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A b s t r a c t .  Temporal logic has been successfully used for modeling and 
analyzing the behavior of reactive and concurrent systems. One short- 
coming of (standard) temporal logic is that it is inadequate for real-time 
applications, because it only deals with qualitative timing properties. 
This is overcome by metric temporal logics which offer a uniform logical 
framework in which both qualitative and quantitative timing properties 
can be expressed by making use of a parameterized operator of rela- 
tive temporal realization. We view metric temporal logics as two-sorted 
formalisms having formulae ranging over time instants and parameters 
ranging over an (ordered) abelian group of temporal displacements. 
In this paper we deal with completeness results for basic systems of 
metric temporal logic - -  such issues have largely been ignored in the 
literature. We first provide an axiomatization of the pure metric fragment 
of the logic, and prove its soundness and completeness. Then, we show 
how to obtain the metric temporal logic of linear orders by adding an 
ordering over displacements. 

1 I n t r o d u c t i o n  

Logic-based methods for representing and reasoning about  temporal  informa- 
tion have proved to be highly beneficial in the area of formal specifications. In 
this paper  we consider their application to the specification of real-t ime systems. 
Timing properties play a major  role in the specification of reactive and concur- 
rent software systems that  operate in real-time. They constrain the interactions 
between different components of the system as well as between the system and 
its environment,  and minor changes in the precise t iming of interactions may  
lead to radically different behaviors. Temporal  logic ha~ been successfully used 
for modeling and analyzing the behavior of reactive and concurrent systems (see 
Manna and Pnueli [8] and Ostroff [11]). I t  supports semantic model checking, in 
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order to verify consistency of specifications, and to check positive and negative 
examples of system behavior against specifications; it also supports pure syn- 
tactic deduction, in order to prove properties of systems. Unfortunately, most 
common representation languages in the area of formal specifications are inade- 
quate for real-time applications, because they lack an explicit and quantitative 
representation of time. In recent years, some of them have been extended to cope 
with real-time aspects. In this paper, we focus on metric temporal logics which 
provide a uniform framework in which both qualitative and quantitative timing 
properties of real-time systems can be expressed. 

The idea of a logic of positions (topological, or metric, logic) has originally 
been formulated by Rescher and Garson [12]. They defined the basic features of 
the logic, and showed how to give it a temporal interpretation. The logic of posi- 
tions extends propositional logic with a parametrized operator Pa of positional 
realization. Such an operator allows one to constrain the truth value of a propo- 
sition at position ~. The parameter ~ denotes either (i) an absolute position or 
(ii) a displacement with respect to the current position which is left implicit. 
According to interpretation (ii), PaP is true at the position i if and only if p is 
true at a position j at distance ~ from i. In [12], Rescher and Garson introduced 
two axiomatizations of the logic of positions that differ from each other in the 
interpretation of parameters. Later, Reseher and Urquhart [13] proved the sound- 
ness and completeness of the axiomatization based on an absolute interpretation 
of parameters through a reduction to monadie quantification theory. A metric 
temporal logic has been independently developed by Koymans [7] to support 
the specification and verification of real-time systems. He extended the standard 
model for temporal logic based on point structures with a distance function that 
measures, for any pair of time points, how far they are apart in time. He provided 
the logic with a sound axiomatization, but no proof of completeness is given. 

The main issues to confront in developing a metric temporal logic for exe- 
cutable specifications are: 

Ezpressiveness (definability). Is the metric temporal logic powerful enough to 
express both the properties of the underlying temporal structure and the 
timing requirements of the specified real-time systems? 

Soundness and completeness. Is the metric temporal logic provided with a sound 
and complete axiomatization? 

Decidability. Which properties of the specified real-time system can be auto- 
matically verified? Most temporal logics for real-time systems proposed in 
the literature cannot be decided (see Henzinger [6]). Some of them recover 
decidability sacrificing completeness. 

Ezecutability. How can we prove the consistency and adequacy of specifications? 
In principle, decidability proof methods (e.g. via Biichi automata) outline 
an effective procedure to prove the satisfiability and/or validity of a for- 
mula. But as soon as certain assumptions about the nature of the temporal 
domain and the available set of primitive operations are relaxed, the satisfi- 
ability/validity problem becomes undecidable (Alur and Henzinger [1]). 
An alternative approach eonsists in looking at metric temporal logics as 
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particular polymodal logics and supporting derivability by means of proof 
procedures for nonclassical logics or via translation in first-order theories 
(see D'Agostino et al [4], and Ohlbach [10]). In this case, providing the logic 
with a sound and complete axiomatization becomes a central issue. 

The aim of this paper is to explore completeness issues of metric temporal 
logic; we do this by starting with a very basic system, and build on it either by 
adding axioms or by enriching the underlying structures. We view metric tempo- 
ral logics as two-sorted logics having both formulae and parameters; formulae are 
evaluated at time instants while parameters take values in an (ordered) abelian 
group of temporal displacements. In Section 2, we define a minimal metric logic 
that  can be seen as the metric counterpart of minimal tense logic, and we provide 
it with a sound and complete axiomatization. In Section 3, we characterize the 
class of two-sorted frames with a linearly ordered temporal domain. 

