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Abstract

This is an exploratory paper about combining logics, combining theories and combining
structures. Typically when one applies logic to such areas as computer science, artificial
intelligence or linguistics, one encounters hybrid ontologies. The aim of this paper is to
identify plausible strategies for coping with ontological richness.

1 Day 1: Examples

Zi: There’s only two things I want to say: (a) Take things seriously, and (b) Let them talk
to each other.

Zo: I'd appreciate a few more details. Over the past few weeks you’ve been talking about
everything from Object Oriented Programming to Lexical Functional Grammar in the same
breath. You've been saying that applied modal logic and situation theory are in the same
business, and you’ve been using a lot of words I don’t understand: ‘Communicating Structu-
res’, ‘Combined Logics’, ‘Multiple Ontologies’, ‘Layered Languages’ ... can’t we go through
it a little more systematically?

Zi: Well, sure. The important point is that real world systems are not flat, monolithic
domains — they have a rich internal organisation which guides the flow of information. The
task of logical modelling is to capture the essence of this wealth. This suggests that it will be
fruitful to investigate approaches in which multiple information sources and their interactions
are the focus of attention. ,

To make this concrete I'll consider various combined structures. I’ll start with a particu-
larly simple type — what I call refinement structures — move onto the richer classification
structures, and finish with fully fibered structures. But remember one thing. These are just
special cases of a general idea, and it’s the general idea I really want to get at.

Zo: T'll bear that in mind.

Zi: OK, let’s begin with refinement structures. A nice example is the way Finger and Gabbay
(1992) add a temporal component to reasoning about beliefs. They work with the following
structures:
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At the top you see a flow of time, a structure (7', <), where < linearly orders 7. Each
of the entities attached to T by Z is a belief structure. These are triples (W, R, {Qp}peP)
where W is a collection of belief states, R transitively orders these states, and each @, is a
unary relation on belief states (these tell us how the atomic information is distributed). To
use Gabbay’s terminology, these composite structures consist of a temporal flow fibred over
a collection of belief models.

Zo: I've seen similar structures before, for example in first-order modal logic. But what have
they got to do with refinement?

Zi: Because ‘refinement’ sums up how the logics of the temporal and belief domains are
combined. Clearly, these structures provide a semantics for two distinct languages: a temporal
language £T™ and a language for belief logic £5¢. (Finger and Gabbay choose £T™ to be
propositional Until/Since logic and £3¢ to be uni-modal belief logic.) The question is, how
are we to reason about the composite ontology? We must combine the two languages, but
how should this be done? Finger and Gabbay adopt a particularly simple solution: they use
the £B% wifs as the atomic wifs of £T¢™. That is, they build the £L7¢™ wffs in the usual way,
but out of structured atomic wifs, namely the £2¢ wffs. Let’s call this language £Te™ (LB,
the language £LT*™ layered over the language £5¢.

Zo: Fine. But I still don’t see what this has to do with refinement.

Zi: Consider how you'd evaluate a wif ¢ of the layered language. In general, ¢ will contain
occurrences of the Until and Since operators, and they will move us round the time stream in
the usual way. We keep evaluating subformulas in the familiar manner until we come to the
‘atomic’ level. Usually we would simply invoke an assignment or valuation to see whether the
atom was true; but now our atoms are structured and we have further work to do. We zoom
in from the time of evaluation ¢ to the associated belief model Z(¢) and start evaluating the
‘structured atom’ at z(%).

Zo: I get it. The tense operators move us round the temporal level. While we’re exploring
this level we ignore the fact that each point of time is associated with structured information.
However, when we get to the atomic level we take a more refined view. We zoom in on the
the associated belief models, and start exploring this lower level using the belief operator.

Zi: Exactly. It’s a bit like working with the Macintosh’s graphical user interface. The desktop
may contain several icons, but as long as you’re not doing anything in particular these icons
are essentially just blobs. They may contain pictures, programs, text files or a variety of



other things — but this complexity is hidden until it is actually needed. When we want to
perform a certain task, we take a more refined view: we double-click on an icon, and zoom
in to another level of structure.

Zo: Refinement seems a fairly simple way of combining structures. You’ve got two ontologies,
but the interaction between them is rather limited: the lower level just provides a refined
notion of atomic information. Once you’ve worked your way down into the belief model,
there’s no way back up. Because temporal operators never occur under the scope of belief
operators, you can’t access the temporal flow from the belief structure. To use your Mac
analogy, it’s as if you couldn’t close an icon once you’d opened it.

Zi: Right. You can’t zoom out. This restriction has a number of pleasant consequences.
There are often elegant ways of combining completeness and decidability results for the com-
ponent logics into completeness and decidability results for the layered language; Finger and
Gabbay give a number of examples and their results can be generalised.

However, you said something I don’t like: ‘because temporal operators never occur under
the scope of belief operators, you can’t access the temporal flow from the belief structure’.
That’s true enough, but it’s a very syntactical way of viewing matters. The layering process
whereby one language is embedded in another at the atomic level is certainly natural, but
it’s essentially syntactic sugar. We could have freely combined the two languages, allowing
temporal operators inside the scope of belief operators. But if we did this any such wifs
would evaluate to false at any node in the belief structures. You can’t zoom out, and this
is a semantic fact: the nodes in the belief models simply don’t have permission to access
the temporal structure. But when we get to fully fibered structures, things will be more
democratic. . .

Zo: The idea of refining atomic information seems fairly natural. Do you have any other
examples?

