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Abstract

We introduce a notion of bisimulation for graded modal logic. Using
these bisimulations the model theory of graded modal logic can be
developed in a uniform manner. We illustrate this by establishing the
finite model property, and proving invariance and definability results.

1 Introduction

The language of graded modal logic (GML) has modal operators <; (for
i € N) that can count the number of successors of a given state: a state w in
a model (W, R, V') satisfies ©;¢ iff there exist at least n R-related states that
satisfy ¢. Originally introduced in the early 1970s [9, 10], the language has
enjoyed an increased interest during the past few years, especially because
of its considerable expressive power. Formal logical and algebraic results
on axiomatizability, decidability, and expressive completeness over bounded
trees have been reported in a number of papers [2, 3, 5, 7, 8, 12, 20], and
the language has shown up in various guises in knowledge representation,
generalized quantifier theory, algebraic logic, and fuzzy reasoning [6, 13, 14,
17, 18].

This note is concerned with graded modal logic as a description language
for reasoning about models. It is part of a larger enterprise to study the
model theory — and in particular, the expressive power — of restricted
description languages such as modal and temporal languages, terminological
logics and feature logics (cf. [1, 15, 16, 19]). Bisimulations have proved to
be a very powerful tool in this area, but so far a version of bisimulation
that is appropriate for graded modal logic has not been proposed. As a
consequence, the model theory of graded modal logic is not as well developed
as the model theory of, say, standard modal or temporal logic. In this
note we propose a notion of bisimulation, called g-bisimulation that ‘fits’
GML exactly in the sense that a first-order formula is invariant under g-
bisimulations iff it is equivalent to a graded modal formula (cf. Theorem 4.3
below).



The remainder of this note is organized as follows. The next section
introduces the main notions needed. In Section 3 g-bisimulations are defined.
In Section 4 we first give a quick and intuitive proof for the finite model
property of GML using g-bisimulations, and then prove the above invariance
theorem, as well as two results on definability. Section 5 contains some
concluding comments.

2 Basic Definitions

Graded modal formulas are built up using propositional variables p, ¢, ...,
the constants T and L, boolean connectives =, A, and the unary temporal
operators <; and 0;. We use Lguyr to denote this language.

A model is a triple M = (W,R,V), where W is a non-empty set of
states, R is a binary relation on W, and V is a valuation, that is: a function
assigning a subset of W to every proposition letter.

The satisfaction relation is defined in the familiar way for the atomic
and boolean cases, while for the modal operators we put

M,w |= O iff

dvy ...y /\ (Uj;évk)/\ /\ vaj/\ /\ Ma“j |:¢

1<j#k<i 1<5<i 1<<i

and M,w |= 0;¢ iff M,w = —0;-¢.

The graded modal type of a state is simply the set of all graded modal
formulas satisfied by the state: tp(w) = {¢ | w |= ¢}; if necessary we record
the model M in which w lives as a subscript: #p,,;(w). Two states w, v are
graded modally equivalent if tp(w) = tp(v) (notation: w =4 v). If X is a set
of states, we write X |= ¢ to denote that for all x € X, z |= ¢.

Let L£; be the first-order language with unary predicate symbols corre-
sponding to the proposition letters in Lgar, and with one binary relation
symbol R.

Models can be viewed as Li-structures in the usual first-order sense. The
standard translation takes graded modal formulas ¢ into equivalent formulas
ST.(¢) in L1. Tt maps proposition letters p onto unary predicate symbols
Pz, it commutes with the booleans, and the modal cases are given by

ST(Ci) = Fy-wi | N Wi#uw) A )\ (Roy; AST,(9) ),

1<j#k<i 1<j<i

and similarly for the box operators O;. For all models M and states w we
have M,w = ¢ iff M = ST,(¢)[w], where the latter denotes first-order
satisfaction of ST.(¢) under the assignment of w to the free variable of

ST ().



