)-matrix A and a positive defi-
nite (nn)-matrix G is called the generalized Rayleigh quotient of u. It satisfies
. (w.Au)
~ (u,Gu)

Amirl E /\max» (295)
where A\pnin and Apax are, respectively, the largest and the smallest generalized
eigenvalues of A with respect to G. The left equality holds if w is a generalized
eigenvector of A for the generalized eigenvalue Ap,;,; the right equality holds
if u is a generalized eigenvector for the generalized eigenvalue Ajax.

2.2.5 Singular generalized eigenvalue problefsave for when we need it|

Consider the singular generalized eigenvalue problem of an (nn)-matrix A
with respect to a positive semi-definite (nn)-matrix G of rank m (< n). Let
{v1, ..., vy} be an orthonormal basis of the range Rz of G, and {vm+1, ...
v, } an orthonormal basis of its null space N(;. Define an nm-matrix P; and
an n(n — m)-matrix Py by

P‘.I. o (U], wey ”m}: Pﬁ — (Um-i-l: ey Un)' (2'96)

Then,
P'P =1 P'P,=0, P /P=1I (2.97)

Here, we only consider the case where P,’ AP, is nonsingular!!. Since R" =
R @ Ng. an arbitrary n-vector can be uniquely written in the form

u= Pz + Py, (2.98)

where @ is an m-vector and y is an (n — m)-vector. Egs. (2.97) imply that «
and y are respectively given by

=P u, y= P, u. (2.99)

Substituting eq. (2.98) into eq. (2.87) and noting the identities GPy = O and
PG = O, we can split eq. (2.87) into the following two equations:

A"z = \G'z, y = B*z. (2.100)

Here, A* and G" are (mm)-matrices; B" is an (n — m)m-matrix. They are
defined by
A*=P AP, - P/ AP, C"'PJ AP,

G*=P/GP,, B '=-C''P]AP, (2.101)
where C" is an (n — m)(n — m)-matrix defined by
C* =P/ AP, (2.102)

U This is always true if A is positive definite or negative definite.
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The definition of the matrix Py implies that the matrix G~ is positive definite.
Hence, the first of egs. (2.100) is a nonsingular generalized eigenvalue problem.

The generalized Rayleigh quotient of A with respect to G for u & Ng
(i.e.,  # 0) can be written as follows:

(u,Au) (z,A'z)+(y— B'z,C"(y— B'z))

(u,Gu) (z,G"z) (2.16%)
If C” is positive definite!?, we observe that
(u, Au) _ (z,A"2)
e > ; .
(u,Gu) = (2,G*z) = Amin, (2104}

where Anin is the smallest generalized eigenvalue of A with respect to G (see
egs. (2.100)). Equality holds if u is the corresponding generalized eigenvector.
If C* is negative definite'?, we observe that

(u, Au) 7 (z, A"x)
(u,Gu) ~ (z,G"x)

2 Appxs (2.105)

where Apax 1s the smallest generalized eigenvalue of A with respect to G.
Equality holds if u is the corresponding generalized eigenvector.

2.2.6 Perturbation theorem

Let A and D be (nn)-matrices. Let {\;} be the eigenvalues of A, and {u;}
the corresponding eigensystem:

Au; = N, (ui, uj) = dij. (2.106)
Consider a perturbed matrix
A'=A+eD (2.107)

for a small e. Let {\;'} and {u;} be, respectively, the eigenvalues and the
eigensystem of A’ corresponding to {A;} and {u;}. The following relations
hold (the perturbation theorem):

A = A + e(ui, Duy) + O(é2), (2.108)
ul=u;+e z (uj, Dus)u; +0(ed). (2.109)
= N

Let u, be the unit eigenvector of A for the smallest eigenvalue A,, which
is assumed to be a simple root. Let {u;} be the eigensystem of A defined so

12This is always true if A is positive definite.
13This is always true if A is negative definite.
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that the corresponding eigenvalues are A} > --- > A, _; > A,,. Define matrix
A" by

=i T
AF U
/\i - )‘n

§=—=1

(2.110)

