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THE RELATIVISTIC ENERGY-MOMENTUM
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Synopsis

The relativistic conservation laws of energy and momentum in a substance, which
consists of atoms carrying both electric and magnetic dipoles, is derived from the
microscopic force laws for point particles in the presence of an electromagnetic field.

The energy-momentum tensor which occurs in these ‘““atomic’ conservation laws,
consists of a material part and a field part, for which explicit expressions are obtained.

§ 1. Introduction. Since the beginning of the century the correct form
of the electromagnetic energy-momentum tensor in polarized media has
been a controversial issue. Forms, based on electron theory, were obtained
by Lorentzl} (already before relativity theory existed) and by Einstein
and Laub?2); different expressions were put forward by Minkowski3),
Abraham4) and others5). None of these authors gave explicit expressions
for the material part of the energy-momentum tensor. As a result of this
the field part of the energy-momentum tensor could not be determined
in a unique way.

A solution of the problem can only be given if one starts from the micro-
scopic energy-momentum laws for a system of charged point particles
(electrons and nuclei). The point particles are grouped into atoms (or other
stable groups such as molecules, ions etc.), which in the present treatment
are supposed to carry electric and magnetic dipole moments. The derivation
proceeds in two steps: first (in this paper) the energy-momentum laws on
the “atomic (kinetic) level” are derived; then by covariant statistical aver-
aging one obtains the macroscopic energy-momentum conservation laws,
which contain the material and field parts of the macroscopic energy-
momentum tensor$).

§ 2. The microscopic force law. The stable groups of electrons and nuclei
of which the system consists, will be labelled by an index & and referred
to as ““atoms’. The constituent particles of the ‘“‘atoms” are numbered
with a second index ¢. The microscopic force law for the constituent particle
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ki with mass my;, charge eg; and time-space coordinates R}, = (c tri, Ris)
reads:

d dR%; s dRyp
) ) = ex; IE(Ry) ——— =0,1,2,3), 1
CHgg drre ( dii) €k f(z)( xi) dre; (x ) (1)
where 71; is the proper time of ki (given by c2 dr?, = —dR}; dRpgia; we
use the metric g00 = — 1, gét =1 for 1 =1,2,3, g = 0 for « # ) and

2 the total electromagnetic field which contains contributions due to the
other particles of the system and possibly an external field acting on the
system. The components of the (antisymmetric) field tensor are (735, /%,
16) = ew and (fG5, fin Fid) = boo-

Let us introduce a privileged point R} of atom £, characterizing the
motion of the atom as a whole (with dR} supposed to be time-like). The
proper time s along the trajectory Rj is given by ¢% ds? = —dR} dRga.
We now want to introduce a parametrization s along the trajectories of
the constituent particles k¢ through a “perpendicular” projection from the
trajectory of the privileged point of atom k. This can be done with the

help of the relation:

AR

{Rria(s) — Reals)} 1

(2)
We shall call Rgix(s) — Ria(s) the internal coordinate #gi(s) of k¢ with
respect to k. Then (2) reads:

dR§(s)

Tm,x(s) ds = 0. (3)

This relation expresses the fact that in the (momentary) rest frame of
point % the internal coordinate 7y, is purely space-like.

The equation (1) can be written with the help of a four-dimensional
delta-function:

d dRzi d'rm' -1
- — R — =
Ei‘.cjmm ds{ ds < ds > }6( P R)ds

= ; exi 16y (Ri)

dRyip

8(Rr — R)ds.  (4)

By a Taylor-expansion of (drgi/ds)~! in powers of 7; one obtains up to
second order in 7g;:

d‘rki -1 1 d’kicx dR;
:1 —_— —
( ds ) + ¢ ds ds *
1 d?’kizx d?’zi + 3 drkw dR,oé drkm dR]'z

2c¢2  ds ds 2c¢t  ds ds ds ds )

