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Abstract

Our main aim is to review the frame semantics and axiomatics of modal logic from the perspective of the
duality between (Kripke) frames and boolean algebras with operators as defined by Jénsson and Tarski.

To this end, we introduce modal languages and their interpretation in models and frames in Part Il.
We define and discuss the notion of a modal formula characterizing a class of frames or models, and give
the Sahlqvist algorithm which yields, given a suitable modal formula as input, the corresponding first-order
condition on the class of frames characterized by the formula. We define the concept of a normal modal logic
and explain the canonical frame method for proving completeness of a logic with respect to classes of frames.

In Part |1l we develop the algebraic perspective on modal logic. We introduce boolean algebras with opera-
tors and show how they arise naturally in both the semantic and the axiomatic approach towards algebraizing
modal logic. We discuss in detail how the category of boolean algebras with operators and homomorphisms
links up with the category of frames with so-called bounded morphisms. Finally, we apply this duality to give
easy proofs for some important and well-known results from modal logic.
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CR Subject Classification (1991): F.4.0, F.4.1, 1.2.3, 1.2.4.
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Note: This report is loosely based on parts of Blackburn, de Rijke and Venema [4]; the
material was used as lecture notes for a course on Modal Logic and Boolean Algebras with
Operators given by the third author during the summer school on Algebraic Logic and the
Method of Applying It (Budapest, July 11-17 1994), which was held as part of the TEMPUS
summer school series ‘Algebraic and Categorial Methods in Computer Science.’

Part |: Introduction

It has been a long time since modal logic involved only the study of extensions of classical
propositional logic with one operator ‘0 referring to the necessity of truth of a formula.
Nowadays, modal logicians are studying a variety of modal languages and interpretations for
them, each system designed to formalize some aspect of linguistic, computational, mathemat-
ical or philosophical reasoning, and it has become increasingly hard to indicate what these
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formalisms have in common. Let us instead give a few examples of applications of modal
logic in computer science, deferring the general definition to Section 1.

Epistemic logic, which originates in philosophical logic, is used in a formal analysis of
knowledge, involving either human agents or for instance processors in a distributed system.
Given a set A of such agents, the basic language has an operator K, for each agent a; the
intended reading of K,¢ is ‘agent a knows ¢, or ‘agent a has access to the information that
¢’. One aim of epistemic logicians is to try and find the ‘right’ logic of such formalizations,
i.e., to develop deductive systems in which laws about knowledge arise as theorems of the
deductive apparatus. In order to do so, it turns out to be very convenient to have a proper
semantics for such logics. Most approaches in the literature involve some kind of Kripke
semantics, in which two knowledge states s and ¢ stand in a relation R, if and only if ¢ is,
from the perspective of agent a, a possible ‘epistemic alternative’ to s. The natural truth
definition of the knowledge operators is the basis of the semantics of modal logic:

sk Kqo¢ if tlF- ¢ for all ¢ such that R,st.

A second incarnation of modal logic in computer science is formed by dynamic logic, a
formalism developed to reason about processes. Here the structures are given in the form of
labeled transition systems: a labeled transition system is nothing but a set of states, related by
transitions that are labeled with atomic actions. The idea is that for any program o (either an
atomic action or a more complex program involving for instance while-statements), a binary
relation R, is defined, where R,st holds if it is possible in state s to perform a and thus
reach t. The language of dynamic logic (which is just one alternative to talk about labeled
transition systems) then has operators (a) for every program «, and the truth definition of
these operators is

sk (a)¢ iff there is a t with R, st and ¢t I ¢.

The logics developed for this semantics find applications in the theory of specification and
verification of programs. Another branch of modal logic used to reason about the behavior
of processes is temporal logic, which also finds applications in the formal semantics of natural
languages and in artificial intelligence.

As a last example we mention the calculus of binary relations, which is applied (in various
disguises) in almost any field of theoretical computer science. Here it is perhaps less easy to
see the modal connection; the basic idea is that we can read the statement (z,y) € R; S (the
composition of the relations R and S) as follows: ‘there are pairs (z,2) and (2,y) such that
(z,2) € R and (y,z) € S°. Thus we can see the composition operator as a binary operator,
with a ternary accessibility relation C defined on pairs by

C((w,v), (w,2),(y,2)) ff u=w,v=z2andz=y.

Many of the questions arising from such applications have been studied from a more general,
theoretical and abstract perspective. In the literature on modal logic, the following areas can
be identified (among others):

Definability. Given a class K of frames, can we define K by a (set of) modal formula(s)?
Or, conversely, given a modal formula, in which frames will it be valid?
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Axiomatics. Given a class K of frames, can we find a nice axiomatization of the set of
formulas that are valid in K?

Complexity. Is it possible to decide whether a given formula is valid in a given class of
frames, or a theorem of a given modal logic? And if so, how effective an algorithm can
we give?

Proof theory. Which kind of deductive system is suited best to find out whether a given
formula is a theorem of a logic, and what are the properties of such a system?

In each of these areas, many years of research have lead to a great number of results, some
of which have been obtained by applying results from other areas of logic (and mathematics).
It is the aim of these notes to show how in two fields of modal logic, viz. definability theory
and axiomatics, techniques and results can be used from universal algebra. In this respect,
modal logic is a good witness of the successful strategy of algebraic logic. We summarize the
program of algebraic logic here as to translate logical problems into algebraic questions, then
to use the machinery of universal algebra to solve the problem algebraically, and finally, to
translat: the solution back to logic. In the particular case of modal logic, a bridge between
logic and algebra is formed by the duality theory between boolean algebras with operators
and modal frames!. In its full version, this duality theory is an extension of the duality
between boolean algebras and Stone spaces. In these notes, we can only treat the basic
issues, omitting any reference to topology.

Let us give a representative example of this strategy (treated in more detail in Section 7).
An important problem in the definability theory of modal logic is the question whether there
is, for a given class K of frames, a set A of modal formulas which defines this class in the sense
that for any frame §, A is valid on § iff § belongs to K. The analogous question in universal
algebra is answered by Birkhoff’s Theorem stating that a class of algebras is equationally
definable iff the class is a variety, i.e., closed under taking subalgebras, homomorphic images
and direct products. Now, applying Birkhoff’s result through the channel of duality theory,
(and with some additional modal reasoning), Goldblatt and Thomason [13] give an analogous
structural characterization of the frame classes that are modally definable (Theorem 7.2).

Finally, we should mention that results are also being transferred in the opposite direction,
i.e., from modal logic to the theory of boolean algebras with operators. A second important
result in modal logic, due to Fine, states that a modal logic which is complete with respect
to a first-order definable class, has the additional desirable property of being canonical. This
result can be applied, together with a theorem by Sahlqvist, to show that many varieties
of boolean algebras with operators are closed under taking canonical embedding algebras
(cf. Theorem 7.8).

We hope to persuade the reader that it is worthwhile to study modal frames and boolean
algebras with operators from both the logical and the algebraic perspective. These notes
contain the basic tools for such a study.

!This way of introducing algebraic logic is historically unjustified. Curiously, in the case of modal logic,
the bridge was constructed, in the paper “Boolean Algebras with Operators” by Jénsson and Tarski, about a
decade before Kripke and others developed and studied the possible world semantics for modal logic.
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Outline of the paper

The paper is divided into four parts: after this introductory Part I, the second part forms a
concise introduction to modal logic, highlighting two of its main themes: definability theory
and axiomatics. In Part III we develop the algebraic perspective on modal logic; here we
concentrate on the basic duality theory between frames and boolean algebras with operators.
(For a more detailed overview of Parts II and III we refer to the introducing paragraphs of
both parts.) We conclude in Part IV by briefly commenting on topics we had to omit for lack
of space, and by pointing out some more advanced literature.

Part |I: Modal logic

As was pointed out in the Introduction, modal formalisms are applied in a great number of
disciplines. The two important uses of modal logic are (i) as a tool for analyzing non truth-
functional sentential operators, and (ii) as a description language for relational structures.
Examples of the former use include epistemic logic, the calculus of binary relations, but also
provability logic where modal operators are used to study constructions such as ‘it is provable
that ...’ (see [24]). Examples of modal logic as a description language can be found in
computational linguistics where modal languages are used to single out trees corresponding to
grammatical strings (see [3]), and in computer science where dynamic and temporal languages
are used to pin down the desired execution structures of programs (see [19]).

Often the main motivation for using (propositional) modal logic in either of the above two
uses is their flexibility, their naturalness and the fact that in many cases they have better
computational properties than richer formalisms such as first-order logic.

Here’s the plan for Part II; the contents of Part III are described just before Section 5
on algebraizing modal logic. In Section 1 we introduce modal languages and the semantic
structures used to interpret them. In Section 2 (on definability) we analyze the expressive
power of modal languages, and Section 3 describes an algorithm for automatically obtaining
the properties defined by modal formulas. Section 4 gives an introduction to completeness
theory by using canonical models.

1. PRELIMINARIES
In this section we review basic definitions about modal logic.

1.1 Modal languages

In these notes we will mainly be working in a very simple modal language with just a single
modal operator ¢ (‘diamond’) and its dual O (‘box’). For the record we will also define more
general modal languages, but for didactical purposes statements of results (and proofs) will
most often be given for the simple modal language only.

Definition 1.1 The standard modal language is defined using a set of proposition letters
® whose elements are denoted p, g, ..., and a unary sentential operator ¢ (‘diamond’).
Formulas of the standard modal language are given by the rule

pu=p|L]|-p|dAd]| O,

where p ranges over elements of ®. This definition means that a formula is either a proposition
letter, the propositional constant falsum, a negated formula, a conjunction of formulas, or a
formula prefixed by a the diamond.
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Just as the existential and universal quantifier are duals to each other (in the sense that
Vra < —3z-ca), we have a dual operator O (‘box’) for our diamond. It is defined by
O¢ := —O-¢. Further, the usual classical abbreviations for disjunction and implication

apply: ¢V ¢ :=-(=¢pA—¥), ¢ = P :=-¢ V.
To give the general notion of a modal language we need the following.

Definition 1.2 A modal similarity type is a pair 7 = (O, p) where O is a non-empty set, and
p is a function O — N. The elements of O are called modal operators; we use A (‘triangle’),
Ag, A1, ... to denote elements of O. The function p assigns to each operator A € O a finite
arity, indicating the number of arguments A can be applied to.

We usually refer to unary triangles as diamonds, and denote them with < or {a), for a in
some index set. We often assume that the arity of modal operators is known, and make no
distinction between 7 and O.

Definition 1.8 A modal language ML(7,®) is built up from a modal similarity type 7 =
(O, p) and a set of proposition letters ®. The set Form (7, ®) of modal formulas over 7 and
® is given by the rule

¢::=p|-l-l_’¢'¢l/\¢2|A(¢11"-’¢n)a

where p ranges over elements of @, and A is an n-ary modal operator in 7.

1.2 Models and frames; truth and validity
We will first define models and frames for the standard modal language.

Definition 1.4 A frame for the standard modal language is a pair § = (W, R) such that

1. W is a nonempty set.
2. R is a binary relation on W.

A model for the standard modal language is a pair 9 = (§, V), where § is a frame, and V
is a function assigning to each proposition letter p a subset V(p) of W. Informally, we think
of V(p) as the set of points where p is true. V is called a valuation.

The notion of a standard modal formula ¢ being true at a state w in a model M =
(W, R, V), notation I, w I ¢, is defined inductively:

Mwltp iff weV(p)
Mwlk L if w#w
M, wlk-¢ iff not Mwl-¢
Mwl-dAny iff Mwlk¢ and Mw -9y
M wl-Op iff for some v € W with Rwv we have 9, v I ¢.

When 90 is clear from the context, we write w I ¢ for I, w IF ¢. A formula ¢ is true in a
model M (notation: M I+ ¢) if it is true at all points in M.

It is often convenient to extend the valuation V' from proposition letters to arbitrary for-
mulas so that V(¢) is the set of states at which ¢ is true: V(¢) = {w | M, w I+ ¢}.

We write 9, w = 1, v to denote that w and v verify the same formulas.



1. Preliminaries ’ 6

Exaniple 1.5 Consider the structure § = ({w1, w2, w3, w4, ws}, R), where Rw;w; iff j = i+1
(1<i<4).

*—8—>0—+0—>0
Wy W2 W3 W4 Ws

If we choose a valuation V on § with V(p) = {ws, w3}, then the model M = (F,V) has
I, wy ¥ p, but M, wy I+ OOp, and so W, wy ¥ OOp — p.

Whereas a diamond © corresponds to making a single R-step in a model, stacking diamonds
corresponds to making a sequence of R-steps. We write O™¢ for ¢ preceded by n occurrences
of O; correspondingly, R™ is defined inductively by Rzy iff z = y, and R™Hlgy iff 32 (Rxz A
R"zy). Then, for any model 9 and state w in 9 we have 9, w I O™¢ iff there exists v such
that R"wv and M, v I+ ¢.

We now define frames, models and truth for arbitrary modal languages.

Definition 1.6 Let 7 be a modal similarity type. A 7-frame is a frame § consisting of the
following ingredients 1. and 2.:

1. a non-empty set W,

2. for each n > 0 and each n-ary modal operator A in the similarity type 7 an (n + 1)-ary
relation R,.

If 7 contains finitely many modal operators Ay, ..., Ap, we write § = (W, Ry, ..., Ra,);
otherwise we write § = (W, Ry )acr-

A 7-model is a pair I = (F,V) where § is a 7-frame, and V is a valuation.

The notion of a formula ¢ being true at a state w in a model M = (W,{R, | A € 7},V)
(notation: M, w I ¢) is defined inductively. The clauses for the atomic and boolean cases are
the same as for the standard modal language (Definition 1.4); for the modal case, we define

M,w - A(d1,...,¢s) iff for some vy, ..., v, € W with Rywv; ... v,
we have M, v; IF ¢; (1 <i<n).

As before, we leave out 9 if it is provided by the context. Also, the notion of truth in a
model can be defined as before, as can the use of V applied to arbitrary formulas.

Example 1.7 Let 7 be a similarity type with three unary operators (a), (b) and (c). Then,
a 7-frame has three binary relations R,, Ry, and R., that is, it is a labeled transition system.
To give an example, let W, R,, R, and R, be as in Figure 1(a), and consider the formula
(a)p — (b)p. Informally, this formula is true at a state, if it has an R,-successor satisfying p
only if it has an Rj-successor satisfying p. Let V be a valuation with V(p) = {ws}. Then the
model M = (W, Ry, Ry, R., V) has M, w; If (a)p — (b)p as M, w; IF (a)p, but M, w; ¥ (b)p.
In arrow logic one thinks of the objects of models as arrows or transitions rather than states
or points. An important binary modal operator in arrow logic is composition o; intuitively,
¢ o7 is true at an arrow if the arrow can be decomposed into two arrows satisfying ¢ and 1,
respectively. Formally, one introduces a ternary relation C and defines z IF ¢ o ¥ to hold if
for some y and z, Czyz and y I ¢ and z |- . Familiar properties of composition can then
be obtained by imposing additional constraints on C. For example, associativity of o does
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w3 P
q gor
K
b c r
—° : v (pog)or
wy w2 a
(a) (b)

Figure 1: Two frames.

not hold automatically; in Figure 1(b) we have z I+ (pog)or, but z lf po(gor): = can be
decomposed into an arrow labeled p o ¢ and an arrow labeled 7, but it can’t be decomposed
into arrows labeled p and g o r.

Quite often we have a special reading in mind for our modal operators, or for the models
on whica we interpret them.

Example 1.8 In the standard modal language the diamond < is sometimes interpreted as
‘it is possibly the case that ... ’; [J¢ the stands for ‘necessarily ¢.’ Given a state w, let us
call states v for which Rwv holds, states that are possible for w; then a formula ¢ is true
at w whenever ¢ is true at some state that is possible from the point of view of w. A typical
example of a complex statement here is ‘whatever is necessary, is possible’: O¢ — O¢. The
terms (possible) world and possible world model often found in the literature, derive from
this particular language with this particular reading of the modal operator.

As we saw in the introduction, epistemic logic is a branch of modal logic used for reasoning
about the knowledge an agent has; instead of (¢ or [a]¢ one writes K,¢ for ‘the agent a
knows that ¢.” The intuitive reading for w I K, ¢ is: the agent a knows ¢ in a situation w iff
¢ is true in all situations v that are compatible with a’s knowledge (that is, if v I ¢ for all
v such that R,wv). A formula whose truth seems a minimal requirement to be able to talk
about knowledge (as opposed to, say, belief or rumor) is K,¢ — ¢: if a knows that ¢, then
¢ must be true.

Assume that the set of operators O = {(F), (P)}, and that Rp is the converse of Rr, that
is Vwv (Rpwv < Rpvw). If we interpret Rpwv as ‘v is later in time than w,’” then (F)¢
is true at a point in time whenever ¢ is true at some future point, and (P)¢ is true at a
point whenever ¢ is true at some past point. The operators (F) and (P) are usually written
as F' and P; they form the core of a special branch of modal logic called tense or temporal
logic. The duals of F and P are written as G and H, respectively. Complex tense logical
statements describe interesting properties of time; P¢ — GP¢, for instance, says ‘what has
happened will always have happened.’

Another example concerns the earlier arrow logic. In addition to a binary operation de-
noting composition, arrow logic has a unary operator ® to talk about the converse of arrows,
and a constant § to talk about identity arrows. A reasonable axiom in this language is
®(po q) < (®qo ®q): the converse of a composition is the composition of the converses of
the component arrows in reverse order.
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In addition to interpreting modal formulas on models, we can also interpret modal formulas
on frames, namely by quantifying over all valuations.

Definition 1.9 A formula ¢ is valid at a state w in a frame § (notation: F,w = ¢) if ¢ is
true at w in every model (§, V) based on §; ¢ is valid in a frame ¥ (notation: § |= @) if it is
valid at every state in §.

Example 1.10 The formula O(p V ¢) — (Op V ©Oq) is valid on all frames. To see this, take
any frame § and state w in §, and let V be a valuation on §. We have to show that if
& V), wl-O(pVg), then (F,V),w - OpV Oq. So assume that (F,V),w IF O(pV q). Then
there is a state v such that Rwv and (§,V),vIFpVgq. If v I pV q then either v IFp or v I q.
Hence, either w I Op or w IF &g — but in both cases it follows that w IF Op V Oq.

