
A Note on Graded Modal LogicMaarten de RijkeDept. of Computer Science, University of WarwickCoventry CV4 7AL, Englandmdr@dcs.warwick.ac.ukAbstractWe introduce a notion of bisimulation for graded modal logic. Usingthese bisimulations the model theory of graded modal logic can bedeveloped in a uniform manner. We illustrate this by establishing the�nite model property, and proving invariance and de�nability results.1 IntroductionThe language of graded modal logic (GML) has modal operators 3i (fori 2 N) that can count the number of successors of a given state: a state w ina model (W;R; V ) satis�es 3i� i� there exist at least n R-related states thatsatisfy �. Originally introduced in the early 1970s [9, 10], the language hasenjoyed an increased interest during the past few years, especially becauseof its considerable expressive power. Formal logical and algebraic resultson axiomatizability, decidability, and expressive completeness over boundedtrees have been reported in a number of papers [2, 3, 5, 7, 8, 12, 20], andthe language has shown up in various guises in knowledge representation,generalized quanti�er theory, algebraic logic, and fuzzy reasoning [6, 13, 14,17, 18].This note is concerned with graded modal logic as a description languagefor reasoning about models. It is part of a larger enterprise to study themodel theory | and in particular, the expressive power | of restricteddescription languages such as modal and temporal languages, terminologicallogics and feature logics (cf. [1, 15, 16, 19]). Bisimulations have proved tobe a very powerful tool in this area, but so far a version of bisimulationthat is appropriate for graded modal logic has not been proposed. As aconsequence, the model theory of graded modal logic is not as well developedas the model theory of, say, standard modal or temporal logic. In thisnote we propose a notion of bisimulation, called g-bisimulation that `�ts'GML exactly in the sense that a �rst-order formula is invariant under g-bisimulations i� it is equivalent to a graded modal formula (cf. Theorem 4.3below). 1



The remainder of this note is organized as follows. The next sectionintroduces the main notions needed. In Section 3 g-bisimulations are de�ned.In Section 4 we �rst give a quick and intuitive proof for the �nite modelproperty of GML using g-bisimulations, and then prove the above invariancetheorem, as well as two results on de�nability. Section 5 contains someconcluding comments.2 Basic De�nitionsGraded modal formulas are built up using propositional variables p, q, . . . ,the constants > and ?, boolean connectives :, ^, and the unary temporaloperators 3i and 2i. We use LGML to denote this language.A model is a triple M = (W;R; V ), where W is a non-empty set ofstates, R is a binary relation on W , and V is a valuation, that is: a functionassigning a subset of W to every proposition letter.The satisfaction relation is de�ned in the familiar way for the atomicand boolean cases, while for the modal operators we putM;w j= 3i� i�9v1 : : : vi0@ ^1�j 6=k�i(vj 6= vk) ^ ^1�j�iRwvj ^ ^1�j�iM;vj j= �1Aand M;w j= 2i� i� M;w j= :3i:�.The graded modal type of a state is simply the set of all graded modalformulas satis�ed by the state: tp(w) = f� j w j= �g; if necessary we recordthe model M in which w lives as a subscript: tpM (w). Two states w, v aregraded modally equivalent if tp(w) = tp(v) (notation: w �g v). If X is a setof states, we write X j= � to denote that for all x 2 X, x j= �.Let L1 be the �rst-order language with unary predicate symbols corre-sponding to the proposition letters in LGML, and with one binary relationsymbol R.Models can be viewed as L1-structures in the usual �rst-order sense. Thestandard translation takes graded modal formulas � into equivalent formulasST x(�) in L1. It maps proposition letters p onto unary predicate symbolsPx, it commutes with the booleans, and the modal cases are given byST x(3i�) = 9y1 : : : yi0@ ^1�j 6=k�i(yj 6= yk) ^ ^1�j�i(Rxyj ^ ST yj (�))1A;and similarly for the box operators 2i. For all models M and states w wehave M;w j= � i� M j= ST x(�)[w], where the latter denotes �rst-ordersatisfaction of ST x(�) under the assignment of w to the free variable ofST x(�). 2