3 G-bisimulations

In this section we introduce the main notion of this note: g-bisimulations.
In [19] bisimulations are advocated as the central tool in the model theory
of modal logic; see [15, 16] for case studies implementing this strategy for
Since, Until logic, and for negation-free modal logics. In Section 4 below we
will use g-bisimulations to establish the finite model property, and to prove
invariance and definability results for graded modal logic, thus showing that
g-bisimulations can play a similar central role in the model theory of graded
modal logic.
By way of introduction we first consider bisimulations.

Definition 3.1 Let M; = (Wq, Ry, V1), My = (W3, Ry, V) be two models.
A bisimulation between M; and My is a relation Z C (W7 x W3) of relations
satisfying the following requirements:

1. Z is non-empty;

2. if £Zy, then z |=p iff y |= p, for all proposition letters p;

3. if zZy and Ryzx’, then there exists ¢y € Wy with Royy’ and z' Zy/;
4. if zZy and Rayy', then there exists ' € Wy with Ryzz’ and 2’ Zy/'.

We write Z : My,x & Mo,y to denote that Z is a bisimulation with zZy.

Graded modal formulas are not preserved under bisimulations. To see
this, consider the following two models M; and M,, where M; = ({0, 1,2},
{(0,1), (0,2)}, V1), My = ({3,4}, {(3,4)}, V2), and V; and V3 verify all
proposition letters true in all states; see Figure 1). The relation indicated
by the dotted line in Figure 1 is a bisimulation between M; and M>. But
0#,3,as 0 |= OoT, while 3 & OoT.

Myl g M,

Figure 1: Bisimilar but not equivalent.

To define a truth-preserving notion of bisimulation for graded modal
logic, we need the following definitions. If X is a set, we write P<¥(X)
to denote the collection of all finite subsets of X, and |X| to denote its
cardinality. Also, we write R*zX to denote that for all 2’ € X, Rzz’ holds.



Definition 3.2 Let M; = (Wq, Ry, V1), My = (W3, Ry, V) be two models.
A g-bisimulation between M; and M is a tuple Z = (41, Zs, . ..) of relations
satisfying the following requirements:

1. Z; is non-empty;

2. for all i, Z; C P<¥(W7) x P<¥(Wa);

3. if XZ;Y, then | X| = |Y] = 4;

4. if {x}Z1{y}, then z |=p iff y |= p, for all proposition letters p;

5. if {z}Z1{y} and R}zX, where |X| = ¢ > 1, then there exists Y €
P<¥(Ws) with RSyY and X Z;Y;

6. if {}Z;{y} and RSyY, where |Y| = ¢ > 1, then there exists X €
P<¥(Wy) with R{zX and X Z;Y;

7. if XZ;Y, then

(a) for all z € X there exists y € Y with {z}Z,{y}, and
(b) for all y € Y there exists z € X with {z}Z;{y}.

We write Z : M,z <4 M,y to denote that Z is a g-bisimulation with

{z}Z1{y}-

To grasp the intuition behind Definition 3.2, reconsider the definition of
a (normal) bisimulation. There, bisimilar states satisfy the same (standard)
modal formulas in <&, O because they satisfy the same proposition letters
(Definition 3.1, item 2), and because the relevant relational patterns present
in the one model are mirrored in the other model (Definition 3.1, items 3
and 4). To guarantee that g-bisimilar states satisfy the same graded modal
formulas, one requires, firstly, that they satisfy the same proposition letters
(Definition 3.2, item 4). Next, to preserve formulas of the form <&@, sets of
successors of size 4 present in the one model should be mirrored in the other
(Definition 3.2, items 5 and 6). If two such sets ‘mirror’ each other, and all
the states in the one set agree on a formula, then all the states in the other
should do so as well (Definition 3.2, items 7(a), (b)).

Proposition 3.3 Let My, Ms be two models, and let Z be a bisimulation
between My and My with Z : wy £ 4 we. Then, wy =4 wa.