This is a positive semi-definite matrix having eigenvalues {1/(\; — A,,)} for
the same eigensystem {u;}. If A\, = 0, the matrix A™ coincides with the
generalized inverse A~. Eq. (2.109) can be rewritten as

ul = u, — €At Du, + O(e?). (2.111)

Let A and D be (nn)-matrices, and G a positive definite (nn)-matrix.
Let {)\;} be the generalized eigenvalues of A with respect to G, and {u;} the
corresponding generalized eigensystem:

Au,' = /\;Gﬂ.g, (u;,Guj) = 5,;3'. (2.112)

If A is perturbed in the form of eq. (2.107), the perturbation theorem holds
in the same form. Eq. (2.111) also holds if {);} in eq. (2.110) are interpreted
as generalized eigenvalues of A with respect to G.

2.3 Linear Systems and Optimization

2.3.1 Singular value decomposition and generalized inverse

If A is an mn-matrix, ATAisa positive semi-definite (nn)-matrix, and AAT
is a positive semi-definite (mm)-matrix. They share the same nonzero eigen-

i > o, (> 0), » < min{m,n). The number r is called the
'__ T ] —_— bl
no restrictions on A! T B = T o RN O i L ey TR ),

It can be shown that orthonoraial systems {u;}, i = 1, ..., n, and {v;}, i =
1, ..., m, exist such that

o Au; = A\, i = 1, ..., min(m,n).

o {u;},i=1, .., n, is the cigensystem of A" A for eigenvalues {A?}, ¢
s

o {v;},i=1,..,m, is the eigensystem of AA" for eigenvalues {A}}, i =
| LT ) %

Matrix A is expressed in terms of {u;}, {v;}, and {A;} in the form

=
A=) Aviu]] (2.113)
=1

This is called the singular value decomposition of A; the values {A;},1 =1, ...,
min(m, n), are called the singular values of A. Let us call {u;},i =1, ..., n,



46 Chapter 2. Fundamentals of Linear Algebra

Fig. 2.4. The range Ry and the null space Ay of linear mapping A.

and {v;}, 7 = 1, ..., m, the right orthonormal system and the left orthonormal
system of A, respectively.

If we define orthogonal matrices U = (uj,u2,..,u,) and V =
(v1,V2, ..y Um ), €q. (2.113) can be rewritten in the form

A=VAUT (2.114)

where A is an mn matrix whose first r diagonal elements are A;, ..., A, in that
order and whose other elements are all zero. If m = n, matrix A is diagonal.
The r-dimensional linear subspace

R4 = {1,y 0,}L CR™ (2.115)

is called the range (or image space) of A: for any m-vector y € R4, there
exists an n-vector x such that y = Az (Fig. 2.4). The (n — r)-dimensional
linear subspace

Ng = {tr1, 0, un} CR” (2.116)

is called the null space (or kernel) of A: Az = 0 for any n-vector z € Ny
(Fig. 2.4). If A is symmetric, its right and left orthonormal systems coincide
with its eigensystem, and its singular value decomposition coincides with its
spectral decomposition (see eq. (2.62)).

Since {u;} is an orthonormal system, eq. (2.64) holds for an arbitrary n-
vector ®. Let A« be the maximum singular value. Since {v;} is also an
orthonormal system, we see from eq. (2.113) that

Azl =11 Mi(ui@)oill> =) M (ui, 2)? Y Aax (i 2)? = Ml
i=1 =1 i=1

(2.117)
Hence, if we define the spectral norm (or the natural norm) of A by

HAll&= Asaxs (2.118)
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eq. (2.117) implies the following inequality:

|Az| < [ A]ls]|=] (2.119)
Equality holds for

T X Umax + Ay (2.120)
aformonlyand ., is the vector u; corresponding to the singular value

Amaxs
Let eq. (2.113) be the singular value decomposition of matrix 4. Its
(Moore-Penrose) generalized inverse is defined by

>
u.,-v;r

A = N

i=1

(2.121)

Evidently, the generalized inverse A~ coincides with the inverse A" if A is
nonsingular. In correspondence with eq. (2.78) and eqs. (2.80), the following
relationships hold:

(A7)~ =A, A A=Py,, AA " =PT4
PRAA=APy, = A, Py A =APF=4A". (2.122)

