Expressiveness of First-Order Description Logics

Natasha Kurtonina! and Maarten de Rijke?

LTRCS, University of Pennsylvania
3401 Walnut Street, Philadelphia, PA 19104-6228, USA
natashak@linc.cis.upenn.edu
2 Dept. of Computer Science, University of Warwick
Coventry CV4 7TAL, England

mdr@dcs.warwick.ac.uk

Abstract

We introduce a method for characterizing the expressive power of first-
order description logics. The method is essentially model-theoretic
in nature in that it gives preservation results uniquely identifying a
wide range of description logics as fragments of first-order logic. The
languages studied in the paper all belong to the well-known F£~ and
AL hierarchies.

1 Introduction

Description logics have been proposed in knowledge representation to specify
systems in which structured knowledge can be expressed and reasoned with
in a principled way. They provide a logical basis to the well-known traditions
of frame-based systems, semantic networks and KL-ONE-like languages,
object-oriented representations, semantic data models, and type systems.
In the design of description logics two important theoretical considerations
are complexity and expressive power. A popular slogan here is ‘complexity
versus expressiveness’: the more expressive a description logic is, the higher
the complexity of the reasoning tasks that can be performed in it. The
complexity of satisfiability and subsumption problems for description logics
has been studied extensively (cf. [DLNS96, DLNN97]), but the problem of
expressiveness has hardly been addressed so far; we are aware of only two
publications on this topic [Baa96, Bor96]. The purpose of this paper is to
help fill this gap. We characterize and compare the expressive power of all
logics in two well-known hierarchies of description logics.

The methods we use first identify description logics as fragments of first-
order logic, and then characterize these fragments in terms of a unique
model-theoretic property. The main technical tool used is preservation under

a suitable notion of (bi-)simulation. More precisely, with each description
logic £ we associate a characteristic (bi-)simulation such that all and only the
L-expressions are preserved under this (bi-)simulation. Then, the expressive
power of two description logics can be compared by comparing the model-
theoretic behaviour of their expressions with respect to their respective (bi-
)simulations. The characteristic (bi-)simulations can then be used to classify
the properties that are definable in description logics.

We think that our results are significant for the knowledge represen-
tation community because, for the first time, they give exact and explicit
model-theoretic characterizations of the expressive power of a wide range of
description logics. In addition, they illustrate a general method for coping
with expressiveness issues; they may be used by the designer of knowledge
based systems to help choose the description logic that best fits his or her
descriptive requirements.

Baader [Baa96] seems to have been the first to propose a formal definition
of the expressive power of description logics; the only other formal paper
on the issue is [Bor96]. Our definition of expressive power is somewhat
simpler than Baader’s. Also, our paper differs from [Baa96, Bor96] in that
we give exact and explicit model-theoretic characterizations of the expressive
power of a wide range of logics (cf. Section 5 for further discussion). The
results in this paper are based on preservation theorems that are similar to
ones found in the literature on modal and temporal logic and the modal
p-calculus [Ben85, JW96, KR97b]. However, as description logics often lack
some boolean operations, the proofs of our preservation theorems require
novel technical tools and methods. Our preservation results are similar in
spirit to the characterizations of finite variable fragments in terms of pebble
games due to [IK87]. Furthermore, there is a considerable body of work on
the expressive power of query languages, but most of this is phrased in terms
of complexity classes [AHV95, Imm86]. The results in the present paper,
however, are entirely model-theoretic.

We proceeds as follows. In Section 2 we describe the technical prereq-
uisites for the paper, and review our notation. Section 3 then explains our
method and the definition of expressive power used. The main results of
the paper are contained in Section 4, together with illustrations of their use.
Section 6 contains concluding remarks and describes ongoing work. Formal
proofs of the main characterization results are included in an appendix.

2 Technical Background

The main ingredients of description logics are concepts and roles. The for-
mer are interpreted as subsets of a given domain, and the latter as binary
relations on the domain. Table 1 lists constructors that allow one to build
(complex) concepts and roles from (atomic) concept names and role names.

For instance, the concept Man M dChild. T MYChild.Human denotes the set of
all fathers.

‘ Constructor name ‘ Syntax ‘ Semantics
concept name A AT C AT
top T AT
bottom 1 0
conjunction cnbD ctnD?
disjunction () cub ctuD?
negation (C) -C AT\ Of
univ. quant. VR.C | {dy |Vdy(d1,d2) € Rt — dy € CT}
exist. quant. (&) AR.C {dy | 3ds (dy1,ds) € R Ady € CT}
number (> n R) {dy | |{(d1,d2) € RT}| > n}
restriction (N) (€< nR) {dy | {(d1,d2) € RT}| < n}
role name R RI C AT x AT
role conj. (R) QNR QTN RL

Table 1: Constructors in First-Order Description Logics

Description logics differ in the constructions they admit. By combining
constructors taken from Table 1, two well-known hierarchies of description
logics may be obtained. The logics we consider here are extensions of FL ;
this is the logic with T, 1, universal quantification, conjunction and un-
qualified existential quantification IR.T.! AL extends FL~ by negation of
concept names (that is, negations of the form —A, where A is an atomic
concept name). Extensions of FL~ and AL are denoted by postfixing the
name of the constructors being added. For instance, FLEU™ is FL™ with
(full) existential quantification and disjunction.

Description logics are interpreted on interpretations T = (AZ,-1), where
AT is a non-empty domain, and -7 is an interpretation function assigning
subsets of AT to concept names and binary relations over A” to role names;
complex concepts and roles are interpreted using the recipes specified in
Table 1. The semantic value of an expression E in an interpretation 7 is
simply the set EZ. Two expressions are called equivalent if they have the
same semantic value in every interpretation.

For further details on both applications and theoretical aspects of de-
scription logics, we refer the reader to [DLNS96], or to the description logic
home page at http://dl.kr.org/dl/.

'Some definitions of £~ don’t include T and L in the logic; cf. [DLNS96]. To simplify

the formulation of our results we have decided to include them.

FOL

£II

Ll ﬁlll

/

Figure 1: The Method

3 Defining Expressive Power

In this section we define our notion of expressive power, and explain our
method for determining the expressive power of a given description logic.

Our aim in this paper is to determine the expressive power of every
extension of FL~ and AL that can be defined using the constructors in
Table 1. We say that a logic L1 is at least as expressive as a logic Lo if
for every expression in L9 there is an equivalent expression in £1; notation:
Lo < Lq. If Lo < Ly and L1 £ Lo, we write Lo < Lq; if both £1 < L5 and
Lo < L4 hold, we write £ = Lo.

The method we use for explaining the expressive power of description
logics has the following ingredients:

1. a mapping taking description logics to fragments of first-order logic;
2. characterizations of these fragments by model-theoretic means; and

3. comparisons between (the expressive power of) description logics based
on comparisons between the corresponding first-order fragments; cf.
Figure 1, where the rectangle denotes first-order logic, and the closed
curves denote (fragments corresponding to) description logics.

In line with our methodology we will pursue the above items 1, 2, and
3 for each of the description logics considered in this paper. First, item 1
is next to trivial. The semantics given in Table 1 induces translations (-)”
and ()7 taking concepts and roles, respectively, to formulas in a first-order
language whose signature consists of unary predicate symbols corresponding
to atomic concepts names, and binary predicate symbols corresponding to

atomic role names:

A" = Az (CnD)> = C=AD™
T = (z==) (CuD)= = C™VvVD™
1™ = (z#) (=C)™= = =C™
(VR.C)™ = Vy(R%v — C™), where y is a fresh variable
(3R.C)™ = ZFy(R7"v AC"™), where y is a fresh variable
>nR)™ = Jyi...yn (/\Z.# i i AN Rfrmyl-)

where all y; are a fresh variables

(SnR)™ = Vyr...ynp (/\i;éj yi 7y; = V; ﬁR”“’yi)
where all y; are a fresh variables
R~y = R.%‘y (Q M R)Uzy = Qf’wy A R=y

Observe that to translate concepts and roles in description logics without
number restrictions we only need two individual variables.

To be able to state that concepts and roles are equivalent to their trans-
lations under 7 and o, we need to relate the semantics of description logics
and first-order logic. But interpretations can naturally be viewed as models
for the first-order language we consider here. Thus, we will for example write
7 = a(z)[d] to denote that the first-order formula « is true in Z (viewed as
a first-order model), with d assigned to a’s free variable z. Below we will
exploit this connection, often without making it explicit.

Proposition 3.1 Let C be a concept and R a role. For any interpretation
T and any d, e € AT we have the following equivalences:

1. de CT iff T |= C™d]
2. (d,e) € RT iff T = Rv[de].

Given this proposition we are allowed to simply identify description logics
with their corresponding first-order fragments, and if no confusion is possible
we write C' instead of C7, and R instead of R°.

Proposition 3.1 settles item 1 of our method. Next comes item 2 — this
is much more work. The semantic characterizations that we are after will
be formulated in terms of preservation under a suitable relation between
interpretations. To make this strategy more concrete we first recast a result
from modal logic in description logical terms.