2 T h e  b a s i c  m e t r i c  l o g i c  

In this section we define the minimal metric temporal logic MTLo, and consider 
some of its natural extensions. 

L a n g u a g e .  We define a two-sorted temporal language for our basic calculus 
MTLo. First, its algebraic part is built up from a non-empty set of variables X.  
The set of terms over X,  T(X) ,  is the smallest set such that  (1) X C_ T(X) ,  
and (2) i f  a,  fl E T(X)  then (a + fl), ( - a ) , 0  E T(X) .  Next, the temporal 
part of the language is built from a non-empty set �9 of proposition letters. 
The set of MTLo-formulae over �9 and X, F(~ ,  X), is the smallest set such 
that  (1)45 C_ F ( r  and (2) i f  r r E F ( ~ , X )  and a E T(X) ,  then -~r 
r A r A~r (and its dual V~r := -~A~-~r _1_ E F ( ~ , X ) .  We will adopt the 
following notational conventions: p, q, . . .  denote proposition letters; r r . . .  
denote MTLo-formulae; ~,  F, . . .  denote sets of MTLo-formulae; ct, ~, . . .  denote 
algebraic terms. 

S t r u c t u r e s .  We define a two-sorledframe to be a triple ~ = (T, ~D; DIS), where 
T is the set of (time) points over which temporal formulae are evaluated, ~ is 
the algebra of metric displacements in whose domain D terms take their values, 
and DIS C_ T x D x T is an accessibility relation relating pairs of points and 
displacements. 

We require the following properties to hold for the components of two-sorted 
frames. First, we require ~ to be an abelian group, that  is, a 4-tuple (D, +,  - ,  0) 
where + is a binary function of displacement composition, - is a unary function 
of inverse displacement, and 0 is the zero displacement constant, such that:  

(i) a +/~ =/~ + a (commutativity of +)  
(ii) a + (~ + 7) = (a + fl) + 7 (associativity of +)  
(iii) a + 0 = a (zero element of +)  
(iv) a + ( - a )  = 0 (inverse) 
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Second, we require the displacement relation DIS to respect the converse opera- 
tion of the abelian group in the following sense: if DIS(i, a,  j )  then DIS(j, - a ,  i). 

We turn a two-sorted frame ~ into a two-sorted model by adding an inter- 
pretation for our algebraic terms, and a valuation for atomic temporal formulae. 
An interpretation for algebraic terms is given by a function g : X ---* D that  is 
automatically extended to all terms from T(X) .  A valuation is simply a func- 
tion V : �9 ~ 2 T. Then, we say that  an equation a = /3 is true in a model 
9~ = (T, ~D; DIS; g, V) whenever g(a) = g(1~). Next, truth of temporal formulae 
is defined by 

99l, i Ik p iff i E V(p) 

9~, i IF 3_ never 

99l, i IF -~r iff 9Y[, i I)~ r 

9J~, i lk C A r iff ~Ol, i lk r and f f~ , i lF r  

9Yt, i Ik Aar  iff there exists j such that  DIS(i, g(a), j) and 9JI, j IF r 

To avoid messy complications we only consider one-sorted consequences F 
r for algebraic formulae 'F ~ r means 'for all two-sorted models ~ ,  ifg~I ~ F ,  
then 9)l ~ r for temporal formulae it means 'for all models 97l, and times 
instants i, if 99l, i IF F, then if/t, i Ik r 

A s imple  e x a m p l e .  Even though the language of MTLo is very poor, it already 
allows us to express conditions on real-time systems. As a first example, consider 
a communication channel C that  outputs each message with a delay ~ with 
respect to its input time, and that  neither generates nor loses messages (cf. 
Montanari et al [9]). C can be specified as follows: 

out ~-* A_6in 

This example can easily be generalized to the case of a channel C that  collects 
messages from n different sources $1,. �9 �9 ,Sn and outputs them with a delay 6. To 
exclude that  two input events can occur simultaneously, we add the constraint: 

Vi, j -,(in(i) A in(j) A i ~ j),  

which is shorthand for 

-~(in(1) A in(2)) A , . .  A -,(in(n - 1) A in(n)). 

Then the behavior of C is specified by the formula 

Vi (out(i) ~ Zl_tin(i)), 

which is shorthand for a finite conjunction. 
Notice that  preventing input events from occurring simultaneously also guar'  

antees that  output  events do not occur simultaneously. 
Suppose now that  C outputs the messages it receives from $1 , . . .  Sn with a 

(generally different) delay 61, . . . ,  6n, respectively. Constraining input events not 
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to occur simultaneously no longer guarantees that  there are no conflicts at output  
time. A simple strategy of conflict resolution consists in assigning a different 
priority to messages coming from different knowledge sources, so that ,  when a 
conflict occurs, C only outputs the message with highest priority. Accordingly, 
the specification of C is modified, preserving the requirement that  it does not 
generate messages, but relaxing the requirement that it does not lose messages. 

