Function approximation

If you need to evaluate a complicated function f very quickly, many times around the same
point z = xg, or if you would like to understand the local behavior around that point, then it
is convenient to write the function as a polynomial. After all, polynomials can be computed
quickly, and are simple to draw and visualize.
A Taylor approximation provides the technique to do this. The Taylor series in 1 dimension
is:
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f(zo +€) = f(zo) + f'(zo)e + f”(%); + f”,(CE)Ea with 2o < e < g +e. (1)

We play with it in this problem, for the function sin(z), around z = 0.

(1) Give the terms to 5th order of the Taylor series development of sin(z) around the point

z =0.

Answerf(0+¢) e — % + 55+

(2) The first (and second!) order approximation is sin(e) ~ e. This is reasonable in a small

interval. When is the ‘error’ made smaller than 0.01 ?

Answer: use the third order term to bound the error; |%| < 0.01, so |¢] < 0.4.

(3) The third (and fourth) order approximation is sin(e) ~ € — %. This is reasonable in quite
an interval. When is the ‘error’ made smaller than 1% 7

Answer: use the fifth order term to bound the error; |%| < 0.01, so |¢| < 1.0.

(4) This figure shows what is going on. In red: sin(z), and in black: the subsequent Taylor
approximations.

(5) How many extrema may a polynomial of order n have? So which curve is which approx-
imation? Using this insight, how many terms would you need at least to make a good
approximation of a full period z € (—m,7) of the sine function? And is that a good
approximation?

(6) The polynomial you get for the Taylor approximation of the sine function depends on where
you approximate it. Give the approximation to 5-th order of sin(§ + €) and compare to
(1). Before doing so, do you expect an €? term?



Answer: sin(§ +¢€) = %(1 +e—1e? =168+ Let + L-¢®). And you should have expected an

€2-term since the sine function is not locally straight at T

(7) Now apply Taylor series in two dimensions to computer vision, in taylor2.ps!