Zi: There’s one in generative linguistics: the Generalised Phrase Structure Grammar (GPSG)
of Gazdar et al (1985) views linguistic structure as a combined ontology, namely finite trees
fibred over finite feature structures. I don’t have to tell you what a finite tree is. As for
feature structures, they’re just multi-modal Kripke models in which every relation is a partial
function. When we fibre trees over feature structures we get entities of the following kind:

In GPSG, the feature structures are used to refine the notion of grammatical category. In
contrast to the usual practice in formal language theory, where the nodes of parse trees are
decorated with ‘indivisible’ information about categories (for example NP for Noun Phrase,
or VP for Verb Phrase) GPSG splits the atom: an NP becomes a structured object, a feature
structure, that contains information about various subatomic features and values. GPSG
is usually formulated using a mixture of formal language theory and feature logic, but it’s



straightforward to recast its central ideas using a language of trees layered over a language
of feature structures. This is done by Blackburn, Gardent and Meyer-Viol (1994). The tree
language moves us around the tree, while the feature language allows us access to the inner
structure of grammatical categories. Because such a layered language is all that’s required,
it’s possible to prove completeness and decidability results for some quite expressive systems;
Blackburn and Meyer-Viol (1993) supply details.

Zo: Still, like the earlier Finger and Gabbay example you gave, GPSG is only concerned
with zooming in on objects or states. If you're interested in dynamic phenomena, or more
generally, in notions of change, you should zoom in on actions or transitions.

Zi: Absolutely. The key question is: how can change be modelled? Propositional Dynamic
Logic (PDL) abstracts from possibly highly complex transitions leaving only the input/output
pairs; are more refined treatments possible? For example, in the top-down design of distri-
buted systems one uses actions and states on an abstract level to represent complex processes
on a more concrete level. Van Glabbeek (1990) considers the design of an input device, re-
peatedly reading data and sending it off. A first, and highly abstract description is given by
the following picture:
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On a slightly less abstract level of description the action ‘read data’ breaks up in two parts:
‘prepare reading’ and ‘carry out reading.” This corresponds to the following refined picture:
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In this setting you find not just refinements of states (as in the earlier Finger and Gabbay,
and GPSG examples), but also refinement of actions or transitions.

Another well known example is the push down automata that parse context free languages.
A push down automata is a whole hierarchy of Kripke models: the models lower down in the
hierarchy spell out the details of the transition possibilities that are invisible higher up.

Zo: Hmm. It seems you’re after some sort of idea of substitution of structures. I’d like a
more precise formulation.

Zi: OK, one way to formulate it is as follows. The relation between a labeled transition
system % and a structure ¥’ obtained from ¥ by refinement (or substitution) of actions, is to
use a function from (atomic) actions to rooted transition systems. Let r be such a function;
the refinement of T by r is the structure that is obtained as follows. For s — ¢ an edge in ¥
let r(a)’ be a new copy of r(a); identify s with the root of 7(a), identify ¢ with all end nodes of
7(a), and remove the edge s — ¢. In other words, instead of making an a-transition at s, we
now start at the root of r(a)’, traverse a terminating path through r(a)’, and then continue
from ¢ onwards.

This generalises to refinement by parallel actions: instead of jumping from the source s
to the root of the rooted transition system, you output several input nodes of a transition
system and traverse alternating paths in parallel.



Zo: OK, that’s clear. Is there anything more I should know about refinement?

Zi: Well, I think it would be interesting to look systematically at the converse of refinement:
abstraction. For example, it’s quite natural to take a structure % to be an abstraction of
a structure B if 2 is a quotient of B under an appropriate notion of morphism. A general
approach would allow for refinement/abstraction over any kind of item in ones structures ...
but if we start following this up we’ll be here all night.

* %k
Zo: Tell me about classification structures.

Zi: OK. Let’s return to generative grammar. Lexical Functional Grammar (LFG) is a nice
example of classification structures at work; see Kaplan and Bresnan (1981). LFG, like
GPSG, views syntactic structures in terms of composite entities made from finite trees and
finite feature structures, but it glues them together differently. The basic picture to bear in
mind is the following:

tree feature structure

Here you see a single finite tree and a single finite feature structure linked by a partial function
z. This feature structure induces a classification on the tree nodes via z.

Zo: 1 don’t understand what you mean.

Zi: LFG theorists see sentences as simultaneously embodying two levels of structure. One
level is called constituent structure and is represented using a tree. The feature structure
represents grammatical relations such as subject, object, and indirect object. Syntactic ex-
planations in LFG are couched in terms of classifications that grammatical relations induce
on trees. LFG doesn’t try to reduce grammatical relations to tree geometry: it insists that
we are dealing with two independent, though interacting, ontologies.

Representing natural language purely in terms of trees leads to a number of difficulties:
sometimes representations of a sentence may place two components very far apart — and
maybe even give them different category labels — while intuitively they ‘belong together’.
The classification semantics solves such puzzles. Two tree nodes ¢ and #’ may be distinct, but
if z(t) = 2(t’) they are functionally identical.



Zo: I have the feeling that we’ll need more than layered languages to talk about classification
structures.

Zi: Indeed. The name of the game isn’t refinement any more, rather it’s about ensuring that
the internal structures of the two ontologies correctly ‘match’. LFG does this using phrase
structure rules annotated with equations. For example, the annotation T=] means that if I
move up from a tree node t to its mother node ¢’ and then zoom into the feature structure,
I arrive at the same point I would have reached by zooming in directly from . This can be
formulated in PDL with an intersection constructor: {(up; zoom_in) N zoom_in)T.

Zo: I think I'm beginning to get the idea. Do you have any other examples?

