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Synopsis 

The relativistic conservation laws of energy and momentum in a substance, which 

consists of atoms carrying both electric and magnetic dipoles, is derived from the 

microscopic force laws for point particles in the presence of an electromagnetic field. 

The energy-momentum tensor which occurs in these “atomic” conservation laws, 

consists of a material part and a field part, for which explicit expressions are obtained. 

§ 1. Introduction. Since the beginning of the century the correct form 
of the electromagnetic energy-momentum tensor in polarized media has 
been a controversial issue. Forms, based on electron theory, were obtained 
by Lorentzl) (already before relativity theory existed) and by Einstein 
and Laubs); different expressions were put forward by Minkowskis), 
Abrahama) and otherss). None of these authors gave explicit expressions 
for the material part of the energy-momentum tensor. As a result of this 
the field part of the energy-momentum tensor could not be determined 
in a unique way. 

A solution of the problem can only be given if one starts from the micro- 
scopic energy-momentum laws for a system of charged point particles 
(electrons and nuclei). The point particles are grouped into atoms (or other 
stable groups such as molecules, ions etc.), which in the present treatment 
are supposed to carry electric and magnetic dipole moments. The derivation 
proceeds in two steps: first (in this paper) the energy-momentum laws on 
the “atomic (kinetic) level” are derived; then by covariant statistical aver- 
aging one obtains the macroscopic energy-momentum conservation laws, 
which contain the material and field parts of the macroscopic energy- 
momentum tensor 6). 

5 2. The microscopic force law. The stable groups of electrons and nuclei 
of which the system consists, will be labelled by an index k and referred 
to as “atoms”. The constituent particles of the “atoms” are numbered 
with a second index i. The microscopic force law for the constituent particle 
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ki with mass n’&, charge eki and time-space coordinates R~i = (C tki, Rkt) 

reads : 
d dR~i 

( > 

d&a 
C?‘?%k$ __ __ = 

drka dTk( 
eki f;;(h) ___ d7ki (a = 0, 1, 2, 3), (1) 

where 7k( is the proper time of ki (given by c2 d7fi = - dR~i dRk&; we 
usethemetricg~~=-l,g~~=1fori=1,2,3,g~~=Ofora#~)and 
f:T the total electromagnetic field which contains contributions due to the 
other particles of the system and possibly an external field acting on the 
system. The components of the (antisymmetric) field tensor are (fyh, fyi, 
f$) = e(t) and (f$b f$ fil”,) = b(t). 

Let us introduce a privileged point Rz of atom k, characterizing the 
motion of the atom as a whole (with dRl supposed to be time-like). The 
proper time s along the trajectory Rz is given by cs dss = - dR,” dRk,. 
We now want to introduce a parametrization s along the trajectories of 
the constituent particles ki through a “perpendicular” projection from the 
trajectory of the privileged point of atom k. This can be done with the 
help of the relation: 

{&a(s) - &a(S)} ___ 
w%) = o 

ds * 
(4 

We shall call Rkta(s) - Rka(s) th e internal coordinate Yk&%(s) of ki with 

respect to k. Then (2) reads: 

(3) 

This relation expresses the fact that in the (momentary) rest frame of 
point k the internal coordinate lki,_% is purely space-like. 

The equation (1) can be written with the help of a four-dimensional 
delta-function : 

= x s mkh9 
ekif$(Rki) ds a(& - R) ds. (4 

i 

By a Taylor-expansion of (dTki/ds)-l in powers of ?& one obtains up to 
second order in Iki: 

1 drkia dR; 
=j+Fds- ---+ 

ds 

1 d7kia drgi 
+----- 

3 d?‘kfa dR; drk(/3 dR,B 
-+- -- ~ 

26 ds ds 2~4 ds ds ds ds . (5) 
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With the help of this relation equation (4) becomes up to second order 
in I&: 

S(Rk - R) ds. (6) 

Now the privileged point k of atom k can be specified by defining it as 
the centre of gravity of atom k in the momentary rest frame of one of the 
constituent particles ki say kj (with fixed j). Since this can be done at every 
moment, it determines in a unique way the path of point k. In fact, if SJ is 
defined by 