Schild [Sch91] was the first to give a precise formulation of the connection
between description logics and modal logics. Readers familiar with multi-
modal logic will immediately recognize the similarity between existential
quantification IR.C' and the diamond operator (R)C', and between univer-
sal quantification VR.C and the box operator [R]C. Given this connection
between description logics and modal logics, results in the one domain be-
come available to the other. In modal logic, the following notion is now

being used as an important model-theoretic tool, even at the textbook level,

cf. [Pop94].

Definition 3.2 Let T = (AZ,-T) and J = (A7, -7) be two interpretations.
A non-empty relation Z C (AT x A7) is called a bisimulation if it satisfies
the following clauses.

1. If dy Zds, then, for every (atomic) concept name A, d; € AT iff dy €
AT

2. For every (atomic) role name R, if d; Zds and R%dyeq, then there exists
ey in A7 such that R dses and eq Zes.

3. For every (atomic) role name R, if dyZds and R7dyes, then there
exists e; in AT such that RZd;e; and ey Zes.

A first-order formula «(x) is said to be preserved under bisimulations if for all
interpretations Z, .7, all objects d; € AT and dy € A7, and all bisimulations
Z between Z and J, we have that Z = «a[d;] implies J = «[ds] whenever
d1Zds.

Bisimulations are aso used extensively in concurrency theory [Mil89], and
to a lesser extent in the area of semistructured data [BDHS96].

What is the relevance of bisimulations for purposes of the present paper?
Briefly, bisimulations are relations between interpretations that preserve all
ALC-concepts. This is clear for atomic concept names (clause 1 in Defini-
tion 3.2), and a simple induction shows it to hold for boolean combinations
as well. The back-and-forth clauses 2 and 3 guarantee preservation of exis-
tential and universal quantification, respectively.

The following theorem establishes a kind of converse for this preservation
result; it is the starting point for our investigations.

Theorem 3.3 Let a(z) be a first-order formula. Then a(z) is (equivalent
to) an ALC-concept iff it is preserved under bisimulations.

Proof. The proof consists of two parts: as explained above, by a simple
induction one can show that ALC-concepts are preserved under bisimula-
tions. The proof of the other direction can be obtained as follows. As was
first observed in [Sch91], ALC is a notational variant of normal multi-modal
logic (with full boolean expressivity). The corresponding preservation the-
orem for mono-modal logic may be found in [Ben85], but it can easily be
extended to the multi-modal case. -

In words, preservation under bisimulations is the unique model-theoretic
property that characterizes ALC as a fragment of first-order logic. One can
put this property to good use in the following way: to show that a description
logic £ (extending ALC) is more expressive than ALC, by Theorem 3.3 it
suffices to identify an L-concept that is not preserved under bisimulations.

Corollary 3.4 Let L be a description logic that can be obtained from ALC
by adding any non-empty combination of R or N'. Then ALC < L.

Proof. To prove ALC < ALCR (or ALCN or ALCRN, respectively), it
suffices to provide two interpretations Z, J and objects di € AT, dy € AT
as well as a bisimulation Z linking d; and ds, such that for some ALCR-
concept C (or ALCN -concept or ALCN R-concept) we have d; € CT but
dy ¢ C7.

Consider the interpretations Z and J depicted below. (The arrows de-
note the interpretation of R, an object is labeled A if it is in the interpreta-
tion of A, and the dotted lines indicate the bisimulation.)

z

Let C; := (3(RN S).T) and Cs := (> 2 R). Then, clearly, d; € C¥ and
dy € CI, but dy ¢ Cf and dy ¢ CY .

We leave it to the reader to check that the relation indicated by the
dotted lines is indeed a bisimulation. It follows from Theorem 3.3 that
neither 3(R M S).T nor (> 2 R) is (equivalent to) an ALC-concept. Hence,
ALC < ALCR, ALCN, ALCRN.

Now, what do we need to do to adapt the above result for other exten-
sions of FL™ defined by Table 1?7 For logics less expressive than ALC we
can not just use bisimulations, as such logics lack negation or disjunction,
and these are automatically preserved under bisimulations; moreover, the
proof of Theorem 3.3 uses the presence of the booleans in an essential way.
For logics more expressive than ALC some of their constructors need not be
preserved under bisimulations. Therefore we have to develop new notions of
(bi-)simulation; this wil be the focus of our attention in Section 4.

4 Separating Description Logics

This section contains the main results of the paper. For FL™, AL, and all
of their extensions that can be defined using the constructors in Table 1,
we present semantic characterization analogous to Theorem 3.3. We subse-
quently use these to separate logics, thus completing items 2 and 3 of the
methodology outlined in Section 3, and obtain a complete classification of
the full £~ and AL-hierarchies.

We proceed as follows. We first consider the ‘minimal’ logic FL™, char-
acterize it semantically, and use the characterization to separate FL from

richer logics. After that, we treat each of the constructors in Table 1 that
are not in FL , and examine which changes are needed to characterize the
resulting logics. This is followed by a section in which we consider combina-
tions of constructors. Our classification results are summarized in a diagram
at the end of the section. Proofs of the characterization results are given in
an appendix.

Throughout this section the following abbreviations will prove to be
useful; let X, Y be subsets of a given domain.

XR'Y iff for all d € X there exists e € Y such that Rde
XR)Y iff foralle €Y there exists d € X such that Rde.

In words, X is R'-related to Y if every object in X ‘sees’ an object in Y
and X is R|-related to Y if every object in Y is ‘seen’ by an object in X. As
an aside, the two relations RT and R | are two particular instances of ‘lifting’
a binary relation on objects to a binary relation on sets of objects. In the
setting of program semantics they are known as the Hoare power order and
the Egli-Milner power order, respectively; cf. [Vic89].

4.1 The Base Case: FL

Recall that the logic £~ has T, 1, universal quantification VR.C, conjunc-
tion C'M D, and unqualified existential quantification IR.T.

What do we need to develop a notion of bisimulation that can be used
to characterize FL 7 First of all, ordinary bisimulations as defined in Def-
inition 3.2 preserve negations of concepts — this is obviously too much for
F L, as it does not have negations. To destroy preservation of negations we
will introduce a direction in the atomic clause of Definition 3.2, and hence
make bisimulations non-symmetric. This change will enable us to preserve
positive (negation-free) information only.

However, disjunctions would still be preserved under such non-symmetric
bisimulations. As FL~ does not allow disjunctions of concepts, we need to
block this as well. To achieve this, we change the format of bisimulations:
instead of linking an object to an object, we will link a set of objects to
an object. The notion of preservation will then say that if a concept or
formula holds for every object in the set, then it must hold in the similar
object. If a disjunctive concept or formula holds for all objects in a set (of
size at least two) this no longer implies that one of the disjuncts holds for
all objects in the set; as a consequence the inductive argument needed to

prove Theorem 3.3 may break down.?

2As an aside, by linking sets (or objects) to sets we would also be able to deal with
logics without conjunction.

Definition 4.1 Let T = (AZ,-T) and J = (A7, -7) be two interpretations.
An FL ™ -simulation is a non-empty relation Z C P(AT) x A7 such that the
following hold.

1. If X1 Zdy then, for every (atomic) concept name A, if X; C AT, then
dy € A7,

2. For every (atomic) role name R, if X;(R?)'Y; and X;Zd,, then there
exists es € A7 with R7 dyes.

3. For every (atomic) role name R, if R dyes and X Zds, then there
exists V1 C AT with X1(R%), Y7 and Y1 Zes.

A first-order formula a(z) is preserved under FL ™ -simulations if for all
interpretations Z and 7, all sets X C AT and objects dy € A7, and all
F L -simulations Z between Z and J, we have that if XZds and for all
di € X, T E ady], then J = alds].

The basic intuition underlying the clauses in Definition 4.1 is that atomic
roles need to be preserved (clause 1); we only need to preserve unqualified
existential quantifications (clause 2), but we need to preserve full universal
quantification VR.C, where C may itself be a complex concept — this ne-
cessitates the ‘and Y;Zes’ in clause 3. Of course, in addition we need to
preserve conjunctive concepts C I D, but this we get for free.

Theorem 4.2 (Characterization of FL7) Let a(z) be a first-order for-
mula. Then o(z) is equivalent to an FL ™ -concept iff it is preserved under
F L™ -simulations.

Corollary 4.3 Let L be either AL or any description logic that can be
obtained from FL™ or AL by adding any non-empty combination of U, C,
E, N, orR. Then FL < L.

Proof. We only show this for one logic, and we do so by displaying a concept
that can not be equivalent to a concept in FL~. The concept IR.A (which
lives in FLE ™ and its extensions) is not equivalent to an FL -concept,
as it is not preserved under F L™ -simulations. To see why, consider the
interpretations Z and J depicted below. (The dashed boxes indicate sets.)