Zi: Sure. Here’s one from formal semantics. There’s been a lot of debate about whether
point, interval, or event based systems give the best account of tense and temporal reference in
natural language. This has given rise to interesting work — for example, various constructions
for reducing one ontology to another — but it’s not always obvious that such reductions should
be made. Why not combine structures instead? For example, Blackburn, Gardent and de
Rijke (1994) introduce Back and Forth Structures (BAFs). In their simplest form they look
like this:
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Here you see an interval structure and a simple event structure linked by a relation Z. The
relation Z is constrained in various ways but the details aren’t particularly important here.
What is important is the extra flexibility this relation gives us. We’re not forced to identify
events and intervals, any more than in LFG we’re compelled to identify grammatical relations
with tree geometry. Rather, events are indirectly classified as having a certain temporal
location. This enables us to take a more fine grained approach to temporal quantification.
For example, following Moens and Steedman (1988), you can capture the intuition that the
present perfect is ‘a past tense of present relevance’. Basically, to evaluate a formula of the
form PRES-PERF ¢ at an interval ¢, we search back for an interval j such that j < ¢ and with
the additional property that if we zoom into the event structure at j we find the event ¢.
But this ¢ must also be of ‘present relevance’. That is, ¢ must be Q-related to an event
1 such that by zooming back out to the interval structure at 1 we arrive at an interval k
that overlaps our starting point i. We ‘complete a square’ in the two structures back to our
starting point.

Zo: I guess we'll need a fairly expressive language for coping with BAFs. If we work with a
modal language we’ll need at least the PRES-PERF operator in addition to modal operators
local to each ontology. The PRES-PERF operator seems rather powerful: it wants to find its
way back to (an interval overlapping) its starting place. That’s just PDL program intersection
again!



Zi: Quite. But let’s move on. I want to argue that there are deeper reasons for being inte-
rested in classification structures: whenever there are regularities and a flow of information,
classification structures provide a natural modelling medium.

Zo: Hmm. This reminds me of something. The idea that constraints between structures
guide information flow has always been present in Situation Theory. It’s analysed in detail
in Seligman’s (1990) Channel Theory.

Zi: Indeed. There are obvious links between Channel Theory and the present discussion. Se-
ligman defines classifications to be triples A = (tok(A), typ(A),:), where tok(A) and fyp(A)
are non-empty sets (of tokens and types, respectively), and : is the classification relationship

between tokens and types.
/ 5o v. Tokens

A classification

Here the types of A classify the tokens of A, and the types induce a natural equivalence
relation ~ of indistinguishability on tokens: a ~ b iff for all types @ we have a : @ iff b : .
As with LF'G and its annotated phrase structure rules, further restrictions may be imposed
on the way types and tokens interact.

Zo: But there’s more to it than that. Classifications aren’t considered in isolation, there’s
another level of stacking to internalize the notion of information flow.

Zi: Right — and so channels are introduced. A channel is something which directs informa-
tion flow between classifications. First, a notion of information preserving morphisms between
classifications A and B is defined as a certain kind of bi-function f: A = B. Then, a channel
C: A = Bis a classification C together with morphisms leftc : C = A and right, : C = B.

A@ CQ @B

A channel

Roughly, the tokens of C are used to model connections between the tokens of A and the
tokens of B, and the types of C are used to express constraints between the types of A and
the types of B; and a connection is classified by a constraint just in case information flows
along the connection in a way that conforms to the constraint.

Both Channel Theory and classification structures emphasize the importance of highly
structured universes in which some domains induce equivalence relations on others. However
they tend to exploit these ideas differently. Channel theorists have made connections with
the proof theoretic ideas uderlying linear and relevance logics. I'm interested in exploring the
connections with PDL and its cousins.
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Zo: In all of the examples you’ve given so far there’s an obvious master/slave relationship. In
refinement structures one component is clearly boss; the others merely refine the transitions
or states. Even with classification structures the information flow is essentially one way; one
structure classifies the elements of the other. So I guess we haven’t reached the end of the
story yet.

Zi: Indeed not. In a number of recent talks and papers Dov Gabbay has advocated the idea
of fully fibering two sets of semantic entities over each other; see Gabbay (1994). Roughly,
a fully fibered structure consists of two classes of models, each class with its own language,
plus a function between the classes that tells you how to evaluate formulas belonging to the
one language inside structures of the other.

Zo: Give me a concrete example.

Zi: OK. Let’s fully fiber finite trees and finite equivalence relations. For the sake of this
example we assume that we have two mono-modal languages, LT for talking about trees, and
LE for talking about equivalence relations.

)

Fibering a tree and an equivalence relation

First of all, let a model-state pair be a pair (9, s) where 9 is a model based on a finite tree or
on a finite equivalence relation, and s is an element of 9. Second, let M7, Mg be non-empty
sets of model-state pairs whose first component is a finite tree or a finite equivalence relation,
respectively, and such that if (9M,s) € Mr U Mg and &' € 9, then (IM,s') € Mr U Mg.
Now, for the fibering function, let F' be a pair of functions (Fr, Fg) with Fr : My — Mg
and Fg : Mg — Mr such that model-state pairs that are mapped onto each other agree on
all atomic symbols common to both languages; the fibering function regulates the interaction
between the classes of structures M7 and Mg. Finally, for F a fibering function, the F-fibered
structure over M7 and Mg is the triple (Wr, Rp, V) such that

1. Wgis My U Mg,
2. Rrpis {((M,51), (M2, s2)) : My = M, and Rsyse ),
3. VF is simply the union of the component valuations.

Zo: I see. And as to evaluating complex formulas, tree formulas are interpreted in M7 as
usual, and likewise for £L€-formulas and Mg If we hit a tree formula while evaluating in Mg,
we apply the fibering function F to the current model-state pair, and continue evaluating in
its associated model-state pair in Mr; a similar move is made when we hit an £F-subformula
while evaluating in My. We can zoom in and out with complete freedom.