Here, P*4 (= P‘Rj) and Py, (= PNi ) are the projection matrices onto

R4 and Nz, respectively. From the above equations, we obtain
AA A=A, ATAA = A" (2.123)

The rank-constrained generalized inverse (A),, of rank r' (< r) is defined by

S
(A). = ——u; ; (2.124)

i=1

and the following relations hold:

o =
Al A=P Y,  AlAG = Py

rAl

-1
-~

(A);A(A); = (A); (2.125)

e

2.3.2 Linear equations

Let A be an mp-matrix, and b an m-vector. Consider the following linear
equation for n-vector x:

Az =b. (2.126)

The following is the fundamental theorem for linear equations:



48 Chapter 2. Fundamentals of Linear Algebra

e The solution exists if and only if b € R4 (or Pr,b = 0).
e If the solution exists, it is unique if and only if Ny = {0}.

The problem (2.126) is said to be consistent (or solvable) when b € Ry,
and inconsistent (or unsolvable) otherwise; if it is consistent, it is said to be
determinate when Ny = {0}, and indeterminate otherwise.

If eq. (2.126) is solvable, the solution can be explicitly written in the
following form:

z=A"b+Ny. (2.127)
If A is nonsingular, the solution is given by
A'b
=A b= 2.128
v det A’ (2.128)

where A' is the cofactor matrix of A (see eq. (2.20)). Let A = (ay,...,a,).
From the cofactor expansion formula (2.14), the following Cramer formula is
obtained:
(1)
@150y By i)

2i = e (2.129)

The numerator on the right-hand side is the determinant of the matrix ob-
tained by replacing the ith column of A by b.

If det A is very close to 0, a small perturbation of b can causes a large
perturbation to the solution z. If this occurs, the linear equation (2.126) is
said to be ill-conditioned; otherwise, it is well-conditioned. If b is perturbed
into b+ Ab, the solution @ = A~ 'b is perturbed by Az = A~'Ab. Applying
eq. (2.119), we obtain [[Az|| < ||A™"||s||Ab||. From eq. (2.126), we have ||bl|
< ||A]|s||z]|. Combining these, we obtain

Az 1Ab|
< cond{A)"—+, 2.130)
Tz ST (
where A
cond(A) = || Al A~ = 522 (2.131)

Here, Anax and A, are the largest and the smallest singular values of A,
respectively (see eq. (2.118)). The number cond(A) is called the condition
number'® and measures the ill-posedness of the linear equation (2.126)—the
equation becomes more ill-conditioned as cond(A) becomes larger.

Suppose eq. (2.126) is consistent but only r (< m) of the m component
equations are independent, i.e., the matrix A has rank r. Theoretically, the

!4 The condition number can also be defined for a singular matrix A in the form cond(A)
= [|Alls[|A7]ls = Amax/Amin, Where Apax and Api, are, respectively, the largest and the
smallest of the nonnegative singular values of A.
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solution is given in the form of eq. (2.127). However, if the elements of the
matrix A and the components of the vector b are supplied by a physical
measurement, all the m equations may be independent because of noise. As a
result, eq. (2.126) may become ill-conditioned or inconsistent. In such a case,
a well-conditioned equation that gives a good approximation to z is obtained
by “projecting” both sides of eq. (2.126) onto the eigenspace of A defined by
the largest r singular values. The solution of the projected equation is given
in terms of the rank-constrained generalized inverse in the form

2= (A),b+N 4, (2.132)

The rank r is estimated either by an a priori theoretical analysis or by appro-
priately thresholding the singular values of A a posteriori.

2.3.8  Quadratic optimization
A. Least-squares optimization

Let A be an mn-matrix, and b an m-vector. Consider the least-squares opti-
mization for n-vector  in the form

J]z] = |Az — b||* = min. (2.133)

Application of the singular value decomposition to A yields the general solu-
tion in the following form:

[&=A"b+Ny (2.134)

If ¢ is constrained to be in Az, the solution is uniquely given by £ = A7b.
The residual J[&] is given by

J[z] = || Pr . bl* (2.135)
Evidently, the residual is 0 if and only if Az = b is solvable.