The formula ¢Gg — ¢<Oq is not valid on all frames. To see this we need to come up with a
frame §, a state w in §, and a valuation on § that falsifies the formula at w. Take a two-point
frame § whose universe is {0,1}, and whose relation is {(0,1)}. Define a valuation by putting
V(p) = {1}. Then (§F,V),0 I Op, but obviously (F,V),0 I OOp.

Here is a frame on which the above formula Op — ©O<Op is valid. As the universe of the
frame take the set of all rational numbers, Q, and let R denote the usual <-ordering on Q.
To show that Op — OOp is valid on this frame, take any state w in it, and any valuation V
such that (Q, R, V), w I Op; we have to show that w IF OOp. But this is easy: as w I+ Op,
there exists v with Rwv and v I p. Because we are working on the rationals, there must be
a z with Rwz and Rzv. So, z IF Op, but then w IF OOp.

As we have seen in the previous example, when constraints are imposed on frames more
formulas may become valid: on arbitrary frames the formula &g — ©<{g may be falsified,
but if we restrict ourselves to dense orderings such as (Q, <) we are no longer able to falsify
it. This is a general point: Og — O<Oq is valid on a frame iff (the ordering of) the frame is
dense. We will return to issues such as these in Sections 2 and 3 below.

2. DEFINABILITY AND ITS LIMITS

In this section we study the expressive power of modal languages as description languages for
relational structures. Corresponding to the two ways of interpreting modal formulas that we
discussed in Section 1, we will carry out this study at two levels: at the level of models, and
at the level of frames. We will study the expressive power of modal languages by considering
the classes of models and frames that modal languages can single out.

Definition 2.1 Let C be a class of structures (either models or frames), and I a set of modal
formulas. We say that I' defines or characterizes a class K of structures within C if for all
structures G in C we have that G is in K iff I" is true/valid on &. If C is the class of all
structures we will drop the clause ‘within C’ and simply say that T defines K. A class K is
definable (within C) if there is a set of modal formulas that defines it (within C).

2.1 Models

In this subsection we consider definability of properties of models; that is, the classes C and
K in Definition 2.1 are now taken to be classes of models. Two tools are extremely important
in studying definability issues: the standard translation and bisimulations. The standard
translation takes modal formulas to first-order formulas; the following definition specifies the
relevant first-order language.
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Definition 2.2 Given a modal similarity type 7, and a set of proposition letters ®, we
write £1(®) for the first-order correspondence language. This language has identity, unary
predicates Py, P, ... corresponding to the proposition letters pg, p1, ... in @, and (n+1)-ary
relation symbols R, for every n-ary modal operator A in 7.

It is important to observe that we can view our modal T-models 9t = (W, Ra,V)aer as
models for the first-order correspondence language £1(®). To do so we need to say how the
relation symbols R, should be interpreted — but that is obvious —, and we need to say how
to interpret the unary predicate symbols, and here we use the valuation V: we will say that
a state w is in the extension of the predicate P; iff w € V(p;).

Definition 2.3 Fix an individual variable z. We let [y/z]a denote the result of substituting
the individual variable y for all free occurrences of z in a. The standard translation ST takes
modal formulas to first-order formulas as follows:

ST(p;) = Pz
ST(L) = (z#7)
ST(=¢) = —S5T(¢)
ST(pN9p) = ST($)AST(¥)
ST(A(¢1,---,8n) = Fy1...Fyn (Razy1-..yn A
[y1/2]ST($1) A ... A [yn/=] ST (¢)),

where 1, ..., yn are fresh variables.
As an example we compute the standard translation of ¢(p A Og):

ST(O(pAOq)) = 3y(RzyA[y/z]ST(p AOg))
= Jy(Rzy Aly/z]ST(p) A [y/=]ST(Og))
= 3Jy(Rzy A PyA[y/z]ST(Vz (Rzz — [2/2]ST(q))))
Jy (Rzy A Py AVz (Ryz — Qz)).

Proposition 2.4 Let ¢ be a modal formula. Then, for any model M and state w we have

Mw k¢ iff M E ST(P)[w].

As a corollary we find that on models every modal formula is equivalent to a first-order
formula. Does the converse hold as well? If not, what fragment of first-order logic does modal
logic correspond to?

To answer these questions we will use bisimulations. Before introducing them we look at a
simple motivating example of two models that are different, but that verify the same modal
formulas. We restrict ourselves to the standard modal language with ¢, O with a single
proposition letter p. Consider the two models depicted in Figure 2. That is, all points in
both models verify the proposition letter p. We will show that w verifies exactly the same
modal formulas as each of the v;s; we will do this by induction. The atomic and boolean cases
are trivial. As to the modal case, assume w IF $¢. This means that we can move along an
arrow to a state where ¢ holds — this can only be w itself. Hence w I ¢, and therefore, by
induction hypothesis, each v; has v; I ¢. But this means that from any state in the model on
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w Vg V1 v2 U3
P ®— .o ® -
@ p p p p

Figure 2: Equivalent models

the right-hand side we can make a move to a state with ¢. So v; IF ©¢. Conversely, assume
that every v; has v; I ©¢@. Then, from every v; a move ean be made to a state where ¢ holds,
but this implies that all v; verify ¢. Hence, by induction hypothesis, w I+ ¢, and as w can
‘see’ itself, w IF O¢@, as required.

The important thing about the above example is the intuition underlying the proof: every
‘modal step’ in the one model in Figure 2 must be matched with a move in the other; the
same intuition underlies bisimulatjons.

Definition 2.5 We will first define bisimulations for the standard modal language. Let 9 =
(W,R,V) and ' = (W', R, V') be two models. A non-empty relation Z C W x W' is called
a bisimulation between I and M’ if the following holds:

1. If uZv' then u and v’ verify the same proposition letters.
2. If uZv' and Ruv, then there exists v’ in 9 such that vZv' and R'u'v'.
3. If uZv' and R'u/v', then there exists v in 91 such that vZv' and Ruwv.

When Z is a bisimulation linking two states u and v’ we say that u and v’ are bisimilar, and
write uZu’ or Z : MM,u & M, u/. As an example, observe that the two models in Figure 2
are bisimilar via the relation Z = {(w,v;) | 7 € N}.

We now define bisimulations for arbitrary modal languages. Fix a similarity type 7, and two
7-models MM = (W, Ry, V)aer and M = (W', R}, V') ser. A non-empty relation Z C W x W’
is a 7-bisimulation if it satisfies condition 1. as before, and conditions 2’. and 3’. below.

2’. For any A in 7, if uZu' and Rauv; ... vp, then there exist v}, ..., v}, in 9 such that
Ry u'vi ... v}, and v; Zv} (for 1 < i < m).

3’. For any A in 7, if uZu' and R} u'v] ...}, then there exist vy, ..., v, in 9t such that
Rjuv; ...v, and v;Zv; (for 1 <i < n).

Proposition 2.6 Fiz a modal similarity type 7. Let M, M' be two T-models, and let w, w'
be states in 9, M’ respectively. If there is a bisimulation Z : M,u < M, u', then, for all
T-formulas ¢ we have M, u - ¢ iff M, ' I+ ¢'.

Proof. The proof is by induction on ¢. -

By Proposition 2.6 we have a tool to test for modal undefinability: a first-order condition is
modally definable only if it is invariant for bisimulations in the following sense.

Definition 2.7 We say that a first-order formula a(z) in £1(®) is invariant for bisimulations
if for all 7-models M, M’ and states w and w' in I and IV, respectively, and all bisimulations
Z we have that
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Z:M,w < M, w' implies that M |= afw] iff M’ | afw'].

Example 2.8 Using Figure 2 we see that the first-order condition Rzz is not modally de-
finable: it is not invariant for bisimulations because it holds for w but it does not hold for
g, for example. The same argument also shows that Vy Rzy is not modally definable.

For a slightly more complicated example, consider a similarity type with a binary modal
operator A based on a ternary relation S,. We claim that the condition

Vyzz2' (Szyz A Szyz' — 2 =2')

is not modally definable. To see this, consider the two models in Figure 3.

cIl

C’

a a
Figure 3: Bisimilar models

The obvious bisimulation between the models in Figure 3 proves the claim.

We can use bisimulations to detect undefinability, but can we also use it to find out
whether a condition is definable? To find the answer, we return to Proposition 2.6; recall
that according to this result bisimilarity implies modal equivalence. The following example
shows that modal equivalence does not imply bisimilarity. Consider the two models for the
standard modal language (over an empty set of proposition letters) depicted in Figure 4.

a b

m N
Figure 4: Equivalent but not bisimilar.

The claim is that @ and b in Figure 4 are equivalent but not bisimilar. To see that they are
not bisimilar, consider a point &' # b on the infinite branch in 9. Whatever point in 9 we
try to link &' to via a candidate bisimulation, it has to be different from a (why?), and hence
it will only have finitely many successors. But 4’ has an infinite chain of successors, and in
the long run this will violate the bisimulation condition. To see that, nevertheless, a and b
are equivalent, one can show by induction on formulas that for every state b’ on the infinite
branch of N, and every modal formula ¢ with b’ I ¢, there is a (finite) branch in 9 and a
state a’ on that branch with a’ I ¢; from this it follows that a and b are modally equivalent.

The above discussion motivates the following definition.

Definition 2.9 Let 7 be a modal similarity type, and K a class of 7-models. K is a Hennessy-
Milner class if for every two models 9, 9 € K and any two states » and «' in 9t and 2V,
respectively, 9, u = 9V, +' implies M, u = N, v'.
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Example 2.10 By our earlier examples, the class of all models is not a Hennessy-Milner
class. Here are examples of Hennessy-Milner classes:

¢ Finite models, and more generally, image-finite models (these are models such that for
every state w and every relation R, (A € 7) the set {(v1,...,vn) | Rawvy...v,} is
finite).

e Canonical models (cf. Section 4 below for a definition).

o Saturated models (cf. Chang and Keisler [8, Chapter 6] for a definition).
We will show that the class of finite models is a Hennessy-Milner class.

Proposition 2.11 Fiz a modal similarity type 7. The class of finite T-models is a Hennessy-
Milner class.

Proof. We prove the result for the standard modal language. Assume 9%,a = N,b, where
M and N are finite models. We have to show that 9,a < IM,b. The natural candidate
bisimulation is

zZy iff for all modal formulas ¢: M, z I ¢ iff N,y IF ¢.

Let us show that Z is a bisimulation. Z is non-empty, and it trivially fulfills the condition on
proposition letters. Next, assume that £Zy and Rzz’ hold; we have to find a y' with z'Zy'
and R'yy’ (in ). Assume that no such y' exists; we will derive a contradiction. Note that
X = {z | R'yz in M} is non-empty (otherwise z |- OT, but y If OT, contradicting zZy). As
N is finite, so is X, say X = {z1,...,2,}. Hence, for every z; there is a formula ¢; such that
z' I+ ¢;, but z; Iff ¢;. Let ® := A; ¢;. Then z I O, but y If O — contradicting zZy.

The final bisimulation condition is proved entirely analogously. -

Theorem 2.12 Fiz a similarity type 7. A first-order formula o(z) in L1(®) is invariant for
T-bisimulations iff it is equivalent to (the translation of) a modal formula.

Proof. The direction from right to left is Proposition 2.6. Proving the converse requires more
work; we will sketch a proof for the standard modal language. Assume o(z) is invariant for
bisimulations; to exclude trivial cases we will also assume that « is consistent. Consider the
set of modal consequences of a:

MOD-CON(a) = {ST(¢) | @ = ST(¢), ¢ is a modal formula}.

By compactness it suffices to show that MOD-CON(a) |= a. For then there exists a finite
I' C MOD-CON(a) such that I' = a (and conversely) and AT is a modal formula.

Assume 2 |= MOD-CON(a)[w]. We have to show that 9 |= a[w]. Our first observation is
that by a simple compactness argument the set X := {a}U{ST(¢)) | M, w I 9} is consistent.
Let 91 be a model with 9 = X|[v], for some v. Note that 9, w = 9, v.

If M and 91 both lived in a Hennessy-Milner class, 9t, w = N, v would imply M, w < N, v,
and from this we would be able to infer 9t = a[w], which would complete the proof. We can
get away with slightly less: it’s enough to make a detour through a Hennessy-Milner class,
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as follows. By general model-theoretic considerations from first-order logic, both 9 and N
have saturated elementary extensions t* and 91*; it follows that 9t*,w = 9*,v and that
M* = ofw]. The class of saturated models is a Hennessy-Milner class, hence IM*,w < N, v.
By invariance under bisimulations we get 9t* |= a[w]. And as 9* is an elementary extension
of M we infer that M = o[w] — and we are done. -

Corollary 2.13 Fiz a modal similarity type 7. Let K be a class of T-models that is defined by
a set of first-order formulas. Then K is modally definable iff it is closed under bisimulations.

Corollary 2.14 Fiz a modal similarity type 7. A class of T-models is modally definable
iff it is closed under bisimulations and ultraproducts, and its complement is closed under
ultrapowers.

2.2 Frames

We now turn to a brief study of the expressive power of modal languages on the level of
frames. As in the case of models we will approach the issue by looking at definable classes
of structures, that is: definable classes of frames. Informally, we shall say that a formula ¢
defines a property of frames whenever ¢ defines the class of frames satisfying that property.
As many such properties are expressed in first-order logic, the following is convenient.

Definition 2.15 For a modal similarity type 7, we denote by L1 the first-order frame lan-
guage of 7. This language has identity and a (n + 1-ary) relation symbol R, for each (n-ary)
modal operator A in 7.

If E is a frame property (for instance, reflexivity of the relation Ro) which can both be
expressed by a first/second-order formula o and defined by a modal formula ¢, then we say
that « and ¢ are each others correspondents.

There are two approaches to modal definability: most often, one is interested in a particular
class of frames and wants to find out whether the modal language can distinguish the ‘good
frames’ inside the class from the ‘bad ones’ outside the class. Conversely, sometimes the
syntax of the modal language comes first, for instance when a set of laws is given in a modal
language. here one wants to develop a natural semantics for these laws.

Example 2.16 We first consider the example of epistemic logic, cf. Example 1.8. For the
moment, it suffices to confine ourselves to a system with a single agent a. Many axioms have
been proposed as laws governing the cognitive behavior of agents, including

(A1) K.p—p
(A2) K,p— K.K,p
(A3) —K,p — K, K,p.

(A1) says that one can only know true things; (A2) and (A3) are the so-called introspection
axioms: by (A2), if a knows something, then he knows that he knows it; and by the negative
introspection law (A3) one also knows that one does not know things.

Let us see which frame conditions these axioms define. Our first claim is that for any frame
§ = (W, R,), the axiom (A1) corresponds to reflezivity of the relation R,:
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§ = (A1) iff § = Vz Ryzz. (2.1)

The proof of the right to left direction of (2.1) is easy: let F be a reflexive frame, and take an
arbitrary valuation V' on §, and an arbitrary state w in § such that (§,V),w I+ K,p. That
is, p holds at all states v that are compatible with a’s knowledge in w. However, w itself
meets this condition, as R, is reflexive. So, w IF p.

For the other direction we use contraposition: suppose that R, is not reflexive, i.e., there
is a world w such that w is not compatible with a’s knowledge in w. To falsify (A1) in §,
it suffices to find a valuation V' and a state z such that K, p holds at =, but p does not. It
is obvious that for  we can take our irreflexive state w. The valuation V has to satisfy two
conditions: (1) w € V(p) and (2) {z € W | Rwz} C V(p). Consider the mazimal valuation
V satisfying condition (1), i.e., take

V() =W\ {w}.

Clearly, (F,V),w I p. Let v be any R,-successor of w. As R,ww does not hold, v must be
distinct from w, so v I p. We find that w IF K,p. Hence w ¥ K,p — p. This proves (2.1).
Likewise, one can prove that for any frame § = (W, R,):

§ = (A2) iff R, is transitive, and, (2.2)
§ = (A3) iff R, is euclidean, (2.3)

where a relation is euclidean if it satisfies Vzyz (Rzy A Rzz — Ryz). We leave the proofs of
(2.2) and the easy (right to left) direction of (2.3) to the reader. For the left to right direction
of (2.3), we again argue by contraposition. Assume that § is a non-euclidean frame; then
there exist u, v and w such that R,uv, R,uw, but not R,vw:

u,/ [
T

We will try to falsify (A3) in u; to this end we have to find a valuation V such that (§,V),u IF
“KopA-Ka—Kgp. That is, we have to make p false at an R,-successor z of u, and true at all
R;-successors of some R,-successor y of u. Some reflection shows that appropriate candidates

for z and y are w and v, respectively. The constraints on V are twofold: (1) w ¢ V(p) and
(2) {z | Ravz} C V(p). Take a minimal V satisfying condition (2), i.e. define

V(p) = {z € W | Rguz}.

Clearly v IF K,p, so u - =K;—K_,p. On the other hand, we have w | p, since w is not in the
set {z € W | Rquz}. So ulF =K, p. In other words, we have found a valuation V and a state
u such that (A3) does not hold in u. Therefore, (43) is not valid in §. This proves (2.3).

The above example may be a bit deceptive, as it might suggest that on frames all modal
formulas correspond to first-order conditions. By the following corollary to Proposition 2.6,
however, this is the exception rather than the rule.



2. Definability and its limits 15

Proposition 2.17 Let 7 be a modal similarity type, and ¢ a T-formula. Then for any 7-
frame § and any T-formula ¢:

Sk ¢ iff § =VP,...VPVz ST(9).

Here the second-order quantifications VPi, ..., VP, take place over the monadic predicates
P; such that the propositional variable p; occurs in ¢.

Example 2.18 Consider the formula O(Op — p) — Op, which we will call L for brevity.
This formula is important in provability logic, a branch of modal logic where O¢ is read as ‘it
is provable (in some formal system) that ¢’. The formula L is named after Lob, who proved L
as a theorem of the provability logic of Peano arithmetic. We will show that L characterizes
the frames (W, R) where R is transitive and its converse is well-founded. (A relation R is
well-founded if there are no infinite sequences .. .Rwy Rwy Rwy.)