+
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With the help of this relation equation (4) becomes up to second order
in 7g;:

d2R7};
P J‘mm e ¥ §(Rp — R) ds =

dR
- Zfek@ 1% Ras) _d—:iﬂ 8(Rx — R) ds

dR? drs dR?
-3 fmm ( k. ki k)é(Rk—R)ds

ds ds

d?’kl d"kiﬁ dR,’Z
— —_ Ry — R)d
Z jmm < & ds (R ) ds

1 de d?’kiﬂ di’gi
e j——| —— ——— )8Ry — R)d
A Jm’” ds< & a5 as )BrT RIS

3 d [dR; drxp AR driy, dR}
_y_"_ O(R, — R)ds. (6
? 203J My < ds ds ds ds ds (R ) ds.(6)

Now the privileged point % of atom % can be specified by defining it as
the centre of gravity of atom % in the momentary rest frame of one of the
constituent particles &7 say kj (with fixed 7). Since this can be done at every
moment, it determines in a unique way the path of point £. In fact, if s5 is
defined by

dRS.
{Rija(s5) — Rral(s)} X =0, 7)
ds Je_g,
and then s; (with ¢ 554) b
dR%,
{Rria(s)) — kaa(sf)}< dSk] > =0, 8)

the centre of gravity in the momentary rest frame of % is given by:
my Ry(s) = Z my; Ri(s) = Z M Ryi(sq). 9
By a Taylor expansion of Rpy(s;) around Ry(s) one obtains from (7)

for 4 = § and from (8) for ¢ # j, retaining terms up to second order in 7x;:

1 dry;
Si_szﬁrki“_g_. (10)

Expanding now Ry;(s;) around Ry(s) in (9) one gets with (10):
3 mui Re(s) = X mii Rus(s) + 0(3),
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where O(3) is of third order in 7g;. Thus

X i 7ki(s) = O, (11)

i

if terms of third and higher order are neglected.

§ 3. The force equation up to second order tn the internal coordinates. Let
us write Ry 4 7z; instead of Ry; in (6), except in the field f(Rgs), which
will be considered in the next section. Then with the help of (3) (and its
derivative with respect to s), (11) and the equation of motion (1), which
in the calculation is only needed up to first order:

d d.R‘x 1 drm-ﬁ dR,”Z d?; i dR kig
R — YV = ep PP(Ry) — , (12
ML s ds { ds ( c2 ds ds T ds i fio(Ra) ds (12)
or even zeroth order:
d2R; o dRyp
Ok g5 = Ok 1 (Rie) &5 (13)

the force law (6) may be written, retaining terms up to second order in
Vi only:

d2R;;
c | mg ds2 (3(Rk—R)dS

1 d2R% d dr?,
—fmm ko Thtp T A%, 8(Rg — R) ds

dsz2 ds ds
1 d dr?, drs,\ d2R
- _ 3 ﬂ ki Y. ki ky . _
+§ s fmm s {Akﬂ<rm R TR > 12 }6(Rk R) ds
dR
=2 J exs 3 (Ri) ——2- 0(Rx — R) ds

dry;
+ %jeki A% 15 (Rur) dliw O(Rx — R) ds

f d drV’L dRe
* ?? ks (’ﬁi d: ds )fu)ve(le) Ry — R) ds
1 * drri dRe dRC
+ ? 2 | o By ki d: dslc dsk 0 fitye(Rii) (R — R) ds
. 1 i dRZ dszﬁ dr’l’i dRe
) ds  ds2 i d: Fye(Rie) (R — R) ds, (14)
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where

1 dRz. dR?
T . Ly
e s 2 ds ds

It may be remarked that the internal product of both sides of (14) with
dRga/ds vanishes.

(15)

§ 4. The intra-atomic electromagnetic field. The field fifj(Rg) may be
split into two parts

FH(RE) = PP (Rut) + 135,)(Ria), (16)

where f*6 contains the fields produced by the atoms !/ = & and possibly
a field acting from outside the system; /%% is the intra-atomic field, i.e. the
field produced by the constituent particles of atom k& itself.