7 e i 7

—. @ d

Here we have that {d;} C (3R.A)* but do ¢ (R.A)7, even though there
is an FL™ -simulation relating {d;} to dy. Hence, by Theorem 4.2, IR.A

can not be equivalent to an FL -concept. As FL < FLE is obvious, it
follows that FL~ < FLE™. A

4.2 Adding Negation

We now consider the changes that need to be made to the basic set-up
for FL -simulations if some form of negation is present in the logic. In
particular, we consider the logic AL; recall that it extends FL~ by negation
of (atomic) concept names. It turns out that only minor changes are required
as compared to Definition 4.1.

Definition 4.4 Let T = (AZ,-T) and J = (A7,-7) be two interpretations.
An AL-simulation is a non-empty relation Z C P(AZ) x A7 such that the
following hold.

1. If X1 Zdy then, for every (atomic) concept name A, if X; C AT, then
dy € A7, and if X; C =AZ, then dy € =AY

2. For every (atomic) role name R, if X;(RT)"Y; and X1 Zds, then there
exists es € A7 with R dyes.

3. For every (atomic) role name R, if R7dses and X1Zds, then there
exists Y7 C AT with X1(RI)¢Y1 and Y7 Zes.

A first-order formula a(z) is preserved under AL-simulations if for all in-
terpretations 7 and 7, all sets X C AZ and objects do € A7, and all AL-
simulations Z between Z and J, we have that if X Zds and for all d; € X,
T = aldi], then J = a[ds].

The intuition underlying the change in clause 1 of Definition 4.4 (as
compared to clause 1 of Definition 4.1) is that both positive and negative
atomic information information now needs to be preserved in passing from

7 to J.

Theorem 4.5 (Characterization of AL) Let a(z) be a first-order for-
mula. Then o(z) is equivalent to an AL-concept iff it is preserved under
AL-simulations.

Corollary 4.6 Let L be a description logic that can be obtained from AL
by adding any non-empty combination of U, C, E, N, or R. Then AL < L.
Also, if L is obtained from FL™ by adding one of U, £, N, or R, then
L& AL.

Proof. As in Corollary 4.3, by way of example we only consider one case
for the proof of the first claim. We show that AL is strictly less expressive
than ALU by providing an ALU-concept that is not equivalent to any AL-
concept.

10

The ALU-concept A LI B is not equivalent to an AL-concept. In the two
interpretations Z, J depicted above we have that {dy,e;} C (A U B)Z, and
there exists an AL-simulation linking {dy, d}} to da, but dy ¢ (AU B)7. By
Theorem 4.5, then, (A U B) can not be equivalent to an AL-concept.

Similar arguments may be used to establish the second claim of the
corollary. -

4.3 Adding Existential Quantification

Next we consider adding full existential quantification as a constructor to
FL™. For the resulting logic FLE™ we obtain the appropriate notion of
simulation by taking Definition 4.1 and adding ‘and YjZes’ as a conjunct
to clause 2. Clearly, what we need for FLE -concepts to be preserved by
an appropriate notion of simulation, is that concepts of the form 3R.C are
preserved, and the additional condition ‘Y;Zes’ achieves this — it simply
mirrors clause 3 (which achieves preservation of universal quantifications),
and hence to a certain degree it restores symmetry.

Definition 4.7 Let T = (AZ,-T) and J = (A7,-7) be two interpretations.
An FLE™ -simulation is a non-empty relation Z C P(AT) x A7 such that
the following hold.

1. If X1 Zdy then, for every (atomic) concept name A, if X; C AT, then
dr € A7,

2. For every (atomic) role name R, if X;(RT)'"Y; and X1 Zd,, then there
exists es € A7 with R7 dyes and Y Zes.

3. For every (atomic) role name R, if R7dses and X1Zds, then there
exists Y7 C AT with X1(RI)¢Y1 and Y7 Zes.

A first-order formula «(x) is preserved under FLE™ -simulations if for all
interpretations Z and 7, all sets X C AT and objects do € A7, and all
FLE -simulations Z between 7 and J, we have that if X Zds and for all
di € X, T [ady], then J = alds].

Theorem 4.8 (Characterization of FLE™) Let a(x) be a first-order for-
mula. Then a(x) is equivalent to an FLE ~ -concept iff it is preserved under
FLE™ -simulations.

11

Corollary 4.9 Let L be a description logic that can be obtained from FLE™
by adding any non-empty combination of U, C, N', or R. Then FLE < L.
Also, if L is either AL or obtained from FL™ by adding one of U, N, or
R, then L £ FLE .

Proof. As before, we will only prove the corollary for one case. We will show
that FLE™ is strictly less expressive than FLEN ~. The interpretations in
the following figure show that the FLEN ~-concept (> 2 R) is not equivalent
to an FLE ™ -concept.

T

—-@ ds

In the above figure we have {d1} C (> 2 R)? but ds ¢ (> 2 R)Y even though
there is an FLE ™ -simulation (indicated by the dotted lines) that links {d; }
to d2. =

4.4 Adding Disjunction

For FLU™ we obtain the appropriate notion of simulation by taking Def-
inition 4.1, but instead of linking sets of objects to objects, we now link
objects (or: singleton sets) to objects. As explained in the introduction to
this section, if a notion of simulations links sets of objects to single objects,
disjunctions need not preserved, the reason being that from the fact that,
if X is a set, then X C (C U D)? does not imply X € CT or X C DZ.
Working with single objects, however, we would of course be able to infer
from d € (C U D)* that d € CT or d € D%, and this would allow us to give
an inductive proof of a preservation result for disjunctions.

Definition 4.10 Let 7 = (AZ,-I) and J = (A7,-7) be two interpreta-
tions. An FLU -simulation is a non-empty relation Z C AT x A7 such
that the following hold.

1. If dyZdy then, for every (atomic) concept name A, if d; € AT, then
dr € A7,

2. For every (atomic) role name R, if RZdie; and dy Zds, then there exists
es € A7 with R dyes.

3. For every (atomic) role name R, if R7dses and d1Zds, then there
exists e; € AT with R%dje; and e Zes.

12

A first-order formula «a(z) is preserved under F LU -simulations if for all
interpretations Z and J, all objects di € A, dy € A7, and all FLU -
simulations Z between Z and J, we have that if diZds and 7 |= «a[d;], then
J | aldy].

Theorem 4.11 (Characterization of FLU) Let a(x) be a first-order
formula. Then a(z) is equivalent to an FLU™ -concept iff it is preserved
under FLU -simulations.

Corollary 4.12 Let £ be a description logic that can be obtained from
FLU™ by adding any non-empty combination of C, £, N, or R. Then
FLU™ < L. Also, if L is either AL or obtained from FL™ by adding one
of E, N, or R, then L £ FLU™ .

Proof. As before, we will only prove the corollary for one case. We will
separate FLU™ from FLUR™. The interpretations in the following figure
show that the FLUR -concept I(RM S).T is not equivalent to an FLU -
concept.

I e §

In the above figure we have d; € (3(RMS).T)? but dy ¢ (I(RN S).T)7
even though there is an FLU ™ -simulation (indicated by the dotted lines)
that links dq to dy. -

4.5 Adding Number Restrictions

To arrive at a notion of simulation for LN~ we use the above ideas together
with ideas from [Rij96]. The main feature of the notion of FLN ~-simulation
is that in order to guarantee preservation of number restrictions it records
the size of sets of objects taking part in the simulation. It does this using a
whole sequence of relations between sets of sets of objects on the one hand
and sets of objects on the other; later on, in the presence of disjunction we
will be able to simplify these to relations between sets of objects on both
sides.

The following notation will prove to be useful. We write R*d; Y7 if for all
e1 € Y1, Rdyeq holds. As before, since FLN ™ is a logic without disjunction,
our notion of simulation for FLN ~ needs to relate sets of objects to objects.
But we need a bit more. For, let Z be an interpretation, and let X; C AT
be such that X; C (> n R)Z; then, for each di € X there exists Yy, C AT
with |Yg, | > n and (R%)*d1Yy,. Now, to ensure preservation of (> n R)

13

from X7 to any object do similar to X1, we need to consider the collection
of all these sets Y;,, where d; ranges over elements of X;. The following
definition captures this idea.

Definition 4.13 Let R be a role name, and i > 0. Assume that X; C AZ,
where 7 is some interpretation. An i-cloud is a set X of subsets of AZ such
that for all Y € X, |Y| = i.

An i-cloud X is said to be R-above X7 C AT if for all d; € X; there
exists Y7 € X such that (R%)*d;Y].

A set X7 is said to be R-below an i-cloud X if for every Y; € X there
exists d; € X1 such that (RT)*d; Y.

By indexing ¢-clouds with the set above which they hang, we can ensure
that every cloud is above exactly one set only.

We are ready now for the definition of an FLN ~-simulation. We use
P<¥(X) to denote the collection of finite subsets of X.