First assume that § = (W,R) is a frame with a transitive and conversely well-founded
relation R, and suppose that L is not valid in § (in order to arrive at a contradiction). This
means that there are a valuation V and a point w such that (§,V),w I O(0p — p) — Op.
In other words, w IF O(Op — p), but w ¥ Op. Then w must have a successor w; with w; I¥ p;
as Op — p holds at all successors of w, we find that w; ¢ Op. This implies that w; must
have a successor wy where p is false. By transitivity of R, ws is a successor of w. Now we
repeat the same argument to show that w; must have a successor w3 where p is false, etc.
Following this procedure, we can find an infinite path wRw; RwaRwsR. . ., contradicting the
converse well-foundedness of R.

w w wy w3
For the other direction, we use contraposition. That is, we assume that either R is not
transitive or its converse is not well-founded; in both cases we will then try to find a valuation
V and a point w such that (F,V),w I L. We leave the case where R is not transitive to the

reader, and only consider the second case: assume that R is not conversely well-founded. In
other words, there is an infinite sequence woRw; RwzR . ... Define a valuation V as follows:

V(p) = W\ {z € W | there is an infinite path starting from z}.

We leave it to the reader to verify that with this valuation, O(Op — p) is true e'uerywhere in
the model; the claim then follows by the fact that (F, V), wq I Op.

Finally, to show that the class of frames defined by L is not first-order definable, an easy
compactness argument suffices: let oy, (2o,...,z,) be the formula expressing that there is a
path of length n through zy, ..., z,: on(zo,... yTn) = Rzozi ART1Z3A...ART,_1T,,. Every
finite subset of

L(z)={on|ne€ w} U {Vzyz (Rzy A Ryz — Rzz)}

is satisfiable in a finite linear order and hence, in our class. However, it is clear that X(zq)
itself is not satisfiable in a conversely well-founded frame.

We will now take a more systematic look at the phenomena illustrated in the above ex-
amples, and try to capture the expressive power of modal languages on frames in terms of
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preservation and closure properties, as we did with bisimulations on the level of models in the
previous subsection. The invariance of modal truth under bisimulations makes that modal
languages are blind for some kinds of distinctions between frames.

Definition 2.19 We will first say what a disjoint union of standard modal frames is, and
then give the general concept. Given a collection of standard modal frames §; = (W;, R;),
for i € I, their disjoint union is the frame | §; = (W, R), where W is the disjoint union of
the sets W;, and R is the disjoint union of the relations R;.

Generally, if 7 is a modal similarity type, and §; = (Wi, Rai)acr (¢ € I) a collection of
T-frames, then the disjoint union ¥ §; = (W, Rs)aer has the disjoint union of all the sets W;
as its domain W, and for each relation R, is simply the disjoint union of all the relations
R,; (where A is kept constant, and only the index ¢ is quantified over).

Definition 2.20 Again, we first define the notion of a generated subframe for the standard
modal language. Given two frames § = (W, R) and §' = (W', R') we say that §' is a generated
subframe of F (notation: §F — F) if

1. §' is a subframe of §, that is: W/ C W and R' = Rn (W' x W').
2. If Rzy and z € W’ then y € W'.

Let X be a subset of the universe of a frame §; by §x we denote the subframe generated by
X, that is: the smallest generated subframe of § that contains X. If X is a singleton a, we
write §, for the subframe generated by a; if a frame § is generated by a singleton subset of
its universe, we call § point-generated.

For the general case, let §', § be two 7-frames. § is a generated subframe of F if §' is a
subframe of § as before (that is: W' C W and for each A € 7, Ry = R, N (W x --- x W)),
and if for each A € 7, Ryzy; ... yn and z € W' implies y1,...,y, € W'.

Definition 2.21 We first define bounded morphisms for the standard language. Let §,
be two frames; a function f : W/ — W is a bounded morphism if it satisfies

(#ig) f is a homomorphism, that is: R'zy implies Rf(z)f(y).
(zag) If Rf(z)y then there exists z in §' such that R'zz and f(z) = y.

We write ‘F — §" if §’ is a bounded morphic image of F.

Generally, if §, §' are 7-frames, then f : W' — W is a bounded morphism if (zig) f is a ho-
momorphism as before (that is: for each A € 7, Ry zy; ...y, implies R, f(z)f(v1) ... f(¥n)),
and (zag) if for each A € 7, we have R, f(z)y; ... yn only if there exist 21, ..., z, such that
Rjzz1...2, and f(21) = y1, ..., f(22) = Yn-

Validity of modal formulas is preserved under the above operations:

Proposition 2.22 Let 7 be a modal similarity type, and ¢ a T-formula.

1. Let {§: | i € I} be a family of frames. Then W3F: = ¢ if §i = ¢ for every i in I.
2. Assume that §' — F. Then §F = ¢ if § = ¢.
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3. Assume that T - F. ThenF E o if § = ¢.

Proof. We only prove (3), the preservation result for taking bounded morphic images, and
leave the other cases to the reader. So, assume that f is a surjective bounded morphism
from F onto §', and that § = ¢. We have to show that §' |= ¢. To arrive at a contradiction,
suppose that ¢ is not valid in §'. Then there must be a valuation V! and a state w’ such
that (3, V'), w' I ¢. Define the following valuation V' on §:

V(p:) ={z e W] f(z) € V'(p)}-

This definition is tailored to turn f into a bisimulation between the models (F, V') and (§', V")
— the reader is asked to verify the details. As f is surjective there is a w such that f(w) = w'.
It is an easy exercise to show that (F,V),w I ¢. That is, we have falsified ¢ in §.

We may view these frame constructions as testing material for the definability of a frame
property. If the property is not preserved under one (or more) of these frame constructions,
then it cannot be modally definable. Let us consider some examples of this testing.

Example 2.23 We first show that the class of finite frames is not modally definable. For,
suppose that there were a set of formulas A (in the basic modal similarity type) characterizing
the finite frames. Then A would be valid in every one-point frame §; = ({ai}, {(ai,a:)})
(i < w). By Proposition 2.22(1) this implies that A would also be valid in the disjoint union

W; 5

But clearly, this cannot be the case, as l; §; is infinite.

Next we consider the class of frames having a reflexive point (3z Rzz); this class does not
have a modal characterization either (we are considering the basic modal similarity type).
For, suppose A characterizes this class. Consider the following frame

CHE=——1)

As a is a reflexive point, we find § = A. Consider the generated subframe §; of §. Clearly,
A cannot be valid in Fp, since b, c are irreflexive. This contradicts Proposition 2.22(2).

Our last example involves the use of bounded morphisms. Consider the following two
frames: § = (w,S), the natural numbers with the successor relation (Smn iff m = n + 1),

& = ({e, 0}, {(e, 0), (0, €)}), viz.
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We leave it to the reader to verify that the map f sending even numbers to e and odd numbers
to o, is a surjective bounded morphism. One can prove that no property E is modally
definable if § has F and & lacks it. For instance, there is no set of formulas characterizing
the asymmetric frames (Vzy (Rzy — —Ryz)).

A natural question at this point is, whether it is sufficient to test a property on its preser-
vation under these structural operations, in order to decide whether the property is modally
definable. The answer depends on the ‘global’ class of frames of which we want to determine
the definable subclasses.

Theorem 2.24 Let 7 be the basic modal similarity type. A class K is definable within the
class of transitive finite 7-frames if and only if K is closed under taking bounded morphic
images, generated subframes and (finite) disjoint unions.

Proof. See Blackburn, de Rijke and Venema [4, Chapter 3]. -

In general however, a frame class has to satisfy more closure conditions in order to be
modally definable. In particular we will need a very important new frame construction,
namely that of the ultrafilter extension of a frame; its introduction and its use in obtaining
further definability results are postponed until Section 6 on basic duality.

3. DEFINABILITY: AUTOMATIC CORRESPONDENCE

Even though modal formulas express second-order properties of frames, there are cases in
which a reduction to first-order properties is possible. Some examples to this effect were
given in Example 2.16. Is there any system to when a modal formula expresses a first-order
condition on frames? And if it exists, how can we find the corresponding first-order condition?
In this section we will define an important class of formulas for which the corresponding first-
order correspondent can be computed effectively. We will build up the definition of this class
in stages — a fairly general version will appear towards the end of this section.

Example 3.1 Consider the language of ordinary temporal logic. The formula PH1 ex-
presses that before any point in the flow of time there is a beginning. For, recall that by
Proposition 2.17, for any temporal frame §

k= PHLff§ = VP,...YP,Yz ST(PHL),
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where p1,...,pn are the propositional variables occurring in PH1. But PH L contains no
propositional variables, so the second-order quantification is vacuous. The claim follows from
the fact that the standard translation of PH L is the formula Jy (Ryz A =3z Rzy).

Definition 3.2 Let 7 be a similarity type. A closed modal formula is any modal formula in
which no proposition letters occur. That is: closed formulas are built up using only T, L, —,
A and modal operators in 7 (plus their duals).

Proposition 3.3 Let 7 be a similarity type, and ¢ a closed T-formula. Then ¢ ezpresses a
first-order condition cy which is effectively obtainable from ¢.

Proof. By Proposition 2.17 we have for any frame g,
FE¢ iff FEVP...VP,VYzST(4), (3.4)

where P, ..., P, are unary predicates corresponding to the proposition letters in ¢. But if
¢ is closed, ST'(¢) does not contain any unary predicates, and (3.4) reduces to

¢ iff FEVzST(4). -

The classes of positive and negative formulas provide two less trivial examples of why a
modal formula may reduce to a first-order condition on frames.

Definition 3.4 An occurrence of a proposition letter p is a positive occurrence if it is in the
scope of an even number of negation signs; it is a negative occurrence if it is in the scope of
an odd number of negation signs. A modal formula ¢ is said to be positive in p (negative in
p) if all occurrences of p in ¢ are positive (negative). A formula is called positive (negative)
if it is positive (negative) in all proposition letters occurring in it.

An occurrence of a unary predicate in a first-order formula is positive (negative) if it is in
the scope of an even (odd) number of negation signs.

Lemma 3.5 Let 7 be a similarity type, and let ¢ be a T-formula.
1. Then ¢ is positive in p iff ST (@) is positive in the corresponding unary predicate P.
2. If ¢ is positive (negative) in p, then —¢ is negative (positive) in p.

Positive (negative) formulas enjoy special properties captured by the following definition.

Definition 3.6 Fix a similarity type 7, and let p be a proposition letter. A modal formula ¢
is upward monotone in p if its truth is preserved under extending the valuation of p, or more
precisely, if for every model (W, Rp,V)acr, state w € W and valuation V' such that for all
V(p) € V'(p) and for all ¢ # p, V(g) = V'(q):

if (W, R, V)aer,w - ¢, then (W, Ry, V') aer, w I ¢.

In words, a formula ¢ is upward monotone in p if increasing V(p) (and not affecting the
interpretation of any other propositional variable) always has the effect of increasing V (¢).
Likewise, a formula ¢ is downward monotone in p if its truth is preserved under shrinking
the valuation of p.
The notions of a first-order formula being upward and downward monotone in a unary
predicate P are defined analogously.
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Lemma 3.7 Let 7 be a similarity type, and let ¢ be a T-formula.
1. If ¢ is positive in p, then it is upward monotone in p.

2. If ¢ is negative in p, then it is downward monotone in p.

Example 3.8 The following simple formula in standard modal logic corresponds to a first-
order condition: OOp. For, suppose that § = ©OOp. Consider a state w of §. Regardless
of the valuation at hand, the formula ¢Op holds at w. Now consider a minimal valuation
on §, i.e., a Vy, with V,(p) = 0. Then w I+ ©Op implies the existence of a successor v of w
such that Op holds at v. However, there are no p-states, so v must be ‘blind’ (i.e., without
successors). So § = Vz3y (Rzy A -3z Ryz)). In other words, we showed that

§,a = ©Op implies § |= 3y (Ray A -3z Ryz)).

For the converse direction, assume that every world of a frame § has a blind successor. It
follows immediately that (§,Vp),w I $Op where V,, is the minimal valuation. We claim
that the formula ©Op is valid on the frame. To see this, consider an arbitrary valuation V
and a point w of §. Note that V,(p) C V(p), since V;, was minimal. Now (§,V),w I OOp
follows from (§, Vin),w IF ©Op and Lemma 3.7.

Theorem 3.9 Fiz a similarity type 7, and let ¢ be a T-formula. If every proposition letter
occurring in ¢ occurs only positively or only negatively in ¢, then ¢ corresponds to a first-order
condition cy on frames. Moreover, cy can be effectively obtained from ¢.

Proof. Consider the universally quantified second-order equivalent of ¢:
VP, ...VP,Vz ST(¢), ’ (3.5)

where Py, ..., P, correspond to the proposition letters occurring in ¢. Our aim is to show
that (3.5) is equivalent to a first-order condition by performing appropriate instantiations for
the universally quantified variables P, ... P,.

As ¢ is positive or negative in each of its proposition letters, ST'(¢) is positive or negative
in each of its unary predicates P, ..., P,. We will instantiate unary predicates that occur
only positively with as small a set as possible (viz. the empty set), and we will use as big a set
as possible (viz. the whole domain) to instantiate unary predicates that occur only negatively
in ST(¢). Formally, for every P occurring in ST(#) define

(P) = Au.u #u, if ST(@) is positive in P
=Y u=u, if ST(¢) is negative in P.

Now consider the following instance of (3.5) in which every unary predicate P has been
replaced by o(P):

[0(P1)/Py,...,0(Pn)/PaVz ST(9). (3.6)

We will show that (3.6) is equivalent to (3.5). Observe that (3.5) trivially implies (3.6) as
the latter is merely an instantiation of the former. For the converse we assume that

m ’: [O(Pl)/Ph s ,O’(Pn)/Pn]VIII ST(¢)7 (37)
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and we have to show that
M =VP, ... VP, Vz ST(¢).

By the choice of o(P), for predicates P that occur only positively in ST(¢) we have that
M = Vy (o(P)(y) — P(y)), and for predicates P that occur only negatively in ST(¢), we
have M |= Vy (P(y) — o(P)(y)). As ST(¢) is positive or negative in all unary predicates P
occurring in it, (3.7) together with Lemma 3.7 implies that for any choice of P, ..., Pp,

(M, Py,...,P) EVZ ST(¢), or M =VP....VP.Vz ST(¢). -

The important point about the proof of Theorem 3.9 is the general idea underlying it: we
showed that the formula ¢ in Theorem 3.9 corresponds to a first-order condition on frames
by finding a suitable instantiation for its second-order translation. We will now extend the
class of formulas covered by the Theorem 3.9 to a class of Sahlqvist formulas to which this
method can also be applied — although the instantiations needed will be more complex than
the ones used in Theorem 3.9.

Roughly, Sahlqvist formulas are built up from implications of the form

¢ — b,

where 1 is positive and ¢ is of a restricted form (to be specified below) from which the
required instantiations can be read off. We will first define a limited Sahlqvist fragment of
the standard modal language; generalizations and extensions will be discussed later.

Definition 3.10 Consider the standard modal language. A very simple Sahlquist antecedent
over this language is a formula built up from T, L and proposition letters, using only A and
O. A very simple Sahlguist formula is an implication ¢ — 9 in which ¢ is positive and ¢ is
a very simple Sahlgvist antecedent.

Example 3.11 Consider the following ‘mirror image’ of the formula expressing transitivity:
Op — OOp. It expresses denseness of the underlying relation R: Vzy (Rzy — 3z (RzzARzy).

First, assume that § = Op — ©OOp. Suppose that a point a in the frame has a successor
b. To show that a and b satisfy the denseness condition, consider the following minimal
valuation V;, guaranteeing that (§, Vi), a I- Op: define

Vim(p) = {b}.

By the assumption, a I OOp; so, @ must have a successor ¢ such that ¢ I Op. As b is the
only point where p holds, this implies that Rcb. The crucial observation is that

(8, Vin),a IF OOp iff § |= 32 (Raz A Rzb). (3.8)

Note that the choice of V;, depends on a and on b.

Conversely, let § be a dense frame, and assume that under some valuation V', Op holds at
some @ in §. Then a has a successor b such that b |- p. Let Vi, be the minimal valuation as
defined above. As §F is dense, (§,Vin),a IF OOp by (3.8). However, b I p implies Vi,(p) C
V(p), so (§,V),a Ik OOp follows from Lemma 3.7 and the fact that GOp is positive in p.
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The following theorem is the central one in understanding what Sahlqvist correspondence
is all about. The reader is advised to follow the proof and understand the algorithm given in
it, with a glance at the examples following the theorem.

Theorem 3.12 Let x = ¢ — 9 be a very simple Sahlquist formula in the standard modal
language. Then x corresponds to a first-order condition ¢, on frames. Moreover, c, is
effectively obtainable from x.

Proof. Consider the universally quantified second-order transcription of x:
VP, ...VPNz (ST (¢) — ST(¥)). (3.9)

We can make sure that no two quantifications bind the same variable. In a number of steps
we will rewrite (3.9) to a formula from which we read off instantiations that yield a first-order
equivalent of (3.9).

Step 1. Pull out diamonds.
Use equivalences of the form

Veoor ((ccoATzza(z))A..) = B) o Voo Vzi ((... Aa(z)) A ...) — B)

to move all existential quantifiers occurring in the antecedent ST'(¢) of (3.9) out in front. Ob-
serve that this is unproblematic as the existential quantifiers only have to cross disjunctions.
This process results in a formula of the form

VP ...VP,VVz; ...Vzn (REL A AT — ST(9)), (3.10)

where REL is a conjunction of atomic first-order statements of the form Rz;z; corresponding
to occurrences of diamonds, and AT is a conjunction of (translations of) atomic formulas.

Step 2. Read off instances.
We can assume that every unary predicate P that occurs in the consequent of the matrix of
(3.10), also occurs in the antecedent of the matrix of (3.10): otherwise (3.10) is positive in P
and we can substitute Au.u # u for P to obtain a formula without occurrences of P.

Let P; be a unary predicate occurring in (3.10), and let P;z;,, ..., Piz;, be all the occur-
rences of the predicate P; in the antecedent of (3.10). Define

oP)=Xu.(u=z; V...Vu=uz;).

The intuitive idea is that o(P;) is the minimal instance making the antecedent REL A AT
true. It is essential to observe that for any model 9t:

M = AT[ww, ... w,) implies M = Vy (o(F:)(y) — Py)lww; ... wy) (3.11)

Step 3. Instantiating.

We now use the formulas of the form o(P;) found in Step 2 as instantiations; we substitute
o(FP;) for each occurrence of P; in the first-order matrix of (3.10). This results in a formula
of the form

[o(P1)/Pr,...,0(Py)/Pa|VaVz; ... VI, (REL A AT — POS).