{&c&j) - &x(S)}(~) = 0, 
S=Y, 

and then si (with i # j) by 

{Rkia(si) - Rya(sj)) = 0, 
S’S, 

the centre of gravity in the momentary rest frame of kj is given by: 

mk Rk(S) = x mki Rk(S) = c Mki Rk&). 
i i 

(7) 

(8) 

(9) 

By a Taylor expansion of Rki(Si) around Rka(s) one obtains from (7) 
for i = j and from (8) for i # j, retaining terms up to second order in Yk6: 

(10) 

Expanding now Rki(Si) around Rki(S) in (9) one gets with (10) : 

x mkt Rk(S) = 2 mki Rki(S) + o(3)> 
i i 
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where O(3) is of third order in ski. Thus 

2 mki rki(S) = 0, 
i 

(11) 

if terms of third and higher order are neglected. 

3 3. The force equation up to second order in the internal coordinates. Let 
us write Rk + rki instead of Rki in (6), except in the field fCtj(Rki), which 
will be considered in the next section. Then with the help of (3) (and its 
derivative with respect to s), (11) and the equation of motion (l), which 
in the calculation is only needed up to first order: 

1 drkis wi 
l+E2--- ds ds 

= eki f;‘$h) ---ds 9 dRkta (12) 

or even zeroth order: 

(13) 

the force law (6) may be written, retaining terms up to second order in 
Iki only: 

’ s dzR;Z 
mk &2 

~ d(Rk - R) ds 

s 

d2R: drkW drii /,,q 6(Rk _ R) ds ___ ___ ~ 
mkB dsa ds ds ky 

s 

dRk0 
= 2 %f;;fj(Rki) - 

i 
ds d(Rk - R) ds 

+ x 
i s 

d%y 
eki A;, f;(h) ds 6(& - R) ds 

fwye(Rki) d(Rk - R) ds 

f 

drii dR”, dR; 
ekt A& ?‘$ __ - ___ a, fCtjye(Rki) d(Rk - R) ds 

ds ds ds 

s 
fO,,#ka) 6(&c - R) ds, (14) 
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where 

It may be remarked that the internal product of both sides of (14) with 
dRk,lds vanishes. 

9 4. The intra-atomic electromagnetic field. The field f$(Rkt) may be 
split into two parts 

f;;(Rki) = f”“(Rki) + f$,(Rkz)> (16) 

where f@ contains the fields produced by the atoms 1 # k and possibly 
a field acting from outside the system; f$‘,, is the intra-atomic field, i.e. the 
field produced by the constituent particles of atom k itself. 

This splitting is performed because, while the field f”” shows only small 
variations over distances of the atomic dimensions (and can thus be ex- 
panded in powers of rki), the intra-atomic field varies rapidly inside the 
atom. The latter will therefore be considered separately. We shall assume 
that in the momentary rest frame of the atom the motion of the constituent 
particles is such that it is not needed to include terms of higher order than 
c-2 in the intra-atomic field f$‘,,. This is also the approximation which 
follows from the Darwin potentials. In the theory of atomic (and molecular) 
structure often the cruder nonrelativistic approximation, in which the 
intra-atomic fields contain only terms up to order c-1 is considered to be 
sufficient. The components of the field f$) up to order c-2 are 

m(O)2 
'ki 

(0) 

f- 
rki - r$) 

23 4n Irk!’ - r$)/3 

with 

T(r$), rg)) = U + 
(f-k:) - $))(f$) - $)) 

Irk!) - rg)j2 ’ 

(17) 

(18) 

(19) 