Definition 4.14 Let 7 = (AZ,-1) and J = (A7,-7) be two interpreta-
tions. An FLN ~ -simulation between Z and J is a sequence of relations

Z =(Zy, Z1, ..., Zy, ...) such that the following hold.
1. Zj is non-empty;
2. (a) Zp CP(AT) x AT,
(b) for alli >0, Z; C P(P<¥(AT)) x P<v(AT);
3. for all i > 0, if XZ;Ys, then, for any X € X, |X| = |Va| = i:

4. if X1Zydy, then, for any (atomic) concept name A, if X; C AT then
do € AJ;

5. if X1Zpds and X C P(P<¥(AL)) is a non-empty i-cloud R-above X1,
where i > 0, then there exists Yo C A7 with (R7)*dyYs and X Z;Y5;

6. if X1Zyds and (R7)*d2Ys, where |Ya| = i > 0, then there exists a
non-empty i-cloud X C P(P<¥(A7T)) such that X; is R-below X and
X Z;Ys;

7. if R7dyes and X Zyds, then there exists a 1-cloud X such that X; is
R-below X and (|J X) Zyes.

A first-order formula a(z) is preserved under FLN ~ -simulations if for all
interpretations Z and J, all sets of objects X1 C AT and objects dy € A7,
and all FLN ~-simulations Z = (Zy, Z1, . ..) between Z and J, we have that
if X1Zydy and for all di € X1, T |= ady], then J = alds].

14

To grasp the intuition behind Definition 4.14, observe that Zj is the ‘en-
gine’ of the simulation that guarantees preservation, and the other relations
Z1, Za, ... are needed for matching finite sets of the same size. Clauses 1-3
of Definition 4.14 are bookkeeping clauses, and clause 4 is the familiar one
about preservation of atomic concepts. Clauses 5 and 6 are the back-and-
forth clauses that guarantee preservation of number restrictions (> i R) and
(<4 R), respectively. Clause 7 is needed to preserve universal quantifications

VR.C.

Theorem 4.15 (Characterization of FLN ™) Let a(z) be a first-order
formula. Then a(z) is equivalent to an FLN ~ -concept iff it is preserved
under F LN~ -simulations.

Corollary 4.16 Let £ be a description logic that can be obtained from
FLN ™ by adding any non-empty combination of U, C, €, or R. Then
FLN = < L. Also, if L is either AL or obtained from FL ™ by adding one
of E,U, or R, then L £ FLN .

Proof. We only prove the corollary for one case: FLN~ < FLNE~. Con-
sider the interpretations Z, J depicted below (the dotted lines indicate Z;
other relations Z;, for ¢ > 0, are specified in the text below).

T

@ d

Clearly, {d;} C (3R.A)%, but dy ¢ (IR.A)7, so if there exists an FLN -
simulation linking {d;} and dy, then JR.A cannot be (equivalent to) an
FLN ~-concept. We leave it to the reader to show that the following tuple
Z is indeed an FLN ~-simulation linking {d;} and ds: Z = (Zy, Z1, Zo,

..), where, for 1 > 2, Z; = (), while

Zy = {({d1}7d2)7({61}762)7({fl}7f2)7({617f1}762)7({elafl}af2)}
Z {({{er, {f1}} {e2}), (e, {1} {21)}
Zy = {({{e, it} {e2, 21} A

4.6 Adding Role Conjunction

Combining ideas from [Hol, KR97a] and the preceding sections, we arrive
at a notion of simulation for FLR . Its distinguishing feature is that it not
only relates sets of objects to objects (as in Definition 4.1), but to cater for
role intersection it also links pairs of (sets of) objects to pairs of objects.
We will need the following auxiliary notion.

15

Let X, Y be two sets of objects. A collection of (atomic) role names R

is called meet closed for X and Y if X([TR)'Y.

Definition 4.17 Let Z = (AZ,-I) and J = (AY,-7) be two interpreta-
tions. An FLR™ -simulation is a triple Z = (Zy, Z1,Z2) such that the
following hold.

1. (a) Zo CP(AT) x AT,
(b) Z1 C (P(AT) x P(AT)) x (AT x P(AT)).
(c) Zy C (P(AT) x P(AT)) x (AT x AT).

2. If X1 Zyds, then, for every (atomic) concept name A, if X; C AZ, then
dy € A7,

3. (a) If (X1,Y1)Z1(da, E5) then, for every collection of role names R
that is meet closed for X1 and Yj, there exists an es € Fy such
that (|_|R)Id2€2.

(b) If (X1, Y1) Zo(da, e3) then, for every role R, if R dses holds, then
X1 (R 1.

4. (a) If X1Zyda, then, for every (atomic) role name R, if X;(R%)'Yy,
then there exists Ey C A7 with (X1,Y1)Z1(ds, Es).

(b) If X1 Zyds, then, for every (atomic) role name R, if R dyes, then
there exists Y7 C AT with (X1, Y1) Zs(da, e3).

5. If (Xl,Yl)ZQ(dQ,eg), then Y1Z0€2.

A first-order formula «(z) is preserved under FLR ™ -simulations if for every
two interpretations Z and 7, all sets X C AT and objects dy € A7, and all
FLR -simulations Z between Z and J, we have that if X1 Zyds and for all
di € X1, T |= afdy], then J = alds].

Let us briefly explain what the clauses in Definition 4.17 are meant
to achieve. Clause 2 is the familiar clause about preservation of atomic
concepts. Clause 3(a) is about preservation of intersecting roles from Z to
J; there is slight technical complication here: X;R'Y; and X;S1Y; does
not imply X1(R M S)'Y, and this failure forces us to consider only those
collections of role names R (with X; R'Y7, for R € R) that are closed under
intersection in this sense; the notion of meet closure tries to capture this
idea. Next, clause 3(b) simply tries to mirror intersections from J to Z.
Clauses 4(a) and 4(b) are the real back-and-forth clauses, where simulations
between sets and objects extend to pairs of sets and pairs of objects (and
sets). Clause 5 relates such simulations between pairs to simulations between
sets and objects (but, by analogy with clauses 2 and 3 of Definition 4.1, this
is only required in one direction, viz. from J to 7).

16

Theorem 4.18 (Characterization of FLR™) Let a(x) be a first-order
formula. Then a(x) is equivalent to an FLR -concept iff it is preserved
under FLR™ -simulations.

Corollary 4.19 Let £ be a description logic that can be obtained from
FLR ™ by adding any non-empty combination of U, C, £, or N'. Then
FLR™ < L. Also, if L is either AL or obtained from FL™ of AL by adding
one of E,U, or N, then L £ FLR .

Proof. We only prove the corollary for the case FLR™ < FLRN . Con-

sider the two interpretations below.

@ d>

The dotted lines indicate the Zy-component of an F LR ™ -simulation linking
{d1} to da; it, and the remaining components, are defined as follows:

Zy = {({di},d2),({er},e2), ({f1},e2), ({en, fi},e2)}

Zy = {(({di},{e1}), (d2,{e2})), (({dr}, {f1}) (d2, {e2}))
(({d1},{e1, f1}), (d2, {e2}))}

Zy = {(({di},{e1}), (d2,e2)), (({di}, {f1}), (d2,e2)),
(({d1}, {e1, f1}), (d2,e2))}

We leave it to the reader that this (Zy, Z1, Z2) is indeed an FLR ~-simulation
such that {d; } Zods. Clearly, {d;} C (> 2 R)Z, but ds ¢ (> 2 R)7. It follows

that (> 2 R) is not equivalent to an FLR ™ -concept. As we obviously have
FLR < FLRN , we conclude FLR < FLRN . H

4.7 Combinations

The semantic characterization results obtained so far form the basic build-
ing blocks for our further results. Briefly, the idea is to obtain semantic
characterizations of logics that contain combinations of the constructors C,
U, £, N and R by combining the characterizations of the logics admitting
only one of the constructors. It will turn out that there is surprisingly little
interaction between the various characterizations, and where there is inter-
action this results in a simplification (especially when U is added) or in
restoring symmetry of various clauses (when & or C is added). Only in rare
cases (such as FLNR™) does the characteristic notion of simulation become
more complex.

17

Let us briefly consider the various combinations now. So as not to get lost
in a plethora of logics, we will focus on extensions of AL, FLE™, FLU
FLN ™, and FLR™ by the addition of a single construction. By way of
example we show how a characteristic notion of simulation for any logic in
the FL~ and AL-hierarchy may be obtained from such extensions.

4.7.1 Extensions of AL

As we have seen from the definitions of bisimulation and AL-simulation
(Definitions 3.2 and 4.4), in the presence of negation or negated atomic con-
cept names, the clause guaranteeing preservation of atomic concept names
either becomes symmetric (in the case of full negation) or we have to add
preservation of negated atomic concepts as well.

That is, let ALX be one of ALE, ALU, ALN, or ALR. To obtain a
characteristic notion of simulation for ALX, we simply take the characteris-
tic notion of simulation for FLX~ and add to the clause for preservation of
atomic concept names the clause that negations of atomic concepts should
also be preserved (as in Definition 4.4). Then, the relevant preservation
theorems may be proved.