3. Definability: automatic correspondence 23

By the choice of our (P)’s, the formula [o(P;)/Py,...,0(P,)/P,]AT will be trivially true.
So we end up with an equivalent formula of the form

VaVz, ...Vom (REL — [0(Py)/Py, ..., 0(P,)/ P, ]POS). (3.12)

As we assumed that every unary predicate occurring in the consequent of (3.10) also occurs in
its antecedent, (3.12) must be a first-order formula involving only = and the relation symbol
R. So, to complete the proof of the theorem it suffices to show that (3.12) is equivalent to
(3.10). The implication from (3.10) to (3.12) is simply an instantiation. To prove the other
implication, assume that (3.12) and the antecedent of (3.10) are true:

M |=VaVz;...Ve, (REL - [o(P)/Pi,...,0(P,)/P,)POS), and
M = REL A AT[ww; . . . wy).

We need to show that 9t = POS[ww; ... wn,]. First of all, the above assumptions imply
M= [o(P1)/Pr,...,0(P.)/Po]POS[ww; . .. wp).

As POV is positive, it is upwards monotone in all unary predicates occurring in it, so it
suffices to show that 9 |= Vy (o(P;) — P;)[ww; ... wy]. But, by the essential observation in
Step 2, this is precisely what the assumption 9t = AT[ww; ... wn,] amounts to. -

Example 3.13 First consider the formulap — Op. Its second-order equivalent is the formula

VPVz (& — 3z (Rzz A Pz)).
AT

There are no diamonds to be pulled out here, so we can read off the minimal instance
o(P) = Au. v = z immediately. Instantiation gives

Vr (r =z — 3z (Rzz A 2z = 1)),

which reduces to the formula Vz Rzz.
Our second example is the density formula Op — ©OOp, having a second-order equivalent

VPVz (3z; (Rzzy A Pz1) — 320 (Rz20 A 321 (R2021 A P21))).
Here we can pull out the diamond 3z;:

VPVzVz, (Rzzi A Pxy — 320 (Rz20 A 321 (R2021 A P21))).
REL AT

Instantiating with o(P) = Au.u = ;7 gives
VaVz) (Rzzy A1 = o1 — 329 (Rz2o A 321 (R2921 A 21 = z1))),

which can be simpliﬁed to VzVz; (Rzzy — 329 (Rz20 A Rzo71)).
Our last example is the formula (p A ©Op) — Op. Its second-order equivalent is

VPVz (Pz A 3z1 (Rzz1 A 373 (RE179 A P22)) — 320 (R220 A P2p)).

Pulling out the diamonds 3z; and 3z, results in
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VPVzVz1Vz2 (Rzz) A RT173 A Px A Py — 320 (RT20 A P20))).
REL AT

The minimal instantiation here is 0(P) = Au. (u =  V u = z3). After instantiating we find

VeV Vzy (Rzzi ART1Zo A(z =z VI =22) A (22 =2V T2 = 29) —
29 (Rz20 A (20 = V 20 = 13)))

This formula simplifies to VzVz;Vzs (Rzz; A Rz129 — (Rzz V RIx:))).

In the last part of this section we will show that the strategy of finding minimal instantia-
tions works for more complex Sahlqvist antecedents as well.

Example 3.14 Consider the formula ©10;p — O50;p; we will show that this formula
corresponds to some kind of confluence property of R; and Ry: Vzyzo (Rizy A Ryzzg —
3z1(Rey2z1 A Ri1zpz1)). The name ‘confluence’ is explained by the following picture:

/\
\/

First, let § = (W, Ry, R2) be a frame such that § | ©109p — 050;1p, and let a and b be
states in § such that R;eb. For a valuation to verify ©;09p at a it suffices that p holds at
all Ry-successors of b. So a minimal such valuation can be defined as

Vim(p) = {u € W | Rybu}.
It follows that (§, Vi), a IF O30 1p. The crucial observation is that by the choice of V,,:
(8, Vi), a IF O201p iff Vzo (Raazg — Jz1 (Rebz1 A Ry2021)). (3.13)

It follows that § |= Vzyzg (Rizy A Ryzzg — 21 (Ray2z1 A Riz921)).

Conversely, assume that § has the confluence property. In order to show that § | ©;0,p —
O2C1p, let V be a valuation on § and @ an arbitrary state of § such that (F,V),a IF ©104p.
We have to prove that a IF O0;p. It immediately follows by the truth definition of ¢; that
a has an R;-successor b satisfying Rjab and b I Ogp. Now we use the minimal valuation V,,
again; first note that by the definition of V;;, we have V,,(p) C V(p). Therefore, Lemma 3.7
ensures that it suffices to show that Oy<{1p holds at a under the valuation V,,. But this is
immediate by the assumption that § is confluent and (3.13).

H\ /N

Definition 3.15 Let 7 be a modal similarity type. A bozed atom is a formula of the form
0;, --- O0;,p (k> 0), where O;,, ... O;,p are (not necessarily distinct) boxes of the language.
In the case where k = 0, the boxed atom O;, - -- O;, p is just the atom p.

It is convenient to treat sequences of boxes as single boxes. We will therefore denote the
formula O;, -- - O;, p by Ogp, where f is the sequence i; ... 4 of indices. Analogously, we will
pretend to have a corresponding dyadic predicate Rg in the frame language £}. Thus the
expression Rgzy abbreviates



3. Definability: automatic correspondence 25

Jy;1 (Ri,zy1 A Jya (Riyt1y2 A - - - A Jyk—1 (R Yk—20k—1 A RiyYk-19) - - -))-

Definition 3.16 Let 7 be a modal similarity type. A simple Sahlquist antecedent over this
similarity type is a formula built up from T, L and boxed atoms, using only A and existential
modal operators (O and A). A simple Sahlgvist formula is an implication ¢ — ¢ in which 9
is positive and ¢ is a simple Sahlqvist antecedent.

Example 3.17 Typical examples of simple Sahlqvist formulas are the following: Op — ©<p,
Op — OOp, O;0,p — Ogp, G109p — 0201p and (0:02p) A(C3p A D201q) — O3(gap).
Typically forbidden in a Sahlqvist antecedent are:

e ‘boxes over disjunctions’, as in H(r V Fq) — G(Pr A Pq)
e ‘boxes over diamonds’, as in OCp — COp
e ‘dual-triangled atoms’, as in pVp — p.

Theorem 3.18 Let T be a modal similarity type, and let x = ¢ — ¢ be a simple Sahlquist
formula over . Then x corresponds to a first-order condition c, on frames. Moreover, cy is
effectively obtainable from x.

Proof. The proof of this theorem is an adaptation of the proof of Theorem 3.12. We consider
the universally quantified second-order transcription of x, and identify appropriate instanti-
ations that turn it into an equivalent first-order statement. After we’ve pulled out diamonds
(Step 1) we end up with a formula of the form

VP, ...VP.VaVz, ...z, (REL A BOX-AT — ST(4)), (3.14)

with REL as before, and BOX-AT a conjunction of (translations of) boxed atoms.

Let P be a unary predicate occurring in (3.14), and let mi(zi;), ..., T(zs,) be all the
(translations of the) boxed atoms in the antecedent of (3.10) in which P occurs. Observe
that every m; is of the form Vy (Rg,x;;y — Py), where f3; is a sequence of diamond indices
(cf. Definition 3.15). Define

o(P) = du. (Rg,zi,uV ...V Rg,z;,u).

Again, the intuitive idea is that o(Py), ..., 0(P,) form the minimal instances making the
antecedent REL A BOX-AT true. The remainder of the proof is the same as the proof of
Theorem 3.12 (of course, all occurrences of ‘AT’ should be replaced with ‘BOX-AT’). -

As in the case of very simple Sahlqvist formulas, the algorithm is best understood by
inspecting some examples; due to space limitations we have to leave this to the reader.

To conclude the section we briefly describe the full Sahlqvist fragment. First, a Sahlqvist
antecedent is a formula which is built from constants, boxed atoms and negative formulas,
using only A, V and existential modal operators. Then, a formula is a Sahlgquist formula if
it is built from implications ¢ — 9 in which ¢ is a Sahlqvist antecedent and % a positive
formula, using only conjunctions, disjunctions between formulas that don’t share proposition
letters, and boxes. The result is that all Sahlqvist formulas express first-order conditions on
frames, and that these conditions can be effectively obtained via the substitution method of
Theorems 3.12 and 3.18.
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4. COMPLETENESS THROUGH CANONICITY

In this section we discuss normal modal logics. Such logics can be defined both syntactically
and semantically, thus giving rise to the questions which dominate this section: given a
syntactically specified logic A and a semantically specified logic Ag, have we got soundness
(that is: A C Ag) and completeness (that is: Ag C A)? Soundness results tend to be routine,
and the main goal of this section is to develop a general tool for establishing completeness,
namely the use of canonical models.

4.1 Preliminaries

Throughout this section we assume we are working with languages with a countably infinite
collection of proposition symbols. We say that a modal formula is a tautology if it has the form
of a propositional tautology when all its modal subformulas are viewed as atomic symbols.

Definition 4.1 A logic A is a set of modal formulas that contains all tautologies and is
closed under modus ponens (that is, if ¢ € A and ¢ — 1 € A then 9 € A). The formulas in
a logic are its theorems. If ¢ is a theorem of A we write -5 ¢, and if not, /5 ¢.

To give some examples, the collection of all formulas is a logic, the inconsistent logic. Also,
if {Ai | i € I} is a collection of logics then ;¢ A; is a logic too. And if we define Ag to be
{# |6 |= ¢, for all structures & € S}, where S is a class of frames (or models), then Agisa
logic.

It follows that for any collection of formulas I there is a smallest logic containing I, namely
M{A | A is a logic " C A}. This intersection cannot be empty, for I' contains the inconsistent
logic. The smallest logic containing I is called the logic generated by I'. For example, the
logic generated by @ contains all instances of propositional validities in the modal language,
and nothing else.

Definition 4.2 Let ¢, ..., ¥n, ¢ be modal formulas. We say that ¢ is deducible in propo-
sitional calculus from assumptions vy ...9n if (Y1 — (Y2 = (Yn — ¢))---) is a tautology.

It is easily verified that all logics are closed under deduction in propositional calculus, in
the sense that if ¢ is deducible in propositional calculus from %, ..., ¥y, and Fa ¥y, ...,
FA ¥n, then k4 ¢.

Definition 4.3 If I' U {¢} is a set of formulas then we say ¢ is deducible in A from T’ (or
more simply: ¢ is A-deducible from T') if there are finitely many formulas vy, ..., ¥, € T
such that

Fao (%1 = (¥2 = (¥n — ¢)) ).

If this is the case we write ' 5 @, and if not, I I/s ¢. A set of formulas is A-consistent
if ' /s L, and inconsistent otherwise. A formula ¢ is consistent if {¢} is, and inconsistent
otherwise.

We leave it to the reader to check that a set of sentences I' is A-inconsistent iff there is a
formula ¢ such that ' k5 ¢ A —¢, iff for all formulas 9, T' -5 9. Also, a set of sentences I is
A-consistent iff every finite subset of A is.



4. Completeness through canonicity 27

The definitions and results we have encountered so far apply to modal languages of any
similarity type. Now we introduce normal modal logics. To keep matters simple, we re-
strict our initial discussion to languages of the basic modal similarity type, deferring the full
definition till the end of the section.

Definition 4.4 A modal logic A is normal if it contains the axiom
(K) O(p — ¢ — (Op — Og).

and is closed under universal generalization, that is, 5 ¢ implies -5 O¢, and under uniform
substitution. The latter is defined as follows. If -5 ¢, and ¢, ..., ¢, are atomic symbols, and
01,...,0n are arbitrary formulas, then 5 ¢', where ¢’ is the formula obtained by simultane-
ously replacing all occurrences of ¢; in ¢ by o; (1 <i < n).

The K schema is sometimes called the distribution schema. Intuitively, it enables us to
transform a formula in which a modality is the main connective (that is, O(p — g¢)) into a
formula Op — Og in which a propositional connective (namely, —) is the main connective.
This mekes it possible to apply further purely propositional reasoning. For example, we can
apply m.odus ponens ‘under the scope of a box’. Suppose we are given O(p — ¢) and Op.
We know our normal modal logic contains O(p — ¢) — (Op — Og). One application of
(ordinary) modus ponens yields Op — Og, thus making a second implication available for an
application of (ordinary) modus ponens. This application yields Og. ’

Remark 4.5 It is sometimes convenient to consider an equivalent formulation of normal
modal logics involving diamond instead of boxes. As a lemma, a logic A is normal iff it is
closed under the rule of substition and satisfies the following:

1. 1L - L
2. O(pVyqg) = OpVOq
3. FA ¢ — ¢ implies F; C¢p — OY.

To see, for example that any normal modal logic derives &L — L, observe that - T implies
FOT,or F 2O-Tor - <L — 1. And conversely, if A satisfies 1-3 above, then if -, ¢, then
FA—¢d— 1,50 Fp On¢p — OL, 50 Fp 7O—¢ — L, so Fp O¢, which means that A is closed
under generalization.

Example 4.6 The inconsistent logic is a normal logic. Also, if {A; |7 € I} is a collection of
normal modal logics then so is ();c; A;. Further, if S is a class of frames, then Ag is a normal
modal logic. However, if S is a class of models, then Ag need not be closed under uniform
substitution; consider a model 9t in which p is true at all nodes but ¢ is not. Then Fj,, p
but /A, ¢; but ¢ can be obtained from p by uniform substitution.

These examples demonstrate that there are both semantic and syntactic perspectives on
normal modal logics. The third example tells us that the formulas validated by any class of
frames is a normal modal logic.

The syntactic perspective arises via the first two examples. They jointly guarantee that for
any set of formulas I', it makes sense to talk of the smallest normal modal logic containing
T'; this logic is just



4. Completeness thraugh canonicity 28

(A | A is a normal modal logic and T C A}.

We call this the normal modal logic generated by I'. For example, the smallest normal modal
logic is the one generated by 0; it is called K, in honor of Saul Kripke.

The generative perspective is essentially syntactic. We can regard I' as a set of azioms,
and modus ponens, generalization and uniform substitution as rules of inference. The logic
generated by I' is simply the set of all formulas deducible from the axioms using the rules of
inference.

Example 4.7 The following lists some of the better known axioms in standard modal logic,
together with their traditional names:

(T) Op—p

(4) Op—0OOp
(B) p—0O%p
(5) <p—0OCp
(D) Op—p

(:3) COpACE— ((C(@AOP)V(C(@AQV (O(gAOp))
(L) o(Cp—p)—0Op
M) 0OOp — <©Op.

There is a convention for talking about the logics generated by such axioms: if S;,...,S,
are axioms then KS;j,...,S, is the normal logic generated by S;,...,S,. But irregularities
abound. Many historical names are firmly entrenched, thus modal logicians tend to talk of
the logics T, S4, B, and S5 instead of KT, KT4, KB and KT45 respectively. Moreover,
many schemas have multiple names. For example, the schema we call L (for Léb) is also
known as G (for Godel) and W (for well-founded). ‘

As with the basic normal modal logic K, for the above extensions it is sometimes convenient
to consider diamond versions of the axioms instead of the more traditional box versions.

We turn now to the fundamental concepts linking the syntactic and semantic perspectives:
soundness and completeness.

Definition 4.8 Let S be a class of frames (or models). A normal modal logic A is sound
with respect to S if A C Ag. If A is sound with respect to S we say that S is a class of frames
(or models) for A.

We will usually be interested in proving soundness for syntactically specified logics A, that
is, for logics A generated by a collection of formulas I'.

Example 4.9 Here’s a list of soundness results; each of the logics on the left is sound with
respect to the class of frames (models) satisfying the condition on the right.
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K no condition

T reflexivity

KB symmetry

K4 transitivity

S4 transitivity and reflexivity

K5 euclidicity

S5 transitivity, reflexivity and symmetry
KD right-unboundedness

K4.3 transitivity and right-linearity

KL6b finite trees

K4McKinsey atomicity.

Here, a frame is called right-unbounded if it satisfies Vw3w' Rww'. And a frame is right-linear
if it satisfies VwVw'Vu"” (Rww' A Rww" — (Rw'w” Vv’ = w" V Rw"w')). A frame is atomic
if it satisfies Vw3w' (Rww' A Rw'w').

The above claims (with the exception of the last two) are easily demonstrated. Indeed,
soundness proofs are often routine; we rarely bother to explicitly state or prove the soundness
theorem. The sister concept, completeness, leads to much harder problems.

Definition 4.10 To define completeness, we first define semantic consequence ‘T’ =g ¢, If
S is a class of models, then ‘T' =g ¢’ means that for all I € S and all w, if 9, w |- T, then
M, w - ¢. And if S is a class of frames, then it means: for all § € S, for all valuations V' on
F, and for all states w in §, if (§,V),w Ik T, then (§,V),w I- ¢.

Let S be a class of frames (or models). A logic A is strongly complete with respect to S if
for all sets of formulas I' U {¢}, T |=g ¢ implies ' k5 ¢. A logic A is weakly complete with
respect to S iff for any formula ¢, if =g ¢ then 5 ¢.

A is strongly (weakly) complete with respect to a single structure G iff A is strongly
(weakly) complete with respect to {&}.

Note that weak completeness is the special case of strong completeness in which r =09,
thus strong completeness with respect to some class of structures implies weak completeness
with respect to that same class. The definition of weak completeness can be reformulated to
parallel the definition of soundness: A is weakly complete with respect to S iff Ag C A.

Example 4.11 The following completeness results will be proved in the next subsection;
each of the logics K, T, KB, K4, S4, and S5 is strongly complete with respect to the class
of frames satisfying the properties mentioned in Example 4.9.

These completeness results (together with their soundness counterparts in Example 4.9)
give simple semantic characterizations of normal modal logics such as T, K4, S4 and S5;
hitherto we only had syntactic definitions of these systems.

Below we will make use of the following characterization.

Proposition 4.12 A logic A is strongly complete with respect to a class of structures S iff
every A-consistent set of sentences is satisfiable on some & € S. A is weakly complete with
respect to a class of structures S iff every A-consistent sentence is satisfiable on some GeSs.
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Proof. The result for weak completeness follows from the characterization of strong com-
pleteness, so we examine only the latter. To prove the right to left implication we argue by
contraposition. Suppose A is not strongly complete with respect to S. Thus there is a set
of formulas ' U {¢} such that T |zg ¢ but " /s ¢. Then I' U {~¢} is A-consistent but not
satisfiable on any structure in S. The left to right implication is left to the reader.