Zi: You’ve got it. Incidentally, more involved definitions of fibering and similar constructions
are possible — but the one I’ve given demonstrates that more equitable power relations are
conceivable.

Zo: OK, let’s try and summarise today’s discussion. Interacting ontologies seem to abound
in many applications. The essential task of the logician is to take this diversity seriously and
to look closely at the lines of communication involved — I guess that’s the content of the two
slogans you started with.

Once you start looking at concrete applications you realise that there are many different
ways that ontologies can communicate. Some of them are quite weak. For example, you
have the notion of refinement where one ontology essentially serves to flesh out the low level
information of another. But you also get stronger notions: forcing one ontology to ‘mimic’ or
‘match’ another in some way (your ‘classification structures’), or even allowing full two way
communication (‘full fibering’).

At the logical level we are dealing with a hierarchy of constraint languages. With relatively
weak notions, like refinement, there seem to be simple and well behaved ways of combining
the ‘local logics’; for example, you can layer one language over another. But in general, the
richer the interactions, the richer the language needed to exploit it. For example, we may
need to add explicit zooming operators, or modality constructors & la PDL — and I guess
it’s conceivable that we may need to move up to full first-order expressive power or beyond.
Does that sum it up so far?

Zi: Tt certainly does. Well, why don’t we go grab a coffee?

2 Day 2: Trios

Zo: Good morning. Yesterday’s examples were nice, but now I’d like some details. What
kind of mathematical setting do you have in mind?

Zi: And good morning to you! Here’s a first pass at a framework for combining structures.
Let A and B be two classes of structures, and let Z be a collection of relations between the
elements of A and those of B. Then the triple (A,Z, B) is called a trio. The classes A and B
are called the left and right continents of the trio, respectively, and Z is called its bridge.

Zo: I can see how some of yesterday’s examples fit this scheme. In the case of Finger and
Gabbay style refinement, for example, the trios have a left continent consisting of a single
structure %, a right continent consisting of |2| many structures { B, | a in % }, and a bridge
consisting of an injective function linking each point a of 2 to an element in B,.

Oh, and what you seem to need for the LFG style classification is trios that have both
their left and right continents consisting of a single structure, and a bridge that is simply a
partial function from the left continent to the right one. Is that correct?

Zi: Yes, that’s right. Of course the notion of a trio is a very general one, and it remains
to be seen whether they are mathematically interesting in their own right — but certainly
logical questions concerning them abound, and I'd like to address some of these now. First
I'll talk about logics of specific trios, then about analyzing specific bridges, and finally about
the classification of bridges.



Consider two mono-modal languages £((a)) and L£((b)) with modal operators (a) and
(b) respectively, and suppose that we want to combine two structures 2 = (W, —,V) and
B = (W',—,V’) for those languages. As I am interested in the connection between the
two structures, I’ll explicitly add a binary relation Z between L({a))-structures and L((b))-
structures; let me call such trios (U, Z,B) connected trios.

A first decision we have to make is: what language do we use to talk about connected
trios? Given that we have components 2, B and Z, the natural set-up has two constants
left and right to denote 2 and B respectively, and three modalities (a), (b) and (z), where
(2) allows us to zoom in from 2 to B via Z. Actually, we’ll soon want to add the converse
modality (z7!) to let us zoom back out — but let’s look at this simpler language first.

An obvious question is: what is the minimal logic of connected trios?

Zo: 1 think I have the answer; you need the K axioms and rules of inference for each of (a),
(b) and (z). You also need:

1. left Vright and —~(left A right), to force every state into exactly one continent;

2. ¢ & (¢ Aleft) for all £({a)) formulas, and likewise with right and L£((b)) formulas,
to force left and right to denote the points in £({a)) models, and L£((b)) models,
respectively;

3. (a)¢ — left A (a)(left A @), to force — to be defined only on, and take values only
in, the left continent. An analogous schema for (b);

4. ()¢ — left A (z)(right A @), to force (z) to zoom in from the left continent to the
right one.

I guess that’s about it.

Zi: You're right. Completeness is easy to establish using a canonical model construction; the
interpretations of the constants left and right determine the two continents of a trio. A
straightforward filtration argument yields decidability.

So the basic logic is fairly simple. Things become more interesting when you constrain
the connections between the component models; indeed, depending on the structure of the
continents and of the bridge, you may want to add further items to your language. Let me
give you an example involving bisimulations.

Recall that a non-empty binary relation < between the domains W and W’ of two models
A= (W,~>,V)and B = (W, 2., V') is a bisimulation whenever it only relates points with
the same atomic information and satisfies a back-and-forth condition: if z, y € A, =’ € B,
z — yand z < z/, then there is a y’ € B such that z’ 2, y’ and y & v’ (and likewise in the
opposite direction). Consider bisimilar trios (U, <, B) where & is a bisimulation between 2
and B. Because of the back-and-forth nature of bisimulations, the simplest modal language
appropriate for talking about bisimilar trios has constants 1eft, right, and modal operators
(a), (b}, (z) as before, as well as a modality (z7!) to allow us to move from B to 2: we need
to be able to zoom out to exploit the bisimulation effectively. _

To axiomatize validity on bisimilar trios you take the earlier axioms and add:

1. the K axioms for (z7!), and {(271)¢ — right A (z71)(left A ¢);
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2. the usual axioms from temporal logic saying that the relations used to interpret {z) and
(2~1) should be each others converse;

3. left A p — [z]p, and right A p — [27]p (for p atomic!), to force the condition on
atomic information;

4. (a)p — [2](b){z~1)¢ and (b)¢ — [z ){a)(z)¢ to force the back-and-forth conditions.