4.7.2 Extensions of FLE™

With full (qualified) existential quantification IR.C' present in the logic, the
back-and-forth conditions that record the presence of roles, have to become
symmetric: not only does the relational pattern need to be matched, but it
needs to be matched with a similar object. For the semantic characteriza-

tion results for the logics FLEU , FLEN ~, and FLER ~, this requires the

following.

o FLEU -simulations are defined just like FLU ™ -simulations (Defini-
tion 4.10) except for clause 2, which needs to be

2'. For every (atomic) role name R, if RZdie; and diZds, then there
exists es € AY with R7 dyes and e; Zes.

o FLEN -simulations are defined like FLN ™ -simulations (Definition
4.14) except for clause 7, which needs to be

7. (a) If X1(RD)'Y] and X;Zyds, then there exists es such that
Rjdgeg and Y1Z062.
(b) If R7dyes and Xy Zyds, then there exists a l-cloud X such
that X7 is R-below X and (|J X) Zyes.

e FLER -simulations are defined like FLR ™ -simulations (Definition
4.17) except for clause 5, which needs to be

5’. (a) If (Xl,Yl)Zl(dQ,eg), then Y1Z0€2.

18

(b) If (Xl,Yl)Zz(dz,ez), then legez.

Using the above definitions, semantic characterizations may be given for
each of the languages involved.

4.7.3 Extensions of FLU™

From a logical point of view having disjunctions of concepts available in a
description logic simplifies matters considerably: we no longer have to relate
sets of objects to single objects, but can simply relate objects to objects.
Extending FLU ™~ by number restrictions or role conjunction requires the
following changes to arrive at a characteristic notion of simulation.

o FLUN ~-simulations are defined just like LN~ -simulations (Defini-
tion 4.14) except that Zj should now be a relation linking objects to
objects, and the Z; (¢ > 0) should link finite sets to finite sets (of the
same size). Clauses 4-7 should then be replaced by

4'. 1f dy Zyds then, for any (atomic) concept name A, if d; € AT then
dy € AJ;

5. if d1 Zgdy and (RT)*d;Y1, where |Y1| = i > 0, then there exists
Yy C A7 with (R7)*dyY> and Y1 Z;Y5;

6'. If dy Zods and (R7)*dyYs, where |Yz| = i > 0, then there exists
Y; € AT with (RT)*d1Y; and Y1Z;Ys;

7. If R7 dyes and dy Zydo, then there exists e; € AT such that RZd;eq
and ey Zpes.

o FLUR™ -simulations are defined just like LR~ -simulations (Defini-
tion 4.17) except that Zy should now link objects to objects, and Z;
and 75 should link pairs of objects to pairs of objects. Then, clause 2
should be replace by clause 4’ above, while clauses 3-5 should be re-
place by

3. (a) If (di,e1)Z1(da,es) then, for every role name R, if R%dyeq,
then R dyes;
(b) If (dy,e1)Zo(da, e2) then, for every role name R, if R dyes,
then RIdlel;
4'. (a) If dy Zyds, then for every role name R, if RTd;e;, then there
exists ey € AT with (dy, e1)Z1(da, e2).
(b) If dy Zyds, then for every role name R, if R daes, then there
exists e; € AT with (dy,e1)Za(da, e2).
5’. If (dl, el)ZQ(dQ, 62) then 612062.

Using the above ammendements, semantic characterizations may be given
for of the languages involved.

19

4.7.4 Extensions of FLN ™

The only extension of FLN~ (with a single constructor) that has not been
considered so far is FLNR ™. The notion of an FLNR -simulation is
arrived at by simply adding together the definitions for an FLN ~-simulation
and an FLR ™ -simulation, respectively. That is, an FLN R -simulation is
a tuple (Zy, Z1, Za, ...; Z7, Z%) such that (Zy, Z1, Z, ...) is an FLN -
simulation, and (Zy, Z7, Z3) is an FLR ™ -simulation. Then, the usual
semantic characterization results may be given for FLNR .

4.7.5 Extensions of FLR™

Extensions of FLR ™~ by one of C, £, U, or N are all covered in the preceding
paragraphs.

4.7.6 Classifying an Arbitrary Description Logic

To obtain a characterization of an arbitrary description logic (defined from
Table 1), somply combine the observations listed in Sections 4.7.1-4.7.5.
More concretely, one may proceed as follows. Let £ be an arbitrary descrip-
tion logic. First, determine how much negation it admits. If it admits full
negation, then we have at least ALC < £ and we can use the ideas in §§4.7.1,
4.7.2; the only further options are that £ admits N or R, and in that case
84.7.3 applies. If, on the other hand, £ does not admit full negation, we
first see whether it does admit U, and we consult §§4.7.1-4.7.3 if it does. If
L does not admit U, then one of §§4.7.1, 4.7.2 and 4.7.4 applies.

As a concrete example, consider £L = ALENR. As AL < L, the atomic
clause in the notion of an £-simulation needs to preserve both atomic con-
cepts and their negations. On top of that we need to ensure preservation of
& (as explained in §4.7.2), and of A" and R (as explained in §4.7.4). Putting
things together, we get that the notion of simulation needed to characterize
ALENTR, is a tuple (Zy, Z1, ...; Z], ZL), where (Zy, Z1, ...) is an ALEN-
simulation (which is just like FLEN ~-simulations, except for the atomic
clause), and where (Zy, Z7, Z%) is an ALER ~-simulation (which is just like
FLEN ~-simulations, except for the atomic clause).

4.8 Harvest

We summarize our results in Figure 2. The way one should read the diagram
is as follows. Every logic coincides with one of the logics in the diagram,
and if a description logic £; is above a logic L2 (via a sequence of one or
more arcs), then £o < Ly. If two logics are incomparable in the diagram,
then they are incomparable with respect to their expressive power.

Several comments are in order. First, the diagram does not mention all
possible combinations of the constructors listed in Table 1. The reason for

20

this is that some logics coincide with others (for example, FLC™ coincides
with ALEUT).

Second, it should be noted that the classification obtained in Figure 2 is
exactly the classification that one would expect from an intuitive point of
view (where one logic is more expressive than another if it has more construc-
tors). We view this absence of suprises both as an intuitive justification of
our results, and as an indication that we have provided a mathematical un-
derpinning for the basic intuitions one has concerning the expressive power
of description logics.

And finally, we should point out that expressive power and complexity
do not induce the same classifications of description logics. There are de-
scription logics that have the same expressive power but different complexity
results for their satisfiability problems. For example, ALC and ALC® (that
is, ALC with inverse of roles) both have a PSPACE-complete satisfiability
problem, but the latter is more expressive than the former. The precise rela-
tion between these alternative ways of classifying description logics remains
to be investigated.

CNR

FLUNR= ALNR

Figure 2: Classifying Description Logics

5 Discussion

We see two major lines of work related to this paper, the first one centered
around the use of model-theoretic methods similar to the ones we have used,
the second one focusing on the expressive power of description logics.

21

As to the first theme, the technique of Ehrenfeucht-Fraissé games in
first-order logic is closely related to our simulations, and it has been used
to obtain numerous separation and preservation results; see [Doe96]. [IK87]
use pebble games to obtain model-theoretic expressivity results about finite
variable logics, and related techniques have been used in modal logic as
well; for instance, [KR97b] use various kinds of bisimulations to characterize
temporal logics with Since and Until. Also, [TN97] use similar methods
to separate query languages. One of the principle advantages shared by
these methods is their explicit and intuitive descriptions of the languages
being studied. The results in this paper are different from the above ones,
as we are interested in relatively poor languages with limited expressive
power and without closure under some of the boolean operators; this focus
necessitates both new notions of simulations and novel techniques for proving
the characterization results.

As to the second theme — expressiveness of description logics —, we
know of only two earlier references: [Baa96] and [Bor96]. We will briefly
discuss each of these. Baader’s work is different from ours in two important
ways. First, Baader’s definition [Baa96, Definition 3.2] of expressive power
differs from ours. Recall that we we define a logic £1 to be at least as
expressive as a logic Lo if for every Lo-expression there is an equivalent £i-
expression over the same vocabulary. Intuitively, Baader’s definition allows
L1 to use additional concepts and roles in finding £q-equivalents for every
Lo-expression. More formally, let I' be a collection of concepts, and let
Voc(I') denote the collection of all atomic concepts and roles occurring in
I'. Further, assume that we have a mapping f : Voc(I'1) — Voc(I%), and
interpretations 77 and Z, that satisfy all of Z; and Zs, respectively. Then f
embeds Z; in T, if for all S € Voc(I') we have STt = f(S)?2. Then, Iy can
be expressed by I7 if there exists f : Voc(I'y) — Voc([7) such that

1. every interpretation that validates all of I's can be embedded by f in
some interpretation that validates all of I, and

2. for every interpretation Z; that validates all of I'y there exists an in-
terpretation Zs that validates all of I and that can be embedded in
71 by f.

Then, £; is at least as expressive as Lo (according to Baader) if every
collection of L3-concepts can be expressed by some collection of L1-concepts.