3 G-bisimulationsIn this section we introduce the main notion of this note: g-bisimulations.In [19] bisimulations are advocated as the central tool in the model theoryof modal logic; see [15, 16] for case studies implementing this strategy forSince, Until logic, and for negation-free modal logics. In Section 4 below wewill use g-bisimulations to establish the �nite model property, and to proveinvariance and de�nability results for graded modal logic, thus showing thatg-bisimulations can play a similar central role in the model theory of gradedmodal logic.By way of introduction we �rst consider bisimulations.De�nition 3.1 Let M1 = (W1; R1; V1), M2 = (W2; R2; V2) be two models.A bisimulation betweenM1 andM2 is a relation Z � (W1�W2) of relationssatisfying the following requirements:1. Z is non-empty;2. if xZy, then x j= p i� y j= p, for all proposition letters p;3. if xZy and R1xx0, then there exists y0 2W2 with R2yy0 and x0Zy0;4. if xZy and R2yy0, then there exists x0 2W1 with R1xx0 and x0Zy0.We write Z :M1; x$ M2; y to denote that Z is a bisimulation with xZy.Graded modal formulas are not preserved under bisimulations. To seethis, consider the following two models M1 and M2, where M1 = (f0; 1; 2g,f(0; 1), (0; 2)g, V1), M2 = (f3; 4g, f(3; 4)g, V2), and V1 and V2 verify allproposition letters true in all states; see Figure 1). The relation indicatedby the dotted line in Figure 1 is a bisimulation between M1 and M2. But0 6�g 3, as 0 j= 32>, while 3 6j= 32>. M2M1 4321 0 6�����@@@@I uuu uuFigure 1: Bisimilar but not equivalent.To de�ne a truth-preserving notion of bisimulation for graded modallogic, we need the following de�nitions. If X is a set, we write P<!(X)to denote the collection of all �nite subsets of X, and jXj to denote itscardinality. Also, we write R�xX to denote that for all x0 2 X, Rxx0 holds.3



De�nition 3.2 Let M1 = (W1; R1; V1), M2 = (W2; R2; V2) be two models.A g-bisimulation betweenM1 andM2 is a tuple Z = (Z1; Z2; : : :) of relationssatisfying the following requirements:1. Z1 is non-empty;2. for all i, Zi � P<!(W1)�P<!(W2);3. if XZiY , then jXj = jY j = i;4. if fxgZ1fyg, then x j= p i� y j= p, for all proposition letters p;5. if fxgZ1fyg and R�1xX, where jXj = i � 1, then there exists Y 2P<!(W2) with R�2yY and XZiY ;6. if fxgZ1fyg and R�2yY , where jY j = i � 1, then there exists X 2P<!(W1) with R�1xX and XZiY ;7. if XZiY , then(a) for all x 2 X there exists y 2 Y with fxgZ1fyg, and(b) for all y 2 Y there exists x 2 X with fxgZ1fyg.We write Z : M1; x $g M2; y to denote that Z is a g-bisimulation withfxgZ1fyg.To grasp the intuition behind De�nition 3.2, reconsider the de�nition ofa (normal) bisimulation. There, bisimilar states satisfy the same (standard)modal formulas in 3, 2 because they satisfy the same proposition letters(De�nition 3.1, item 2), and because the relevant relational patterns presentin the one model are mirrored in the other model (De�nition 3.1, items 3and 4). To guarantee that g-bisimilar states satisfy the same graded modalformulas, one requires, �rstly, that they satisfy the same proposition letters(De�nition 3.2, item 4). Next, to preserve formulas of the form 3�, sets ofsuccessors of size i present in the one model should be mirrored in the other(De�nition 3.2, items 5 and 6). If two such sets `mirror' each other, and allthe states in the one set agree on a formula, then all the states in the othershould do so as well (De�nition 3.2, items 7(a), (b)).Proposition 3.3 Let M1, M2 be two models, and let Z be a bisimulationbetween M1 and M2 with Z : w1 $g w2. Then, w1 �g w2.Proof. The proof is by induction on formulas. The atomic and boolean casesare trivial. For the modal case, assume that w1 j= 3i�. Then there existsX1 2 P<!(W1) with R�1w1X1, jX1j = i and X1 j= �. By De�nition 3.2,items 5 and 3, there exists X2 2 P<!(W2) with X1ZiX2, R�2w2X2, andjX2j = i. We're done once we've shown that X2 j= �, for then w2 j= 3i�.4



