
Quartz: A Question Answering System for Dutch

David Ahn, Valentin Jijkoun, Joris van Rantwijk,
Maarten de Rijke, and Erik Tjong Kim Sang

ISLA, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{ahn,jijkoun,rantwijk,mdr,erikt}@science.uva.nl

http://ilps.science.uva.nl

Abstract. We describe a question answering system for Dutch that we
used for our participation in the 2006 CLEF Question Answering Dutch
monolingual task. We give an overview of the system and focus on the
question classification module, the multi-dimensional markup for data
storage and access, the answer processing component, and our proba-
bilistic approach to estimating answer correctness.

1 Introduction

For our earlier participations in the CLEF question answering track (2003–2005),
we had developed a question answering architecture that uses different competing
strategies to find answers in a document collection. For the 2005 edition of CLEF-
QA, we focused on converting our text resources to XML in order to facilitate
a QA-as-XML-retrieval strategy. This paper describes the 2006 edition of our
QA system Quartz. We focused on converting all of our data resources (text
and linguistic annotations) to fit in a database that uses XML-based multi-
dimensional markup to provide uniform access to all annotated information.
Additionally, we devoted attention to improving known weak parts of our system:
question classification, answer clustering, and answer candidate score estimation.

This paper is divided in eight sections. In section 2, we give an overview of
the current system architecture. In the following four sections, we zoom in on re-
cent developments in the system: question classification (section 3), storing data
with multi-dimensional markup (section 4), and probabilistic answer processing
(sections 5 and 6). In section 7 we present the results of the CLEF QA 2006
evaluation of our system. We conclude in section 8.

2 System Description

The architecture of our Quartz QA system is an expanded version of a standard
QA architecture consisting of parts dealing with question analysis, information
retrieval, answer extraction, and answer post-processing (clustering, ranking,
and selection). The Quartz architecture consists of multiple answer extraction
modules, or streams, which share common question and answer processing com-
ponents. These streams can be divided into three groups based on the corpus

C. Peters et al. (Eds.): CLEF 2006, LNCS 4730, pp. 362–371, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://ilps.science.uva.nl

Quartz: A Question Answering System for Dutch 363

lookup XQuesta NL match
pattern

ngrams
match
pattern

ngrams Web

classification
question

justification

Dutch

corpus
CLEF

clustering
answer

question

Dutch
wikipedia

candidate
answers

type checking
& reranking

ranked
answers

Fig. 1. Quartz: the University of Amsterdam’s Dutch Question Answering System

they employ: the CLEF-QA corpus, the Web, or Wikipedia. We describe these
streams in the rest of this section. The common question and answer processing
parts will be detailed in later sections on the architecture updates.

The Quartz system (Figure 1) contains five answer generating streams. The
Table Lookup stream searches for answers in specialized knowledge bases which
are extracted from the corpus offline (prior to question time) by manually defined
rules. These rules take advantage of the fact that certain answer types, such
as birthdays, are typically expressed in one of a small set of easily identifiable
ways. Currently, the system makes use of 15 specific knowledge bases, containing
information about locations, persons, monetary units, measurements, etc. Our
question analysis module (section 3) selects which fields in which knowledge bases
should be consulted for an incoming question and selects question keywords that
are used by the Table Lookup stream to retrieve a list of candidate answers.

The Ngrams stream implements an approach similar to [1]. It looks for answers
by extracting the most frequent word ngrams occurring in passages retrieved ei-
ther from the document collection or from the Web (using Google). Similarly,
the Pattern Match stream obtains passages relevant to the topic of the question
either from the collection or from the Web and then searches for patterns formu-
lated as regular expressions; the latter are generated by means of a hand-coded
list of rules that use the result of the question analysis.

The Wikipedia stream relies on the structure of the Dutch Wikipedia. The
focus of the question—usually the main named entity—is identified and looked
up in Wikipedia. We use the standardized structure of Wikipedia to obtain a
list of sentences relevant to the question focus. Then, the patterns of the Pattern
Match stream and NE extraction are used to produce answer candidates. The
Justification module (used also in Ngrams and Web Pattern Match streams)
tries to find support for answer candidates in the Dutch CLEF corpus using IR.