Assume that  5'1, . . . ,  Sn are listed in decreasing order of priority. The be- 
havior of C can be specified as follows: 

Vi (out(i) ,-* (A_~,in(i) A -,3j (A_~jin( j )  A j < i)))) 

which is a shorthand for 

(out(l)  ~ A_6,in(1)) A (out(2) ~ (A_62in(2) A -~A_t,in(1))) A . . . A  

(out(n) *-* (A_~nin(n) A ( - ,A_~in(1)  A . . .  A -,A_6~_lin(n -- 1))). 

More realistic examples are given in the full paper. 

A x i o m s .  Our basic calculus MTLo has two components. On the one hand it 
has the usual laws of algebraic logic to deal with the displacements: 

(Ref) ~- a = a lbr all terms a (reflexivity) 
(Sym) b a = fl ==~ F- fl = o~ (symmetry) 
(Tra) b ~ = a,  c~ = fl ~ F-/5 = fl (transitivity) 
(Rep) b a = fl ~ F- [a/x]~ = [fl/z]~ (replacement) 
(Sub) b a = r ~ b [~/z]o~ = [6/z]~ (substitution), 

as well as the above axioms (i)-(iv) for abelian groups. Here [a/z]fl denotes the 
result of substituting a for all occurrences of z in ft. 

The second component of MTLo governs the temporal aspect of our struc- 
tures; its axioms are the usual axioms of propositional logic plus 

(Axl)  V~(p ~ q) --* (V~p --* V~q) (normality of V~) 
(Ax2) p ~ V~A_~p, .  

and its rules are modus ponens and 

(NEC) 
(SUB) 

(LIFT) 

b r ~ b V~r (necessitation rule for V~) 
r .-., r ==ez b X(r ~ X(r (uniform substitution) 

where (C/p) denotes substitution of r for the variable p 
~- ~ = r ==~ F- V~r ,--* V~r (transfer o f  identities). 

Axiom (Axl)  is the usual distribution axiom; axiom (Ax2) expresses tha t  a 
displacement a is the converse of a displacement - a .  The rules (NEC) and (SUB) 
are familiar from modal logic, and the rule (LIFT) allows us to transfer provable 
algebraic identities from the displacement domain to the temporal  domain. 

A derivation in MTLo is a sequence of terms and/or  formulae a l ,  - . - ,  ~r,, 
such that  each ~r/(1 < i < n) is either an axiom, or obtained from ~1, . . . ,  a,,-1 
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by applying one of the derivation rules of MTLo. We write ~'MTLo O" to denote 
that  there is a derivation in MTLo that  ends in a.I t  is an immediate consequence 
of this definition that  [-MTLo a = ]~ iff a ---- ]~ is provable (in algebraic logic) from 
the axioms of abelian groups only: whereas we can lift algebraic information from 
the displacement domain to the temporal domain using the (LIFT) rule, there 
is no way in which we can import temporal information into the displacement 
domain. As with consequences, we only consider one-sorted inferences ' F  1- r 

C o m p l e t e n e s s .  In this subsection we prove completeness for the basic calculus 
MTLo. Our strategy will be to construct a canonical-like model by taking the free 
abelian group over our algebraic variables as the displacement component, by 
taking the familiar canonical model as the temporal component, and by linking 
the two in a suitable way. 

The displacement domain. Recall that  T(X)  is the collection of all algebraic 
terms built up from the variables in the set X. Define a congruence relation 0 
on T(X)  by taking 

(a,/~) �9 0 iff ~-MTLo a "-" t~. 

Then the canonical displacement domain go is constructed by taking 

D ~ = T(X)/O 

a le  + = (a +  )lO 

- a l O  = ( - a ) / e  
0 = 0 /0 .  

That  ~D ~ is indeed an abelian group is easily shown using the defining axioms 
and rules of MTLo. The group ~D ~ is known as the free abelian group over X 
(cf. Burris and Sankappanavar [3]). 

We interpret our terms using the canonical mapping g : T(X)  --* 9 ~ defined 
by a ~-* a/O. 

The temporal domain. A set of MTLo-formulae is maximal MTLo-consistent (or: 
an MCS) if it is MTLo-consistent and it does not have proper MTLo-consistent 
extensions. The canonical temporal domain T O is constructed by taking 

To = {57 I 57 is maximal MTLo-consistent }. 

Define a canonical valuation V ~ by putting V~ = {27 I P E 22}. 