Proof. The proof is by induction on formulas. The atomic and boolean cases
are trivial. For the modal case, assume that w; = <;¢. Then there exists
X, € P<¥(Wy) with RYw X1, |X1] =i and X; | ¢. By Definition 3.2,
items 5 and 3, there exists Xy € P<¥(Wy) with X;Z; X5, RiwsXo, and
| X2| = i. We're done once we’ve shown that Xy |= ¢, for then we = ;6.



To this end, pick any vs € Xs. By Definition 3.2, item 7(b), there exists
v1 € X1 with {v1}Z1{v2}. As X; = ¢, we get v1 = ¢, and by the inductive
hypothesis this implies vo = ¢.

As a corollary, the models M; and M, depicted in Figure 1 are not g-
bisimilar.

By restricting the definition of g-bisimulation to just a finite tuple (71,
..., Z,) we arrive at the notion of g-bisimulation; we write My, w <4, My, v
to denote that there is a gi-bisimulation between w and v. This notion
of bisimulation is appropriate for the fragment Ly in which all modal
operators <; and O; have subscripts ¢ < k. In particular, for £ = 1 we get
a notion that is equivalent to the standard notion of bisimulation defined in
Definition 3.1.

Another restriction, which does not limit the length of the tuple (Z1,...),
but rather the number of times the clauses in Definition 3.2 can be applied
starting from a given pair of points.

Definition 3.4 Let M; = (Wy, Ry, V1), My = (W3, Ry, V3) be two models,

and let m be a natural number. A g-bisimulation up to m between M; and

M is a sequence of tuples of relations Z° = (29, Z9,...), z' = (Z1,Z},..)),
c I = (27, Z5, . . .) satisfying the following requirements:

1. Z? is non-empty;

2. ZM C ... C Z0 C P (W) x P<¥(Ws);

3. if XZJY, then |X| =|Y| =1 (j < m);

4. if {z}Z0{y}, then z |= p iff y |= p, for all proposition letters p;

5. if {x}ZfH{y}, where j +1 < m, and Rjz X, where |X| =1 > 1, then
there exists Y € P<“(W5) with RSyY and X Z]Y;

6. similar to item 5;

7. like item 7 of Definition 3.2, but with Z/ and Z/ instead of Z; and Z,
(j <m).

The notion of a gi-bisimulation up to m is defined similarly.

We write My, z <" My, y to denote that there is a g-bisimulation up to
m between My and Ny, say Z°, ..., Z™, such that {z}Z){y}. The notation
<4, has the obvious meaning.

Let M = (W, R, V) be a model, and assume w € W. For each n € N we
define the n-hull Hy,(w) around w in M as follows. The 0-hull Hy is simply
{w}; the (n + 1)-hull is the set H,, 11 := {u | Jv € H, (Rvu)}.



We write M,, to denote the submodel of M that is generated by w. That
is, My, is the submodel of M whose domain is J,, H,(w). Clearly, for any
model M and state w in M, M <, M,,.

If M is generated by w, we define the restriction of M to depth m,
notation: M [ m, to be the submodel of M whose domain is the set

Uogjgm Hj(w).
Proposition 3.5 Let M be generated by a w. Then M,w <7 (M [ m),w.

The degree of a graded modal formula is simply the largest number of
nested modal operators occurring in it. The index of a formula is the highest
natural number 7 such that the modal operator <; occurs in the formula.

Proposition 3.6 Let My, My be two models, and let w, v be states in My
and Ma, respectively. If My,w <g" Ms,v, then w and v verify the same
graded modal formulas of degree at most m.

4 Results

In this section we first give a new and intuitive proof of the finite model
property for graded modal logic using g-bisimulations. We then use g-
bisimulations to prove the main results of this note: invariance and de-
finability.

§4.1. Finite Model Property. The finite model property for graded
modal logic was first established in [11]; see also [3, 12]. The proof presented
below is attractive because it clearly brings out the two obvious reasons why
L aur has the finite model property; to determine the truth of falsehood of
a graded modal formula only R-paths wR --- Rv of finite length are needed,
and every state on such a path only needs finitely many successors.