There is no axiom forcing < to be non-empty; this condition is simply not expressible.

To prove completeness, build the canonical model (2, <,%B). It follows straightforwardly
that the relations in this structure have almost all the required properties — the only possible
defect is that = may be empty. This is easily repaired: add to each of A and 9B a single
isolated point in which (for example) all proposition letters are true; then extend < by adding
to it the pair consisting of the two newly added points. This establishes completeness.

Zo: I get the general idea. But both of your completeness results concern rather abstract
classes of trios — what about trios that arise in real applications? And do you have any
results for refinement or classification structures? For example, if we think about GPSG in
terms of trios we have to consider the following class of refinement structures: trios of the
form (T, Z, {F: hter). Here T = (T,<,root) is a finite rooted tree; Z is the refinement
relation C T X {F: }ser that assigns to each tree node a unique F;; the F.’s are mutually
disjoint feature structures (W, {Rq}aea,V,w) where W is a non-empty set, for each a € A4,
Ry is a binary relation on W that is a partial function, V is a function that assigns to each
propositional symbol a subset of W, and w € W is the entrance to the feature structure where
you end up after zooming in from the tree. I guess we could call such trios GPSG trios. What
sort of logic do they have?

Zi: First we need to fix our language. Let’s stick with the format we used for connected and
bisimilar trios — logical aspects of the layered language approach are discussed by Blackburn
and Meyer-Viol (1994). So, we have two constants left and right which tell us whether
we’re in the tree or in one of the feature structures. We also have a tree language LT for
moving around the tree, a modal language £F with diamonds (a) (@ € A) for moving around
the feature structure, and a device for zooming in: a diamond (z).

You axiomatize the logic of GPSG trios by taking the axioms for connected trios (adapted
to £T and LF ), adding to it a complete axiomatization for finite trees, a complete axioma-
tization for feature structures (suitable calculi may be found in Blackburn and Meyer-Viol
(1994)), and finally an axiom to guarantee that each tree node is related to a single feature
structure via the refinement relation Z: (2)¢ « [z]é.

Zo: Of course. So these results come relatively easily — but then, refinement of states is a
fairly simple form of interaction between structures. What about refinement of transitions?

Zi: That’s going to be more complex. Let’s first make precise what we mean by action
refinement. As a concrete example I will consider PDL enriched with a mechanism for action
refinement. Recall that in standard PDL programs e € II are generated from atomic programs
a by therule o i=a | aUa | o;a | a*; for simplicity I'll leave the test relations out.

Now, a refinement function is a function from atomic programs to programs. I'll talk
about them as follows. Let R be a collection of refinement functions, and A a set of atomic
programs. The programs of r-PDL — that is, PDL with action refinement — are produced
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by the following rules

B == al|r(a)
a u= flaUal|oala,
where r € R.

Zo: OK. That’s simple enough. How do you interpret r-PDL?

Zi: First we assign meanings to refinement functions. For each atomic program a, [r(a)] is
simply a finite rooted PDL model (that is, labeled transition system) such that there is a leaf
I that is reachable from the root via an r(a)-transition.

Zo: Am I right to assume that you'll now refine individual a-transitions by mirroring them
by an r(a)-transition that lives inside a copy of [r(a)]?

Zi: Yes. Although the general idea of adding structure to transitions by means of refinements
is easy enough, the formal details are a little forbidding. First, a witness for a transition
w — v is an isomorphic copy [r(a)]w—2v of [#(a)]; we assume that different transitions have
disjoint witnesses.

Now, let 9t = (W, {-—=}rem, V) be a PDL model. Informally, the refinement of 0 by Il
is obtained by ‘mirroring’ old transitions by witnesses of their refinements. Formally, it is the
model

m =W, V[, 2L, 20),

where each transition w —— v is matched with the configuration [r(a)]w=ssw:

C \ : / )
ZI\ / Z0

\
\ /

[r(a)]

That is: to each transition w — v we associate an isomorphic copy of [r(a)]w-2.,, together
with a Zlink between w and the root of [r(a)],—2,, and a ZO-link between the leaves of
[r(a)]w-2., that are r(a)-reachable from the root, and v. If you want, we can write down the
formal details — but I don’t think these will make things more perspicuous.

Zo: 1 think I can do without them. Roughly, what you’re doing is taking the old model 97
and adding to it, for every old transition a, a unique copy of an appropriate labeled transition
structure, and you link these LTS’s to 91 by means of the relations ZI and ZO. In terms of
trios, we have a trio I = (M, {ZI, ZO},W{[r(a)]wew | w = v in 90}) comsisting of the
old model 97t as the left continent, the disjoint union of the refined transitions as the right
one, and the relations ZI, ZO as our bridge.

12



Zi: That’s the main point, yes. Of course, the next step is to say how we interpret the
formulas of r-PDL. Let 901, 9’ be as before. First of all, evaluation takes place in the left
continent, that is: at states of the original, unrefined structure 9. Formulas built according
to the old PDL syntax are interpreted as before. Now, consider a new formula {(r(a))¢. Then

M, w k= (r(a))p iff
Jv e W(w —= vA3zy € [r(a)]wiew A ZI(w,z) A ZO(y,v) A v = ).

So, first we look for an old a-successor v of w among the old states; we then zoom in from w
to the refined transition [r(a)},-%.,, follow a terminating r(a)-path, and zoom out to v.

Zo: I get it. But it seems that you have to do a lot of work to get action refinement wor-
king, and I don’t immediately see that it leads to interesting novel logical theorizing. Any
comments?