Here the dot in +g’, ii;’ and fih”’ means a differentiation with respect to 
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time, while the suffix (0) indicates the momentary Lorentz rest frame; 
U is the unit tensor. Substituting (17) and (18) one gets for (14) 

s dsR” 
c (mk + &?z; + SmF) --k d(Rk - R) ds 

dss 

+ c 
i s 

drkiy 
ekZ A$ fP”(Rki) ds 6(Rk - R) ds 

dr& dRk 
r& ~ __ 

ds ds 
fYE(Rkg) d(Rk - R) ds 

s 

drL dR; dR: 
eki ?% ds ds 7 8, fys(Rkt) d(Rk - R) ds 

s 
fys(Rkt) d(Rk - R) ds, 

where 

(20) 

represent masses equivalent to internal Coulomb energies of atom k, and 

&&I = k 
iZmkr?!!$? %A;, 
2C2 i (22) 

is a mass corresponding to the internal kinetic energy of atom k. We note 
that in (20) the terms of intra-atomic origin (i.e. the terms with 6rnii and 
srni) are both of order c-s; this means that nonrelativistically these terms 
would disappear. 

In (20) one recognizes besides the ordinary rest mass density 

p; = c j mk d(& - R) ds (23) 
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the mass densities 

(24a) 

(24b) 

(25) 

Furthermore one has at the left-hand side a term containing 

which is the “atomic angular momentum” density (in the rest frame it 
reduces to the angular momentum density of the atom). 

3 5. Expansion of the interatomic fields. The dipole case. The interatomic 
field f”o(Rki), which occurs in (20) can be expanded in powers of Yki. Thus 
one obtains for the right-hand side of (20), retaining terms up to second 
order 

c eki f@(R) -!$ s 6(Rk - R) ds 
i 

+C 
i s 

ekg Ai, rii &fB”(R) % d(Rk - R) ds 

dr;< dR”, 
G&g ds fv(R) d(Rk - R) ds 

s 

dr;, dRk dR; 
ek6 r& ds 7 ds &fw(R) d(Rk - R) ds 

1 
- x;- 

i c4 s 
eki 

dR; d2Rks B dr& 
----_-----_y~~ 

ds dss 
dR’ fYE(R) d(Rk - R) ds. 

k’ ds ds 
(27) 

The field acting on atom k is a sum of partial fields fj@ due to atoms I(# K) : 

f”” = l(& ff8> (28) 
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where external fields acting from outside the system are omitted. The 
partial fields satisfy the atomic field equations7) 

(29) 

(30) 

with the atomic four-current density: 

c-1 jr = J er(dRF/ds) ~(Rz - R) ds, (31) 

and the atomic polarization tensor 

ml 
UP = ,fWP + m1(2)a8. (32) 

Here only first and second order contributions are considered: 

ml(l)@ = z 
i 

dRf p dRe YE __ - yli __ 

ds ds 
d(Ri - R) ds, 

(34) 

From now on we shall limit ourselves to the consideration of electric and 
magnetic dipole moments only. Whereas (33) contains only electric dipoles, 
expression (34) contains both magnetic dipoles and electric quadrupoles. 
The latter are discarded if, instead of (34), we now write 

From (33) and (35) follow the properties: 

dy A& rn$ = 0 la > 

24: mf$ = 0, 

where 

(36) 

(37) 

a;(R) = z (s from Rl(s) = R). (38) 

With these relations one deduces from (32) : 

ml (l)@ = _ c-2 up uLy mr@ _ c-2 Q$ uly may 1 ) (39) 

rnj2jaS = A& Ai m,YB. (40) 

Expression (27) becomes with the help of (3), (28), (29), (31)-(40), and 
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discarding electric quadrupoles : 

x f:‘(C-l jkP + i+’ mkh) 
Z(+k) 

+ z ap{fy’ Mt., f C-2(m;’ flys - f;’ mkys) U;Ut + $Ch2 U;Uf fy WZ&} 
Z(+k) 

- l& N;{&-~ fZ& a&: mpBv) + C-4 flpy(DkU$ Uks m,p 

_ 1 
2c 

-2 w’z~C~)‘~ 24; aefloy - CM4 floy(DkUkE) U& WZ~‘“‘}. (41) 

Here use has been made of the operator 

Dk = U; &, (42) 

which permitted us to write 

$g( f S rOIn &(S) = R) = u!(R) &-Zh;(z?) = D@;. (43) 

From the definition (23) follows the conservation of proper mass 

ancp; 24;) = 0. (44) 