B. Unconstrained quadratic optimization

Let C be a positive semi-definite (nn)-matrix, and d an n-vector. Consider
the quadratic optimization for n-vector @ in the form

1
Jiz] = E(m, Cz)+ (d,z) - min. (2.136)
If & is constrained to be in J\"CJ‘, the solution is uniquely given in the following

form:
(2.137)

The residual is

Ilé) = ~5(d.C"d) (2.138)
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C. Constrained quadratic optimization

Let S be a positive semi-definite (nn)-matrix. Consider the quadratic opti-
mization for n-vector & in the form

J[z] = %(m‘ Sz) = min. (2.139)

Evidently, = 0 is a solution (but not necessarily unique) if no constraint is
imposed on . The following three types of constraint are important:

e If = is constrained to be a unit vector (]|z|| = 1), the solution is given

by any unit eigenvector & of S for the smallest eigenvalue A\, (see
egs. (2.86)); the residual is J[&] = Amin (see eq. (2.95)).

If z is constrained by (@, Ga) = 1 for a positive definite (nn)-matrix
G, the solution is given by any unit generalized eigenvector @ € Ng of
S with respect to G for the smallest generalized eigenvalue A.;,; the
residual is J[@] = Api,. If S is of full rank, the same conclusion is
obtained even though G is not of full rank (see eq. (2.104)).

Suppose « is constrained by a linear equation Az = b, where A is an
mn-matrix and b is an m-vector. If

1. @ is constrained to be in Né‘, and

2. the constraint Az = b is satisfiable for € Ng‘, i.e., at least one
Ty € Né‘ exists such that Azy = b,

then the solution is uniquely given in the following form:

|6 =5"AT(AS A7) b] (2.140)

The residual is i
Ji&] = 5(b, (AS~AT)"b). (2.141)

2.3.4  Matriz inner product and matriz norm

The matriz inner product of mn-matrices A = (4;;) and B = (B;;) is defined

by

(A; B) = tl'(ATB) = tr(ABT) = i Zn: A,‘jB,;j. (2.142)
i=l j=1

Evidently, (A; B) = (B; A). If (A; B) = 0, matrices A and B are said to be
orthogonal. An (nn)-matrix is orthogonal to any [nn]-matrix; an [nn]-matrix
is orthogonal to any (nn)-matrix. The following identities are easy to prove:

(A; BC) = (B A;C) = (ACT; B),
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(a.Ab) = (ab"; A), (ab';ed")=(a,c)(b,d). (2.143)

The ( Buclidean) matriz norm'® of an mn-matrix is defined by

Al = V(A;A) =

(2.144)

We define the normalization N[ -] of an nn-matrix A as follows (see the second
of egs. (2.7)):
A

R

The Schwarz inequality and the triangle inequality hold in the same way
as in the case of vectors:

N[A] (2.145)

- llAll-|B]| < (4; B) < || 4] - | B, (2.146)

14+ BJ| < [|A] +|BI. (2.147)

In both inequalities, equality holds if and only if there exists a real number ¢
such that A = tB or B = O.

Let U be an n-dimensional orthogonal matrix. From egs. (2.52) and the
first of eqs. (2.143), it is immediately seen that for arbitrary nn-matrices A
and B

(UA;UB) = (AU; BU) = (A; B). (2.148)

Letting A = B, we obtain
U A]| = | AU] = ||A]. (2.149)
Further letting A = I, we see that
U]l = vn. (2.150)

A nonsingular nn-matrix T' defines a mapping from an nn-matrix A to an
nn-matrix in the form
A=A, (2.151)

15Some authors use different terminologies such as the Frobenius norm, the Schur norm,
and the Schmidt norm. In general, the norm ||A|| can be defined arbitrarily as long as (i)
[|A]] > 0, equality holding if and only if A = O, (ii) ||cA|| = |¢|-||A|| for any scalar ¢, and (iii)
the triangle inequality (2.147) holds. There exist other definitions that satisfy these—the
I-norm ||All1 = B, max; |A;j|, the co-norm ||Af|ee = E7_, max; |Ai;], and the spectral
norm ||Alls defined by eq. (2.118), for instance. If [[Ax|| < ||A[|-[|x]| holds, the matrix
norm ||Al| is said to be consistent with the vector norm ||x||. The spectral norm [JA]|s is
consistent with the Euclidean norm [|x]|, and the 1-norm [|Al|; and the co-norm ||A||ec are
consistent with the l-norm ||x||; and the oc-norm ||x||oc, respectively (see Footnote 4 in
Section 2.1).
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This is a one-to-one and onto mapping and is called the similarity transfor-
mation'®.