To conclude this subsection, we generalize the definition of normal modal logics.

Definition 4.13 Let 7 be a similarity type. A modal logic in this language is a set of formulas
containing all tautologies that is closed under modus ponens. A modal logic A is normal if
it contains all instances of the following axiom, for all operators V in the language:

(K‘r) V(pl,...,q—»r,...,pp(v))—a
(V(PI, ceesqy. .. app(v)) - V(Pal, ey Tyens 1pp(V))),

and is closed under uniform substitution and generalization for all operators:
FA O1y . Fp Oy(v) implies kp v(oy,-.- ,ap(v)).

4.2 Canonical models
By Proposition 4.12, to prove completeness results it suffices to build models, and to do so
we use maximal consistent sets of formulas as building blocks.

Definition 4.14 A set of formulas I' is called mazimal A-consistent if T" is A-consistent, and
any set of formulas properly containing I is A-inconsistent. If I is maximal A-consistent then
we say it is a A-MCS.

Lemma 4.15 (Lindenbaum’s lemma) If ¥ is a A-consistent set of sentences then there
is a A-MCS T+ such that £ C X+

Proof. Let ¢g, ¢1, ¢2,... be an enumeration of the formulas of our language. We will define
the set £ as the union of a chain of consistent sets Ag, ..., Ap, ... as follows:

Ao = X

AL — [ AnU{d), EAnka g
i Ap U {=¢,}, otherwise.

E+ = UTLZO An.

The proof of the following properties of 7 is left as an exercise: (1) A, is A-consistent, for
all n; (2) exactly one of ¢ and —¢ is in I, for every formula ¢; (3) if &+ -5 ¢, then ¢ € =+;
and finally (4) % is maximal A-consistent. -

Proposition 4.16 If A is a logic and T" is a A-MCS then:
1. ACT.
2. For all formulas ¢: ¢ €T or ¢ €T.
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3. For all jormulas ¢, p: AP ET iff €T and p €T.

Note that if 91 is any model for a logic A, and w is any node in 9, then {¢ | M, w | ¢}
is a A-MCS. It must be consistent. And as for all formulas v either 9 or —% is true in I
at w, we cannot add any formula without introducing inconsistency; this proves maximality.
Thus MCSs correspond to complete states of affairs. The completeness proof builds on this
intuition.

Definition 4.17 The canonical model 9 for a normal modal logic A is defined as the triple
(WA, RA, VA) where:

1. WA is the set of all A-MCSs.

2. RA C WA x WA is defined by RMyu if for all formulas 4, ¥ € u implies Oy € w.
(Equivalently: RMwu if for all formulas 9, O € w implies ¢ € u.)

3. VA is the valuation defined by V(p) = {w € WA | p € w}.
The pair §2 = (WA, RA) is called the canonical frame for A.

Lemma 4.18 (Truth lemma) For any normal modal logic A and any formula ¢ we have
A wik ¢ iff ¢ € w.

Proof. By induction on ¢. The base case follows from the definition of VA. The boolean
cases follow from Proposition 4.16. It remains to deal with the modalities. One direction
follows from the definition of RA:

MY w = Op implies v (RAwv ADMA, v IF ¢) -
implies Jv (RMwv A ¢ € ) (Inductive Hypothesis)
implies <¢ € w (Definition RA).

The converse is more interesting. Suppose ¢¢ € w. We want to show that 9, w |- O¢.
That is, we want to find a node v such that RAwv and 9, v I ¢. By the inductive hypothesis
it suffices to find an MCS v such that RAwv and ¢ € v. We will construct such an MCS.

Let v~ be {¢} U {9 | O¢ € w}. Then v~ is consistent. For suppose not. Then there
are Y1, ..., ¥n € w such that: Fo (¥1 —» (Y2 = - (Yo — (¢ — L1))---). Abbreviate
Py = - (Yn = (¢ — L)---) to 0. Thus we have Fp 9; — 6. Now argue as follows. As
A is normal it is closed under generalization, hence -4 O(¢); — #). Moreover, A contains
all instances of K, so k5 O(¢; — 0) — (Ov; — 06). As A is closed under modus ponens,
Fa Oy — 0O6.

Repeating this argument n — 1 times we find that

(O%1 — (@ — -+ (O — D($ — 1))--)) (41)

is a theorem of A. As w is an a A-MCS by Proposition 4.16 we conclude that the formula
(4.15) is in w. In addition, O%;, ...O¢, € w, and so O-¢ € w. But this is impossible: by
assumption w is consistent and contains ¢¢. We conclude that v~ is consistent.

Let v be any MCS extending v~; such extensions exist by Lindenbaum’s Lemma. By
construction ¢ € v. Furthermore, for all formulas %, Ov € w implies ¢ € v. So RAwv. -
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Theorem 4.19 (Canonical Model Theorem) Every normal modal logic A is strongly
complete with respect to its canonical model mA.

Proof. Suppose ¥ is A consistent. By Lindenbaum’s Lemma there is a A-MCS ¥+ extending
Y. By the previous lemma, MA ST IF S, A

Although Theorem 4.19 is a universal completeness result for normal modal logics, it has
the drawback of being rather abstract. However, for many important logics the canonical
model theorem contains all the information needed to give simple proofs of more concrete
completeness results such as those mentioned in Example 4.11.

We are particularly interested in frame completeness results: given a normal modal logic
A and a class F of frames for A, show that A is strongly complete with respect to F. (For
example, we might want to prove that T is strongly complete with respect to the class of
reflexive frames.) Proofs of such results must establish two things:

1. That there is a model 90t for any A-consistent set of sentences ¥, and
2. That the frame underlying 9t belongs to F.

The basic idea below is to use the canonical models to short circuit this process. We are
simply going to use the canonical model for A to establish step 1. Thus proving completeness
reduces to establishing step 2, that is, showing that the canonical frame for A belongs to F.
The following definition captures this idea.

Definition 4.20 A normal modal logic A is canonical if its canonical frame is a frame for
A. That is, A is canonical if for all ¢ such that 5 @, ¢ is valid on the canonical frame for A.
A set of formulas ¥ is canonical if the logic KX is.

Clearly, every canonical logic is strongly complete. We will use this new terminology to prove
some of the results listed in Example 4.11.

Theorem 4.21 Each of the logics K, K4, T, KB, KD, S4, and S5 is canonical, and hence
strongly complete.

Proof. For each of the logics mentioned, one can show that the canonical frame for the logic
has the properties mentioned in Example 4.11. By way of illustration we will do this for K
and for K4, leaving the other cases to the reader.

We start with K. This case is really trivial, as any frame is a frame for K, in particular the
canonical frame K. As to K4, we have to show that the canonical frame (WK%, RK4 yK4)
for K4 is transitive. So suppose w, v and u are points in this frame such that RX4y9 and
RX4yy. We wish to show that RK4wu. Suppose ¢ € u. As RK4'vu, Cp €v. So as RK4y,
OO¢ € w. But as w is a K4-MCS it contains OO¢ — O¢, hence by closure under modus
ponens it contains ¢¢. Thus RE%pu. 4

A lot more can be said about canonicity than we have room for here; in the following
subsection we briefly discuss the limitations of the canonical model method, and we also
mention some alternatives; in Section 6 and 7 of Part III an algebraic perspective on canonicity
will be offered.
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To conclude this subsection we briefly sketch a generalization of the canonical model the-
orem to languages of arbitrary similarity types. Let 7 be a modal similarity type, and A a
normal modal logic in the language over 7. The canonical model A = (WA,RIA\,VA) AET
for A has W2 and VA defined as in Definition 4.17, while for an n-ary operator A € 7 the
relation RA C (WA)"+! is defined by

R iff for all formulas ¥, € uy, ..., ¥n € u, we have A(¥1,...,%n) € w.

Given this definition a Truth Lemma (Lemma 4.18) can be established. The only complication
here is the step where, starting from the assumption that A(v1,...,%n) € w, we need to show
the existence of uy, ..., u, with ¥; € uy, ..., ¥n € u,. For simplicity assume that n = 2,
that is: A is binary, and A(%1,%2) € w. Let ¢g, ¢1, ... enumerate all formulas. We construct
two sequences of sets of formulas

{1} =T CII; C--- and {¢p} =LeC X1 C---

such that all II; and ¥; are finite and consistent, II;;; is either II; U {¢;} or II; U {—¢;},
and similarly for ¥;,;. Moreover, putting m; := A;II; and o; := A;X;, we will have that
A(m;, 05) € w. The key step in the inductive construction is

A(ms,05) Ew = A(m A (di Vi), 0 A (di V i) €w
= A((m A @)V (m A =), (0 A i) V (05 A -¢;)) € w
= one of the formulas A(m; A (=)¢;, 05 A (=)é;) is in w.

If, for example, A(m; A ¢;,0; A ~¢;) € w, we take IL; 1y = II; U {¢:}, Tiy1 := Z; U {—¢;}.
Under this definition, all II;, ¥; will have the required properties. Finally, let u; = |J; II; and
ug = UU; ¥i. Then u;, uy are A-MCSs and R‘A\wuluz, as required.

Given the Truth lemma for general modal languages thus adapted, completeness follows as
in Theorem 4.19.

4.8 Alternatives and limitations

How general is the method of proving (strong) completeness through canonicity? Let a
Sahlguist logic be a logic of the form KS;...S, ..., where Si, ..., Sn, ...are Sahlqvist
formulas. In Section 7 on applications of duality we will show by algebraic means that every
Sahlqvist logic is canonical (cf. Theorem 7.8). Combined with the results on correspondence
from Section 3, this implies that every Sahlqvist logic is strongly complete with respect
to the class of frames defined by the first-order conditions to which the Sahlqvist formulas
correspond.

However, unlike the general canonical model theorem (Theorem 4.19), there is no general
canonical frame theorem. The logic KLG6b provides an example. It can be shown that every
strongly complete logic is compact in the following sense; if K is the class of frames on which
the logic is valid, then for any set of formulas ¥ U {¢}, if ¥ |=g ¢, then ¥y |=g ¢, for some
finite ¥¢ C ¥. But KLob is not compact, as is witnessed by the set

['={0q:} U {O(g — ©gi+1) | i € N}

Now, as KLGb is not compact, it is not strongly complete. However, it is weakly complete,
but by the above argument we cannot use the canonical model method to prove this. Instead,
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one ¢ati USe a finite canoniéal model construction in which the states are maximal consistent
subsets of a finite, subformula closed set.

Another altefnativé method for proving (weak) completeness results is what we call the
Segerberg method. This method is often used to prove completeness with respect to frames
satisfying certain modally undefinable conditions. It consists in first taking the canonical
model, and then applying various constructios to massage it into a model based on a frame
that has the requited properties. The method has proved paiticulatly useful in temporal logic
(cf. Segerberg [23]).

Using the finite canonical model method and the Segerberg method, it is possible to estab-
lish many completeness results that escape the ordinary canonical model method. However,
these methods have limitations too. Worse still, there are modal logics for which no com-
pleteness result with respect to frames can be given at all. Thomason [25] was the first to
come up with an example of an inncomplete tense logic; then Fine [11] provided an incomplete
extension of S4. Finally, Blok [5] shows that there is a continuum of distinct incomplete
extensions of KT.

Part 1ll: An algebraic perspective

In the second Part of our notes we will develop an alternative, algebraic semantics for modal
logi¢. The basic idea is to extend the algebraic treatment of classical propositional logic in
the framework of boolean algebras to the setting of modal logic. The main reason for studying
logics from an algebraic perspective is that it allows us to apply some powerful techniques and
results from the theory of universal algebra to logic. In the case of modal logic, an additional
reason is that the algebraic semantics behaves better than the frame semantics in the sense

that one can prove a general completeness theorem for the algebraic semantics, while we saw
in Section 4 that in general, modal logics are incomplete with respect to the frame semantics.

To give an overview of Part III: in Section 5 we introduce the algebraic approach towards
modal logic. Section 6 describes some basic relations between boolean algebras with oper-
ators and relational frames. Finally, in Section 7 we give applications of the duality theory
developed in the earlier sections. These applications include relatively easy proofs of the
Goldblatt-Thomason Theorem characterizing the first-order definable frame classes that are
modally definable, and the fesult due, in essence, to Fine that the modal theory of a frame
class is a canonical logic whenever the class is closed under ultraproducts.

We assume some basic working knowledge on Universal Algebra and Boolean Algebras, not
going beyond (proofs of) the following: Birkhoff’s Theorem identifying varieties as equational
classes, Birkhoff’s Completeness Theorem for equational logic and Stone’s Representation
Theorem. These prerequisites can be found in any text book on Universal Algebra like
Burris and Sankappanavar [7].

5. ALGEBRAIZING MODAL LOGIC

As usual in algebraic logic, there afe two approaches towards the algebraization of modal logic:
a semantic approach based on thé connections between frames and boolean algebras with
operators, and a more syntactic, axiomatic approach relating logics to equational theories.
In the first subsection we will give the semantic perspective, leaving the syntactic viewpoint
for the second part of this section. Underlying both approaches is one of the basic principles
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of algebraic logic, viz. that formulas of a logical language are viewed as terms of an algebraic
language. In our case, this means that we are interested in the following algebraic language:

Definition 5.1 Let 7 be a modal similarity type. The corresponding algebraic similarity type
F: contains as function symbols: all modal operators, and the boolean symbols - (unary),
V (binary) and L (constant). This means that for a set ® of variables, the set Ter,(®) of
T-terms over ® is defined as follows:

1. the constant L, the constants from 7 and the variables from ® are the basic terms over
o,

2. if s and t are terms over ®, then so are —s, sV ¢ (and s A t),

3. if A is a modal operator of rank n, and si,..., s, are terms over ®, then A(sy,...,S,)
is a term over ®.

A T-equation over @ is a pair (s,t) of 7-terms over @, usually denoted as s = ¢.

Conveution 5.2 Note that formally speaking, the modal and the algebraic similarity type
do not coincide, since the latter also contains the boolean function symbols. In practice
however, we will usually identify 7 and F.

We have taken the formulas-as-terms paradigm of algebraic logic quite literally: by our
definitions, we have

Form(r,®) = Ter,(®).

In many occasions however, we find it convenient to distinguish the modal and the algebraic
perspective. Usually, we can make this distinction by using Greek lower case letters (@, v,
...) for formulas, and Roman lower case (s, ¢, ...) for terms. In some cases, especially
when we relate the algebraic and the logical viewpoint, we will use superscripts ((-)7 and
(-)! respectively), to denote whether we see a syntactic entity as a modal formula or as an
algebraic term. To give two examples: ¢ is the formula/term ¢, viewed as an algebraic term,
while s/ is the term/formula s, viewed as a modal formula. Finally, adhering to usage in the
theory of boolean algebras, we will frequently use the following symbols in algebraic terms:

+ for V
for A
— for -
0 for L
1 for T.

5.1 Algebraizing modal semantics

We first turn to the algebraic semantics for the algebraic language just defined. In general,
we could interpret 7-terms and T-equations in any algebra of the appropriate similarity type.
However, we are only interested in a particular class of algebras, namely the so-called boolean
algebras with operators. Therefore, let us first introduce these algebras, and then discuss how
they form a natural semantics for the algebraic language corresponding to modal logic.

Definition 5.3 Let 7 be a modal similarity type. A boolean algebra with T-operators is an
algebra
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A= (Ar +, —’0’ fA)AE‘r

such that (A4, 4+, —,0) is a boolean algebra and every f, is an operator of arity p(A); that is
to say, f, is an operation satisfying

Normality. fa(a1,..-,a,3,)) = 0 whenever a; = 0 for some i (0 < i < p(A)).
Additivity. for all i (such that 0 < i < p(A)):

fA(a’h'"’ai+a:'"'-’ap(A)) =
fA(al’-'-)a'i’-")ap(A)) +fA(ala---’aés'-'aap(A))'

If we abstract away from the particular modal similarity type 7, or if 7 is known from the
context, then we will speak of boolean algebras with operators, or BAOs, without reference
to 7. Note that in the case of a unary operator f, the conditions of normality and additivity
boil down to

f(0) =0
flz+y) = fz+fy.

Example 5.4 Consider the collection of binary relations over a given set U. These sets form
a set algebra on which we can define the operations | (composition), (-)~! (inverse) and Id
(the identity relation) as a binary, unary resp. nullary operation. It is easy to verify that
these operations are actually operators — to give an example, we show that composition is
additive in its second argument:

(z,y) € R| (SUT) iff
iff there is a z with (z,z) € R and (2,y) € SUT
iff there is a z with (z,2) € Rand (2,y) € Sor (z,y) €T
iff there is a z with (z,z) € R and (z,y) € S,
or there is a z with (z,2) € R and (2,y) € T
if (z,y)€R|S or (z,y) ER|T
if (z,y) eR|SUR|T.

The next example of a boolean algebra with operators plays such a central rdle in these
notes, that it deserves a definition of its own.

Definition 5.5 Given an n+ 1-ary relation R on a set W, we define the n-ary operation mp
on subsets of W by

mgr(Xi1,...,Xn) = {we W] there are ws,...,w, such that
Ryww; ... w, and w; € X; for all i}

Now let 7 be a modal similarity type, and § = (W, Rp)aer a 7-frame. The (full) complez
algebra of F, notation: €mF or FT, is the extension of the power set algebra P(W) with
operations mp, for every operator A in 7. A complez algebra is a subalgebra of a full
complex algebra.

Let K be a class of frames; we denote the class of full complex algebras of frames in K by
CmK.
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Note that for a binary relation R, the unary operation mpg yields, given a subset X of the
universe, the set of all states which ‘see’ a state in X:

mpg(X) = {y € W | there is an z € X such that Ryz}.

Proposition 5.6 Let T be a modal similarity type, and § = (W, Rp)aer a T-frame. Then
¢mg is a boolean algebra with T-operators.

Proof. We have to show that operations of the form mp are normal and additive. This rather
easy proof is left to the reader. -

Complex algebras are so to speak the concrete or real boolean algebras with operators, in
the same way as set algebras are the concrete boolean algebras. Hence the obvious question
is whether (similar to the boolean case) every boolean algebra with operators is isomorphic
to a complex algebra. Theorem 6.6 in the next section will give a positive answer to this
question; this result is fundamental to the duality theory of frames and boolean algebras with
operators.