Clearly, this more involved definition allows one to equate more descrip-
tion logics with respect to their expressive power than ours does; for instance,
under Baader’s definition negation of atomic concepts can be simulated by
number restrictions over additional roles, whereas according to our results
negations of atomic concepts can’t be expressed using number restrictions

3

(over the same vocabulary).” While we agree that it may be useful to be

3As an aside, the difference between our definition and Baader’s is analogous to the

22

able to use additional concepts and roles in finding equivalent expressions,
as Baader himself points out, what is lacking from his definition is a measure
on how much additional material one may use and on the complexity of the
function that maps Lo-expressions to equivalent £1-expressions over a richer
vocabulary.

A second important difference between Baader’s work and ours lies in
the results that have been obtained. Baader only establishes a small number
of separation results, whereas we provide a complete classification of all
languages definable using the constructors in Table 1. More importantly,
our separation results our based on semantic characterizations; this gives a
deeper insight into the properties of logics than mere separation results.

In [Bor96] the author shows that certain description logics have the same
expressive power as the two or three variable fragment of first-order logic
(over the same vocabulary). Two remarks are in order. First, it is well-
known that there is a correspondence between some description logics and
modal logics (see [Sch91]), and modal logicians have considered the links
with finite variable fragments for quite some time (see [Gab81]). Thus,
Borgida’s results could also have been obtained this way. Secondly, the
description logics considered in this paper are all expressible in the two
variable fragment of first-order logic (possibly with counting), however, none
coincides with the full two-variable fragment.

6 Conclusion

In this paper we have introduced a model-theoretic method for determining
the expressive power of description logics. The method consists of three com-
ponents: a translation into a common background logic (here first-order logic
over a suitable vocabulary), semantic characterizations of the translated log-
ics, and using these characterizations to separate logics. The method was
successfully applied to obtain expressiveness results for all logics in the FL™
and AL hierarchies.

The main benefits of our methods are that they give exact and explicit
characterizations of description logics that explain in semantic terms why
one logic is or is not different from another. While the proofs of the se-
mantic characterizations in terms of various notions of (bi)-simulation are
admittedly somewhat technical, the use of the characterizations in sepa-
rating logics is fairly intuitive, as we hope to have demonstrated with our
examples. As summarized in the diagram in Figure 2, our mathematical
findings corroborate the intuitions one has concerning the expressive power
of description logics; we view this as additional evidence in support of our
methods.

difference between definability and projective definability in the area of model-theoretic
logics; see [BF85].

23

It should be noted that the role of our semantic characterization results
is in separating the expressive power of description logics, not in showing
that they coincide with respect to their expressive power. For the latter, we
use explicit syntactic definitions of the constructions of one logic in terms
of the constructions of the other.

Future research in this area will concentrate on the following themes.
First, as was pointed out above, the proofs for our characterization results
use first-order techniques in an essential way. We aim to avoid these tech-
niques, and thus to extend our methods method to description logics with
non-first-order features (like transitive closure). Second, we want to gain
a better understanding of the difference between our approach and that of
[Baa96]. In particular, we want to extend our model-theoretic tools in ways
that will characterize the expressive power of description logics in Baader’s
sense. Third, there is an influential line of work in the database literature
that characterizes the expressive power of query languages in terms of the
complexity of the recognition problem associated with queries expressible
in the language at hand; see, for instance, [AHV95]. Can this approach
be adapted to description logics? And if it can, would it induce the same
classification of description logics as ours? Finally, what is the complexity
of separating description logics. it is known from the literature on bisimu-
lation that, in general, even the question whether two given interpretations
are bisimilar, is undecidable, but for finite interpretations the question be-
comes decidable. In our case, the question is not just to check bisimilarity,
but to determine whether there exists an £q-concept that is not preserved
under Lo-relations. Are there special cases of this question that become

decidable?

Acknowledgments. We would like to thank Franz Baader, Wilfrid Hodg-
es, and Mike Paterson for useful comments on (presentations of) earlier
versions of this paper.

This research was partially supported by the Research and Teaching
Innovation Fund at the University of Warwick.

References

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.
Addison-Wesley, Reading, MA, 1995.

[Baa96] F. Baader. A formal definition for the expressive power of ter-
minological knowledge representation languages. J. Logic and
Computation, 6:33-54, 1996.

[Ben85)] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis,
Napoli, 1985.

24

[BF85]

[BDHS6]

[Bor96]

[DLNNY7]

[DLNS96]

[Doe96]

[Gab81]

[Hod93]
[Hol]

[TK87)

[Tmm86]

[TW96]

[KR97a]

[KR97b)

J. Barwise and S. Feferman, editors. Model-Theoretic Logics.
Springer-Verlag, 1985.

P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A query
language and optimization techniques for unstructured data. In
Proc. 1996 ACM SIGMOD International Conference on Man-
agement of Data, June 1996.

A. Borgida. On the relative expressiveness of description logics
and predicate logics. Artificial Intelligence, 134:353-367, 1996.

F.M. Donini, M. Lenzerini, D. Nardi, and W. Nutt. The complex-
ity of concept languages. Information and Computation, 134:1-

58, 1997.

F.M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. Reason-
ing in description logics. In G. Brewka, editor, Principles of
Knowledge Representation, Studies in Logic, Language and In-
formation, pages 191-236. CSLI Publications, Stanford, 1996.

K. Doets. Basic Model Theory. CSLI Publications, 1996.

D.M. Gabbay. Expressive functional completeness in tense logic.
In U. Monnich, editor, Aspects of Philosophical Logic, pages 91—
117. Reidel, Dordrecht, 1981.

W. Hodges. Model Theory. Cambridge University Press, 1993.

M. Hollenberg. Bisimulations for intersection. Manuscript, Uni-
versity of Utrecht, 1996.

N. Immerman and D. Kozen. Definability with bounded num-
ber of bound variables. In Proc. LICS 1987, Washington, 1987.

Computer Society Press.

N. Immerman. Relational queries computable in polynomial
time. Information and Control, 68:86—104, 1986.

D. Janin and I. Walukiewicz. On the expressive completeness of
the propositional p-calculus w.r.t. monadic second-order logic.

In Proceedings CONCUR ’96, 1996.

N. Kurtonina and M. de Rijke. Bisimulations for temporal logic.
Journal of Logic, Language and Information, 6:403—425, 1997.

N. Kurtonina and M. de Rijke. Simulating without negation.
Journal of Logic and Computation, 7:503-524, 1997.

25

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall,
1989.

[Pop94] S. Popkorn. First Steps in Modal Logic. Cambridge University
Press, 1994.

[Rij96] M. de Rijke. A note on graded modal logic. Technical Report
RR318, Department of Computer Science, University of War-
wick, 1996.

[Sch91] K. Schild. A correspondence theory for terminological logics. In
Proc. 12th IJCAI pages 466—471, 1991.

[TN97] D. Toman and D. Niwinski. First-order queries over temporal
databases inexpressible in temporal logic. Manuscript, 1997.

[Vic89] S. Vickers. Topology via Logic. Cambridge University Press,
1989.

A Appendix: Proofs of the Main Results

For each of the logics obtained by adding constructors from Table 1 we
will now prove the main semantic characterization theorems announced in
Section 4. The proofs all follow the same basic strategy. One half of the
result is proved by a simple induction; the other half is more involved and
uses compactness arguments, and, in some cases, additional techniques from
first-order logic.

Theorem 4.2 Let a(x) be a first-order formula. Then o(z) is equivalent
to an FL™ -concept iff it is preserved under FL™ -simulations.

Proof. The implication from left to right is proved by induction on concepts.
The atomic case is immediate from the definition of FL -simulations, and
conjunction is easy. Let us consider the existential case. Assume XiZds.
Suppose that X; C (AR.T)L. Let ¥ := {v € AT | Jw € X; (RTwv)}.
Then X1 R'Y7. So by clause 2 of Definition 4.1 there exists es with R7 dses.
Clearly, dy € (3R.T)7, as required. The universal case is next. Assume
that X; C (VR.C)L. Suppose that there is a es with R7 dses but es ¢ C7.
Then, by clause 3 of Definition 4.1 there exists Y; C AT with X;RYY; and
Y1Zey. By induction hypothesis, ea ¢ C7 implies Y; ¢ CT. This contradicts
X; C (VR.O)L.

Now, for the right to left implication, assume that a(z) is preserved under
F L™ -simulations, and let Con(a) be the set of its F L™ -consequences.

Claim A.1 Con(a) = a.

26

If we can prove Claim A.1, then, by compactness, there exists a finite con-
junction of elements of Con(«) that is equivalent to a(z). So let us prove
Claim A.1. Assume that Z = Con(a)[w]. We need to show that Z = afw].
Let I'={-C | Cisin FL and w ¢ CT}.

Claim A.2 For every =C € I, the set {a(x),~C} is consistent.

If the claim were false, then C' would be a consequence of a, contradicting the
definition of I'. As a corollary we find, for every —C € I', an interpretation
Tc and element vo € ATC such that vo € a(z)Te N (-C)%e.