The most advanced of the five CLEF-QA corpus streams is XQuesta. It per-
forms XPath queries against an XML version of the CLEF-QA corpus which con-
tains the corpus text and additional annotations, including information about
part-of-speech, syntactic chunks, named entities, temporal expressions, and de-
pendency parses (from the Alpino parser [2]). XQuesta retrieves passages of at
least 400 characters, starting and ending at paragraph boundaries.

364 D. Ahn et al.

3 Question Classification

An important problem identified in the error analysis of our previous CLEF-QA
results was a mismatch between the type of the answer and the type required by
the question. To address this issue, we collected training data for the question
classifier. We used 600 questions from the three previous CLEF QA tracks, 1000
questions from a Dutch trivia game and 279 questions from other sources—
most importantly, the questions provided by users of our online demo. All the
questions were manually classified by a single annotator.

Our question classification scheme assigns several classes to a question. The
main reason is that while a coarse-grained type such as person would often be
sufficient, for answering which-questions a fine-grained type such as American
President would be needed. We used three different types of question classes: a
table type that linked the question to a particular column in our Table Lookup
knowledge bases (17 classes), a coarse-grained type that linked the question to the
types recognized by our named-entity recognizer (7 classes), and a fine-grained
type that linked the question to WordNet synsets (166 classes).

In Quartz, question classification is performed by a machine learner that rep-
resents a question using 10 features, such as the question word, the main verb
of the question, the first noun following the question word, the top hypernym
of the noun according to our type hierarchy, etc. In order to determine the top
hypernym of the main noun of the question we used EuroWordNet [3]. With this
small set of features the classifier achieved reasonable performance: 90% correct
predictions for the coarse-grained classes.

Our classifier uses the memory-based learner Timbl [4]. We performed feature
selection in order to identify the best subset of features for the classification task
(using bidirectional hill-climbing, see [5]).

4 Multi-dimensional Markup

Our system makes use of several kinds of linguistic analysis tools, including a
POS tagger, a named entity recognizer and a dependency parser [2]. These tools
are run offline on the entire corpus, before any questions are posed.

The output of an analysis tool takes the form of a set of annotations: the
tool identifies text regions in the corpus and associates some metadata with
each region. Ideally, we would store these annotations as XML in order to access
them through the powerful XQuery language. However, storing and accessing
the annotations produced by different tools is not straightforward because the
tools may produce conflicting regions. For example, a named entity may par-
tially overlap with a phrasal constituent in such a way that the corresponding
XML elements cannot be properly nested. It is thus not possible, in general, to
construct a single XML tree that contains annotations from all tools that we
used.

To deal with this problem, we have developed a general framework for the
representation of multi-dimensional XML markup [6]. This framework stores

Quartz: A Question Answering System for Dutch 365

A

B

C

E

D
text

characters

XML tree 2

XML tree 1
Context Axis Result nodes
A select-narrow A B C
A select-wide A B C E
A reject-narrow E D
A reject-wide D

Fig. 2. Example document with two annotation layers

multiple layers of annotations referring to the same base document. Through
an extension of the XQuery language, it is possible to retrieve information from
several layers with a single query.

4.1 Stand-Off XML

We store all annotations as stand-off XML. Textual content is stripped from the
XML tree and stored separately in a blob file (binary large object). Two region
attributes are added to each XML element to specify the byte offsets of its start
and end position with respect to the blob file. This process can be repeated
for all annotation layers, producing identical blobs but different stand-off XML
markup.

Figure 2 (left) shows an example of two annotation layers on the same text
content. The stand-off markup in the two XML trees could be:

 <E start="20" end="60">
<B start="30" end="50"/> <C start="20" end="40"/>

 <D start="55" end="60">
</E>

We use a separate system, called XIRAF [6], to coordinate the process of au-
tomatically annotating the corpus. XIRAF combines multiple text processing
tools, each having an input descriptor that defines the format of the input (e.g.,
entire document or separate sentences), and a tool-specific wrapper that con-
verts the tool output into stand-off XML annotation. We refer to [6] for a more
detailed description of XIRAF.