This splitting is performed because, while the field f*8 shows only small
variations over distances of the atomic dimensions (and can thus be ex-
panded in powers of r;), the intra-atomic field varies rapidly inside the
atom. The latter will therefore be considered separately. We shall assume
that in the momentary rest frame of the atom the motion of the constituent
particles is such that it is not needed to include terms of higher order than

¢=2 in the intra-atomic field f3,,. This is also the approximation which
follows from the Darwin potentials. In the theory of atomic (and molecular)
structure often the cruder nonrelativistic approximation, in which the
intra-atomic fields contain only terms up to order ¢! is considered to be
sufficient. The components of the field /&, up to order ¢2 are

,(0) ,;CQ)
(0) (R) _ i
e (Rk) = Z (37
@S] 80 T am (1D — r DB
=(0)2 (0) (0)
4 Ty T — Yoy
22 4 [r) — r)3
(0) (0)
r.) — 1
(0). (0> (0) ki ki
{1‘ rkL rky )}

4 1rD — 0

(0) 0y . T () 40
1(r+R)(rr>’ )
2c? 4 |1 — 1D

(0) A (r(O) r(O))
DO (RO — 3 ¢ ki ) (18)
(m)( k@) Cien €kj 47'6]1'(0) rk7)|3
with
(0) (0)) (4(0) (0)
T, r®) = (" — 1) (T’ — 13y) (19)
(AR

9 0
1y — 112

Here the dot in #, #{) and R{”’ means a differentiation with respect to
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time, while the suffix (0 indicates the momentary Lorentz rest frame;
U is the unit tensor. Substituting (17) and (18) one gets for (14)

I 11 dzRZ
¢ | ms +- o] +- oml) — & 8(Re — R) ds
a dZ I B
+ %} c| A% el (6miy; 7;) 6(Ry — R) ds

1 d dvy, d5. \ d2R
+ ij"%ig{ﬁ,s(rﬁi oy, 7’“) ’W}a(Rk—R) ds =

ds ds ds?
dR
= Efekﬁ ]‘0&[3 sz) i 6(Rk — R) ds
dyki'y
+ Z.J.ekiA%ﬁ 177 (Rrs) Ry — R) ds
o d dr}; dR;
* §?‘2“ e’”’K(’%" T ds )fw(Rm) 8(Rx — R) ds
(. d7; dR, dR;}
+ ?7“ Cxi ¥ ds ds ds a; f'ya(Rki) 6(Rk — R) ds
[ S5 PRy, Sy OE,
n %7 ek e Tase Mgy qs [relBw) Rk — R)ds, (20)
where
€Ki €kj
omi = 5 , 21
i = e ii) 8 |1y — rQ)| (21a)

omy, = X dmy; = — Okt ks (21b)

c2 1,7,1#7F 8n |r‘°) 1';3)|
represent masses equivalent to internal Coulomb energies of atom %, and

1 drkia d?"g~
St = —— —5 A 22
i 2c2 %‘,mm ds ds “* (22)

is a mass corresponding to the internal kinetic energy of atom k. We note
that in (20) the terms of intra-atomic origin (i.e. the terms with émZ, and
dmj) are both of order ¢—2; this means that nonrelativistically these terms
would disappear.

In (20) one recognizes besides the ordinary rest mass density

pr. = ¢ [ mp 6(Rx — R) ds (23)
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the mass densities

dpi; = ¢ | omi; O(Ry — R) ds, (24a)
Spl = X dply — ¢ [ oml 8(Ry — R) ds, (24b)
8pt!" = ¢ [ om{! 5(Rx — R) ds. (25)

Furthermore one has at the left-hand side a term containing

d7kie drxiy
— Ykie

ds ds

Okap = 2 ¢ fmki Ayy Ag <7'kz'7 >6(Rk — R} ds, (26)
(3

which is the “‘atomic angular momentum’” density (in the rest frame it

reduces to the angular momentum density of the atom).