Zi: If you mean that the logic of r-PDL models is essentially PDL combined with some of
the ideas used for the logic of bisimilar trios, you’re right; Blackburn and de Rijke (1994)
can tell you more about that. But by moving from PDL models to r-PDL models we have
greatly enhanced our capacity to model change realistically: we no longer have to think solely
in terms of input/output pairs. As it turns out, this doesn’t seem to lead to radically new
logics — but that’s just the way it goes!

Zo: Fair enough. Maybe we can forget about logics for refinement now, and discuss logics for
other kinds of interaction. I guess that the languages you would devise for LFG or Channel
Theory style classification would be variations of PDL, perhaps with additional structure on
the programs?

Zi: Well, that’s what I'll discuss here — though as I mentioned yesterday, there’s interesting
work relating Channel Theory to substructural logics. PDL and its cousins — especially those
with some sort of intersection construct — are a natural tool for talking about classification
structures. For, when working with classification structures one usually wants to demand
that certain paths commute.

We covered some of these ideas in yesterday’s discussion of LFG. Let’s formalise them using
trios. An LFG trio is a trio (T, 2,F) in which ¥ is a single finite tree, § a single finite feature
structure, and z a partial function ¥ — F. Let’s assume that our favorite tree language
LT has a diamond (t) for moving down the tree, and let’s also assume that our feature
language £F has diamonds (f), for every feature f. As you’ve probably guessed by now,
LEFG  our language for talking about LFG trios, has constants denoting the continents, and
a dlamond (2) referring to the bridge. But, in addition, we’ll have an intersection constructor
on modalities. This will enable us to construct diamonds such as ((up; zoom_in) N zoom_in) T,
thus capturing the effect of the LF'G equation T=].

Zo: OK, that’s clear. But what sort of results do you have for classification trios? I guess we
could look at axiomatic issues again — but it may be more interesting to look at decidability
and complexity questions. My feeling is that classification structures give you considerable
coding power — even when the base Ianguages for each continent have relatively easy satis-
fiability problems.
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Zi: You've hit the nail on the head: the move from refinement to classification (or: from
GPSG trios to LEG trios) is not as innocent as it looks. Because classification languages enable
us to insist that sequences of transitions in the two structures commute, it’s straightforward
to code unsolvable problems. Here’s a nice example. Consider type 0 grammars. Suppose
we’re given an alphabet A. A production on A is an (unrestricted) rewrite pair  — 7, where
[ and r are words on A. A grammar on A is a finite non-empty set of productions on .A. Is it
possible to write a program that takes a grammar and a pair of words ¢ and o and determines
whether 7 can be rewritten to o using A productions? No, it’s not. In fact it’s a paradigmatic
example of a computationally unsolvable task.

Zo: Hang on a minute ... I see how to code it. Let’s work with classification structures
in which each continent has partial functions corresponding to the elements of A, and the
bridge is a partial function z from the left continent to the right one. I'm going to use the
left continent to code the antecedents of the productions, and the right continent to code the
consequents.

Zi: What sort of language will you use?

Zo: I'll keep it simple. We’ll have a modality (a) corresponding to each element a of A
and an additional zoom-in modality (z). We’ll also need a way of enforcing intercontinental
synchronisation; I'll assume that we can write down Kasper Rounds style path equations.
That is, we have wifs (mq)...(m,) = (m])...(m}) which equate two sequences of modalities.
Such equations will hold at a node if there are transition paths from that node corresponding
to both sequences, and, in addition, there is at least one node that is the joint destination of
two such sequences. We’ll need the booleans, but we won’t need any propositional variables;
we can build all the wifs we’ll need out of the path equations.

Zi: That’s basically a fragment of PDL with intersection: over this class of trios the path
equation (mq)...{myn) = (m])...(m}) is just {(my;...;mn) N (MY .. .;mL))T.

Zo: Indeed. Now, we don’t need all the path equations. I'm only interested in enforcing
commuting conditions between the continents, not within them, so we can make do with
equations of the following form: (l;)...(l,){z) = (z)(r1)...(rx), where I, ..., I, and rq, ...,
r are all elements of A. Such equations say that by taking the transition sequence /; through
In in the left hand continent and then zooming in, we can get to a point that is also reachable
by immediately zooming in and following the sequence ry through 7 in the right continent.
The two paths commute.

Given such a language it’s easy to encode grammars. A word ay - - - a, on A is represented
using the sequence (a;)---(an). To each production ! — r there is a corresponding path
equation (I)(z) = (z)(r), where (I) and (r) are the modality sequences representing the words
[ and r respectively. A grammar G is represented by the conjunction of the corresponding
equations; call this wif I'. The problem of determining whether a word ¢ can be rewritten
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to a word o using A productions ammounts to asking whether we can find a classification
structure that validates I' and contains a node satisfying (¢)(z) = (2)(r). As the rewriting
problem is unsolvable, so is the corresponding satisfiability problem. This means that it’s
very easy to find undecidable logics of classification structures.

Zi: Exactly. Their architecture renders them perfect for coding arbitrary computations. It’s
quite fun — and fairly straightforward — to directly encode Turing machines, the Post com-
pleteness problem, and unbounded tiling problems. Classification structures are intrinsically
dangerous! But in spite of this I’d argue that they’re the appropriate setting for analysing
many practical problems.

Zo: That I don’t see.

Zi: Look — working in ontologically rich settings gives you the opportunity to formulate
problems naturally. When problems are formulated naturally it is easier to bring additional
insights to bear. These may greatly simplify the inherent computational complexity.