The canonical model for MTLo. We almost have all the ingredients to define 
a canonical model for MTLo; we only need to define a displacement relation 
DIS ~ C_ T o • D O • T ~ This is done as follows: 

DIS~ a /0 ,  F)  ifffor every formula 7, 7 E F implies Aa 7 E 57 

(equivalently: for all formulae a, if Va~r E 57 then a E F).  
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Note that  if (a, fl) E 0, then t- a = fl, hence I- Var  ~ V~r by the (LIFT] rule, 
for all formulae r From this one easily derives that  the definition of DIS" does 
not depend on the representative we take for a /8 .  

Also, DIS~ or/0, F) impl ies  DIS~ - a / 0 ,  s ) :  if DIS~ a /0 ,  F)  and a E 
S,  then V~A_~a  E 27 by axiom (Ax2), hence A_~ E F. 

Then, the canonical model for MTLo is the model 92t ~ = (T ~ ~D~ DIS~ g, V~ 

T h e o r e m  1. MTLo is sound and complete for the class of all MTLo-frames. 

Proof. Proving soundness is left to the reader. To prove completeness we show 
that  every consistent set of MTLo-formulae is satisfiable in a model based on a 
two-sorted frame. 

Let 27 be a MTLo-consistent set of formulae; by standard techniques we 
can extend it to a maximal MTLo-consistent set ,U + that  lives somewhere in 
the canonical model 9)I ~ for MTLo. To complete the proof of the theorem it 
suffices to establish the following Truth Lemma. For all MTLo-formulae r and 
all 27 E TO: 

C E S  iff 9)l~162 

This can be done using standard arguments from modal logic. -t 

I m p o s i n g  a d d i t i o n a l  c o n s t r a i n t s .  For many purposes two-sorted frames as 
we have studied them so far are too simple. In particular, they don't  satisfy all 
the natural conditions one may want to impose on the displacement relation. 
Examples of such properties that  arise in application areas such as real-time 
system specification include 

Transitivity: Vi, j,k,a,fl(DIS(i, ot,j) ADIS(j, fl, k)--~ DIS(i,a+ fl, k)) 
Quasi-functionality: Vi, j, j ' ,  a (DIS(i, ~, j)  A DIS(i, a,  j ' )  -+ j = j') 
Reflexivity: Vi DIS(i, 0, i) 
Antisymmetry: Vi, j, c~ (DIS(i, a, j)  A DIS(j, a,  i) -* i = j A a = 0). 

As in standard modal and temporal logic only some of the natural properties 
we want to impose on structures are expressible. In particular, the first three 
of the above properties are expressible in metric temporal logic, as follows (see 
Montanari et al [9]): 

(hx3) ~Ta+Zp --. V.VOp (transitivity) 
(Ax4) Ac, p ~ Vap (quasi-functionality w.r.t, the 3rd argument) 
(Ax5) V0p --~ p (reflexivity) 

In the case of Transitivity, Quasi-functionality, and Reflexivity we are able 
to extend the basic completeness result fairly effortlessly because each of the 
corresponding temporal formulae is a Sahlqvist formula. And the important  fea- 
ture of Sahlqvist formulae is that  they are canonical in the sense that  they are 
validated by the frame underlying the canonical model defined in the proof of 
Theorem 1 (see Goldblatt [5] for analogous arguments in standard modal and 
temporal logic, or De Rijke and Venema [15] for the general picture). As a con- 
sequence we have the following: 
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T h e o r e m  2. Let X C {Ax3, Ax4, Ax5}. Then MTLoX is complete with respect 
to the class of frames satisfying the properties expressed by the axioms in X .  

Further natural properties like Euclidicity (Vi, j , k , 4 , f l ( (DIS ( i ,  4 , j )  A 
DIS(i, 4 + fl, k)) -+ DIS(j, fl, k))) can already be derived from MTLoAx3. 

In the case of Antisymmetry, we have to do more work. First of all, Antisym- 
metry is not expressible in the basic metric language. One can use a standard 
unfolding argument to prove this claim (as  in ordinary modal logic). Despite 
the undefinability of Antisymmetry, we can prove a completeness result for the 
class of antisymmetric two-sorted frames. Using a technique which is based on 
Burgess' chronicle construction (see Burgess [2]) it is indeed possible to prove 
the following theorem. 

T h e o r e m  3. MTLo is complete with respect to the class of all antisymmetric 
two-sorted frames. 

3 T w o - s o r t e d  f r a m e s  b a s e d  o n  o r d e r e d  g r o u p s  

For a variety of application purposes, our basic calculus and its semantics need 
to be extended with orderings. In particular, a linear order on the temporal do- 
main is needed in many application areas; for instance, in real-time specification 
we want to guarantee that  between any two time instants there is a unique dis- 
placement. In the following, we achieve this by adding a total ordering on the 
displacement domain D. 

In the definition of a two-sorted frame we replace the abelian component by 
an ordered abelian group. That  is, by a structure ~D = (D, + , - ,  O, <), where 
(D, + , - ,  O) is an abelian group, and < is an irreflexive, asymmetric, transitive 
and linear relation that  satisfies the comparability property (viii) below: 

(v) < 4)  
(vi) -,(4 < fl A fl < 4) 
(vii) 4 < fl A # < 7 "* 4 < "[ 
(viii) 4 < f l Y 4  = f lV  fl < 4. 