Using (42) and (44) the last bracket of (41) becomes: 

+-” fl& pll. Dk(V; mk (l)‘@) + C-4 fl,j,,(Dk U{) Uka WZjcl)“Y 

_ 1 
2c 

-2 m~2'PY Dk flo,, - C-4 f&h Uka) U; mi2’“Y, (45) 

where v; = (pJ-1 is the specific volume. We now wish to express the 
invariant quantity (45) completely in terms of quantities defined in the 
rest frame, in which the atom is at rest all the time. This frame, which we 
indicate by dashes is a succession of Lorentz frames, not a Lorentz frame 
itself. The Lorentz transformation of an antisymmetric tensor Aa,g with 
components Ata = Xi; Aif = Yk (cycl.; i, j, K = 1, 2, 3) from the dashed 
frame to the momentary rest (Lorentz) frame yields: 

DX’ = DX’O’ + c-1 D@' ,, y(o) (46) 

DY’ = DY’O’ _ c-1 D@’ ,, X(O), 
(47) 

where D denotes a differentiation and 2, (‘) the transformation velocity. 
From this follows the relation (with transformation four-velocity U&(O)) : 

DA;, = DA;;’ + ,-Z(u'0' AjP,’ Du”o’ _ u;) A’O’DUY’O’) 
cl w 

- ,-2(UY’o’#‘$‘DUf _ U?(o) A$‘DU;o’), (48) 

as may be checked for its components separately. Then by means of a 
contraction with a different antisymmetric tensor Bar6 one gets: 

B’@ DA;, = B@ DAao + 2c-2 Ua(B”fl AoY - A@ Boy) DUy. (49) 
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Using this relation and (36), (37) the expression (45) becomes 

*c-s fiPy p& D&L W&i)~Y’) - &c-2 WQ)@Y Dk &,. (50) 

Now we can rewrite the energy-momentum balance equation (20), using 
(23)-(26), (29), (30), (38), (39), (41)-(44) and (50) in the form (with a 
summation over k): 

c &3(pll. g 4, + c &3(c-2 4 fJ”k DkUky) 
k 

+ Is %3{&&$ &-&~a) + wg + c. (&$’ + &dZ’) Dkf4 
ki 

+ k E:,, ijc-2 uz{f& p; D&;mil)pY’) ” rnL2jBy’ Dkf&,,) 
, , 

+ 2 CT2 @$ka a,+! &&jl. +& &)} = 0, (51) 

where we have introduced the atomic energy-momentum tensor of the field: 

- cv4 UkLu @kB ui flys mic UkC), (52) 

with t%EB = f$ - rnip. The last three terms in (51) are not in the form of 
a divergence: in other words (51) has still the form of a balance equation, 
not yet of a conservation law. Consideration of the internal atomic energy 
balance will allow us to write the three terms concerned as a divergence as 
well. 

3 6. The internal atomic energy balance. In order to obtain the balance 
equation of internal atomic energy the equation of motion (1) is multiplied 
by dr,&ds : 

Expanding up to second order in r&. one gets: 

xc 
i 

= c 
i s 

dRks drkilw 
ekif$(Rkt) 7 7 6(Rk - R) ds, (54) 

where an integration over a delta-function has been added. With the help 
of (3) and (11) one obtains: 

6(Rk - R) ds = 

zzz I; 
s 

dRks drk.Ea 

i 
ekt f;“t”l(Rki) ds- --c d(RI, - R., ds 

dsR; dsR{ dYkta 

mk’ dss dss ds 
rki,j 8(Rk - R) ds. (55) 
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With the use of the equation of motion in zeroth order (13) the right-hand 
side of equation (55) becomes: 

d&g &in 
eki ftij(Rki) ds --d; -- d(Rk - R) ds 

+ F $ s dRk, d2Rg drkin 
ek% f$(Rki) 7 ds2 -2~ Yk$fl d(& - R) ds. (56) 

Let us consider first this expression for the intra-atomic fields only. 
Since the internal energy balance, deduced here, will be employed in the 
last two terms of (51), which contain already a factor c-2, we may confine 
ourselves here to the Coulomb expression for the intra-atomic field in the 
momentary rest frame of the atom. In this way (56) becomes for the intra- 
atomic fields 

- cs 
s 

& (&+z;) 6(RI, - R) ds, 

where Smg is defined in (21). 