Let’s get to work. Fix a satisfiable formula ¢ with degree m and index k.
Let M and w be such that M, w = ¢. We will construct a finite submodel of
M that is still a model for ¢. First, we may assume that M = M,,. Consider
M | m; it only has finite R-paths, and (M | w),w |= ¢. Now (M [ m) need
not be finite, as it may be infinitely branching.

Consider the sublanguage Lagumr(¢) in which all formulas are built up
using only proposition letters that occur in ¢. It is easily verified that there
are only finitely many non-equivalent formulas in Lgpg(¢) with degree at
most m and index at most k.

Our final model (M | m)<F is defined as follows. Its domain is the union
of certain subsets HY, ..., H}], of the domain of (M | m). Here H| = {w},

and to define H;,, (j +1 < m) do the following:



set Hj 1 =10
for all z € H;
for each of the finitely many non-equivalent £ gz (¢)-formulas 1)
select as many as possible (but at most k) R-successors y of x
with y = ¢
add these states to H} 4
end.

The relation and valuation of (M | m)<F are simply the restrictions to the

domain of (M | m)Sk. Clearly, (M | m)<F is finite, and (M | m)<k iy
(M | m).
Putting things together, we arrive at the following result:

Theorem 4.1 Ly has the finite model property.

§4.2. Invariance. We need the following notion. A model M is w-
saturated model (in the sense of first-order logic) if whenever A is a set
of formulas in £/, where £ extends £ by the addition of fewer than w new
individual constants, and A is finitely satisfiable in an £)-expansion of M,
then A is satisfiable in this expansion.

Lemma 4.2 Let My, M> be two w-saturated models, and let wy € Wi and
wy € Wa. Then tp(wi) = tp(we) iff w1 4 wo.

Proof. The right-to-left implication is Proposition 3.3. For the left to right
implication, assume that w; =, wy, and define a series of relations Z =
(Zy1,...) between the finite subsets of W7 and W5 by putting (for ¢ > 1):

XlZiXQ iff |X1| = |X2| =1 and
Va1 € Xq13xe € Xotp(z1) = tp(x2) and
Vag € Xodzy € Xy tp(z1) = tp(z2).

Let us check that this defines a graded bisimulation between w; and ws.
First, as tp(wy) = tp(ws), Z1 is non-empty. Conditions 2, 3, and 4 from
Definition 3.2 are trivially fulfilled.

As to condition 5, assume w;Zjwy and Rjw X, where | X;| = i. We
need to find a finite set Xy C Wy with RSwy Xy and X;Z; X5. Assume that
X1 = {v11, ..., v1;}. Consider the types generated by the states in Xj;
clearly, some of them may coincide. Let tpy, ..., tp,, (n <) be a minimal
collection of types such that every ¢p; coincides with one of tp(v11), -
tp(v1;), and such that for every vi; there exists a tp, with tp, = tp(vi;).
Next, we need to record, for each type tp;, ..., tp,, by how many states in
X, it is generated; for y =1, ..., n let

mj = [{vix | tp; = tp(vig), 1 <k <}l

7



Figure 2: The successor types of w;.

Then } 7, = i; see Figure 2.
Consider the following collection of formulas:

W U ((Beyll1<k<m) U {@#v)|1<k#1<m)
1<j<n

U {ST (@) |6 € tpj, 1<k <my})

We want to satisfy the set of formulas (1) at wy in Ms. If we succeed
in doing so, then, for each type fp; we have forced the existence of m;
successors of wy satisfying ¢p;. Putting these successors together gives us a
set X of size i, as required. (To see this, observe first that for each ¢p j we
will have m; states at which it is realized; and, second, that no state can
realize two different types, as types are maximal.) Moreover, it is obvious
that for each state z1 in X1, there will be a state zo € X9 with {z1}Z1{x2},
and conversely. Thus X7 Z; X5, and we have established condition 5.