Next, there are two axioms expressing the relation between + and - ,  and <: 

(ix) 4 < # - - * 4 + 7 < # + 7  
(=) 4 < - +  < - 4 .  

One can use various languages to talk about ordered abelian groups. We do 
not have any clear preference, as long as the language used can be equipped with 
a complete axiomatization. We will simply use full first-order logic over =, < to 
reason about the ordered abelian component of our two-sorted frames. 

To be precise, our metric temporal language for talking about two-sorted 
frames based on an ordered abelian group, has a first-order component built 
up from terms in T ( X )  and predicates = and <; its temporal component is as 
before. 
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The interpretation of this language on two-sorted frames based on an ordered 
abelian group is fairly straightforward: the first-order component is interpreted 
on the group, and the temporal component on the temporal domain. Validity in 
this language is easily axiomatized; for the displacement component we take the 
axioms and rules of identity, ordered abelian groups, strict linear order together 
with any complete calculus for first-order logic; and for the temporal component 
we take the same axioms as in the case of MTLo: axioms (Axl), (Ax2) and the 
rules modus ponens, (NEC), (SUB) and (LIFT). Let MTL1 denote the resulting 
two-sorted calculus. 

T h e o r e m 4 .  MTL1 is complete with respect to the class of two-sorted frames 
based on ordered abelian groups. 

Proof. We can simply repeat the proof of Theorem 1 here, and replace the free 
algebra construction of the displacement domain by a Henkin construction for 
first-order logic. -~ 

3.1 D e r i v i n g  a t e m p o r a l  o r d e r i n g  

Given that  we have an ordering < on the algebraic component of our frames, a 
natural definition for an ordering << on the temporal frame suggests itself: 

i << j iff for some c~ > O, DIS(i, ~, j) .  (1) 

So i and j are <<-related if there exists a positive displacement between them. 
Using the relation <<, we can define the qualitative operators F,  P of non-metric 
temporal logic as follows: 

ff)~, i it- F r  := 3j (i << j A j IF r and 9~A, i It- PC := 3j (j << i A j IF r 

However, we will not consider this extension in this abstract. 

A d d i t i o n a l  p r o p e r t i e s .  The definition of << given in (1) does not produce a 
temporal ordering with all the natural properties that  we usually expect it to 
have. In particular, unless we put further restrictions on the relation of temporal 
displacement, << will not be a strict linear order, and there may be time instants 
without a unique temporal distance between them. 

To repair this situation, we assume that  the displacement relation DIS sat- 
isfies the following properties: transitivity, quasi-functionality, reflexivity (as de- 
fined in Section 2), and total connectedness and quasi-functionality w.r.t, the 
second argument: 

(xi) 
(xii) 

Vi, j 3~  DIS(i, a ,  j )  (total connectedness) 
Vi, j ,  a,  fl (DIS(i, a,  j )  A DIS(i,/3, j )  -~ a =/3) 

(quasi-functionality w.r.t, the 2nd argument). 
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Given these assumptions on the displacement relation, we can show that  the 
temporal relation << as defined in (1) is a strict linear order. To see that  << is 
transitive, assume that  i << j << k. Then there exist a , / 3  with DIS(i, a,j) and 
DIS(j,/3, k). Hence DIS(i, a + fl, k) and i -"g: k. 

For irreflexivity, assume i << i. Then DIS(i, a,  i) for some a > 0. By reflexivity 
of DIS, DIS(i, 0, i), hence, by quasi-functionality of the second argument, a = 0 
- -  a contradiction. 

For asymmetry, assume i << j << i. Then DIS(i, a ,  j )  and DIS(j,/3, i) for 
some a, /3 > 0. Then DIS(j, - a ,  i) and so/3 = - a ,  by quasi-functionality of the 
second argument again, which yields a contradiction. 

Finally, to prove totality, take any two i, j .  By total connectedness there 
exists a such that  DIS(i, a,j). By axiom (viii), a > 0 V a = 0 V 0 > a .  If a > 0, 
then i << j .  If a = 0, then by quasi-functionality and reflexivity of DIS, i = j .  
And if a < 0, then - a  > 0 and DIS(j, - a ,  i), so j << i. 

Let us call a two-sorted frame nice if it is transitive, reflexive, totally-connected, 
and quasi-functional in both the 2nd and 3rd argument of its displacement re- 
lation; a model is nice if it is based on an nice frame. 

The next obvious question is: can we characterize the nice frames in the 
language of MTLI? The answer is 'no'. To see this, we quickly adapt two truth 
preserving constructions from standard modal logic to the present setting. Due to 
space limitations we confine ourselves to frames that  share the same displacement 
domain; however, the definitions are easily generalized to the general case. 