There’s a classic example of this. It’s long been known that undecidable problems can
be formulated in the unrestricted LFG architecture. Nonetheless, precisely because LFG
represents the various sources of linguistic information and their interactions so perspicuously,
its easy to formulate linguistically natural conditions which regain decidability. Kaplan and
Bresnan (1982) proposed such a condition, the offline parseability constraint. This forbids the
empty string from annotating any terminal tree node, and also prohibits the same syntactic
category label from appearing twice on any non-branching chain of the tree. Linguistically
these constraints are natural: they insist that all the information in the tree must be witnessed
by lexical items. Their technical effect is to give a (grammar dependant) upper bound on
both the height and depth of the possible parse trees for a given string. The existence of such
upper bounds ensures that the parsing problem is decidable.

*  x  *

Zi: Let’s change our perspective somewhat. Assume that we are interested in one particular
kind of bridges, say X-bridges. What do we know about trios built around X-bridges, provided
that we have ‘nice’ results for the continents? For example, if we are given two continents
both with a complete and decidable logic, and if we build an X-bridge between them, will the
trio have a complete and decidable logic as well?

Let’s look at the special case where the bridge is refinement of states. Recall the Finger
and Gabbay example that we discussed yesterday. They consider a combined language: at
the top level they have a temporal language equipped with the Until and Since operators,
and at the bottom level they use any (modal or temporal) language to refine the points in the
flow of time. Finger and Gabbay (1992) show that if you start with a complete (decidable)
Until/Since language at the top level and if the logic you use for refining the points of time is
complete (decidable), then the combined language has a complete (decidable) axiomatization
as well. These results can be generalized.

Zo: In what ways?

Zi: Let me mention just one. I'll show that at the top level we can take any language as long
as it contains some means for randomly accessing its structures, that is: something like an
unrestricted existential quantifier.
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Zo: OK. I'm all ears.

Zi: Well, take a top language £T with an operator E such that for any model 91 we have
M, w = E¢ iff there is some node v in M such that M, v = ¢. Let LB be the bottom
language. The formulas of the combined language £7(£?) are built up from £T-atoms and
LB -formulas-viewed-as-atoms-of-£T according to the syntax of £T.

For the logics, let LT and L? be complete in £ and £, respectively. The combined logic
LT(L?) consists of the axioms of LT, the inference rules of LT and the following inference
rule, called Preserve by Finger and Gabbay,

if ¢ is an £LB-formula, then 1,5 ¢ implies FLrLs) ¢

Of course, we should be a bit careful with substitution rules and such, but I'll refer you to
Finger and Gabbay (1992) for details.

Zo: Fair enough. On which models do we interpret the combined language £7(£Z)?

Zi: On refinement trios (M, z, {M,, | m € M}) consisting of a single LT model as the left
continent, together with a function z assigning to every state in 90 a unique £Z-model. For
the moment, however, I'll leave out special syntactic items referring to the bridge 2.

Now, let me sketch a completeness result for LT(L?). Take any consistent £7(£8)-formula
¢. To obtain an LT (L£B)-model for ¢ we argue as follows. Let hide(¢) be just like @, but with
the £B-formulas occurring in it viewed as atoms of £T. Then hide(¢) is easily shown to be
LT-consistent, so it has an £T-model M7 because we assumed LT to be complete.

The next step is to turn M7 into an LT (£LP)-model by attaching to every state of 917 an
£B-model. To this end we need to display the £B-information hidden inside hide($). The
problem, of course, is that we have to guarantee LB-consistency of the hidden £B-formulas
— for then we can apply the completeness of L? to get the required £B-models.

An £T-model with 'hidden LB information.

Zo: And this is where you’ll use the assumption that you have random access to the model
9T through the operator E?

Zi: Exactly. To identify the formulas that may cause problems consider the sets

NB(¢) {¥| ¥ is a non-Boolean L£B-subformula of ¢}
Lit(¢) = NB(¢)U{~¥ |9 € NB(¢)}.

At each state v in 97T the £B-information hidden there is captured by the following set:

Hiddeny(v) = {¢ € Lit($) | M, v |= hide()}.
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To rephrase our earlier requirement, what we want to prove now is that Hiddeny(v) is £B-
consistent whenever ¢ is LT (L£B)-consistent. And indeed, using the random access operator
E we can achieve this. Look at all problematic subsets of Lit(¢):

Absurd(¢) = {AT | C Lit(¢) and T ks L}.
Let Cons(¢) be the formula expressing that we don’t want hidden inconsistencies anywhere:

Cons(¢) = /\{—xE'y | v € Absurd(¢)}.

One can show that ¢ is provably equivalent to the conjunction ¢ A Cons(¢); hence, if ¢ is
consistent, so is ¢ A Cons(¢).

So, if Hiddeng(v) is inconsistent, it follows that for some finite part T of Hiddeny(v),
hide(T) is false in every state of the model MT. In particular it follows that it’s false at v —
but this is a contradiction. Hence, for every v the set Hiddeny(v) is consistent, and we can
use the completeness of LZ to find a model for it.

Zo: Let me try and summarize. First you hide the £B-information in ¢, and appeal to the
completeness of LT to get an £T-model for hide(¢). Then you unpack the hidden information,
and make sure that there are no LZ-inconsistencies lurking somewhere in the model. For this
step you use your random access operator E.

OK, that’s nice. But the argument only works for state refinement. Are there transfer
results for other bridges? For example, what about transfer results for bisimilar trios?

Zi: There too you can get transfer results, but things do get more complicated. Because
the bridges in bisimilar trios are bi-directional, there’s a lot of bookkeeping to do. But the
general idea is natural. Simply iterate the above procedure: move back and forth between
the structures, all the time hiding and unpacking information.