A function f(-) of a matrix is called an invariant with respect to similarity
transformations if f(A') = f(A) for an arbitrary nonsingular matrix T. The

trace and the determinant are typical invariants:
te(T™'AT) = trA, det(T 'AT) = det A. (2.152)

Eq. (2.67) implies that any symmetric matrix is mapped to a diagonal matrix
by an appropriate similarity transformation; the transformation is defined by
an orthogonal matrix. Hence, if A is a symmetric matrix with eigenvalues
{A:}, any invariant with respect to similarity transformations is a function of
{A\i}. Egs. (2.67) and (2.149) imply that

(2.153)

Hence, ||A|| is also an invariant with respect to similarity transformation.

In three dimensions, trA, det A, and ||A|| can uniquely determine the
three eigenvalues {\;, Az, A3} of a (33)-matrix A (see eqs. (2.68)). Hence, the
three invariants {trA, det A, ||A|} are an #nvariant basis in the sense that
any invariant can be expressed in terms of them.

A nonsingular nn-matrix T defines a mapping from an (nn)-matrix A to
an (nn)-matrix in the form

A =TT AT. (2.154)

This is a one-to-one and onto mapping and called the congruence transfor-
mation'. The pair (p,q) consisting of the number p of positive eigenvalues
and the number g of negative eigenvalues of an (nn)-matrix A is called the
signature of A. Under a congruence transformation, the signature does not
change (Sylvester’s law of inertia). Hence, the rank is also preserved. It
follows that a positive definite symmetric matrix is always transformed to a
positive definite syminetric matrix; a positive semi-definite symmetric matrix
is always transformed to a positive semi-definite matrix of the same rank.

The congruence transformation defined by an orthogonal matrix U coin-
cides with the similarity transformation defined by U, and the matrix inner
product and the matrix norm are also preserved:

(UTAU;UTBU) = (A; B), |UTAU| = A]. (2.155)

18g8imilarity transformations define a group of transformations isomorphic to GL(n), the
group of nonsingular matrices under multiplication.

17 Congruence transformations define a group of transformations isomorphic to GL(n),
the group of nonsingular matrices under multiplication.
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i i W

Fig. 2.5. Finding a rotation that maps one set of vectors to another.

2.3.5 Optimal rotation fitting |rotationa| part of Procrustes method |

Let {uo} and {v,}, @ = 1, ..., N, be two sets of n-vectors. Consider the
problem of finding a rotation R such that
N
3" Wallta — Rvgll* — min, (2.156)
a=1
where W, are nonnegative weights (Fig. 2.5). Since ||Rvq| = ||jva||, the

right-hand side can be rewritten as TN Wallual? — 25N, Wa(uq, Rva)
+ Ef::l Wallva||?. Hence, if we define the correlation matriz

j\!
A=) Wauanl, (2.157)

a=1
the problem can be rewritten as follows (see the second of eqgs. (2.143)):
(A; R) — max. (2.158)

This problem can also be viewed as finding a rotation matrix R that is
the closest to a given matrix A in the matrix norm:

[||IR - A - min | (2.159)

In fact, eqs. (2.144) and (2.150) imply that ||[R—A||? = | R||*—2(R; A)+||A|]*
=n—2(A; R) + ||A|]?, so minimizing ||R — A|| is equivalent to maximizing
(A;R)

Let A = VAU be the singular value decomposition of A. The solution
of the optimization (2.159) is given by

R = Vdiag(1,...,1,det(VU T ))U . (2.160)

If the optimization is conducted over orthogonal matrices (i.e., if det R = 1
is not, required), the solution is given by

o
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2.4 Matrix and Tensor Algebra