To this end, pick any v2 2 X2. By De�nition 3.2, item 7(b), there existsv1 2 X1 with fv1gZ1fv2g. As X1 j= �, we get v1 j= �, and by the inductivehypothesis this implies v2 j= �. aAs a corollary, the models M1 and M2 depicted in Figure 1 are not g-bisimilar.By restricting the de�nition of g-bisimulation to just a �nite tuple (Z1,. . . , Zk) we arrive at the notion of gk-bisimulation; we writeM1; w $gk M2; vto denote that there is a gk-bisimulation between w and v. This notionof bisimulation is appropriate for the fragment LGML in which all modaloperators 3i and 2i have subscripts i � k. In particular, for k = 1 we geta notion that is equivalent to the standard notion of bisimulation de�ned inDe�nition 3.1.Another restriction, which does not limit the length of the tuple (Z1; : : :),but rather the number of times the clauses in De�nition 3.2 can be appliedstarting from a given pair of points.De�nition 3.4 Let M1 = (W1; R1; V1), M2 = (W2; R2; V2) be two models,and let m be a natural number. A g-bisimulation up to m between M1 andM2 is a sequence of tuples of relations Z0 = (Z01 ; Z02 ; : : :), Z1 = (Z11 ; Z12 ; : : :),. . . , Zm = (Zm1 ; Zm2 ; : : :) satisfying the following requirements:1. Z01 is non-empty;2. Zmi � � � � � Z0i � P<!(W1)�P<!(W2);3. if XZji Y , then jXj = jY j = i (j � m);4. if fxgZ01fyg, then x j= p i� y j= p, for all proposition letters p;5. if fxgZj+11 fyg, where j + 1 � m, and R�1xX, where jXj = i � 1, thenthere exists Y 2 P<!(W2) with R�2yY and XZji Y ;6. similar to item 5;7. like item 7 of De�nition 3.2, but with Zji and Zj1 instead of Zi and Z1(j � m).The notion of a gk-bisimulation up to m is de�ned similarly.We write M1; x$mg M2; y to denote that there is a g-bisimulation up tom betweenM1 and N2, say Z0, . . . , Zm, such that fxgZ01fyg. The notation$mgk has the obvious meaning.Let M = (W;R; V ) be a model, and assume w 2W . For each n 2 N wede�ne the n-hull Hn(w) around w in M as follows. The 0-hull H0 is simplyfwg; the (n+ 1)-hull is the set Hn+1 := fu j 9v 2 Hn (Rvu)g.5



We writeMw to denote the submodel ofM that is generated by w. Thatis, Mw is the submodel of M whose domain is SnHn(w). Clearly, for anymodel M and state w in M , M $g Mw.If M is generated by w, we de�ne the restriction of M to depth m,notation: M � m, to be the submodel of M whose domain is the setS0�j�mHj(w).Proposition 3.5 Let M be generated by a w. Then M;w $mg (M � m); w.The degree of a graded modal formula is simply the largest number ofnested modal operators occurring in it. The index of a formula is the highestnatural number i such that the modal operator 3i occurs in the formula.Proposition 3.6 Let M1, M2 be two models, and let w, v be states in M1and M2, respectively. If M1; w $mg M2; v, then w and v verify the samegraded modal formulas of degree at most m.4 ResultsIn this section we �rst give a new and intuitive proof of the �nite modelproperty for graded modal logic using g-bisimulations. We then use g-bisimulations to prove the main results of this note: invariance and de-�nability.x4.1. Finite Model Property. The �nite model property for gradedmodal logic was �rst established in [11]; see also [3, 12]. The proof presentedbelow is attractive because it clearly brings out the two obvious reasons whyLGML has the �nite model property; to determine the truth of falsehood ofa graded modal formula only R-paths wR � � �Rv of �nite length are needed,and every state on such a path only needs �nitely many successors.Let's get to work. Fix a satis�able formula � with degree m and index k.LetM and w be such thatM;w j= �. We will construct a �nite submodel ofM that is still a model for �. First, we may assume thatM =Mw. ConsiderM � m; it only has �nite R-paths, and (M � w); w j= �. Now (M � m) neednot be �nite, as it may be in�nitely branching.Consider the sublanguage LGML(�) in which all formulas are built upusing only proposition letters that occur in �. It is easily veri�ed that thereare only �nitely many non-equivalent formulas in LGML(�) with degree atmost m and index at most k.Our �nal model (M � m)�k is de�ned as follows. Its domain is the unionof certain subsets H 00, . . . , H 0m of the domain of (M � m). Here H 00 = fwg,and to de�ne H 0j+1 (j + 1 � m) do the following:6