§ 5. Expansion of the interatomic fields. The dipole case. The interatomic
field f*8(Ry;), which occurs in (20) can be expanded in powers of rg;. Thus
one obtains for the right-hand side of (20), retaining terms up to second
order

p) Jem j*8(R) -%RSK 8(Ry — R) ds

dR
+ Zjem 7., 0,*8(R) _--d—"-‘i 8(Ry — R) ds
[ S

dry;
+zj%ﬂmﬁMM»§?ﬁmk—Rwh

dR
24 [ewsrly i 028 (R) [ 0(Re — ) s
o e d7xiy
+ 3 | ewa gy 7 2PR) o (R — ) ds
1

1 d dr}, dR;
+ 22— ews _<7;'§i k ———i> fre(R) 8(Rx — R) ds

i 2 ds ds ds
1 , A dRg dR}
+ ? ) Cli Ve ds ds ds O¢fye(R) (Rg — R) ds

1 [ dR® d2Rgs

dry, dR;
— % |ews ¢

g ds’“ fre(R) 6(Ry — R) ds.  (27)

ds ds? ki ds

The field acting on atom £ is a sum of partial fields f;* due to atoms I (# &):
1= 3 f (28)

W(#k)



THE RELATIVISTIC ENERGY-MOMENTUM TENSOR IN POLARIZED MEDIA. 1 291

where external fields acting from outside the system are omitted. The
partial fields satisfy the atomic field equations?)

Oafigy + Opfiva + Oyf1ap = 0, (29)
i’ = ¢} + opmi”, (30)
with the atomic four-current density:
et = § e dR3ds) 8(R; — R) ds, @31)
and the atomic polarization tensor
myf = m{D (P (32)

Here only first and second order contributions are considered:

dR? dR}

m(l)dﬁ —_ Zj\ ( T —_ 7lﬂi Té) 6(Rl - R) dS, (33>
ds? dr®

mPo — Z Jgn (yh d”' — d:“ ) 0(R; — R) ds. (34)

From now on we shall limit ourselves to the consideration of electric and
magnetic dipole moments only. Whereas (33) contains only electric dipoles,
expression (34) contains both magnetic dipoles and electric quadrupoles.
The latter are discarded if, instead of (34), we now write

75
(2)af _ . B L £
N = Z%fﬁltA%yAze( i s — "
1

dr;
ds

) 8(Ri—R)ds.  (35)

From (33) and (35) follow the properties:

b A mil = 0, (36)
uy miZ) = 0, 37)
where
dR}
uf(R) = (s from Ry(s) = R). (38)

ds
With these relations one deduces from (32):
MMV = — =2 uf uy, M) — =2 uff uy, MY, (39)

mPP — A%, AL mie. (40)

Expression (27) becomes with the help of (3), (28), (29), (31)-(40), and
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discarding electric quadrupoles:

Y [Ptk + 0 mipy)

U#k)
£ G, + A S — 17 ) i 1
(#k
— I ke figy 2l M) 4= ¢4 fuy(Diatg) ure mi
(#k)
e P U gy — gy (Datge) i, (41)

Here use has been made of the operator

which permitted us to write
d2Ry;
; (s from Ry(s) = R) = uf(R) 0su%(R) = Dyut. (43)

From the definition (23) follows the conservation of proper mass
oulpy 1) = O. (44)
Using (42) and (44) the last bracket of (41) becomes:
3672 figy pi Dilve mi™) + 4 fupy(Di 1) we mi”
— 302 mP Dy figy — ¢4 fuy (D tre) uf mi?, (45)

where v; = (p,)~! is the specific volume. We now wish to express the
invariant quantity (45) completely in terms of quantities defined in the
rest frame, in which the atom is at rest all the time. This frame, which we
indicate by dashes is a succession of Lorentz frames, not a Lorentz frame
itself. The Lorentz transformation of an antisymmetric tensor 4,z with
components A0 = Xy; Ay = Y (cycl; 4,7, k= 1,2, 3) from the dashed
frame to the momentary rest (Lorentz) frame yields:

DX’ = DX® 4 ¢ Dp® A Y©, (46)
DY’ = DY — -1 Dy® A X, (47)

where D denotes a differentiation and ¢'©) the transformation velocity.
From this follows the relation (with transformation four-velocity U*®):

DA}, = DAY + c2(UY AR DU — UM 4D DU)
. C‘Z(UV(O)A;g)DUéO) _ U”(O)A;%)DU(&O)), (48)

as may be checked for its components separately. Then by means of a
contraction with a different antisymmetric tensor Bys one gets:

B'a# DA, = B* DAug + 22 Ua(B*8 Agy — A% Bgy) DU, (49)
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Using this relation and (36), (37) the expression (45) becomes
3672 fig, pr. Di(og mi™") — Je=2 miP™" Dy frg,. (50)
Now we can rewrite the energy-momentum balance equation (20), using

(23)—(26), (29), (30), (38), (39), (41)—(44) and (50) in the form (with a
summation over R&):

3 (py, ot ufy) + Z dp(c2 uf, o Dithiy)
&
+ 2 o], 3,, ul, Spg; )} + dath + zk: Opr + Opr") Dy

+ X 2 Mk{fl’ﬂv Pr Dk(v];mgfl)ﬁy’) - mﬁf)ﬂw Dkfl’ﬂ?}

k,LE+#1
+ %: 02 unie Op{uy, 0,(uj, Spi; 73)} = O, (51)
where we have introduced the atomic energy-momentum tensor of the field:
tigya = . lzl‘; l{fltxv WY — e fie 8% + 672 tg(fray miy — Moy f}°) ke
v ] u fe i, (52)

with 4% = ¥ — m{’. The last three terms in (51) are not in the form of
a divergence: in other words (51) has still the form of a balance equation,
not yet of a conservation law. Consideration of the internal atomic energy
balance will allow us to write the three terms concerned as a divergence as
well.

§ 6. The internal atomic energy balance. In order to obtain the balance
equation of internal atomic energy the equation of motion (1) is multiplied
by drpie/ds:

d dRy; [ dri 1 drgia s dRygis drgia
; — — er:if*P(R |
g { ds ( ds ds xif (R ds ds (53)
Expanding up to second order in #§; one gets:
d dR * dr zi 1 dRz dr kip dR,‘z dr kix
= - ' Rr — R)ds —
Z cjmm ds ( ds ds 2 ds ds ds ) ds (R — R) ds
dRys dr
J‘elct f(t)(Rki dkﬂ dl;wc §(Rr — R) ds, (54)

where an integration over a delta-function has been added. With the help
of (3) and (11) one obtains:

d’kia d?’il o
jmm s ( s )6(Rk — R)ds =

deg d?’m
= Ejeki f(t) (Rrs) ds ds i

d2R}; d2Rr? d
+ 2 f M — ks

8(Rx — R) ds

ds? ds? —ds_ Ykig 6(Rk — R) ds. (55)
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With the use of the equation of motion in zeroth order (13) the right-hand
side of equation (55) becomes:

deﬂ d"h‘ux
(R -8Ry — R
E J ek f(f) ki) —— ds ds (R ) ds
dRyy dsz A7 pia
ds ds2 ds

+ 2 ‘[ﬂm f(t) R}m Yrip 5(Rk — R) ds. (56)
Let us consider first this expression for the intra-atomic fields only.
Since the internal energy balance, deduced here, will be employed in the
last two terms of (51), which contain already a factor ¢~2, we may confine
ourselves here to the Coulomb expression for the intra-atomic field in the
momentary rest frame of the atom. In this way (56) becomes for the intra-
atomic fields
d
— C3J‘hd; (dml) 8(Rx — R) ds, (57)
where dm;, is defined in (21).