2.4.1  Direct sum and tensor product

For an m-vector @ = (a;) and an n-vector b = (b;), the (m + n)-vector
(al,...,am,bh...,b,,)T is called the direct sum of @ and b and denoted by
a®b. For an mm-matrix A and an nn-matrix B, the (m + n)(m + n)-matrix
that has A and B as diagonal blocks in that order and zero elements elsewhere
is called the direct sum of A and B and denoted by A @ B. Direct sums of
more than two vectors or more than two matrices are defined similarly:

a A direct
ad---db= , A®---©oB= . |sum =
5 B stacking

Let A be an mm-matrix, and B an nn-matrix. Let u and a be m-vectors,
and v and b n-vectors. The following relations are obvious:

(A B)udv)=(Au) @ (Bv),

(a®budv)=(a,u)+(bv). (2.163)

A set of real numbers T = (T},i,..i, ), 21,22, ..y ir = 1, ..., n, wWith 7 indices
running over n-dimensional coordinates is called a tensor of dimension n and
degree r. If each index corresponds to coordinates of a different dimensionality,
T is called a tensor of mized dimensions or a mived tensor. If index 7, runs
over 1, ..., ng for K = 1, ..., r, the tensor is said to be of type nyny---n,.
A tensor of type niny---n, is also referred to as an niny---n,.-tensor. If
T;,i,...i, is symmetric with respect to indices i; and iy, the type is written
as iy -+ (Lgtpgr) o203 If Ty, is antisymmetric with respect to indices
ir and ik, the type is written as ¢y« [igigs1]---4,; Scalars, vectors, and
matrices are tensors of degrees 0, 1, and 2, respectively.

The tensor product of tensor A = (A;,...;,) of degree r and tensor B =
(Bi,...i,) of degree s is a tensor C = (Cj,...i,,,) of degree r + s defined by

C; = A, By, (2.164)

!"'ir‘+s

This is symbolically written as

2165

The following identities hold for scalar ¢ and vectors @ and b:

c@®u = cu, a®b=ab'. (2.166)

derive these from 2.164
(see (2.1)...)
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2.4.2 Cast in three dimensions
A. 33-matrices

The elements of a 33-matrix A = (A;;) are rearranged into a 9-vector

An
Az
a= ‘ ) (2.167)
Az
which can be written as @ = (a,) with
ax = A(x-1)diva+1,(x—1)mod3+1- (2.168)

The symbols ‘div’ and ‘mod’ denote integer division and integer remainder,
respectively. Conversely, a 9-vector a = (a,) is rearranged into a 33-matrix

ay; deo dg
A= ay ds (g ) (2.169)
ay adg dg
which can be written as A = (A4;;) with

Agj = A3(i=1)+j- (21?0)

The above type transformation or cast is denoted by

| a = typeg[4], A= type33[a.” (2.171)

The norm is preserved by cast:
lall = [|Al]. (2.172)

The left-hand side designates the vector norm, whereas the right-hand side
designates the matrix norm. The cast can be extended to tensors:

e A 3333-tensor T = (Tjjk) is cast, by rearranging the elements with
respect to the indices ¢ and j, into a mixed tensor *T = (*T,s) of type
933, which is denoted by typegss[7]; the inverse cast is 7 = typessaq[*T].

e A 3333-tensor T = (T}ji) is cast into a tensor 7* = (T7;,.) of type 339,

1jK

which is denoted by typessq[T]; the inverse cast is T = typessss[T ).

e If both operations are applied, T = (T};x) is cast into a 99-matrix T =
(Txx), which is denoted by typeg [T ]; the inverse cast is 7 = typesgss [T].
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B. (33)-matrices

The elements of a (33)-matrix S = (5;;) are rearranged into a 6-vector

Sn
Sop
Ss3
s=| e |- (2.173)
V283,
V251,

Conversely, a 6-vector s = (s,) is rearranged into a (33)-matrix
\/i.‘jj Sg L1
1
S=— s6  V2ss s4 |- (2.174)
V2 :
85 54 \/533

This cast is denoted by

| s = typeg[S], S = type ss [5]-| (2.175)