set H 0j+1 = ;for all x 2 H 0jfor each of the �nitely many non-equivalent LGML(�)-formulas  select as many as possible (but at most k) R-successors y of xwith y j=  add these states to H 0j+1end.The relation and valuation of (M � m)�k are simply the restrictions to thedomain of (M � m)�k. Clearly, (M � m)�k is �nite, and (M � m)�k $mgk(M � m).Putting things together, we arrive at the following result:Theorem 4.1 LGML has the �nite model property.x4.2. Invariance. We need the following notion. A model M is !-saturated model (in the sense of �rst-order logic) if whenever � is a setof formulas in L01, where L01 extends L1 by the addition of fewer than ! newindividual constants, and � is �nitely satis�able in an L01-expansion of M ,then � is satis�able in this expansion.Lemma 4.2 Let M1, M2 be two !-saturated models, and let w1 2 W1 andw2 2W2. Then tp(w1) = tp(w2) i� w1 $g w2.Proof. The right-to-left implication is Proposition 3.3. For the left to rightimplication, assume that w1 �g w2, and de�ne a series of relations Z =(Z1; : : :) between the �nite subsets of W1 and W2 by putting (for i � 1):X1ZiX2 i� jX1j = jX2j = i and8x1 2 X19x2 2 X2 tp(x1) = tp(x2) and8x2 2 X29x1 2 X1 tp(x1) = tp(x2):Let us check that this de�nes a graded bisimulation between w1 and w2.First, as tp(w1) = tp(w2), Z1 is non-empty. Conditions 2, 3, and 4 fromDe�nition 3.2 are trivially ful�lled.As to condition 5, assume w1Z1w2 and R�1w1X1, where jX1j = i. Weneed to �nd a �nite set X2 � W2 with R�2w2X2 and X1ZiX2. Assume thatX1 = fv11, . . . , v1ig. Consider the types generated by the states in X1;clearly, some of them may coincide. Let tp1, . . . , tpn (n � i) be a minimalcollection of types such that every tpj coincides with one of tp(v11), . . . ,tp(v1i), and such that for every v1j there exists a tpk with tpk = tp(v1j).Next, we need to record, for each type tp1, . . . , tpn, by how many states inX1 it is generated; for j = 1, . . . , n letmj = jfv1k j tpj = tp(v1k); 1 � k � igj:7



: : : uuuu �����*����@@@IHHHHHY u X1tp1 tp2 tpn
Figure 2: The successor types of w1.Then Pnj=1 = i; see Figure 2.Consider the following collection of formulas:[1�j�n�fRxyjk j 1 � k � mjg [ f(yjk 6= yjl ) j 1 � k 6= l � mjg(1) [ fST yjk(�) j � 2 tpj ; 1 � k �mjg�:We want to satisfy the set of formulas (1) at w2 in M2. If we succeedin doing so, then, for each type tpj we have forced the existence of mjsuccessors of w2 satisfying tpj. Putting these successors together gives us aset X2 of size i, as required. (To see this, observe �rst that for each tpj wewill have mj states at which it is realized; and, second, that no state canrealize two di�erent types, as types are maximal.) Moreover, it is obviousthat for each state x1 in X1, there will be a state x2 2 X2 with fx1gZ1fx2g,and conversely. Thus X1ZiX2, and we have established condition 5.Let us see why all of (1) is satis�able at w2. Since M2 is !-saturated, itsu�ces to show that (1) is �nitely satis�able at w2. Assume for the sake ofcontradiction that this is not the case. Then there exist �nite sets �1 � tp1,. . . , �n � tpn such thatM2 j= : ^1�j�n9yj1 : : : yjmj 0@ ^1�k�mj Rxyjk(2) ^ ^1�k 6=l�mj(yjk 6= yjl ) ^ ^1�k�mj ST yjk(�j)1A [w2]is not satis�able. Now (2) is equivalent toM2; w2 j= :�3m1 �^�1� ^ : : : ^3mn �^�n�� :But as M1; w1 j= 3m1 �^�1� ^ : : : ^3mn �^�n� ;this contradicts fw1gZ1fw2g. Hence, (1) is �nitely satis�able in w2, asrequired. 8