Let us see why all of (1) is satisfiable at ws. Since Ms is w-saturated, it
suffices to show that (1) is finitely satisfiable at wy. Assume for the sake of
contradiction that this is not the case. Then there exist finite sets &1 C ipy,
...y, Dy C tp,, such that

2 My~ A 3..vh | N\ Ry
1<j<n 1<k<m;

AN wAEDA N ST (@) ] ]

1<k#I<m; 1<k<m;

is not satisfiable. Now (2) is equivalent to

My, ws |= = (<>m1 (/\@1) AeiAOm, (/\qﬁn))
My, wi = Oy (N8 A n O, (A ).

this contradicts {w;}Zi{w2}. Hence, (1) is finitely satisfiable in w9, as
required.

But as



Finally, condition 6 is proved analogously to condition 5, and condition 7
is immediate from the definition of Z. -

An L;-formula a(z) is invariant under g-bisimulations if for all models
M; and Ms, all states wy; in M; and wy in Ms, and g-bisimulations Z =
(Z1,...) between My and My, {w;}Z1{we} implies that My = «afw] iff
M2 |: Oé[ﬂ]Q].

Theorem 4.3 (Invariance) Assume that Ly is countable. An Li-formula
is (equivalent to the translation of ) a graded modal formula iff it is invariant
under g-bisimulations.

Proof. The right-to-left implication is simply Proposition 3.3. For the other
direction, assume that «(z) is preserved under directed simulations. By a
simple compactness argument it suffices to show that

(3)  GML-Cons(a) :={ST,(¢) | a = STx(¢) and ¢ € Loy} E .

To prove (3), assume that M = GML-Cons(a)[w]; we have to show that
M = afw].
The proof of the following claim is left to the reader:

Claim 1. The set {a(z)} U{ST»(p) | ¢ € tp(w)} is satisfiable.

Using Claim 1, we find a model N and state v with N |= a[v] and N,v |=
tp(w). The following is immediate:

Claim 2. tpy(v) = tpy(w).

Now, to conclude the proof we want to ‘lift’ a from N, v to M, w. To do so,
take two w-saturated elementary extensions N™,v and M, w of N,v and
M, w, respectively (cf. [4, Theorem 6.1]. Then &p,,+(w) = tpy+(v), and so
by Lemma 4.2 we get that M, w <, N*,v. A walk around the following
diagram completes the proof:

tpp(w) = tpn(v)

M, w N,v

< <

M™*, w put NT, .

That is, N |= a[v] implies N* |= a[v] by elementary extension. As N*, v ¢,
M™,w it follows that M |= afw], and hence M = afw], as required.



§4.3. Definability. To simplify the presentation, we will work with
pointed models; these are structures of the form (M, w), where w is a state
in M, called the distinguished point of (M,w). We will assume that g-
bisimulations between two pointed models link the singletons containing
their distinguished points.

Let K be a class of pointed models. Then K is definable by a set of graded
modal formulas if there exists a set of formulas A such that K = {(M,w) |
(M,w) = A}; K is definable by a single formula if it is definable by means
of a singleton set; K denotes the class of pointed models outside K.

K is closed under ultraproducts (ultrapowers) if every ultraproduct (ul-
trapower) of models in K is itself in K; K is closed under g-bisimulations if
every model g-bisimilar to a model in K is in K.

Theorem 4.4 (Definability 1) Assume that Lgpg is countable, and let
K be a class of pointed models. Then

1. K s definable by a set of graded modal formulas iff K is closed under
g-bisimulations and ultraproducts, while K is closed under ultrapowers.

2. K is definable by a single graded modal formula iff K is closed under g-
bisimulations and ultraproducts, while K is closed under ultraproducts.

Proof. 1. The only if direction is easy. For the converse, we can ‘bisimulate’
familiar arguments from first-order model theory. Assume K is closed under
ultraproducts and g-bisimulations, while K is closed under ultrapowers. Let
A = (tp(aray () | (M, w) € K},

We will show that A defines K. First, K = A. Second, assume that
(M, w) = A; we need to show (M, w) € K. Consider tp(y,,,)(w), and define
I ={¥ C tprw)(w) | |¥| < w}. For each i = {01,...,0,} € I there is a
model (N;,v;) of i in K. By standard model-theoretic arguments there exists
an ultraproduct (N,v) = [[;(Ni,v;) such that tp(y ) (v) = tp(arw)(w). As
K is closed under ultraproducts (N, v) € K.