Let J be the disjoint union of the pairs (Z¢,v¢), where =C € I'.* By
results from standard modal logic (cf. [Ben85]), it follows that for every
=C' € I there is a bisimulation linking v¢ in AT to ve € AJ. Then, for
every ~C' € I there is an F £ -simulation linking {vc} in AZ¢, and an FL -
simulation linking {v¢} in A7 to ve in AT¢ — simply link every singleton
{d} in the one interpretation to the copy of d in the other interpretation.

By assumption, «(z) is preserved under FL™-simulations, so {vc} C
a(z)f¢ implies ve € a(z)?, for every vo. Also, as there is an FL -
simulation linking {vc} in A7 to vg € AT, the fact that vo ¢ CT¢ implies
ve ¢ Y.

Claim A.3 For every FL -concept D, if for all vo (with -C € I'), ve €
D7, then w € DZ.

To see why, assume w ¢ DY. Then —D € I', so there exists vp € J with
vp ¢ DY. Next, define a relation Z C P(A7) x AT by putting Xy Zds iff
for all FL -concepts D, X; C DY implies dy € DT.

Claim A.4 The relation Z is an FL ™ -simulation.

Clause 1 of Definition 4.1 is trivially satisfied. For the second clause, suppose
that X;R'Y; and X1Zds; we have to show that there exists ey € AT with
RTdsey. This is easy: if X;R'Y7, then X; C (3R.T)7; so from X Zdy we
get dy € (GR.T)Z, so the required ey exists. For the third clause, assume
that RZdses and X1 Zds; we need to find a ¥; C AT with X; (RI)LYl and
Yi1Zey. Let C be any concept with ey ¢ CZ; then dy ¢ (VR.C)T. So from
X1Zdy we get X1 Z (VR.C)7. Therefore, there exists d; € X; and e; € AT
with R7dje; but e ¢ C7. If we repeat this argument for every concept C
with do ¢ CT, we obtain a set Y; C AT with X1R Y1 and Y1 Zey, as desired.

Finally, then, as a corollary to Claims A.3 and A.4 there is an FL™-
simulation relating {vc € A7 | =C' € I'} and w. As for every vc € A7

*That is, A7 is the disjoint union of the sets AZC; for every concept D, D7 is the
disjoint union of the sets DZC; and for every role R, R7 is the disjoint union of the sets

RZe.

27

with =C' € I" we have J | a(z)[vc] and as a(z) is preserved under FL™-
simulations, it follows that Z |= a(z)[w]. This proves Claim A.1, and hence
the theorem. -

Theorem 4.5 Let a(x) be a first-order formula. Then o(z) is equivalent
to an AL-concept iff it 1s preserved under AL-simulations.

Proof. Repeat all of the Claims A.1, A.2, A.3 and A.4 verbatim, but with
FLE instead of FL . A

The key result used in the proofs of Theorems 4.2 and 4.5 is the com-
pactness theorem. To prove characterization results for languages that are
richer than FL~ we need additional semantic tools, over and above the
compactness theorem. The proof of our characterization result for FLE™,
Theorem 4.8, uses so-called w-saturated models. Briefly, an interpretation Z
for a first-order language L is w-saturated if whenever A is a set of first-order
formulas in a language L', where £’ extends £; by the addition of finitely
many new individual constants, and each finite subset of A is satisfiable in
an L'-expansion of Z, then A is satisfiable in this expansion.

A key result about w-saturated models that will be used in our proofs
below says that, in a countable language, every interpretation Z has an
w-saturated elementary extension Z*; that is, for every interpretation 7
there is an w-saturated interpretation 7* such that AZ C AZ" and for every
first-order formula «(z1,...,2,) and any objects dy, ..., d, € AT, T =
aldy, ..., d,] iff 7% = aldy,. .., d,]. We refer the reader to any textbook on
model theory for further details; see e.g., [Hod93].

Theorem 4.8 Let a(x) be a first-order formula. Then o(z) is equivalent
to an FLE -concept iff it is preserved under FLE ™ -simulations.

Proof. We leave the left to right direction to the reader, and only give a
sketch of the right to left direction to the extent that it differs from the
proof of Theorem 4.2.

As in the proof of Theorem 4.2 we assume that «(z) is preserved under
FLE -simulations, and we concentrate on proving that Con(a) = «, where
Con(a) is the set of FLE -consequences of a(z). So, we assume that Z |=
Con(a)[w], and we need to show that Z = a(z)[w]. Let I' = {=C | C is in
FLE™ and w ¢ CT}. As in Claim A.2 one can show that for every =C € T,
the set {a(z), —C} is consistent. Consequently, for every =C € I" there are
interpretations ¢ and objects vo such that ve € a(z)fe N (-C)%e.

Let J be the disjoint union of the interpretations Zo. The relation
{(Xa4,d) | d € X4} is an FLE -simulation linking {vc} in J (or Z¢) to ve
in Ze (or J). Tt follows that ve € a(z)7 \ C7.

We leave it to the reader to establish an analog of Claim A.3. As ex-
plained above, there exists an w-saturated elementary extension Z* of Z. It
follows that for every FLE -concept D, v € DT iff v € D",

28

Next, define a relation Z C (P(A7) x AT") by putting X Zds iff for all
FLE -concepts D, X; C DY implies dy € DT".

Claim A.5 The relation Z is an FLE ™ -simulation.

We only check clause 2 of Definition 4.7. (Clause 1 is easy, and clause 3
is similar to clause 2 in the proof of Claim A.4.) Assume that X;(R7)'Y;
and X;Zds. We need to find an es € AT with RT dyey and Y1 Zes. Let
C1 1M --- 1 C, be an arbitrary finite conjunction of concepts such that Y; C
(CyM---NC,)7. Clearly, then, X; C (3R.(C;y N --- N Cy,))Y. By the
definition of Z we find that dy € (3R.(Cy M ---M Cy))% . This implies that
there exists es € AT such that ey € (Cym---n Cn)I*. At this point we
use the fact that Z* is w-saturated. As we have been able to find an object
ey in I* that satisfies RE does together with an arbitrary finite collection
of concepts satisfied by all the objects in Y7, by w-saturation we can in fact
find an object es in Z* with RT dyes that satisfies all concepts satisfied by
the objects in Y7. This means that Y7 Zes, as required.

With the proof of Claim A.5 completed, we have found an FLE -
simulation between J and Z* that relates {vo € AT | =C € I'} and w.
Hence we have the situation depicted in the following diagram.

w *
o
|

| 1 t

FLE™ -simulation | Z;trgr‘f;,lioagy
|
|
[] o

J {vceAd|-Cerl} w T

A walk around the diagram completes the proof. From {vc € A7 | =C €
'} C a(z)? and the fact that there is an FLE -simulation linking {vc €
A7 | =C € I'} to w in T*, it follows that w € a(z)?". As Z* is an elementary
extension of 7, we get w € a(z)%, and we are done.

Recall that the change required to prove a characterization result for
FLU™ is that we no longer work with simulations involving sets, but with
ones involving single objects only. for this characterization result we will
also need to use w-saturated models.

Theorem 4.11 Let a(x) be a first-order formula. Then a(z) is equivalent
to an FLU™ -concept iff it is preserved under FLU™ -simulations.

Proof. As before, we leave the left to right direction to the reader, and
only give a sketch of the right to left direction to the extent that it differs

29

from previous proofs (Theorems 4.2, 4.8). Assume that «(z) is preserved
under F LU -simulations, and consider the set of its consequences in FLU
Con(a). As before it suffices to prove that Con(a) = a. So, we assume that
7 | Con(a)[w], and we need to show that Z = a(z)[w]. Let I' = {-C | C
is in FLU™ and w ¢ CT}.

Claim A.6 The set {a(z)} UT is consistent.

If the claim were false, there would be concepts —Cy, ..., =C, € I" such
that « = —(=Cy M --- M =C,), or, in other words, a |= Cy U --- U Cy. So
w € (Cy U---UCy)T as w € a(x)?, and hence w € CF for some i with
1 <i<mn. But,as Ci, ..., C, are FLU™ -concepts, then =C; ¢ I', which is
a contradiction. This proves Claim A.6.

As a corollary we find an interpretation 7 and an object v € AY with

v € (a(x) NN{-C7 | =C € I'}).
Claim A.7 For every FLU -concept D, if v € D, then w € DT.

Now, let J* be an w-saturated elementary extension of J. It follows that
for every FLU -concept D, v € D7 iff v € D7". Next, define a relation
Z C (A7 x AT) by putting dy Zdy iff for all FLU -concepts D, dy € DI”
implies dy € D7.

Claim A.8 The relation Z is an FLU™ -simulation.

We only check clauses 2 and 3 of Definition 4.10. Assume that R7dieq and
d1Zdy. We need to find an es € AT with RZ dyes. But this is almost trivial:
given the existence of e; we have d; € (JR.T)7", and hence dy € (IR.T)Z,
as dyZds; from this the existence of the required ey follows.