Finally, condition 6 is proved analogously to condition 5, and condition 7is immediate from the de�nition of Z. aAn L1-formula �(x) is invariant under g-bisimulations if for all modelsM1 and M2, all states w1 in M1 and w2 in M2, and g-bisimulations Z =(Z1; : : :) between M1 and M2, fw1gZ1fw2g implies that M1 j= �[w1] i�M2 j= �[w2].Theorem 4.3 (Invariance) Assume that L1 is countable. An L1-formulais (equivalent to the translation of) a graded modal formula i� it is invariantunder g-bisimulations.Proof. The right-to-left implication is simply Proposition 3.3. For the otherdirection, assume that �(x) is preserved under directed simulations. By asimple compactness argument it su�ces to show thatGML-Cons(�) := fST x(�) j � j= ST x(�) and � 2 LGMLg j= �:(3)To prove (3), assume that M j= GML-Cons(�)[w]; we have to show thatM j= �[w].The proof of the following claim is left to the reader:Claim 1. The set f�(x)g [ fST x(�) j � 2 tp(w)g is satis�able.Using Claim 1, we �nd a model N and state v with N j= �[v] and N; v j=tp(w). The following is immediate:Claim 2. tpN (v) = tpM (w).Now, to conclude the proof we want to `lift' � from N; v to M;w. To do so,take two !-saturated elementary extensions N+; v and M+; w of N; v andM;w, respectively (cf. [4, Theorem 6.1]. Then tpM+(w) = tpN+(v), and soby Lemma 4.2 we get that M+; w $g N+; v. A walk around the followingdiagram completes the proof:tpM (w) = tpN (v)M;w N; v� �M+; w $g N+; v:That is, N j= �[v] impliesN+ j= �[v] by elementary extension. AsN+; v $gM+; w it follows that M+ j= �[w], and hence M j= �[w], as required. a9



x4.3. De�nability. To simplify the presentation, we will work withpointed models; these are structures of the form (M;w), where w is a statein M , called the distinguished point of (M;w). We will assume that g-bisimulations between two pointed models link the singletons containingtheir distinguished points.Let K be a class of pointed models. Then K is de�nable by a set of gradedmodal formulas if there exists a set of formulas � such that K = f(M;w) j(M;w) j= �g; K is de�nable by a single formula if it is de�nable by meansof a singleton set; K denotes the class of pointed models outside K.K is closed under ultraproducts (ultrapowers) if every ultraproduct (ul-trapower) of models in K is itself in K; K is closed under g-bisimulations ifevery model g-bisimilar to a model in K is in K.Theorem 4.4 (De�nability 1) Assume that LGML is countable, and letK be a class of pointed models. Then1. K is de�nable by a set of graded modal formulas i� K is closed underg-bisimulations and ultraproducts, while K is closed under ultrapowers.2. K is de�nable by a single graded modal formula i� K is closed under g-bisimulations and ultraproducts, while K is closed under ultraproducts.Proof. 1. The only if direction is easy. For the converse, we can `bisimulate'familiar arguments from �rst-order model theory. Assume K is closed underultraproducts and g-bisimulations, while K is closed under ultrapowers. Let� = Tftp(M;w)(w) j (M;w) 2 Kg.We will show that � de�nes K. First, K j= �. Second, assume that(M;w) j= �; we need to show (M;w) 2 K. Consider tp(M;w)(w), and de�neI = f� � tp(M;w)(w) j j�j < !g. For each i = f�1; : : : ; �ng 2 I there is amodel (Ni; vi) of i in K. By standard model-theoretic arguments there existsan ultraproduct (N; v) = QU (Ni; vi) such that tp(N;v)(v) = tp(M;w)(w). AsK is closed under ultraproducts (N; v) 2 K.Now, let U 0 be a countably incomplete ultra�lter, and consider the ul-trapowers (N�; v�) :=YU 0 (N; v) and (M�; w�) :=YU 0 (M;w):Both (N�; v�) and (M�; w�) are !-saturated (cf. [4, Theorem 6.1]), andtp(w�) = tp(v�). Hence, by Lemma 4.2, (N�; v�) $g (M�; w�). By closureunder ultraproducts (N�; v�) 2 K, and by closure under g-bisimulations(M�; w�) 2 K. Since K is closed under ultrapowers, we get (M;w) 2 K, asrequired.2. Again, the only if direction is easy. Assume K, K satisfy the statedconditions. Then both are closed under ultrapowers, hence, by item 1, thereare sets of graded modal formulas �1, �2 de�ning K and K, respectively.10