4.2 Extending MonetDB/XQuery

The merged XML documents are indexed using MonetDB/XQuery [7], an XML
database engine with full XQuery support. Its XQuery front-end consists of a
compiler which transforms XQuery programs into a relational query language
internal to MonetDB.

We extended the XQuery language by defining four new path axes that allow
us to step between layers. The new axis steps relate elements by region overlap
in the blob, rather than by nesting relations in the XML tree: select-narrow
selects elements that have their region completely contained within the context

366 D. Ahn et al.

element’s region; select-wide selects elements that have at least partial overlap
with the context element’s region; reject-narrow and reject-wide select the
non-contained and non-overlapping region elements, respectively. The table in
Figure 2 demonstrates the results of each of the new axes when applied to our
example document.

In addition to the new axes, we added an XQuery function so-blob($node).
This function takes an element and returns the contents of that element’s blob
region. This function is necessary because all text content has been stripped
from the XML markup, making it impossible to retrieve text directly from the
XML tree.

The XQuery extensions were implemented by modifying the front-end of Mon-
etDB/XQuery. An index on the offset attributes is used to make the new axis
steps efficient even for large documents.

4.3 Using Multi-dimensional Markup for QA

Two streams in our QA system have been adapted to work with multi-
dimensional markup: the Table Lookup stream and XQuesta. The table stream
relies on a set of tables that are extracted from the corpus offline according to
predefined rules. These extraction rules were rewritten as XQuery expressions
and used to extract the tables from the collection text.

Previous versions of XQuesta had to generate separate XPath queries to re-
trieve annotations from several markup layers. Information from these layers
had to be explicitly combined within the stream. Moving to multi-dimensional
XQuery enables us to query several annotation layers jointly, handing off the
task of combining the layers to MonetDB. Since XQuery is a superset of XPath,
previously developed query patterns could still be used in addition to the new,
multi-dimensional ones.

5 A Probabilistic Approach to Answer Selection

One major consequence of the multi-stream architecture of the Quartz QA sys-
tem is the need for a module to choose among the candidate answers produced
by the various streams. The principal challenge of such a module is making sense
of the confidence scores attached by each stream to its candidate answers. This
year, we made use of data from previous CLEF-QA campaigns in order to es-
timate correctness probabilities for candidate answers from stream confidence
scores. Furthermore, we also estimated correctness probabilities conditioned on
well-typedness in order to implement type-checking as Bayesian update. In the
rest of this section, we describe how we estimated these probabilities. We describe
how we use these probabilities in the following section.

5.1 From Scores to Probabilities

Each stream of our QA system attaches confidence scores to the candidate an-
swers it produces. While these scores are intended to be comparable for answers

Quartz: A Question Answering System for Dutch 367

produced by a single stream, there is no requirement that they be comparable
across streams. In order to make it possible for our answer re-ranking module
(described in §6) to rank answers from different streams, we took advantage of
answer patterns from previous editions of CLEF QA to estimate the probability
that an answer from a given stream with a given confidence score is correct.

For each stream, we ran the stream over the questions from the previous
editions of CLEF and binned the candidate answers by confidence score into
10 equally-sized bins. Then, for each bin, we used the available answer patterns
to check the answers in the bin and based on these assessments, computed the
maximum likelihood estimate for the probability that an answer with a score
falling in the range of the bin would be correct. With these probability estimates,
we can now associate with a new candidate answer a correctness probability
based on its confidence score.

5.2 Type Checking as Bayesian Update

Type checking can be seen as a way to increase the information we have about
the possible correctness of an answer. We discuss in section 6.2 how we actually
type-check answers; in this section, we explain how we use Bayesian update to
incorporate the results of type-checking into our probabilistic framework.