D e f i n i t i o n 5 .  Let ~ = (T, ~D; DIS) and ~' = (T', ~D; DIS ~) be two-sorted frames. 
The disjoint union of ~ and ~ is the two-sorted frame ~ ~ ~ = (T ' ,  ~D, DIS"). 
Here, T"  is the disjoint union of T and T ~, while the displacement relation DIS" 
is jus t  the disjoint union of DIS and DIS ~. 

T h e o r e m  6. Let ~ and ~ be two-sorted frames, and ~ ~ their disjoint union. 
For all algebraic terms a,/3, if ~ ~ a =/3 and ~' ~ a =/3, then ~ J ~  ~ ~ =/3. 
And, for all formulae q~, if ~ ~ r and ~' ~ r then ~d t~ ~d' ~ r 

T h e o r e m  7. There is no modal formula r that expresses total connectedness of 
two-sorted frames. 

Proof. We prove the claim by showing that  the existence of such a formula would 
violate preservation of truth under disjoint union. An intuitive account of this 
negative conclusion can be given noticing that  disjoint unions are not totally 
connected frames "by definition". 

Suppose that  there exists a formula r expressing total connectedness. By 
Theorem 6, it follows that  r is valid in the disjoint union ~ = ( T ' ,  ~D; DIS") 
of any two frames ~ and ~ validating r Take i E ~ and j E ~ ;  by definition of 

~ ~ ,  it follows that  there exists no a E ~ such that  DIS"(/, a,  j) .  q 

Def in i t i onS .  Let ~ = (T, ~D; DIS) and ~' = (T', ~;  DIS ~) be two-sorted frames. 
A bounded morphism from ~ to ~ is a mapping f : T ~ T ~ such that:  
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1. if DIS(i, a,  j ) ,  then DIS'(f( i) ,  a,  f ( j ) ) ;  
2. if DIS'(f( i ) ,  (~, j ' ) ,  then for some j e T both f ( j )  = j '  and DIS(i, a,  j )  hold. 

T h e o r e m 9 .  Let ~ and ~ be two-sorted frames, and f a surjective bounded 
morphism from ~ to 5'. For all algebraic terms a, fl, i f  ~ ~ a -- /3, then 
5' ~ a = ft. And, for all formulae r if  ~ ~ r then 5' ~ r 

T h e o r e m  10. There is no modal formula r thai expresses quasi-functionality 
w.r.t, the second argument of the displacement relation. 

Proof. We prove the claim by showing that the existence of such a formula 
would violate preservation of truth under bounded morphisms. Suppose that 
there exists a formula r expressing quasi-functionality with respect to the second 
argument of the accessibility relation. 

Consider the two-sorted frames ~ = (T, :D; DIS) and 5'  = (T', :D; DIS') 
such that T = {ii,i~,i3, i4, j l , j~,ja,  j4}, T' = {i ' , j '} ,  DIS contains (il, 1 , j l ) ,  
( i l ,2 , ja ) ,  ( i2 ,2 , j l ) ,  (is, 1,j3), (i3,1,j2),  (i3,2,j4),  (i4,1,14), and (i4,2,j2),  to- 
gether with the converse triplets ( j l , - 1 ,  il), ( j 3 , - 2 ,  il), and so on, while DIS ~ = 
{(i', 1, j~), (i', 2, j~), (y ,  - 2 ,  i~), (j~, - 1 ,  i')}. Clearly, ~ satisfies the requirement 
of quasi-functionality, while 5'  does not. 

Now, consider the mapping f :  T --, T ~ defined by f ( i t )  = f(i~) = f( ia)  = 
f(i4) = i ~, f ( j i )  = f(j2) = f ( j3 )  = f(j4) = j' .  It is easy to verify that f is a 
surjective bounded morphism. Then, from ~ ~ r Theorem 9 allows us to infer 
that ~ ~ r and we have a contradiction. -q 

E n r i c h i n g  t h e  l anguage .  Given that nice frames cannot be characterized in 
the language of MTL1, a possible way out consists in enriching the language 
to make it possible to express the two properties of total connectedness and 
quasi-functionality of the displacement relation in its 2nd argument. We briefly 
show that those properties can actually be expressed by adding to the language 
the future and past operators F, P ,  the difference operator 7), and by allowing 
information to be lifted from the temporal domain to the displacement domain 
by permitting the two languages to be mixed. 

First, the difference operator (De l%ijke [14]) is a unary modal operator 7) 
that allows us to model unbounded jumps. Its semantic interpretation is defined 
as follows: 

(5, Y), i IF 7)r iff Bj (j  # i A (5, Y), j IF r 

with dual D: 

(5, Y), i IF f i e  iff Vj (j  • i ---* (~:, Y), j IF r 

The difference operator and its dual allow us to define three derived unary op- 
erators C, its dual .A, and H that respectively model truth in at least one world, 
truth in all worlds, and truth in one and only one world: 

~r  = 7)r V r ,4r = 7)r A r and Hr  -- ~(r  A --7)~b). 
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In a language in which the algebraic and temporal formulas may be mixed, 
properties (xi) and (xii) can be axiomatized by means of the qualitative operators 
F,  P and D, ~, a n d / / a s  follows: 

(Ax6) 
(AxT) 

7)p --. Fp V Pp (total connectedness of DIS) 
Hp A Hq ---+ (g(p A Aaq) A g(p A Aoq ) -:+ a = t3) 

(quasi-functionality of DIS w.r.t, the 2nd argument). 