Let us now discuss the interpretation of 7-terms and T-equations in (arbitrary) boolean
algebras with T-operators:

Definition 5.7 Let 7 be a modal similarity type and ® a set of variables. Let & =
(A,+,—, fa)aer be a boolean algebra with T-operators. An assignment for ® is a function
6:® — A. We can extend 6 uniquely to a map 0: Ter,(®) — A as follows:

6(p) = 6(p)
(L) =0
0(-s) = —0(s)

O(svt) = 8(s)+6(t)
0(a(s15---58n)) = fa(@(s1),.--,8(sn))-

Now let s =t be a T-equation. We say that s = ¢ is true in 2, notation: 2 |= s = ¢, if for
every assignment 6:

B(s) = B(t).

Occasionally, we will also use the concept of truth of a modal formula in a BAO. We say that
a modal 7-formula ¢ is true in a boolean algebra with T-operators 2, notation: 2 |= ¢, if for
all assignments 6,

6(¢") =1,
(or, equivalently, if the equation ¢* = 1 holds in ).
If 2 is a complex algebra §*, then we have (for the standard modal similarity type):
6(0¢) = mp, (8(9))- (5.16)
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This is the key observation in the proof of the following Proposition which shows that the
algebraic semantics can be seen as a generalization of the frame semantics:

Propeosition 5.8 Let 7 be a modal similarity type, § a T-frame, ¢ a T-formula and s and t
t-teriis. Then
Fk¢ if §TE4=1

Ftes=t iff gk =t/
Proof. We will only prove the fifst part of the Proposition. Let § be a frame on which
the formula ¢ is valid. To show that §+ |= ¢ = 1, consider an arbitrary assignment 8 of
variables from @ to elements of the algebra F+. Since elements of 57 are subsets of the power
set POW(W) of the universe W of , this means that  is in fact nothing but a valuation.
By induction on the complexity of a formula 9, we will show that for all w € W:

(%, 0),w - 9 iff w € g (5.17)
The only interesting case in the proof of (5.17) is the modal case of the inductive step. For
simplicity, we assume that 1 is of the form Ox. We have the following equivalences:

(8,0),wlF Ox iff there is a v such that Rowv and (§,6),w I x (IH)
iff there is a v such that Rowv and v € 8(x)
iff wemp((x))
iff wed(Ox) (5.16)

This proves (5.17).
Now since 0(1) = W, it follows from (5.17) that

0(¢) =0(1) iff 3,0 I ¢. (5.18)

But the right-hand side of (5.18) follows from the assumption that § |= ¢. Hence we have
that 6(¢) = 0(1), implying that §* =¢* =1. 4

Proposition 5.8 justifies the identification of the modal theory of a class K of frames with
the equational theory of the class CmK of complex algebras of frames in K.

Definition 5.9 Let 7 be a modal similarity type. For a set £ of 7-formulas, we define X"
as the set of corresponding equations:

T = (gt =1|p €5}

Conversely, for a set E of equations, we define the set EfT of corresponding modal formulas
as

Efr ={sf o tf |s=te E}.
It follows immediately from Proposition 5.8 that for any frame F:
FET ff FtExa (5.19)
TEE ff FEEP. (5.20)
This explains the following definition:

Definition 5.10 Let 7 be a modal similarity type. For a set & of r-formulas, we define Vs
as the variety of boolean algebras with r-algebras where the set of equations ¥ is valid.
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5.2 Algebraizing modal aziomatics

We now turn to the second, axiomatic approach to the connection between modal logic and
boolean algebras with operators. This approach is based on the observation that we can build
an algebra on top of the set of formulas in such a way that for any normal modal logic, the
relation between two formulas of provable equivalence is a congruence relation.

Definition 5.11 Let 7 be an algebraic similarity type, and @ a set of propositional variables.
The formula algebra of T over ® is the algebra Form(r,®) = (Form(7,®),I(A))acr wWhere
each operator A is interpreted as the operation I(A) given by

I(A)(tl, ciytn) = A(tl, . ,tn).

From the algebraic perspective, the formula algebra Form(7, ®) is nothing but the absolutely
free algebra or term algebra generated by the set ®. This perspective on Form(7,®) as
constituting an Fr-algebra is very useful. For instance, the reader is advised to check that
the extension @ of an assignment § (mapping variables of ® to elements of an algebra 2), is
in fact the unique homomorphism: Form(r, ®) — A extending §. Thus the modal valuations
on a fra. ne § are the homomorphisms from Form(7, ®) to the complex algebra €mg.

Definition 5.12 Let 7 be a modal similarity type, ® a set of propositional variables and A
a normal modal 7-logic. We define =, as a binary relation between 7-formulas (in ®) by

$=viff by ¢ o 9.

The following proposition is fundamental to the syntactic approach to algebraizing modal
logic.

Proposition 5.13 Let 7 be a modal similarity type, ® a set of propositional variables and A
a normal modal T-logic. Then =, is a congruence relation on Form(r, D).

Proof. We confine ourselves to proving the Proposition for the standard modal similarity
type only. It is not very difficult to show that =, is an equivalence relation, so we leave this
part of the proof to the reader. To show that =, is a congruence relation on the formula
algebra, we have to make clear that =, has the following properties:

#o =a Yo and ¢ =p Y1 imply oV ¢1 =a do Vi :
¢ =p 1 implies —¢ =5 (5.21)
¢ =AY implies O¢ =, O

Let us prove the last statement as an example: assume that ¢ =, 9, i.e., that Fp ¢ — 9.
By some propositional reasoning it follows that 5 —-¢ — —1. By an application of the rule
of Universal Generalization we find 5 O(—¢ — —%), and hence, using the K-axiom and
Modus Ponens, 5 O-¢ — O-1). After some further propositional manipulations, we obtain
Fao ~O-% — —0O-¢, which gives Fy Oy — O¢. Likewise, we prove that Fp O¢p — 9.
Finally, it follows from Fp O¢ « O that O¢p =4 O -

By (5.21) (or a generalization of it, in case of a polyadic modal operator), the following are
correct definitions of functions on the set Form (7, ®)/=x of equivalence classes under =,:
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(8] +[¥] = [pVY]
—[¢] = [~d] (5.22)
fA[¢l) seey ¢n] = [A(¢1) ey ¢n)]
The last clause of this definition boils down to the following for unary diamonds:
folg] = [Og]-

Given a normal modal logic A, we now define the Lindenbaum-Tarski algebra of A to be
the quotient algebra of the formula algebra over the congruence relation =,:

Definition 5.14 Let 7 be a modal similarity type, ® a set of propositional variables and A
a normal, modal 7-logic in this language. The Lindenbaum-Tarski algebra of A over the set
of generators @ is the structure

where the operations are defined as in (5.22).

These Lindenbaum-Tarski algebras are the basic tools in the syntactic approach towards
algebraizing modal logic. They also form our second main example of boolean algebras with
operators. Let us prove additivity of fo. We have to show that

fola+b) = foa+ fob, (5.23)

for arbitrary elements a and b of £4(®). Let a and b be such elements; by definition there
are formulas ¢ and 9 such that a = [¢] and b = [¢]. Then

fola+b) = fo([¢] + [¥]) = fo([8 V ¥]) = [O(e V)]

while

foa+ fob = fo([8]) + fo([¢]) = [Od] + [OY] = [Oo V O]

Finally, an easy A-deduction shows that

FA O(@ V) & (OgV Op).

Therefore, [0(¢ V 9)] = [O¢ V Oy].

From the algebraic perspective, the Lindenbaum-Tarski algebra of a normal modal logic A
is nothing but the term madel of the equational theory A®®. We can then apply Birkhoff’s
completeness theorem for equational logic to obtain a general completeness result for modal
logic with respect to varieties of boolean algebras with operators. To make these claims more
precise, we need to compare modal and equational derivation systems. We assume familiarity
with some standard derivation system of equational logic, for instance with rules of reflexivity,
symmetry, transitivity, congruence and replacement.

Definition 5.15 Let ¥ be a set of modal formulas in some modal similarity type 7. We say
that a T-equation s = ¢ is (equationally) derivable from £%°, notation: £%° |- s = ¢, if the
equation s =t is derivable, using some standard derivation system of equational logic, from
the following set of equations:
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¥®“ UBAUNORM U ADD.

Here BA is some standard set of equations axiomatizing boolean algebras, and NORM and
ADD are sets of equations forcing every operator from 7 to be normal and additive.

Proposition 5.16 Let ¥ be a set of modal formulas in some modal similarity type 7. Then
for all T-formulas ¢:

Fks ¢ iff 50 ¢ =1

Proof. Both directions of this proof go by an induction on the length of derivations. We only
prove the direction from right to left, for which we load the induction hypothesis to:

v g=t = Fgx s otl (5.24)

Of course, for a proper proof of (5.24) we would have to give details of our ‘standard derivation
system of equational logic’. We confine ourselves to a few examples of standard equational
derivation rules:

Transitivity. Assume that we obtained £%° I s = u from vho | g = ¢ and B0 F t = w.
By the inductive hypothesis, Fgx s/ < tf and by tf < u/. It follows by an easy
propositional derivation that this implies Fgy 87 < u/.

Replacement. Let us give one typical example here: assume that we obtained Tho |- Os = Ot
from X%° | s = t. The inductive hypothesis is that

by s/ o/, (5.25)

from which we get Fgs -t/ — —s’ by propositional reasoning. Now the rule of
universal generalization yields Fgy O(—tf — —sf). From this, we derive Fgy Ot/ —
O-sf by the K-axiom and modus ponens. Then by propositional reasoning we get
ks ~O-sf — —0O-tf. Likewise, we find Fg s —0O-tf — —~0-sf, so by a propositional
derivation we find the desired?

}—KE ‘ﬂl:]—ltf And —|El—|sf. - (526)

Theorem 5.17 Let 7 be a modal similarity type, and ¥ a set of T-formulas. Then £xx(P)
is a free algebra for the variety Vx over the set ® of generators.

Proof. We leave it to the reader to verify that £ (®) is in Vy, i.e., that it is a boolean
algebra with operators in which the set X% of equations corresponding to the modal formulas
in ¥ is valid. To show that £k (®) is free in Vx, we use the well-known fact (which can be
found in any standard proof of Birkhoff’s completeness result for equational logic) that the
algebra Form(r, ®)/~y is free for Vy, where ~y is the relation given by

2There is a technical problem involved here: since we are dealing with syntaz: the formula in (5.26) is not
the same as Otf « ©s’. In fact, the latter formula can not be derived in KX, since in our set-up, bozes, not
diamonds are the basic operators in the language of modal derivation systems. The symmetry can easily be
restored by reconsidering the choice of basic operators on either the modal or the algebraic side, and modifying
the derivation systems accordingly (cf. also Remark 4.5).



5. Algebraizing madal logic 42

s~ptif ¥ s =1
Now it is immediate by Propesition 5.16 that for all terms s, t:
s~ztiﬁsf EKE .

But this means that the Lindenbaum-Tarski algebra for KX is identical to Form(r,®)/~s
and thus also free for Vg, -

The following Theorem states that modal logics are always complete with respect to the
variety of boolean algebras with operators where their axioms are valid. Note that this is in
sharp contrast to the relational semantics, where in general, modal logics are not complete
with respect to the class of frames that they define.

Theorem 5.18 Let 7 be a modal similarity type, and ¥ a set of modal T-formulas. Then
KX is sound and complete with respect to Vy, i.e., for all formulas ¢ we have

Fks ¢ iff Ve = ¢

Proof. This Theorem is an immediate corollary of the previous one. For the completeness
direction, assume that Vx |= ¢, i.e., Vs = ¢ = 1. Let ® be a set of propositional variables
containing all variables occurring in ¢. Since L5 (®) is in Vs by Theorem 5.17, we find that
Lx3(®) | ¢* = 1. Now consider the assignment ¢ : Form(r,®) — Form(r,®)/=kx given

by
up) = [p]-

It is easy to show that for all formulas 1:
@) = [¢].

Thus we find that (¢‘) = [¢] and (1) = [T]. From L£xx(®) k= ¢' = 1 we infer that
7(¢%) = 1(1), so we may conclude that

[¢] = [T].
Hence ¢ and T are provably equivalent in KX, so bgx ¢. -

Let us finish this section with discussing the fundamental role that the Lindenbaum-Tarski
algebra plays in the frame completeness theory of modal logic3. The basic idea is that we
can prove completeness for many classes of logics by showing that the Lindenbaum-Tarski
algebra of the logic can be represented as (i.e., is isomorphic to) an appropriate complex
algebra. The slogan here is ‘completeness via representation’. To be more precise, let us look
at the basic modal logic K of the standard modal similarity type, and show that:

3For lack of space we will only consider weak completeness here. A proper treatment of the concept of
strong completeness would involve an interesting but lengthy discussion on the various ways of defining and
algebraizing the modal consequence relation T |= ¢ and the derivability relation ¥ I ¢. For details we refer
the reader to [4].
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if every Lindenbaum-Tarski algebra of K is representable
as a complex algebra, (5.27)
then K is complete with respect to the class of all frames.

So, assume that £x (@) is representable as a complex algebra. In order to prove complete-
ness of K with respect to the class of all frames, assume that the formula ¢ is valid in every
frame. By Proposition 5.16 this implies that §+ |= ¢ = 1, for every frame §. But then the
equation ¢* = 1 is valid in the Lindenbaum-Tarski algebra as well, since by assumption, this
algebra can be embedded in some full complex algebra. Now (the proof of) Theorem 5.18
shows that this implies that Fg ¢. This proves (5.27).

So, we are left with the question whether Lindenbaum-Tarski algebras can be represented
as complex algebras. Recall that in the previous subsection, we already hinted that every
boolean algebra with operators is isomorphic to a complex algebra. This fundamental result
in the algebraization of modal logic, which is due to Jénsson and Tarski [17], will be discussed
and proved in the next section.

6. BASIC DUALITY

In this section, which really forms the heart of these lecture notes, we will show how to link
up boolean algebras with operators with frames. We have already seen how to obtain a BAO
from a frame (the complex algebra of the frame); now we will explain how, conversely, one
can associate a frame with every boolean algebra with operators, namely, the ultrafilter frame
of the algebra. We will prove the fundamental result that every boolean algebra with opera-
tors can be embedded in its canonical embedding algebra, which is nothing but the complex
algebra of the ultrafilter frame of the original algebra. We will prove the fundamental result
due to Jénsson and Tarski, that every BAO can be embedded in its canonical embedding
algebra. We will use the above-mentioned construction to define yet another frame construc-
tion, viz. that of the ultrafilter extension of a frame. Finally, we will show how to extend this
duality between algebras and frames from the level of structures to the level of morphisms
between frames on the one hand and algebras on the other.

6.1 Ultrafilter frames and canonical embedding algebras

Suppose that we want to embed a BAO 2 in a complex algebra. Obviously, the first question
to ask is what the underlying frame of the complex algebra will be. In order to make our
notation a bit simpler, let us assume for the moment that we are working in a similarity
type with just one unary modality, and that % = (A, +, —, 0, f) is a boolean algebra with one
unary operator f. We have to find a universe W and a binary relation Q on W such that 2
can be embedded in the complex algebra of the frame (W, Q). The easy half of the theorem
is already given by Stone’s Representation Theorem, namely: we know how to embed the
boolean part of 2 in the power set algebra of the set of ultrafilters of 2.

Definition 6.1 Let A = (A,+,—,0) be a boolean algebra. A subset D of A has the finite
intersection property or f.i.p. if for every finite subset Dy = {a1,...,a,} of D we have
... ap #0.

A subset F' C A is a filter if it satisfies
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(FO) 1eF
(F1) F is closed under intersection, i.e., if a,b € F thena-b€ F
(F2) F is upward closed, i.e.,ifa € F and a < b then b € F.

A filter is proper if it does not contain the smallest element 0 of 2.
A filter F is an ultrafilter if it is proper, and satisfies

(F4) foralla € A, eithera € For —a € F.
We denote by Uf?2A the set of all ultrafilters over 2.

In many occasions, one is searching for an ultrafilter satisfying some specific properties. To
prove the existence of such an ultrafilter, the following is often a good strategy: first, define
a set D such that any ultrafilter which is a superset of D has the required properties, and
second, show that D has the finite intersection pfoperty. This strategy is motivated by the
facts that every set enjoying the f.i.p. is contained in a proper filter, and that every proper
filter is contained in an ultrafilter. For future reference, we state the following Ultrafilter
Theorem:

Proposition 6.2 (Ultrafilter Theorem) Let 2 be a boolean algebra, and F be a proper
filter of A. Then there is an ultrafilter u such that FF C u. As a corollary, every subset of A
having the finite intersection property can be extended to an ultrafilter.

In order to embed our BAO 2 = (A4,+,—,0, f) in the complex algebra of a frame § =
(W, @), it seems a natural choice to take W as the set of ultrafilters of (the boolean part of) 2.
Recall that in Stone’s Representation Theorem, the embedding function r : A — POW(Uf2)
is defined by

r(a) = {u € UfA | a € u}.

For the definition of @, we view the elements of the algebra as propositions, and imagine
that the representation map r(a) will be the set of states where a is true accordifig to some
valuation. Then if we read f(a) as ¢a, we find that a state u should be in r(fa) if and only
if there is a v with Quv and u € 7(a). So, in order to decide whether Quv should hold for
two arbitrary states (ultrafilters) u and v, we should look at all the propositions a holding at
v (i.e., all elements a € v) and check whether fa holds at u (i.e., whether fa € u). Putting
it more formally, the natural, ‘canonical’ choice for ) seems to be the relation Q; given by

Qysuv iff fa € ufor all ¢ € v. (6.28)

In the general case, we obtain the following definition:

Definition 6.3 Let A = (A, +,—,0, fo)aer be a boolean algebra with operators. The n + 1-
ary relation Qs on the set Uf2 of ultrafilters of 2 is given by

Qruuy ... u, iff f(a1,...,a,) €u foralla; €uy, ..., an € uy (6.29)

The frame (Uf2, Qf,)acr is called the ultrafilter frame of 2, notation*: €s2 or A,. The
complex algebra €mEsA = (A, )" is called the (canonical) embedding algebra of 2, notation:
Em.

“The notation €52l stems from an alternative name of this frame: canonical eztension.
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For later reference, we state the following proposition, which shows that we could have
given an alternative but equivalent definition of the relation Qy.