Given the prior probability of correctness for a candidate answer, P (correct)
(in our case, the MLE corresponding with the stream confidence score), as well
as the information that it is well- or ill-typed (represented as the value of the
random variable well typed), we compute P (correct | well typed), the updated
probability of correctness given well- (or ill-)typedness as follows:

P (correct | well typed) = P (correct) × P (well typed | correct)
P (well typed)

(1)

In other words, the updated correctness probability of a candidate answer, given
the information that it is well- or ill-typed, is the product of the prior probability
and the ratio P (well typed | correct) / P (well typed).

We estimate the required possibilities by running our type-checker on assessed
answers from CLEF-QA 2003, 2004, and 2005. For question types in which type-
checking is actually possible, the ratio for well-typed answers is 1.25. For ill-typed
answers the ratio is 0.34.

6 Answer Processing

The multi-stream architecture of Quartz embodies a high-recall approach to
question answering—the expectation is that using a variety of methods to find
a large number of candidate answers should lead to a greater chance of finding
correct answers. The challenge, though, is choosing correct answers from the
many candidate answers returned by the various streams. The answer processing
module described in this section is responsible for this task.

368 D. Ahn et al.

1: procedure AnswerProcessing(candidates, question, tc)
2: clusters ← Cluster(candidates)
3: for cluster ∈ clusters do
4: for ans ∈ cluster do
5: ans.well formed, ans.well typed ← Check(ans, question)
6: end for
7: P (cluster) ← 1 −

∏
ans∈cluster (1 − P (ans|ans.well typed))

8: cluster.rep answer ← argmaxans∈{ a | a∈cluster∧a.well formed } length(ans)
9: end for

10: ranked clusters ← sortP (clusters)
11: end procedure

Fig. 3. High-level answer processing algorithm

The algorithm used by the Quartz answer processing module is given in Figure
3. Candidate answers for a question are clustered (line 2: section 6.1), and each
cluster is evaluated in turn (lines 3–9). Each answer in a cluster is checked for
well-formedness and well-typedness (line 5: section 6.2). The correctness proba-
bility of the cluster P (cluster) (line 7) is the combination of the updated cor-
rectness probabilities of the answers in the cluster (the prior correctness prob-
abilities P (ans|ans.well typed) are described in section 5.2). The longer of the
well-formed answers in the cluster is then chosen as the representative answer for
the cluster (line 8). Finally, the clusters are sorted according to their correctness
probabilities (line 10).

6.1 Answer Clustering

Answer candidates with similar or identical answer strings are merged into clus-
ters. In previous versions of our system, this was done by repeatedly merging
pairs of similar answers until no more similar pairs could be found. After each
merge, the longest of the two answer strings was selected and used for further
similarity computations.

This year, we moved to a graph-based clustering method. Formulating answer
merging as a graph clustering problem has the advantage that it better captures
the non-transitive nature of answer similarity. For example, it may be the case
that the answers oorlog and Wereldoorlog should be considered similar, as well
as Wereldoorlog and wereldbeeld, but not oorlog and wereldbeeld. To determine
which of these answers should be clustered together, it may be necessary to take
into account similarity relations with the rest of the answers.

Our clustering method operates on a matrix that contains a similarity score for
each pair of answers. The similarity score is an inverse exponential function of the
edit distance between the strings, normalized by the sum of the string lengths.
The number of clusters is not set in advance but is determined by the algorithm.
We used an existing implementation of a spectral clustering algorithm [8] to
compute clusters within the similarity graph. The algorithm starts by putting all
answers in a single cluster, then recursively splits clusters according to spectral

Quartz: A Question Answering System for Dutch 369

analysis of the similarity matrix. Splitting stops when any further split would
produce a pair of clusters for which the normalized similarity degree exceeds a
certain threshold. The granularity of the clusters can be controlled by changing
the threshold value and the parameters of the similarity function.