Details are supplied in the full paper. 
However, we prefer to remain within the original language of MTL1 and 

reason about nice frames there, mainly because adding the axioms Ax6 and 
Ax7 forces us to give up the simplicity of the basic calculus and to include 
non-standard derivation rules to govern the difference operator. As we will show 
below, the logic of nice frames can be captured in the original language. 

Comple teness  for nice frames.  Instead of increasing the expressive power of 
metric temporal logic, we can leave it as it stands, and prove a completeness 
result for nice frames in the old language. We will do this in two steps. We first 
prove completeness with respect to totally connected frames via some sort of 
generated submodel construction, and then we prove the full result. 

Here's the idea for the case of total conneetedness. Let ~ = (T, ~D; DIS) be a 
two-sorted frame. The master relation on ~ is defined by 

(i, j )  E Master iff (i, j)  E (<< U >>)*. 

Thus i, j are in the master relation iff there exists a zig zag path along the 
displacement relation from i to j in the following sense: 

DIS(i, 0~I, jl), DIS(j1, a2, j~), �9 �9 �9 DIS(j,,, a,*+1, j), 

where a a , . . . , a ,  E D, and ja,-. . ,J,* E T. 
A point-generated component of a model ~ = (T, ~ ;  DIS; g, V) is a model 

(T', ~ ;  DIS'; g, V') such that for some i E T, 

- T'  = { j  E T [  (i, j )  ~ Master} 
- D I S ' = D I S A ( T ' • 2 1 5  t) 
- V'(p)  = v ( p )  n T' ,  for all p. 

P r o p o s i t i o n l l .  Let lift t be a point-generated component of a m o d e t ~  based on 
a two-sorted frame with ordered abelian group. IfYOl has a transitive displacement 
relation, then 92it' has a transitive and totally connected displacement relation. 

L e m m a  12. Let 9J~ ~ be a point.generated component of a two-sorted model 93t. 
Then 9Jt ~ satisfies exactly the same algebraic formulae as Y)2. Moreover, for all 
i E T j and for all temporal formulae r we have 93~, i lh r iff ~0I I, i I~- r 

MTLIAx3 extends MTL1 with the transitivity axiom V~+Zp --+ V~Vzp. 
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T h e o r e m  13. MTLxAx3 is sound and complete with respect to the class of two- 
sorted frames based on ordered abelian groups whose displacement relation is 
transitive and totally connected. 

Proof. We only prove completeness, and to establish this it suffices to show that 
every MTL1Ax3-consistent set of formulae is satisfiable in a model based on a 
frame of the right kind. 

Let F be a MTL1Ax3-consistent set of formulae. By a Sahlqvist style argu- 
ment (see Theorem 2) it is easily seen that F is satisfiable in a model fl)~ based on 
a two-sorted frame with a transitive displacement relation, say at a time instant 
i. Let 93t ~ be a point-generated component of 9Jl that contains i. By Proposi- 
tion 11 97~' has a transitive and totally connected displacement relation, and by 
Lemma 12 we have 93~', i IF F ,  as required. -~ 

To prove completeness w.r.t, the class of nice frames, we need to carry out a 
second construction. First, call a two-sorted frame almost nice if it is transitive, 
reflexive, totally-connected, and quasi-functional in the 3rd argument of its dis- 
placement relation; a model is almost nice if it is based on an almost nice frame. 
So a frame is nice if it is almost nice and quasi-functional in the 2nd argument 
of its displacement relation. 

Now, to build a nice model we will take an almost nice model and carefully 
unfold it. To be precise, let 93~ = (T, :D; DIS; g, V) be an almost nice model, and 
let i E T. The i-stratification of 992 is the model 97t J = (T ~, :O; DIS~; g, W) which 
is defined as follows: 

T'  = {(0, i)} U {(~, j )  I DIS(i, a, j )  in 992} 

DIS0 = {((0, i), a,  (a, j ) ) [  (a, j )  E T'} U {((a, j ) , - a ,  (0, i))[ (a, j )  E T'} 

DIS1 = {((c~, j) , /3 - a,  (/3, k)) [ (c~, j) ,  (/3, k) E T'} 

DIS' = DIS0 U DIS1 

V'(p) = { (a , j )  E T J l J E V(p)}. 

Observe that DIS0 C_ DIS1. 

P r o p o s i t i o n  14. Let 9~ be an almost nice model, and let i C for. The i-strati- 
ficalion of gY~ is nice. 