(57) 

The interatomic field part of expression (56) is considered up to second 
order in rzi by expanding the fields: discarding the electric quadrupole 
moments one gets with the help of (3), (28), (29), (33), (35)-(38), (42)-(44) 
and (49) : 

c &{f& & &(v; my)““) - ?‘@)‘@’ &(ff,,g)}. 
Z(-ik) 

The balance equation (55) becomes with (22), (57) and (58) : 

(58) 

C3 
s 
$ (a&‘) d(Rk - R) ds = - c3 I$ (6m;) 6(Rk - R) ds 

+ z(:k) +{f,‘,, p; uk(v; ~~“=“‘) - mi?“” Dk(f&)}. (59) 

Finally, after a partial integration of two mass terms and using (24), (25) 
and (38) the equation (59) gets the form (with a summation over A): 

c c2 a,{(splt.’ + c&y) u[} = 

k 

(60) 

which is the internal atomic energy balance. The right-hand side of this 
equation appears in the penultimate term of the first member of (51). The 
last term of the first member of (51) may now be neglected since it is of 
order c-2 as compared to the penultimate term, if (60) is used. 

S 7. The atomic energy-nzomentwn balance in the form of a conservation law. 

If the balance equations of energy-momentum (51) and of internal atomic 
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energy (60) are combined, one obtains the conservation laws: 

a&@ = 0, t”fl = $7 + t$$, (61) 

for energy (a = 0) and momentum (a = 1, 2, 3). Here too is the energy 
density, c toi the energy flow, c- t 1 ia the momentum density and r%’ the 
momentum flow. 

The atomic field energy-momentum tensor is given by (52) and the 
atomic material energy-momentum tensor by 

Here the first term contains besides the rest mass density p; the mass 
densities corresponding to the internal Coulomb and kinetic energy of the 
atoms, The contribution of atom K to this term is purely time-time-like in 
the rest frame of k. The contribution of atom k to the second term is different 
from zero only if the atom, which carries the angular momentum (TI, is 
accelerated. In the rest frame of k it yields a contribution to the momentum 
density only, which is of the form &,!?k A uk. The third term is a very small 
relativistic correction related to the internal Coulomb energy of the atoms. 

(It should be remarked that in view of the form of (61) the energy- 
momentum tensor is determined up to divergence-free part.) 

The field energy-momentum tensor (52) consists of a sum of terms for 
each atom 

It is interesting to consider the partial tensor tTgk in the rest frame of 
atom k: 

&?k’el+$bk-bl (eZ A hk)’ 
zzz x 

(eZ A hk)’ ) -ee:d~-h~b~+(gek.el+8bk.bl-mk.bl)gi~ ’ (64) 
K#k) 

The energy-momentum conservation laws on the atomic (“kinetic”) level 
are thus derived. In a subsequent paper they will serve as a basis for the 
macroscopic equations. In fact these are obtained by averaging (61). Then 
a macroscopic material energy-momentum tensor is obtained which is the 
average of (62) combined with the correlation and velocity fluctuation part 
of (52). The remaining part of the average of (52) constitutes the macro- 
scopic field energy-momentum tensor. Its form in the local rest frame is 
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analogous to (64): 

T”fl = 
( 

BE2 + $B2 (E A H)i 
(f) (E A H)i > _ EiDj _ HiBj + (gE2 + &B2 _ M. B)gii ? (65) 

and gives the expressions for the energy density T& the Poynting vector 
c TF& the momentum density c-1 T$, and the Maxwell pressure Tf$, of 

the macroscopic field. 

This investigation is part of the research programme of the “Stichting 
voor Fundamenteel Onderzoek der Materie (F.O.M.)“, which is financially 
supported by the “Organisatie voor Zuiver Wetenschappelijk Onderzoek 
(Z.W.O.)“. 
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