The norm is preserved by cast:
sl = lISIi- (2.176)
The cast can be extended to tensors:

o A (33)33-tensor L = (L;j4) is cast, by rearranging the elements with re-
spect to the indices ¢ and j, into a mixed tensor *£ = (* L) of type 633,
which is denoted by typegss[L]; the inverse cast is £ = type(ss)as[*L].

e A 33(33)-tensor N' = (Sijxt) is cast to a mixed tensor N* = (S};,)
of type 336, which is denoted by typessq[N]; the inverse cast is A=

typess(ss) IV

e If both operations are applied, a (33)(33)-tensor M = (Mj;z) is cast to
a 66-matrix M = (M, ), which is denoted by typegg[M]. In elements,

My Mz Muss V2Migas V2Mis V2Mine

M1 Mazay  Magss V2Mazos V2Maos1 V2Maniz

Mo Msgin  Magzs  Maasy V2Missos V2Mass; V2Masis
V2Mas11 V2Maszn V2Magss  2Mozes  2Magsy  2Magys
V2M;z111 V2Msi90 V2M3133  2Maies 2Msizn 2Mannn

V2Mia11 VZMia2s V2Mya3s  2Miazs  2Myasy  2Mhais
(2.177)
The inverse cast is M = type.[;;g,)(;;;n[Ml-
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C. [33]-matrices

57

The elements of a [33]-matrix W = (W;;) are rearranged into a 3-vector

Wiy
w = "Vl 3 5
Wy

which can be written as w = (w,) with

3
1
We = —-5 Z E,;,'J;W,'J'.
t,j=1
Conversely, a 3-vector w = (w,) is rearranged into a [33]-matrix
0 —wy w
W = ws 0 —uw =wxI,
—Wws2 wn 0

which can be written as W = (W;;) with

3
I/V,;j = - Z EijrWy-
k=1

This cast is denoted by

w = types[W]. W = typegy(w].

The following identities hold, where 7 is an arbitrary 3-vector:
Wl =Valwl,  Wr=wxr.

The cast can be extended to tensors:

(2.178)

(2.179)

(2.180)

(2.181)

(2.182)

(2.183)

o A [33]33-tensor P = (P;j) is cast, by rearranging the elements with re-
spect to the indices i and j, into a mixed tensor *P = (* Pes) of type 333,
which is denoted by typeys;[P]; the inverse cast is P = typesss3[*P).

e A 33[33]-tensor Q = (Qjjw) is cast to a mixed tensor Q% = (QF;.)

ijr

of type 333, which is denoted by typess3[Q]; the inverse cast is @ =

typesspa[Q7]-

o If both operations are applied, a [33][33]-tensor R = (R;j:) is cast to a
33-matrix R = (R,,), which is denoted by types;[R]. In elements,

Riaz0  Rasiz Raoon
R=| Ry Riziz Rz |.
Rsy30 Royz Roio

The inverse cast is R = type(z;ss)[R].

(2.184)
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2.4.3  Linear mapping of matrices in three dimensions

A. 33-matrices
_|moral: tensors can be recast
A 3333-tensor T = (Tijx) defines a lines (for computations, not meaning)

33-matrix: matrix A = (4;;) is mapped to T A —={73;; 7 T U TOTTIT

3
A=) TijuAu. (2.185)

k=1

This mapping is denoted by
A=T A (2.186)

The identity mapping T = ([;jk1) is given by
L300 = 851051 (2.187)

The similarity transformation A’ = T~ AT defined by a nonsingular matrix
T = (T;;) maps a 33-matrix A to a 33-matrix (see eq. (2.151)). This mapping
can be written as A’ = T A, where the tensor T = (Tijx1) is defined by

Fipe=T5 ' Dips (2.188)

Here, T;;' denotes the (ik) element of T~
If a 3333-tensor 7 is cast into a 99-matrix T and if 33-matrices A and
A’ are cast into 9-vectors a and a’, respectively, the mapping A’ = T A is
identified with
a’' =Ta, (2.189)

which is a linear mapping from a 9-vector a to a 9-vector a’. Hence, the
mapping 7T is nonsingular if and only if the 99-matrix T obtained by cast is
nonsingular. The inverse T~! of a nonsingular mapping 7 is given through
the cast:

T~ = typegass[typeos[T] "] (2.190)