Proposition 6.4 Let f be an n-ary operator on the boolean algebra A, and u, uj, ..., Un
an n-tuple of ultrafilters of A. Then

Qruui ... un iff — f(—a1,...,—an) € u implies that for some i: a; € u;. (6.30)
Proof. By some elementary manipulations on ultrafilters. -

In fact, we have already encountered a frame which is very much like an ultrafilter frame,
namely the canonical frame of a normal modal logic (cf. Definition 4.17). For, the worlds
of the canonical frame are the maximal consistent theories of the logic, and an ultrafilter
is nothing but an abstraction of a maximal consistent set. Being a bit more formal, we
can show that the canonical frame of a logic is isomorphic to the ultrafilter frame of its
Lindenbaum-Tarski algebra:

Theorem 6.5 Let 7 be a modal similarity type, and A a normal modal 7-logic. Then
A = £5(®).

Proof. We leave it to the reader to show that the function  defined by
o) ={[¢] | ¢ €T}

mapping maximal A-consistent sets I to the set of equivalence classes of their members, is
the required isomorphism between F* and £4(®).

A second and very important example of an ultrafilter frame arises in the case where the
boolean algebra with operators is itself the full complex algebra of some frame. This case is
treated in the second part of this section.

We now return to perhaps the most fundamental theorem underlying the algebraization
of modal logic, namely the Jonsson-Tarski Theorem which states that every boolean algebra
with operators is embeddable in the full complex algebra of its ultrafilter frame:

Theorem 6.6 Let 7 be a modal similarity type, and A = (A,+,—,0, fa)acr a boolean algebra
with T-operators. Then the representation function r : A — POW(Uf) given by

r(a) ={u e UfA|a€u}
18 an embedding of A into Em.

As we already mentioned in the previous section, Theorem 6.6 plays a crucial role in the
completeness theory of modal logic. However, there are some limitations to its usefulness
here — let us illustrate this point by the example of the normal modal logic K4, which is
axiomatized by the axiom

Op — OOp 4)

We know from Theorem 4.21 that K4 is complete with respect to the class of transitive
frames. Now suppose that we want to use the same strategy to prove this result as we did
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in the end of the previous section with respect to the completeness result of K for the class
of all frames. We would then have to prove that the Lindenbaum-Tarski algebras of K4
are embeddable in full complex algebras of transitive frames. Recall from Section 3 that the
formula (4) characterizes the transitive frames, so that in our proposed completeness proof,
we would have to show that (4) is valid in the ultrafilter frame (£x4(®))4 of £x4(®), or
equivalently, that ((£g4(®))+) belongs to the variety V4. Note that it follows from Theorem
5.17 that £ 4(P) belongs to Vy.

The disciission above explains the relevance of the question which varieties of BAOs are
closed under taking canonical embedding algebras.

Definition 6.7 Let 7 be a modal similarity type, and C a class of boolean algebras with
T-operators. C is canonical if it closed under taking canonical embedding algebras, i.e., if for
all algebras A, Em2 is in C if 2 is in C.

In the original paper [17], Jonsson and Tarski proved (by algebraic and topological means)
that classes of BAOs axiomatized by special kinds of (quasi-)equations are canonical. This
important result can be derived as a corollary to our Theorem 7.4 below.

Before we set out to prove Theotem 6.6, we want to compare the two notions of canonicity
we have now, viz. the logical one of Definition 4.20 and the algebraic one defined above. Using
Théorem 5.17, we show that these two concepts are closely related.

Proposition 6.8 Let 7 be a modal similarity type, and T a set of T-formulas. If Vyx is a
canonical variety, then X is canonical.

Proof. Let V be the variety Vx, and assume that V is canonical. By Theorem 5.17, the
Lindenbaum-Tarski algebra £k is in V; then by assumption, EmLky is in V. However,
from Theorem 6.5 it follows that this algebra is isomorphic to the complex algebra of the
canonical frame of KX:

emeky = (£xx)+)t = FED)*.

Now the fact that (SKE)+ is in V means that (31("1—"“)+ = Xe%; it follows from Proposition
5.8 that §XZ |= ©. But this means that ¥ is canonical.

It is an obvious question whether the converse of Proposition 6.8 holds as well, i.e., whether
a variety Vy is canonical if ¥ is a canonical set of modal formulas. Note that canonicity of
% only implies that one particular boolean algebra with operators has its embedding algebra
in Vg, viz. the Lindenbaum-Tarski algebra over a countably infinite number of generators. In
fact, we are facing an open problem here:

Open Problem 1 Let 7 be a modal similarity type, and ¥ a canonical set of T-formulas. Is
Vs a canonical variety?
Equivalently, suppose that E is a set of equations such that for all countable boolean algebras
with T-operators we have
AEE = EmAEE.

Is Vg a canonical variety?
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Finally then, we give the proof of the Jénsson-Tarski Theorem:

Proof of Theorem 6.6. In order to make our notation a bit simpler, let us assume that we
are working in a similarity type with just one n-ary modality, and that A = (4,+,—,0, f) is
a boolean algebra with one n-ary operator f. By Stone’s representation Theorem, the map
r: A— POW(Uf()) given by

r(z) = {u € Uf(A) |z € u}

is a boolean embedding. So, it suffices to show that r is also a modal homomorphism, i.e.,
that

r(f(a1,...,an)) = mg,(r(a1),...,7(an)). (6.31)
We will first prove (6.31) for unary f. In other words, we have to prove that
r(fa) = mq,(r(a)). (6.32)

We start with the inclusion from right to left: assume u € mq,(r(a)). Then by definition
of m, there is an ultrafilter u; with u; € 7(a) (i.e. @ € ;) and Qyuu;. By definition of Qf
this imy lies f(a) € u, or u € r(f(a)).

For the other inclusion, let u be an ultrafilter in 7(f(a)), i.e. f(a) € u. To prove that
u € mg,(r(a)), it suffices to find an ultrafilter u; such that Qsuu; and u; € r(a), or a €
u1. The basic idea of the proof is that we first pick out the elements of A, apart from a,
that necessarily have to be in u;. These elements are given by the condition Qfuu;. By
Proposition 6.4 we have that for every —f(—y) € u, y has to be in u;; therefore, we define

F:={yeA|-f(-y) €u}.
We will now show that there is an ultrafilter u; O F containing a. First, an easy proof (using
the additivity of f), shows that F is closed under intersection. Second, we prove that

F'i={a-y|y€F}

has the finite intersection property. As F is closed under intersection, it is sufficient to show
that a -y # 0 for y € F. To arrive at a contradiction, suppose that ¢ -y = 0. Then a < —y,
so by monotonicity® of f, f(a) < f(—y); therefore, f(—y) € u, contradicting y € F.

Now by the Ultrafilter Theorem 6.2 there is an ultrafilter u; O F’. Note that a € u;, as
1 € F. Finally, Qfuu,; holds by definition of F: if —f(—y) € u then y € F C u;.

(*) We will now prove (6.31) for arbitrary n > 1.

The proof is by induction on the arity n of f.

Note that the base step has already been proved above. So, assume that the inductive
hypothesis holds for n. Let f be a normal and additive function of rank n + 1, and suppose
that a1, ...,an+1 are elements of 2 such that f(a,...,a,+1 € u. We have to find ultrafilters
U1,...,Uny1 Of A such that (i) a; € u; for all 4 with 1 <4 < n+ 1, and (ii) Qfuu; ... Uny1.
Our strategy will be to have the induction hypothesis take care of ui,...,u, and then to
search for u,y;.

Let f’ be the function A™ — A given by

5An operation g on a boolean algebra is monotonic if a < b implies fa < fb. Operators are monotonic,
because of the following: if @ < b, then a + b =b, so fa + fb = f(a +b) = fb; but then fa < fb.
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(@1, yTn) = f(ZT1y- - s Ty Cnp1)-

It is easy to see that f’ is normal and additive, so we may apply the induction hypothesis.
This yields ultrafilters u;, ..., u, such that

a; € u; for all 1 with 1 <i < n. (6.33)
and
f(z1,-..,Tn,any1) € u, whenever z; € u; for every 1 <i < n. (6.34)

Now we set out to define an ultrafilter u,4; such that an41 € uny1 and Qyuu; ... unys.
This second condition can be rewritten as follows (we abbreviate ‘z; € u, ...z, € u,’ by
‘T €):

Qruuy ... unyy iff
iff for all Z,y: if Z € 4, then y € up4; implies f(Z,y) € u
iff for all Z,y: if Z € 4, then f(Z,y) € v implies y & up41
iff for all Z,y: if T € 4, then —f(Z,y) € u implies —y € up4+1
iff for all Z,2: if Z € 4, then —f(Z,—2) € u implies z € upy;.

This provides us with a minimal set of elements that 4,43 should contain; put
F:={ze€A|(3z €a) — f(z,2) € u}.

If —f(Z,—z) € u, we say that Z drive z into F. We now take the second condition into
account as well, defining

G:={any1-2|2z € F}.

Our aim is to prove the existence of an ultrafilter u,4; containing G. It will be clear that
this is sufficient to prove the theorem (note that a,; € G as 1 € F). In order to apply the
Ultrafilter Theorem 6.2, we will show that G has the finite intersection property. We first
need the following fact:

F is closed under intersection. (6.35)

Let 2/,2" be in F; assume that 2z’ and 2" are driven into F by Z’' and z", respectively. We
will now see that Z := (2 - zf,...,z} - zl!) drives z := 2’ - 2" into F), i.e., that — f(Z, —2) € u.

Since f is monotonic, we have f(Z, —2') < f(z',—2'), and hence we find that — f(z', —2') <
—f(Z,—2"). Asuis upward closed and —f(Z', —2') € u by our ‘driving assumption’, this gives
—f(Z,—2') € u. In the same way we find — f(Z, —2") € u. Now

f(iI_I, —z) = f(:ia _(zl ' Z"))
= IE D+ ()
= f(ia —Z’) + f(fa —Z"),

whence

_f(-'i, "Z) = [_f(a_"a _zl)] ' [_f(:i‘, —Z”)].
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Therefore, —f(Z, —z) € u, since u is closed under intersection. This proves (6.35).
We can now finish the proof and show that indeed

G has the finite intersection property. (6.36)

Let @ty - 21,---,@n41 - 2k be arbitrary elements of G, with every z; in F. We have to show
that

(an+1 . 21) teeet (an+1 . zk) 75 0.

First, observe that
(@ng1-21) - (@n41 - 2k) = @ng1- (21 ... - 2k)-

As each z; is in F, we find that z, -...- 2 € F by (6.35).
Therefore, it suffices to show that

forall z€ F: apt1-2=0. (6.37)

To prove (6.37), we reason by contraposition: suppose that z € F and an41-2 =0. Let Z €4
be a sequence that drives z into F, i.e., —f(Z,—z) € u. From any1 -2 = 0 it follows that
any+1 < —2, so by monotonicity of f we get

—f(Z,-2) < —f(Z, ant1)-

But then — f(Z,an41) € u, which contradicts (6.34). This proves (6.37) and with that (6.36)
and Theorem 6.6. -

6.2 Ultrafilter eztensions
In the second part of this section we look at a special kind of ultrafilter frame, viz. the
ultrafilter frame of a full complex algebra.

Definition 6.9 Let 7 be a modal similarity type, and § = (W, Rp)aer a 7-frame. The
ultrafilter extension ueF of §F is defined as the ultrafilter frame of the complex algebra of §,
ie.,

ueF = )+

Putting it more directly (we now consider the standard similarity type), the ultrafilter
extension of a frame § = (W, R) is given as the frame

(UfPOW(W), R¥¢),

where UfPOW (W) is the set of ultrafilters of the power set algebra of W, and R*® = Qmjuv
holds of two ultrafilters u and v, if mg(X) € u for every X C W such that X € v.

The ultrafilter extension of a structure (model or frame) can be seen as a kind of completion
of the original structure. To see this, we first need the following definition:

Definition 6.10 Let w be state in a frame §. We denote by u,, the principal ultrafilter
generated by w, i.e., the set u,, = {X CW |w € X}.
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Note that any subset of a frame can, in principle, be viewed as (the extension of) a propo-
sition. A filter over the universe of the frame can thus be seen as a theory, in fact as a closed
theory, since filters are closed under intersection (conjunction) and also upward closed. A
proper filter is then a consistent theory — it does not contain the empty set (falsum). In this
perspective, an ultrafilter is a complete theory, or as we will call it, a state of affairs: it tells
us of each proposition (subset of the universe) whether it holds (is a member of the ultrafilter)
or not. Now in the original frame, not every state of affairs is ‘realized’ (in the sense that
there is a world satisfying precisely all propositions belonging to the state of affairs), only the
principal ultrafilters can be found. The ultrafilter extension of a frame provides realizations
of every state of affairs, by simply adding them as points of the universe. So, now we have
to define the relations holding between the states of the ultrafilter extension. In other words,
we have to decide when to put an n + 1-tuple of states of affairs in the relation R*e. It is
a natural suggestion to have R"®ugu; ... u, if up ‘sees’ the n-tuple u,,... , Un. To make this
intuition precise, we interpret the condition as follows: whenever X1, ..., X, are propositions
of uy, ..., u, respectively, then ug ‘sees’ this combination, i.e. the proposition (subset of the
universe) mu(X1,...,X,) is a member of ug.

Note that if one identifies each state w of a frame § with the principal ultrafilter u,,, one
can easily see that any frame § is (isomorphic to) a submodel (in general not a generated)
submodel of its ultrafilter extension. For, we have the following equivalences (in the basic
modal similarity type):

Rwv iff w € meo(X) for all X C W such that v € X
iff mo(X) € uy for all X C W such that X € u, (6.38)
if R“€uyu,.

Example 6.11 Consider the frame 91 = (w, <) (the ordering of the natural numbers):
0 1 2 3 4

We will describe (and depict) the ultrafilter extension of 9. Our first observation concerns
the set of ultrafilters over any infinite set. It is an easy observation that there are two kinds
of such ultrafilters: principal ones and co-finite ones, i.e., ultrafilters containing all co-finite
sets and only infinite sets. (For, if an ultrafilter u contains a finite set, then it must contain
a singleton, whence u is principal.) By the observation (6.38), inside ue91 the principal
ultrafilters form an isomorphic copy of the frame M. So it suffices to show where the co-finite
ultrafilters are situated. The key fact here is that

for any pair of ultrafilters u, u": if v’ is co-finite, then R*euu’.

To prove this claim, let v’ be a co-finite ultrafilter, and X € «'. As X is infinite, for any
n € w there is an m such that n < m and m € X. This shows that me(X) = w. But w is an
element of every ultrafilter u.

This shows that the ultrafilter extension of 9 consists of a copy of 9, followed by a big
cluster consisting of all co-finite ultrafilters, viz.

9 1 2 3 4
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Proposition 6.12 Let 7 be a modal similarity type, § a T-frame and ¢ a T-formula. Then
SE ¢ ifuef ¢

Proof. This anti-preservation result of modal frame validity under taking ultrafilter extensions
is an immediate corollary of Proposition 5.6 and the fact that the validity of equations is
preserved under taking subalgebras:

ueF = ¢ if (ued)tEo=1
if (FH+)TE¢=1
onlyif FtE#=1
iff §E¢

Here the important step is the implication, which is justified by the fact that ((F+)4)" is the
embedding algebra of the complex algebra F+. -

This proposition can and will be used to show that some frame properties are not modally
definable.

Example 6.13 Working in the basic modal similarity type, we consider the property that
every state has a reflexive successor, in the first-order frame language: Vz3y (Rzy A Ryy).
We claim that this property is not modally definable, although it is preserved under taking
disjoint unions, generated subframes and bounded morphic images. To verify the claim, the
reader is asked to look at the frame in Example 6.11. It is easy to see that every state of ue§
has a reflexive successor — take any non-principal ultrafilter. But § itself clearly does not
satisfy the property, as § has no reflexive states.

Now suppose that the property were modally definable, let’s say by the set of formulas A.
Then we would have ue§ = A, but § |~ A, a clear violation of Proposition 6.12.

Note the direction of the preservation result in Proposition 6.12. It states that modal
validity is anti-preserved under taking ultrafilter extensions. This naturally raises the ques-
tion whether the other direction holds as well, i.e., whether § |= ¢ implies ue§ = ¢. For a
partial answer to this question, we need the following theorem, which is due to van Benthem,
building on ideas from Fine:

Theorem 6.14 Let 7 be a modal similarity type, and § a 7-frame. Then § has an ultrapower

[y § such that [y § — ue§.
[y §

N

§ ued

Proof. For a proof of this theorem, which essentially uses the notion of w-saturation, we refer
the reader to [2], or to [4]. -

Corollary 6.15 Let 7 be a modal similarity type, and ¢ a T-formula. having a first-order
correspondent on the frame level. Then validity of ¢ is preserved under taking ultrafilter
ectensions.
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Proof. Suppose that there is a set A of first-order formulas such that for all frames §:

SEAMfT ¢

Let § be a frame such that § |= ¢. It follows that § = A. If [y § is the ultrapower of ¥
such that § — ueF, then [[;§ | A, since validity of first-order formulas is preserved under
taking ultrapowers. However, this implies that [[;; § |= ¢, so by the preservation result of
modal validity under taking bounded morphic images, we obtain that ue§ = ¢.

However, perhaps an even more important fact concerning Theorem 6.14 is that now we
have sufficient testing material to find out whether a class of frames is modally definable —
that is to say, if we confine ourselves to first-order definable classes of frames. In section 7 we
will give a more precise formulation and a proof of this result by Goldblatt and Thomasson.

6.3 Basic duality theory

In this section we will show how the constructions of algebras from frames and frames from
algebras can be extended to morphisms between frames or between algebras. As an important
application of these ‘lifting’ constructions, we can link the operations on frame classes, viz. of
taking bounded morphic images, generated subframes and disjoint unions, to the operations
on classes of algebras of taking respectively subalgebras, homomorphic images and products.
These links are formulated concisely in the Theorems 6.17 and 6.18, in which we use the
following definitions:

Definition 6.16 Let 7 be a modal similarity type, § and & two 7-frames, and 2 and B two
boolean algebras with 7-operators. We recall (define, respectively) the following notation for
relations between these structures:

§— & for g isa generated substructure of &
§—»6 for & isa bounded morphic image of §
A»— B for A is a subalgebra of B

A—»B for B isa homomorphic image of .