The interatomic field part of expression (56) is considered up to second
order in 7}; by expanding the fields: discarding the electric quadrupole
moments one gets with the help of (3), (28), (29), (33), (35)-(38), (42)—(44)
and (49):

‘ z{fZa,fx pr Diclvy, m(l)aﬁ ) — mg)uﬂ' Dk(fz'aﬁ)}- (58)
+k

The balance equation (55) becomes with (22), (57) and (58):
c3 4 (dmil) (Ry — R) ds = —¢3 4 (0my) (R — R) ds
ds k ds k
+ Z(Ek) s pic Drc(wre mi?™") — mi?™" Di(fr)}. (59)
£

Finally, after a partial integration of two mass terms and using (24), (25)
and (38) the equation (59) gets the form (with a summation over &):

X o a{(Bpx + Opi”) #i} =
k
= X Yt pr Dilvp mP™") — w2 Di(frg)},  (60)

kL k1
which is the internal atomic energy balance. The right-hand side of this
equation appears in the penultimate term of the first member of (51). The
last term of the first member of (51) may now be neglected since it is of
order ¢—2 as compared to the penultimate term, if (60) is used.

§ 7. The atomic energy-momentum balance in the form of a conservation law.
If the balance equations of energy-momentum (51) and of internal atomic
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energy (60) are combined, one obtains the conservation laws:
opt*8 =0, o8 =12 4 120 (61)

for energy (x = 0) and momentum (« = 1, 2, 3). Here £00 is the energy
density, c¢#0¢ the energy flow, ¢~1#0 the momentum density and ¢4 the
momentum flow.

The atomic field energy-momentum tensor is given by (52) and the
atomic material energy-momentum tensor by

oo = 2 (o + 0k + 851" i + 3 =% o (Dine)
k k
S oGS ol W (62

Here the first term contains besides the rest mass density p, the mass
densities corresponding to the internal Coulomb and kinetic energy of the
atoms. The contribution of atom % to this term is purely time-time-like in
the rest frame of k. The contribution of atom # to the second term is different
from zero only if the atom, which carries the angular momentum oy, is
accelerated. In the rest frame of % it yields a contribution to the momentum
density only, which is of the form 998z A 0. The third term is a very small
relativistic correction related to the internal Coulomb energy of the atoms.

(It should be remarked that in view of the form of (61) the energy-
momentum tensor is determined up to divergence-free part.)

The field energy-momentum tensor (52) consists of a sum of terms for
each atom

= T i (©3)
It is interesting to consider the partial tensor £, in the rest frame of
g P Hk
atom £k:
00 04
(t(f)k t(f)k) .
o A
Lo L
o (%ek-el—{—%bk-bl (el/\ hk)i ) (64)
U=k (ern hy)t —éidi,—hibj+ (tey-e;+1bi-bi—my-by)gii )’

The energy-momentum conservation laws on the atomic (“kinetic”’) level
are thus derived. In a subsequent paper they will serve as a basis for the
macroscopic equations. In fact these are obtained by averaging (61). Then
a macroscopic material energy-momentum tensor is obtained which is the
average of (62) combined with the correlation and velocity fluctuation part
of (52). The remaining part of the average of (52) constitutes the macro-
scopic field energy-momentum tensor. Its form in the local rest frame is
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analogous to (64):

rop _ (2E7 + B2 (E A H)i 65
O\ (ErH)Y —EDi— HB/ + (1E2 + 1B2 — M-B)gii)’ (65)

and gives the expressions for the energy density Ty, the Poynting vector
¢ T}, the momentum density ¢! T}), and the Maxwell pressure T, of
the macroscopic field.
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