3 Day 3: Questions

Zo: I've enjoyed our discussion. Let’s suppose that you're right, and it really is important
to develop ways of thinking about rich ontologies and their logics. OK, so where do we go
from here? I can see that standard techniques — for example Henkin models and filtrations
— can sometimes be applied in richer settings. And maybe ‘hiding and unpacking’ will turn
out to be a genuine combined technique ...

Zi: Indeed. It underlies the results of Fine and Schurz (1991) and Kracht and Wolter (1991)
concerning transfer of completeness and decidability of modal logics to their independent
joins, and the Finger and Gabbay (1992, 1994) completeness results for layered and fibered
languages.

Zo: It also seems that we know some of the risks involved. For example, the LFG example
shows that undecidability lurks just around the corner. And I guess there’s often going to be
increases in computational complexity ...

Zi: Quite. Spaan (1993) and Hemaspaandra (1994a, 1994b) give a good map of the territory.
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Zo: OK. So we already know a reasonable amount. But again, where do we go from here? I
can see a real danger. Your examples are very nice, but your technical remarks strike me as
a bit piecemeal. You run the risk of endless ad-hoc investigations, starting completely anew
each time a new application comes along.

Zi: 1 think that’s a fair comment. What’s required is a more serious classification of trios.
At the moment I only distinguish between refinements, classifications and full interaction.
That’s not good enough. We need to know what kind of bridges there are, and what kind of
interactions between structures allow a transfer of properties of the component logics to the
trios. From the examples we’ve looked at we know that completeness transfers if we consider
refinement trios. We also know that decidability does not transfer to LFG style classification
trios. But where is the boundary between transfer and non-transfer? And does completeness
always transfer in the case of uni-directional bridges?

To answer such questions a more abstract approach may be fruitful. There’s some ex-
amples of such work. For example Seligman (1994) takes an algebraic perspective on logical
combination; interestingly, the ‘hide and unpack’ idea emerges as a natural construction. Ku-
rucz et al (1994) use category theory as a framework for investigating combined logics. Given
the way category theory focuses on the links between mathematical structures, this may turn
out to be the natural home for further investigations. I think 2-categories and fibrations may
prove especially useful. Similar categorical approaches have already proved useful in abstract
studies of modularity; see Goguen and Burstall (1984).

The ideal, I think, is to pursue both concrete and abstract investigations. This will ensure
that the guiding intuitions are preserved, and that we don’t run the risk of missing the wood
for the trees.

f I I

Zo: There is an obvious weakness of the story you have been telling so far. You have acted
as if combined ontologies are lifeless, static entities. This ignores the fact that for many
applications it is precisely the dynamic aspects of combined ontologies that are of interest —
for example, how they are to be built, extended, or otherwise amended over time.

Zi: I couldn’t agree more. Let’s consider a concrete example: the Tree Adjoining Grammars
(TAGs) of Joshi et al (1975). TAG analyses are essentially dynamic; sentences are viewed
as the result of merging trees together. To gain something of the flavour of TAG in action,
consider the operation known as adjunction. Let T be a tree with an internal node labeled
by the nonterminal symbol A. Let p be an auxiliary tree with root and foot node labeled
by the same nonterminal symbol A. The tree 7/ that results by adjoining p at the A-labeled
node in 7 is formed by removing the subtree of 7 rooted at this node, inserting p in its place,
and substituting it at the foot node of p. Perhaps the most important thing to notice is the
role played by the node labeled A. We began with an initial structure (namely 7) with a
designated node (namely that labeled A); we then performed a computation step; and this
created a larger structure with a new designated node, the site for further creation.

Of course, all this could be described statically. But to do so does violence to the un-
derlying intuitions. We need analyses which cope with the growth of structures rather than
merely treating them as completed objects.

Zo: And do you have such an analysis?
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Zi: No, but I do have some suggestions. Firstly, underlying the TAG example is a notion
of substitution of structure, much as we discussed earlier. Secondly, dynamics is not alien
to logic. For example formal proof construction can be naturally thought of as information
processing, and recent work in substructural logics (influenced by Girard’s (1987) treatment
of Linear Logic) addresses such issues as the management of limited resources over time.

Moreover, there are a number of logical systems that draw on computational metaphors
such as ‘information growth’, ‘transition sequences’ and ‘updating’. The classic example
is the Kripkean analysis of intuitionistic logic; more recent examples include propositional
dynamic logic (Pratt (1976), Harel (1984)), action algebras (Pratt (1991)), Peirce algebras
(Brink (1994), de Rijke (1994b)), the various ‘arrow logics’ (van Benthem (1993), Marx et al
(1992), Vakarelov (1992), Venema (1994) and de Rijke (1992)) and evolving algebras (Gure-
vich (1991)).

As yet no consensus has emerged, but such systems have already provided interesting ana-
lyses of programming languages (Bérger (1990)), theory change (Gardenfors (1984), de Rijke
(1994a)), anaphora and presupposition in natural language (Groenendijk and Stokhof (1991),
Beaver (1994)), and various syntactic formalisms (Moshier and Rounds (1987), Johnson and
Moss (1994)). What will ultimately emerge is unclear — but I do think it’s both interesting
and important to get to grips with dynamic issues.

Look, let’s wrap things up here. As far as I'm concerned, the most important point is
the following. Logic is increasingly being influenced by applications — and not merely the
traditional applications in philosophy or mathematics. Instead, new interdisciplinary work in
such areas as Computer Science, Artificial Intelligence and Theoretical and Computational
Linguistics are becoming the focus of attention. This broadening of the scope of applied logic
brings new responsibilities. It forces the logician to take ontological diversity seriously, and
to consider how rich systems evolve over time.
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