Proof. We first observe first that for any pairs (a, j) ,  (7, k) E T', and/3 E 5), if 
DIS'((a,  j),/3, (7, k)) holds then fl = 7 - a. 

Now, to prove the proposition, we have to check the nice-ness properties. First 
of all, we show that DIS'((a, j), fl, (% k)) implies DIS'((7, k), - f l ,  (a,  j)) .  By the 
observation/3 = 7 - a. Also, (a, j ) ,  (7, k) E 7" implies DIS'((% k), a - 7, (a,  j)),  
that is, DIS'((3,, k), -/3, (a, j)) .  

Next, we show that DIS'  is reflexive. As 9)t is assumed to be reflexive, 
we have DIS(i, O, i), hence DIS((0, i), 0, (0, i)). As to other points (a,  j )  E T', 
DIS0((0, i), a, (c~, j ) )  and DIS0((a, j ) ,  - a ,  (0, i)) imply DIS'((a,  j), O, (a, j)). 

To see that  DIS' is quasi-functional with respect to its 3rd argument, assume 
DIS'((a,  j),/3, (% k)) and DIS'((a,  j),/3, (7', k')). We need to show that  7 = 7' 
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and k = k'. First of all, fl = 7 - a = 7' - a ,  hence 7 = 7 ~. Therefore, DIS(i, 7, k) 
and DIS(i, 7, k'). So by the assumption that DIS is quasi-functional in its 3rd 
argument, k = k'. 

Given that 9~ is total, the totality of its/-stratifications is immediate. 
Transitivity ofgYr may be established as follows: assume DIS'((a,  j ) ,  f~, (7, k)) 

and DIS'((7, k),/~', (6,1)). Then DIS'((a,  j ) ,  if - (~, (6,1)). As/?  + /? '  = (7 - a)  + 
(5 - 7), we are done. 

Finally, to prove quasi-functionality of DIS' in its 2nd argument, assume 
DIS'((a, j),/~, (7, k)) and DIS'((a, j ) ,  fl', (7, k)). It follows that /~ = 7 - c~ =/~ ' .  

P r o p o s i t i o n l 5 .  Let 9Yt be an almost nice model, and let 92q' be an i-strati- 
fication of 9)l. For all formulae r j in 92~, and (a, j)  in 9Yl ~, we have 92q, j It- r 

Proof. This is by induction on r The base case and the boolean cases are trivial. 
So consider a temporal formula A.rr Assume first that  j IF A7r Then there 
exists k with DIS(j, 7, k). Now, let (~ be such that (c~, j )  E T'. Then DIS(i, a,  j) ,  
and hence DIS(i, a + 7 ,  k) and ( a + 7 ,  k) E T ~. By definition, DIS0((0, i), a,  (a, j ) )  
and DIS0((0, i), (~+7, ( a + 7 ,  k)). But then DIS~((~, j ) ,  7, ( a + 7 ,  k)). By induction 
hypothesis, (a  + 7, k) IF r hence ( a , j )  IF A~r 

Conversely, assume that ( a , j )  IF A.rr Then there exists (f~, k) E T ~ with 
e I S ' ( ( a , j ) , 7 ,  (/~, k)) and (/~,k) IF r Hence 7 = / ~ -  a.  By construction we 
must have DIS(i, a,  j )  and DIS(i, f~, k) and hence DIS(j,/3 - (~, k). As k IF r (by 
induction hypothesis) and 7 = fl - a,  this implies j IF A~r as required. -t 

We are ready now for a completeness result for the class of nice frames. Let 
MTL2 denote the extension of MTL1 with axioms Ax3, Ax4 and Ax5 (express- 
ing transitivity, quasi-functionality of DIS in its 3rd argument, and reflexivity, 
respectively). By an easy adaptation of the proof of Theorem 13, MTL2 is sound 
and complete w.r.t, the class of almost nice frames. 

T h e o r e m  16. MTL2 is sound and complete with respect to the class of nice 
frames. 

Proof. We only show that every MTL2-consistent set of temporal formulae is 
satisfiable on a nice model. Let F be such a set. By earlier remarks F is satisfiable 
on an almost nice model at some time instant i. Let ~JV be the/-strat if icat ion 
of 991. By Propositions 14 and 15 !Xl/~ is a nice model that  satisfies F at i. -t 

Conclusion 

In this paper we have proved completeness results for basic systems of metric 
temporal logic. We started with the minimal calculus and showed how to extend 
it to obtain the logic of two-sorted frames with a linear temporal order in which 
there exists a unique temporal distance between any two time instants. 
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So far we have only considered simple languages that  do not allow us to lift 
information from the temporal  domain to the algebraic domain. Obviously, for 
application purposes they have to be extended. In particular, we are consid- 
ering the possibility of a restricted form of mixing temporal  and displacement 
formulae, so as to enable more complex ways of interaction between the two 
domains.  
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