If mapping 7 is singular, its generalized inverse is also defined through the
same cast:

T~ = typessas[typege[T]7]- (2.191)

A 33-matrix A is an etgenmatriz of a 3333-tensor 7 for eigenvalue A if
TA=)\A. (2.192)

Eigenvalues and eigenmatrices are computed by solving the eigenvalue prob-
lem of the (99)-matrix obtained by cast: if T' = typege[T] and a = typeg[A4],
eq. (2.192) reads

Ta = \a. (2.193)
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B. (33)-matrices

A (33)(33)-tensor M = (Mjjy;) defines a linear mapping from a (33)-matrix
to a (33)-matrix: matrix S is mapped to matrix 8’ = MS in the form
eq. (2.185). The identity mapping Z = (I;;z) is given by

1
Lijit = 5(0ikd51 + O5kbir).- (2.194)

The congruence transformation §' = T~'ST defined by a nonsingular 33-
matrix T' = (T;;) maps a (33)-matrix S to a (33)-matrix (see eq. (2.154)).
This mapping can be written as §’ = MS, where the tensor M = (M;j) is
defined by
1
E(Tk,‘Tjj + Tkjng). (2195)
If a (33)(33)-tensor M is cast into a 66-matrix M and if (33)-matrices §
and S’ are cast into 6-vectors s and s', respectively, the mapping §' = MS
is identified with

Mijn =

s'= Ms, (2.196)

which is a linear mapping from 6-vector s to 6-vector s’. Hence, the mapping
M is nonsingular if and only if the 66-matrix M obtained by cast is nonsin-
gular. The inverse M ™! and the generalized inverse M~ are defined through
the cast:

M= t}'Pe(as)(33)[tYPeﬁs[M]_l], (2.197)
M = type ss)(sz)[typegs [M] 7] (2.198)

Eigenvalues and eigenmatrices are also defined and computed through the
cast.

C. [33]-matrices derive the 2!

If a [33][33]-tensor R is cast into a 33-matyfx R and if [33]-matrices W and
W' are cast into 3-vectors w and w’, respectively, the mapping W' = RW
is identified with

w' = 2Rw, (2.199)

which is a linear mapping from 3-vector w to 3-vector w’. Hence, the mapping
R is nonsingular if and only if the 33-matrix R obtained by cast is nonsingular.
The inverse R ! and the generalized inverse R~ are defined through the cast:

= 1 _

R = Ztype[33;[33][type;;3[7?—] s (2.200)
o =

R™ = 4_'3)'1’9[33][33] [typess[R] . (2.201)

Eigenvalues and eigenmatrices are also defined and computed through the
cast.
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Fig. 2.6. (a) Linear mapping defined by (33)(33)-tensor §. (a) Linear mapping
defined by [33][33]-tensor R.

D. Matrix spaces

The nine-dimensional linear space L33 of all 33-matrices is the direct sum
of the six-dimensional subspace L(33) of all (33)-matrices and the three-
dimensional subspace Lg3) of all [33]-matrices (Fig. 2.6). The two subspaces
are orthogonal complements of each other (see Section 2.3.4):

,633 = £(33] (5] £E33]1 £(33) L 5[33]. (2202)

This is because any 33-matrix A is uniquely decomposed into a (33)-matrix
A, and a [33]-matrix Ag:

A=A;+ A, (As; Aa) =0, (2203)
A, = S[4], A, = A[A]. (2.204)

Here, the symmetrization operator S|-] and the antisymmetrization operator
A[-] are defined as follows:

s[A] = %{A +AT), AlA]l= %{A —A". (2.205)
We observe the following:

o If a (33)(33)-tensor S is viewed as a 3333-tensor, the linear mapping
it defines is singular: its null space includes Li33), and its range is a
subspace of L33y (Fig. 2.6a). Hence, it always has eigenvalue 0, whose
multiplicity is at least 3.

o If a [33][33]-tensor R is viewed as a 3333-tensor, the linear mapping it
defines is also singular: its null space includes L33), and its range is a
subspace of L33 (Fig. 2.6b). Hence, it always has eigenvalue 0, whose
multiplicity is at least 6.