Obviously, �1 [�2 j= ?, so by compactness for some �1, . . . , �n 2 �1,  1,. . . ,  m 2 �2, we have Vi �i j= Wj : j. Then K is de�ned by Vi �i. aTo conclude this section we present an alternative and more manageablecharacterization of the properties de�nable in graded modal logic.Theorem 4.5 (De�nability 2) Assume that LGML contains only �nitelymany proposition letters, and let K be a class of pointed models. Then Kis de�nable by a single graded modal formula i�, for some k, m 2 N, K isclosed under gk-bisimulations up to m.Proof. Clearly, if K is negation-free de�nable by a single formula of degreem and index k, then it is closed under gk-bisimulations up to m. To provethe converse, let (M1; w1) 2 K, and de�ne �k;mM1;w1 to be the conjunction ofall formulas in tpM (w) of index at most k and degree at most m | as weare working in a �nite language, we can assume that there are only �nitelymany non-equivalent graded modal formulas of index at k and degree atmost m, hence we may assume �k;mM1;w1 to be a (�nitary) formula in LGML.Using the �nite character of the language again, we �nd that there areonly �nitely many non-equivalent formulas �k;mM;w for (M;w) 2 K. Let �k;mbe their disjunction. Then �k;m de�nes K. For, assume that (M1; w1) j=�k;m; we need to show that (M1; w1) 2 K. First, from (M1; w1) j= �k;m itfollows that for some (M2; w2) 2 K, (M1; w1) agrees with (M2; w2) on allgraded modal formulas of index at most k and degree at most m. Second,the latter fact implies that M1; w1 $mgk M2; w2. To see this, de�ne tuples ofrelations Z0 = (Z01 , . . . , Z0k), . . . , Zm = (Zm1 , . . . , Zmk ) by� fxgZj1fyg, for j = 0, . . . , m, i� x and y satisfy the same graded modalformulas of index at most k and degree at most j; and� XZji Y , for i = 2, . . . , k and j = 0, . . . , m � 1, i� jXj = jY j = i and8x 2 X9y 2 Y fxgZj1fyg and 8y 2 Y 9x 2 X fxgZj1fyg.Then Z0, . . . , Zm is a gk-bisimulation up to m that linksM1; w1 to M2; w2.As (M2; w2) 2 K and K is closed under gk-bisimulations up to m, this implies(M1; w1) 2 K, and we are done. a5 ConclusionIn this note g-bisimulations were introduced as a tool for exploring the modeltheory of graded modal logic. Their usefulness was demonstrated by theiruse in obtaining both known results (the �nite model property) and newones (invariance and de�nability).Now that a working notion of bisimulation is available for graded modallogic, it may be used to obtain further results on the model (and frame)11



theory of graded modal logic. Obvious questions to be answered next includethe following: Can g-bisimulations be used to prove a Goldblatt-Thomasonstyle result about the classes of frames de�nable in LGML? What is theappropriate kind of Ehrenfeucht-Fra��ss�e style games needed to prove analogsof the results in this note for the class of �nite models? Fragments ofLGML have been used in terminological reasoning [6]; can these fragmentsbe characterized by adapting the notion of g-bisimulation?Acknowledgment. This work was partially supported by the Researchand Teaching Innovation Fund at the University of Warwick.References[1] J. van Benthem. Exploring Logical Dynamics. Studies in Logic, Lan-guage and Information, CSLI Publications, Stanford, 1996.[2] C. Cerrato. General Canonical Models for Graded Normal Logics(Graded Modalities IV). Studia Logica, 49:241{252, 1990.[3] C. Cerrato. Decidability by Filtrations for Graded Normal Logics(Graded Modalities V). Studia Logica, 53:61{74, 1994.[4] C.C. Chang and H.J. Keisler. Model Theory. North-Holland, Amster-dam, 1973.[5] F. De Caro. Graded Modalities II. Studia Logica, 47:1{10, 1988.[6] F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reasoning inDescription Logics. In G. Brewka, editor, Principles of Knowledge Rep-resentation. Studies in Logic, Language and Information. CSLI Publi-cations, Stanford, 1996.[7] M. Fattorosi-Barnaba and F. De Caro. Graded Modalities I. StudiaLogica, 44:197{221, 1985.[8] M. Fattorosi-Barnaba and C. Cerrato. Graded Modalities III. StudiaLogica, 47:99{110, 1988.[9] K. Fine. In So Many Possible Worlds. Notre Dame Journal of FormalLogic, 13:516{520, 1972.[10] L.F. Goble. Grades of Modality. Logique et Analyse, 13:323{334, 1970.[11] W. van der Hoek. Modalities for Reasoning about Knowledge and Quan-tities. Phd thesis, Free University of Amsterdam, 1992.[12] W. van der Hoek. On the Semantics of Graded Modalities. Journal ofApplied Non-Classical Logic, 2:81{123, 1992.12
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