Theorem 6.17 Let 7 be a modal similarity type, § and & two T-frames, and A and B two
boolean algebras with T-operators. Then

1. If §— &, then &t —» F+.
2. If § —» B, then 8 »— F+.
3. If A — B, then B4 — Ay
4. If A — B, then B, — Ay
Proof. This Theorem follows immediately from the Propositions 6.21 and 6.22 below. -

Theorem 6.18 Let 7 be a modal similarity type, and F;,i € I a family of T-frames; then

W)t =IIs

i€l i€l
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Proof. We define a map 7 from the power set of the disjoint union W;c; W; to the carrier
[I;c; POW(W;) of the product of the family of complex algebras &FHier-

Let X be a subset of l¥);c; W;; n(X) will have to be an element of the set [J;c; POW(W;).
Note that elements of the set [J;c.; POW(W;) are sequences o such that o(i) € POW(W;).
So it suffices to say what the i-th element of the sequence 7(X) is:

n(X)(@) =X NW,.
We leave it as an exercise to show that 7 is an isomorphism. -

In order to prove Theorem 6.17, the reader is advised to recall the definition of a bounded
morphism between two frames (Definition 2.21). We also need some terminology for mor-
phisms between boolean algebras with operators:

Definition 6.19 Let 2 and 2’ be two boolean algebras with operators of the same similarity
type, and let n : A — A’ be a function. We say that 7 is a boolean homomorphism if 7 is
a homomorphism from (4, +,—,0) to (4’,+,—,0). We call n a modal homomorphism if
satisfies, for all modal operators A:

1(fa(as, .-, ap(a))) = fa(nas,...,map(a))-

Finally, 5 is a (BAO-)homomorphism if it is both a boolean and a modal homomorphism.
In the following definition, the construction of dual® or lifted morphisms is given.

Definition 6.20 Suppose that § is a map from W to W’; then its dual 87 : POW(W')
POW (W) is defined as:

0H(X)={ueW]|bu)e X'}

In the other direction, let 2 and 2’ be two BAOs, and 7 : % — 2’ be a map from A to A”;
then its dual is given as the following map from ultrafilters of 2’ to subsets of A:

n+(v') ={a € A|n(a) € u'}.

The following propositions assert that the duals of bounded morphisms are BAO-homo-
morphisms themselves:

Proposition 6.21 Let §,3 be frames, and 6 : W — W' a map.

1. 6% is a boolean homomorphism.
If 0 has (zig), then mg(6+(Y]),...,07(Y;))) C 0tmp(YY{,...,Y,).
If 6 has (zag), then mg(60F(Yy),...,0"(Y}) 2 0 mp(Y7,...,Ys).

If 9 is a bounded morphism, then 6% is a BAO-homomorphism from €m§ to CmyF .

v o e

If 0 is injective, then 0% is surjective.

SNote that the word ‘dual’ is used here not in the sense of ¢ being the dual of O.



6. Basic duality ‘ 54
6. If 8 is surjective, then 0% is injective.

Proof. For notational convenience, we assume that 7 has only one modal operator, so that
we can write § = (W, R).
1. As an example, we treat complementation:

zedt(-X") if 6z€ =X
if fxg X’
if = ¢6v(X").

From this it follows immediately that 7 (—X') = —0+(X").
2. Assume that 6 has (zig). Then we have

z€ maB*(¥),...,0%(¥;)

=> there are yj,...,y, such that 6y; € Y/ and Rzy; ...y,
=> there are yj,...,yn such that 6y; € Y/ and R'0z0y; ... 0y,
= 0z € mp(Y{,...,Y})

= TE€ 0+le(},1’,...,YV:).

3. Now suppose = € 07mp/(Y/,...,Y,), then 0z € mp/(Y7,...,Y;). So there are 9},...,%/,
in W' with y} € Y and R'0zy] ...y;,. As 0 has (zag), there are y1,...,y, € W with 0(y;) = v/
for all 4, and Rzy; ...yn. But then y; € 01Y] for every 4, so z € mp(6+(YY),...,07(Y))).

4. This follows immediately from 1, 2 and 3.

5. Assume that 0 is injective, and let X be a subset of W. We have to find a subset X’ of
W' such that 61(X') = X. Define

0[X]:= {6z € W' |z € W},

We claim that this set has the desired properties. It is immediate that X C 6*(6[X]). For
the other direction, let = be an element of §*(0[X]). Then by definition, 6(z) € 6[X], so
there is a y € X such that 6(z) = 6(y). Now by injectivity of , z = y. So z € X.

6. Assume that  is surjective, and let X’ and Y’ be distinct subsets of W’. Without loss
of generality we may assume that there is an z’ such that ' € X’ and 2/ € Y'. As 6 is
surjective, there is an = in W such that 6(z) = z’. So z € 6+(X’), but = ¢ 6+(Y’). So
6(X') # 0(Y"), whence 87 is injective.

In the other direction, i.e., from algebras to relational structures, we find that the duals of
BAO-homomorphisms are bounded morphisms:

Proposition 6.22 Let A, A’ be boolean algebras with operators, and n a map from A to A'.
1. If n is a boolean homomorphism, then ny maps ultrafilters to ultrafilters.
2. If f'(m(a1), - ,(an)) < 0(f(a1,...,8n), then ny has (zig).

8. If f'(n(a1),...,m(an)) > n(f(a1,...,as) and n is a boolean homomorphism, then 7.
has (zag).

4. If n is @ BAO-homomorphism, then 1 is a bounded morphism from Al to A
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5. If n is an injective boolean homomorphism, then 0y : UfA' — UfYA is surjective.
6. If n is an surjective boolean homomorphism, then 1y : UfA' — Uf2 is injective.

Proof. Again, without loss of generality we assume that 7 has only one modal operator, so
that we can write 2 = (4,+,—,0, f).

1. This part is left as an exercise.

2. Suppose that Qs u'u] ... u], holds between some ultrafilters u',u}, ..., u, of A'. To show
that Ay | Qpnyu'nyu]...n4ul, let a1,...,an be arbitrary elements of niuj, ..., niuy
respectively. Then, by definition of 74, 7a; € u}, so Qu'v] ... uy, gives f'(nay,...,nas) € v'.
Now the assumption yields 7f(a1,...,a,) € ¥/, as ultrafilters are upward closed. But then
f(a1,...,as) € nyu', which is what we wanted.

3. This part is left as an exercise.

4. This follows immediately from parts 1, 2 and 3.

5. Assume that 7 is injective, and let 4 be an ultrafilter of A. We want to follow the same

strategy as in Proposition 6.21(5), and define

nli] = {na | a € u}.

The difference with the earlier situation is that here, 74 (n[u]) is not well-defined, unless 7[u]
is an ultrafilter.

We will first show that n[u] is a proper filter of A'. For (F1), 1 € u, so (1) =1 € nfu]. For
(F2), assume a’,b’' € nfu]. Then there are a,b in A such that ne = o’ and b = ¥'. It follows
that n(a - b) = n(a) - n(b) = a’ - b’ € n[u], so n[u] is closed under intersection. Likewise, one
can show that 7 is upwards closed. Finally, suppose that 0’ € n[u]. Then 0’ = 5(a) for some
a € u; as 0' = 7(0), injectivity of 7 gives that 0 = a, and hence, 0 € u. But then u is not an
ultrafilter.

By the Ultrafilter Theorem 6.2, n[u] can be extended to an ultrafilter u’. We claim that
u = n4(u'). First let a be in u, then na € nu] C v/, so a € ny(u'). This shows that
u C ny(u'). For the other inclusion, it suffices to show that a & 74 (u') if a & u; we reason as
follows:

a€u —a €u

—n(a) = n(-a) € nlu]
—n(a) € v/

n(a) & v’

a & n+(v)

6. Similar to Proposition 6.21, part 6. -

Y

7. APPLICATIONS OF DUALITY

In this last section we put some threads together and show how we can use the duality
between frames and algebras to give very short proofs for some major theorems in the theory
of modal logics.

Our first example shows that all the results given in Proposition 2.22 on the preservation of
modal validity under certain frame operations fall out as simple consequences of the preser-
vation results concerning equational validity under taking subalgebras, homomorphic images
and products of algebras.
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Proposition 7.1 Let 7 be a modal similarity type, ¢ a 7-formula and § a 7-frame. Then
1. If & is a bounded morphic image of §, then & |= ¢ if § = ¢.
2. If @ is a generated subframe of §, then & = ¢ if § = ¢.
3. If § is the disjoint union of a family {F; | i € I}, then § |= ¢ if for everyi € I, §; = ¢.

Proof. We only prove the first part of the Proposition, leaving the other parts as an exercise
to the reader.

Assume that § - &, and § |= ¢. By Proposition 5.8, we have §+ |= ¢' = 1, and by
Theorem 6.17, &7 is a subalgebra of F+. So by the fact that equational validity is preserved
under taking subalgebras, we obtain that ¢! = 1 holds in &*. But then Proposition 5.8
implies that & =¢.

Our second example is a very simple proof of the Goldblatt-Thomason Theorem, which
gives a precise structural characterization of the first-order definable classes of frames which
are modally definable. Once we have set up the basic duality framework, this theorem is
a more or less immediate corollary of Birkhoff’s Theorem identifying equational classes and
varieties:

Theorem 7.2 Let T be a modal similarity type. A first-order definable class K of T-frames is
modally definable if and only if it is closed under taking bounded morphic images, generated
subframes, disjoint unions and it reflects’ ultrafilter extensions.

Proof. Let K be a class of frames satisfying the closure conditions given in the theorem. It
suffices to show that any frame § validating the modal theory of K, is itself a member of K.

Let § be such a frame. It is not difficult to show that Proposition 5.8 implies that F+
is a model for the equational theory of the class CmK. It follows by Birkhoff’s Theorem
(identifying varieties and equational classes) that §* is in the variety generated by CmK, so
§t is in HSPCmK. In other words, there is a family (®;);c; of frames in K, and there are
boolean algebras with operators 2 and 28 such that

1. B is the product [];c; &7 of the complex algebras of the &;,
2. 2 is a subalgebra of ‘B, and

3. §* is a homomorphic image of 2.

By Theorem 6.18, ‘B is isomorphic to the complex algebra of the disjoint union & of the
family (&;)ier:
B=6t =(ly8;)".
B §
As K is closed under taking disjoint unions, & is in K.
Now we have the following picture:

"This is to say that § is a member of K whenever ue g is.
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FreA— o6t

By Theorem 6.17 it follows that
@FH)s — Ay « (61)4

Since K is closed under ultrapowers, Theorem 6.14 gives that (1), = ue® is in K. As K
is closed under taking bounded morphic images and generated subframes, it follows that Ay
and ue§ = (§+); (in that order) are in K. But then § itself is also a member of K, since K
reflects ultrafilter extensions. -

As an important application, we return to the concept of canonicity. Here we will prove
an important result and mention an intriguing open problem, both having to do with the
relation between canonical varieties and first-order definable classes of frames. First we need
a definition:

Definition 7.3 Let 7 be modal similarity type, and K be a class of 7-frames. The variety
generated by K, notation: Vi, is the class HSPCmK.

Theorem 7.4 Let 7 be modal similarity type, and K be a class of T-frames which is closed
under ultraproducts. Then the variety Vi is canonical.

Proof. Assume that the class K of 7-frames is closed under taking ultraproducts. We will
first prove that the class HSCmK is canonical. Let 2 be in this class, i.e., assume that there
is a frame § in K and an algebra B such that '

A« B— FT.
It follows from Theorem 6.17 that
EmA « EmB — EmFT = (ueF)*. (7.39)

From Theorem 6.14 we know that ue§ is the bounded morphic image of some ultrapower &
of . Note that & is in K, by our assumption. Now Theorem 6.17 gives

(ueF)t — &*. (7.40)

Since 8= is in CmK, (7.39) and (7.40) together imply that 2 is in HSCmK. Hence this
class is canonical.

To prove that the variety generated by K is canonical, we have to do some extra work, and
we need one additional lemma:

Fact 7.5 Let 7 be a modal similarity type, and K a class of 7-frames. Suppose that & is an
ultrapower of the disjoint union ;¢ §i, where {§; | 7 € I'} is a family of frames in K. Then
® is a bounded morphic image of a disjoint union of ultraproducts of frames in K.

For a proof of this Fact, which is essentially a result of Goldblatt, we refer to [15] or [4].
Now assume that 2 is Vx = HSPCmK. In other words, there are a family {J; | i € I} of
frames in K and an algebra B such that
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A« B [[5
i€l
In order to prove that €m2 is in V, it suffices to show that €m([[;c;F7) is in SPCmK —

the remainder of the proof is as before. Let § be the frame ;¢ F:, then by Theorem 6.18,
Ft 2 L;es 87 Hence, by Theorem 6.17:

em(I]8) 2 ()" = @eF)* (7.41)
iel
By Theorem 6.14, there is an ultrapower & of § such that & —» ue§. Now we apply our Fact,

yielding a frame $) such that (i) 5 is a disjoint union of ultraproducts of frames in K and (ii)
$H —» 6. Putting these observations together in a picture, we now have:

ue§ « 6 « 9,
Hence, by Theorem 6.17:
(et — &7 — Ht. (7.42)

Note that $j is a disjoint union of K-frames, since K is closed under taking ultraproducts. This
implies that $* is in PCmK. But then it follows from (7.41) and (7.42) that €m([;c; 37)
is in SPCmK, which is what we needed. -

Example 7.6 Consider the modal similarity type {o,®, 6} of arrow logic, where o is binary,
® is unary and 6 is a constant (cf. Example 1.8). The standard interpretation of this language
is given by the so-called squares: a square is a frame § = (W, C, F,I) where for some base
set U:
W = UxU
C((u,v), (w,x),(y,2)) if u=w and v=2 and =y
F((u,v),(w,z)) if wu=2z and v=w
I(u,v) ff u=v

[

It is not very difficult to show that the class SQ of (isomorphic copies of) squares allows a
first-order definition (in the frame language with predicates C, F and I), cf. [26] for a proof.
Therefore, Theorem 7.4 implies that the variety generated by SQ is canonical. This variety is
well-known in the literature on algebraic logic as the variety RRA of Representable Relation
Algebras (cf. [20]).

Rephrased in terminology from modal logic, Theorem 7.4 boils down to the following result,
originally due to Fine (for the standard similarity type):

Corollary 7.7 Let 7 be modal similarity type, and K be a class of T-frames which is closed
under ultraproducts. Then the modal theory of K is a canonical logic.

We now return to the (simple) Sahlqvist formulas of Section 3. There it was proved that
every Sahlqvist formula corresponds to a first-order frame condition. This correspondence
result can now be used to show that all Sahlqvist logics are canonical. This result has
tremendous consequences in the completeness theory of modal logic, since it is a general
theorem applying to many important frame classes.
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Theorem 7.8 Let 7 be modal similarity type, and X a set of Sahlgquist azioms. Then
1. Vyx 18 a canonical variety.

2. KX is a canonical logic and hence complete with respect to the class of frames defined
by ¥ (or, equivalently, by its first-order correspondents). '

Proof. Let ¥ be a set of Sahlqvist axioms. By Theorem 3.18, X defines an first-order definable
class K of 7-frames; it follows from Birkhoff’s Theorem (identifying varieties and equational
classes) that Vy, = V. As K is closed under taking ultraproducts, this variety is canonical.
So, Proposition 6.8 implies that the logic KX is a canonical logic. -

Note that Theorem 4.21 is an immediate corollary of the result above.
Let us finish this section with stating the question whether the obvious converse to Theorem
7.4 holds as well. This is in fact the foremost Open Problem in this area:

Open Problem 2 Let 7 be modal similarity type, and V a canonical variety of boolean alge-
bras wi:h T-operators. Is there a class K of T-frames, closed under taking ultraproducts, such
that V is generated by K?

Part IV: Notes

We conclude this paper with a few comments on topics on the interface of modal logic and
boolean algebras with operators that we didn’t cover, and with some suggestions for further
reading.

A very important paper with implications for modal logic is Jénsson and Tarski’s paper
of 1951 [17]. If it had been widely read when it was published, the history of modal logic
might have looked different. This paper extends the Stone duality for boolean algebras (see,
for example, [21]) to boolean algebras with operators. Moreover, the paper shows that to
get a full duality between modal frames and modal algebras one needs to consider so-called
general frames. In the case of the standard modal language, these are structures of the form

(W,R,V)

where V is a collection of subsets of W that is closed under complementation, intersection
and the operator mg from Section 5. What we then get is a categorial duality between modal
algebras and general frames. We refer the reader to Goldblatt’s [12] for further details on the
duality between frames and boolean algebras with operators.

In these notes we exploited the connection between frames and algebras mainly to get
completeness results. But the connection can exploited to transfer many more results between
logics and algebras. Here are a few examples of pairs of corresponding (modal) logical and
algebraic properties:

Finite axiomatizability Generating a finitely axiomatizable quasivariety
Finite frame property Finite algebra property

Consequence compactness Closure under ultrapowers

Craig Interpolation Strong Amalgamation

Deduction theorem Equationally definable principal congruences.
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We refer the reader to Németi [20], and Blok and Pigozzi [6] for further details on algebraic
counterparts of logical properties. Both papers also present valuable discussions about the
question which logics have an algebraic counterpart.

Another important issue on the borderline between modal logic and boolean algebras with
operators is the lattice of modal logics. The observation that the lattice of normal extensions
of K is dually isomorphic to the lattice of subvarieties of the variety of modal algebras has
beéen used by Blok [5] to invoke powerful results from the theory of lattices of varieties. As
a consequence, one can get strong results on incompleteness, or on tabular and pretabular
logics.

Finally, in these notes we concentrated on normal modal logics whose semantics employ
arbitrary relations. As was briefly pointed out in the introduction, over the past decade or so
there has been considerable interest in looking at modal languages that escape this format.
On the one hand people have looked at richer laniguages that explore special relations, or
at languages with non-normal modal operators. As an example of the former, one modal
operator that has been considered is the universal modality A whose truth definition reads:
z I Ag iff for all y: y I- ¢: the algebraic semantics for this modal language is explored in
Goranko and Passy [16]. As another example, the binary modal operator Until whose truth
definition reads

z Ik Until(¢,v) iff Jy(RzyAylk ¢ AVz(Rzz A Rzy — z IF ),

doesn’t have a decent algebraic semantics as far as we know. On the other hand, weaker
modal languages, and in particular, languages that aren’t based on boolean algebras, but on
alternative structures such as distributive lattices or Heyting algebras, have also been studied
extensively; we refer the reader to Goldblatt’s [14] for details.
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