Now, let U’ be a countably incomplete ultrafilter, and consider the ul-
trapowers

(N*,v*) == [[(V,v) and (M*,w*) = [[(M,w).
o U’

Both (N*,v*) and (M*,w*) are w-saturated (cf. [4, Theorem 6.1]), and
tp(w*) = tp(v*). Hence, by Lemma 4.2, (N*,v*) &, (M*,w*). By closure
under ultraproducts (N*,v*) € K, and by closure under g-bisimulations
(M*,w*) € K. Since K is closed under ultrapowers, we get (M, w) € K, as
required.

2. Again, the only if direction is easy. Assume K, K satisfy the stated
conditions. Then both are closed under ultrapowers, hence, by item 1, there
are sets of graded modal formulas A;, A, defining K and K, respectively.

10



Obviously, Ay U Ay = L, so by compactness for some ¢y, ..., ¢, € Ay, 11,
oy ¥Ym € Ao, we have \; ¢; = \/j —upj. Then K is defined by A, ¢;. 4

To conclude this section we present an alternative and more manageable
characterization of the properties definable in graded modal logic.

Theorem 4.5 (Definability 2) Assume that Lauyy contains only finitely
many proposition letters, and let K be a class of pointed models. Then K
is definable by a single graded modal formula iff, for some k, m € N, K is
closed under gp-bisimulations up to m.

Proof. Clearly, if K is negation-free definable by a single formula of degree
m and index k, then it is closed under gi-bisimulations up to m. To prove
the converse, let (M7, w;) € K, and define ¢]1€\/’1Tw1 to be the conjunction of
all formulas in #p,,;(w) of index at most k£ and degree at most m — as we
are working in a finite language, we can assume that there are only finitely
many non-equivalent graded modal formulas of index at k& and degree at
most m, hence we may assume ¢IJCV’ITw1 to be a (finitary) formula in L£gpy,.

Using the finite character of the language again, we find that there are
only finitely many non-equivalent formulas qbﬁ/;:’fu for (M, w) € K. Let k™
be their disjunction. Then "™ defines K. For, assume that (M, w) |=
o™ we need to show that (My,w;) € K. First, from (M, w;) | &*™ it
follows that for some (Msy,ws) € K, (M, w;) agrees with (M, ws) on all
graded modal formulas of index at most £ and degree at most m. Second,
the latter fact implies that My, wy €7 Ms, ws. To see this, define tuples of
relations Z° = (29, ..., Z0), ..., Z™ = (Z", ..., Z") by

. {x}Zf{y}, for j =0, ..., m, iff z and y satisfy the same graded modal
formulas of index at most k£ and degree at most j; and

o XZ)Y fori=2 ..., kand j =0, ..., m—1,iff | X| = [Y| =i and
Vz € X3y € Y {z}Z{{y} and Vy € Y3z € X {z}Z]{y}.

Then Z°, ..., Z™ is a gj-bisimulation up to m that links M;, w; to Moy, ws.
As (M3, w9) € K and K is closed under gg-bisimulations up to m, this implies
(M, wq) € K, and we are done.

5 Conclusion

In this note g-bisimulations were introduced as a tool for exploring the model
theory of graded modal logic. Their usefulness was demonstrated by their
use in obtaining both known results (the finite model property) and new
ones (invariance and definability).

Now that a working notion of bisimulation is available for graded modal
logic, it may be used to obtain further results on the model (and frame)

11



theory of graded modal logic. Obvious questions to be answered next include
the following: Can g-bisimulations be used to prove a Goldblatt-Thomason
style result about the classes of frames definable in Lga,?7 What is the
appropriate kind of Ehrenfeucht-Fraissé style games needed to prove analogs
of the results in this note for the class of finite models? Fragments of
Lt have been used in terminological reasoning [6]; can these fragments
be characterized by adapting the notion of g-bisimulation?
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