6.2 Checking Individual Answers

The typing and well-formedness checks performed on answers depends primarily
on the expected answer type of the question. Real type-checking can only be
performed on questions whose expected answer type is a named-entity, a date,
or a numeric expression. For other questions, only basic well-formedness checks
are performed. Note that the probability update ratios described in section 5.2
are only computed on the basis of answers that are type-checkable. For answers
to other questions, we use the same ratio for ill-formed answers as we do for
ill-typed answers (0.34), but we do not compute any update for well-formed
answers (i.e., we update with a ratio of 1.0).

To check typing and well-formedness of an answer we use a set of heuristic
rules created by analysing the past performance of the system. E.g., for ab-
breviation or monetary unit questions the answer should consist of one word,
answers to measurement question should contain numerical information, etc. For
questions expecting names and dates as answers, we run an NE or date tagger,
as appropriate, on the justification snippet to verify that the candidate answer
is a name (for well-formedness) and is of the correct type (for well-typedness).
Then, the results of answer checking are boolean values for well-formedness and
well-typedness, as well as the possibly edited answer string.

7 Results and Analysis

For the CLEF 2006 QA task we submitted two Dutch monolingual runs. The run
uams06Tnlnl used the full system with all streams and final answer selection.
The run uams06Nnlnl used the full system but without type-checking.

The question classifier performed as expected for coarse question classes: 86%
correct compared with a score of 85% on the training data. For most of the
classes, precision and recall scores were higher than 80%; the exceptions are
miscellaneous and number. For assigning table classes, the score was much
lower than for the training data: 56% compared with 80%.

Table 1 lists the assessment counts for the two University of Amsterdam runs
for the question answering track of CLEF-2006. The two runs had 14 different
top answers of which four were assessed differently. In 2005 our two runs con-
tained a large number of inexact answers (28 and 29). We are happy about those
numbers being lower in 2006 (4 and 4) and the most frequent problem, extra-
neous information added to a correct answer, has almost disappeared. However,
the number of correct answers dropped as well, from 88 in 2005 to 41. This is at
least partly caused by the fact that the questions were more difficult this year.

The differences in the evaluation of the two runs are minimal and do not
allow us to make any conclusions of the effectiveness of the typechecking in

370 D. Ahn et al.

Table 1. Assessment of the two runs and of one run per question type

Run Total Right Unsupported Inexact Wrong % Correct
uams06Tnlnl 200 40 2 4 154 20%
uams06Nnlnl 200 41 3 4 152 21%
Assessment for run uams06Nnlnl per question type
factoid 116 28 1 2 85 24%
definition 39 9 0 1 29 23%
temporally restricted 32 3 1 1 27 8%
non-list 187 40 2 4 141 21%
list 13 0 6 0 31 0%

the Dutch system. This is in contrast with our experience with the English
version of the system [9], where we noticed a substantial improvement. More
experiments are needed to understand what causes the lack of improvement for
Dutch: the quality of the Dutch type-checking itself or our probabilistic approach
to combining different evidence for answer candidates (section 5).

Like last year, the questions could be divided in two broad categories: ques-
tions asking for lists and questions requiring singular answers. The second cat-
egory can be divided in three subcategories: questions asking for factoids, ques-
tions asking for definitions and temporally restricted questions. We have exam-
ined the uams06Tnlnl-run answers to the questions of the different categories in
more detail (Table 1). Our system failed to generate any correct answers for the
list questions. For the non-list questions, 21% of the top answers were correct.
Within this group, the temporally restricted questions1 (8% correct) posed the
biggest challenge to our system. In 2005, we saw similar differences between fac-
toid, definition and temporally restricted questions. At that time the difference
between the last category and the first two could be explained by the presence
of a significant number of incorrect answers which would have been correct in
another time period. This year, no such answers were produced by our system.

8 Conclusion

We have described the fourth iteration of our system for the CLEF Question
Answering Dutch mono-lingual track (2006). This year, our work has focused on
converting all data repositories of the system (text, annotation and tables) to
XML and allowing them to be accessed via a single interface. Additionally, we
modified parts of our system which we had suspected of weaknesses: question
classification and answer processing.

Our experiments with the English version of the system [10] show that if a
fine-tuned answer selection module is employed, all QA streams contribute to
performance: removing any single stream results in fewer answered questions.
We still need to perform similar experiments for the Dutch system.
1 The official assessments indicate only one temporally restricted question, which

seems unlikely. We count all questions with time expressions as temporally restricted.

Quartz: A Question Answering System for Dutch 371

Acknowledgments

This research was supported by various grants from the Netherlands Organ-
isation for Scientific Research (NWO). Valentin Jijkoun was supported under
project numbers 220.80.001, 600.065.120 and 612.000.106. Joris van Rantwijk
and David Ahn were supported under project number 612.066.302. Erik Tjong
Kim Sang was supported under project number 264.70.050. Maarten de Rijke was
supported by NWO under project numbers 017.001.190, 220.80.001, 264.70.050,
354.20.005, 600.065.120, 612.13.001, 612.000.106, 612.066.302, 612.069.006, 640.-
001.501, 640.002.501, and by the E.U. IST programme of the 6th FP for RTD
under project MultiMATCH contract IST-033104.

References

1. Dumais, S., Banko, M., Brill, E., Lin, J., Ng, A.: Web question answering: Is
more always better? In: Bennett, P., Dumais, S., Horvitz, E. (eds.) Proceedings of
SIGIR’02, pp. 291–298 (2002)

2. van Noord, G.: At last parsing is now operational. In: Proceedings of TALN 2006,
Leuven, Belgium (2006)

3. Vossen, P.: EuroWordNet: A Multilingual Database with Lexical Semantic Net-
works. Kluwer Academic Publishers, Dordrecht (1998)

4. Daelemans, W., Zavrel, J., van der Sloot, K., van den Bosch, A.: TiMBL: Tilburg
Memory Based Learner, version 5.1, Reference Guide. University of Tilburg, ILK
Technical Report ILK-0402 (2004), http://ilk.uvt.nl/

5. Caruana, R., Freitag, D.: Greedy attribute selection. In: Proceedings of the
Eleventh International Conference on Machine Learning, New Brunswick, NJ,
USA, pp. 28–36. Morgan Kaufman, San Francisco (1994)

6. Alink, W., Jijkoun, V., Ahn, D., de Rijke, M., Bonz, P., de Vries, A.: Representing
and querying multi-dimensional markup for question answering. In: Proceedings of
the 5th Workshop on NLP and XML, ACL, pp. 3–9 (2006)

7. CWI: MonetDB Website: http://www.monetdb.nl/
8. Dragone, L.: Spectral clusterer for WEKA (2002),

http://www.luigidragone.com/datamining/spectral-clustering.html
9. Schlobach, S., Ahn, D., de Rijke, M., Jijkoun, V.: Data-driven type checking in

open domain question answering. Journal of Applied Logic (2006)
10. Jijkoun, V., de Rijke, M.: Answer selection in a multi-stream open domain question

answering system. In: McDonald, S., Tait, J. (eds.) ECIR 2004. LNCS, vol. 2997,
Springer, Heidelberg (2004)

11. Jijkoun, V., de Rijke, M.: Retrieving answers from frequently asked questions pages
on the web. In: Proceedings of the Fourteenth ACM conference on Information and
knowledge management (CIKM 2005), ACM Press, New York (2005)

http://ilk.uvt.nl/
http://www.monetdb.nl/
http://www.luigidragone.com/datamining/spectral-clustering.html

	Quartz: A Question Answering System for Dutch
	Introduction
	System Description
	Question Classification
	Multi-dimensional Markup
	Stand-Off XML
	Extending MonetDB/XQuery
	Using Multi-dimensional Markup for QA

	A Probabilistic Approach to Answer Selection
	From Scores to Probabilities
	Type Checking as Bayesian Update

	Answer Processing
	Answer Clustering
	Checking Individual Answers

	Results and Analysis
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