As to clause 3, assume RZIdyes and dyZds. We need an eq € A7 with
R7"dye1 and e; Zes. Let C1, ..., C, be an arbitrary finite number of FLU -
concepts such that ey ¢ (CyM---MCy)E. Then, dy ¢ (VR.(CL1---11Cy))E.
By the definition of Z we find that dy ¢ (VR.(C; M ---1C,))7 . So there
exists e; € AT with ey ¢ (Cy1---1C,)Y . By w-saturation of J* this
argument can be generalized to the collection of all FLU™ -concepts not
satisfied by es. So, there exists an e; € A7 such that R7 dye; and, for any
D, ey ¢ DT implies e; ¢ DY, Hence, e; Zey. This proves Claim A.8.

The proof may now be completed in the same way as the proof of The-
orem 4.8.

Theorem 4.15 Let a(x) be a first-order formula. Then a(z) is equivalent
to an FLN ~-concept iff it is preserved under FLN ~-simulations.

Proof. We first prove the left to right direction. We prove by induction on
FLN ™~ -concepts that if X1 Zyds and X; C DT, then d» € DY. We only treat

30

the quantificational cases. First, assume that X;Zyds and X7 C (> 4 R)I.
Then, for every d; € X there exists Yy, C AT with (RT)*d;Y; and |Yy,| = .
Collect these sets Yy, together into a collection X C P(P<¥ (AT)); then X
is a an i-cloud that is R-above X7. So, by clause 5 of Definition 4.14 there
exists Yo C A7 with (R7)*dyYs and X Z;Ys. By clause 3 it follows that
|Ya| = i, as required.

Next, to prove preservation of (< 7 R), assume X;Zydy as before, while
dy ¢ (< i R)7. Choose Yo C A7 such that |Ys| =i+ 1 and (R7)*dyYs. By
clause 6 of Definition 4.14 there exists an i + 1-cloud X C P(P<¥(A!)) such
that X7 is R-below X'. Then, for all Y1 € X, |Yi| =i + 1, by clause 3, so
X1 Z (< i R)T, as required.

Finally, we have to prove preservation of concepts of the form VR.C (the
case AR.T is covered by (> 1 R)). Assume X1 Zyds, R7dsey and ey ¢ C7.
By clause 7 of Definition 4.14 there exists a 1-cloud X C P(P<¥(A%)) such
that X7 is R-below X and (| X') Zpes. By induction hypothesis, (|JX) Z
CZT. That is, there exists e; € [J X such that e; ¢ CZ. As X1 is R-below X,
there exists d; € X1 with (R)*d;{e;}, or in other words, RZdye;. It follows
that d; ¢ (VR.C)Z, and therefore X; ¢ (VR.C)%, and we are done.

Now, to prove the harder right to left direction, assume that «(z) is pre-
served under FLN ~-simulations. As in the proofs of our previous preser-
vation results, we proceed to prove that Con(a) = a, where Con(a) is the
set of FLN ~-consequences of a(z). So, we assume that Z | Con(a)w],
and we need to show that Z |= a(z)[w]. Let I' = {=~C | C is in FLN ™ and
w ¢ CT}. As in Claim A.2 we find interpretations Zc and objects vo such
that ve € a(z)f N (=C)e, and we form the disjoint union J of the inter-
pretations Z¢. Clearly, the relation {(X4,d) | d € X4} is the ‘Zy’-component
of an FLN ~-simulation linking {vc} in J (or Z¢) to ve in Ze (or J). As
a consequence, we obtain that vo € a(z)? \ CY.

We leave it to the reader to establish an analog of Claim A.3. Define the
following sequence of relations Zy, 71, ...

Zy = {(X1,d2)| X1 C A7, dy € AT, and for all D, X; C DY
implies dy € DT}
Z; = {(X,Y2)]|i>0, X CP(P<?(AT)), Yo C AT, and for all

Y1 € X, 1] = |Ya| = i}.

We tacitly assume that all the collections of sets X occurring in the above
definition are i-clouds above some set X7 C Aj, for some 1.

Claim A.9 The tuple Z = (Zy, Z1,. .., Zn,...) is an FLN ~ -simulation.

To prove the claim, observe first that clauses 1-4 of Definition 4.14 are
trivially fulfilled, so we only have to check clauses 5, 6 and 7. As to clause 5,
assume that X1 Zyda, and that X C P(P<¥(A7)) is an i-cloud which is R-
above X1. We need a set Yo C AT with (R%)%dyYs and |Ys| = 4. Clearly, we

31

have that for every dy € X1, di € (> i R)7, hence X; C (> i R)7. Then,
X1Zyds gives dy € (>4 R)I. This implies the existence of the required Ys.

Next comes clause 6 of Definition 4.14. Assume X Zydy, and (RT)*d,Y5,
where |Yz| = i > 0. We need to find an i-cloud X C P(P<“(A7)) such
that X is R-below X and X Z;Y5. Reason as follows: as dy ¢ (< i —1 R)Z,
we get X1 ¢ (< i—1 R)7, and it follows that for some d; € A7 we have
di ¢ (<i—1R)7 sod; € (>iR)7. Let

Xy, ={Y C A7 ||Y|=iand (R7)%dY},

and put
X =|J{Xs |di € X and dy € (> i R)7}.

Then & is a non-empty i-cloud such that X; is R-below X and X Z;Y5, as
required.

Next we turn to clause 7. Assume X7 Zyds and RId262; we need to find
a l-cloud X such that X; is R-below X and (|J X') Zpea. For every concept
C such that ey ¢ CI, we can find ey, di € A7 with d; € X1 and R7dye;.
Let X be the collection of all singletons {e;} obtained in this way; then X;
is R-below X and (|J Z) Zpea, as required.

This proves Claim A.9. Using a by now familiar argument the proof of
Theorem 4.15 can now be completed. -

Theorem 4.18 Let a(x) be a first-order formula. Then a(z) is equivalent
to an FLR -concept iff it is preserved under FLR ™ -simulations.

Proof. We first prove the left to right direction. We prove by induction
on FLR -concepts that if X{Zpdy and X1 C DI, then dy € D7. We
only treat the quantificational cases. First, assume that X Zyds and X; C
(3(RyM---MNRy,).T)Z, where all R; are atomic role names. For each d; € X3
select ey € AT with (Ry M--- M R,)%dses, and collect these ey’s together in
a set Y7. Let R be a collection of (atomic) role names such that Ry, ...,
R, € R and such that R is meet closed for X; and Y;. By clause 4(a) of
Definition 4.17 there exists Ey C AT with (X1,Y1)Z1(ds, E2). By clause
3(a) there exists ey € Ey such that ([TR)7 dges. Hence, dy € (3([TR).T)Y,
and therefore dy € (3(Ry M --- M R,).T)7, as required. Next, to prove
preservation of VR.C, assume that X;Zpdy and dy ¢ (VR.C)7. Let e
be such that R7dyes and es ¢ C7. Then, by clause 4(b), there exists
Y1 with (X1,Y1)Z1(d2, e2). By clause 3(b), X1(RT),Y7, and clause 5 gives
Y1 Zyes. Together with e; ¢ C7 and the induction hypothesis this implies
X1 Z (VR.C)%, and we're done.

Next, to prove the right to left direction, we assume that a(z) is pre-
served under FLR -simulations, and proceed to prove that Con(a) E a,
where Con(a) is the set of FLR ™ -consequences of a(z). So, we assume that

7 | Con(a)[w], and we need to show that Z = a(z)[w]. Let I' = {-C | C

32

is in FLR™ and w ¢ CT}. As in Claim A.2 we find interpretations Z¢ and
objects vo such that ve € a(z)2¢ N (=C)1¢, and we form the disjoint union
J of the interpretations Zo. We leave it to the reader to check that there
is an FLR -simulation linking {vc} in J (or Z¢) to ve in Ze (or J). It
follows that ve € a(z)? \ C7.

We also leave it to the reader to establish an analog of Claim A.3. Next,
take w-saturated elementary extensions J* and Z* of J and Z, respectively.
Define the following relations Zy, Z1, and Zs:

Zy = {(Xi1,dy) | forall D, X; C D7 implies dy € DT"}.

Zi = {((X1,Y1),(da, Es)) | for some R, X;R'Y;, and for every
meet closed collection of atomic concepts R for X1 and Y;
there exists ey € Eo with ([TR)? daes}.

Zy = {((X1,Y1),(d2,e2)) | Y1Zpea and for all concepts R,

RT dyes implies X1(R77) Y1}

Claim A.10 The tuple 7Z = (Zy, Z1, Z3) is an FLR™ -simulation.

To prove the claim, observe first that conditions 1, 2, 3, and 5 of Defini-
tion 4.17 are trivially satisfied. As to condition 4(a), assume that X7 Zyds
and X1(R77)'Y1. Let R be any meet closed collection of atomic role names
for X7 and Y7, and consider the set

XY(da,y) = {Rday | R € R}.

Y(ds,y) is finitely satisfiable in Z*. For, consider Ridsy, ..., R,dsy €
Y(dg,y). As R is meet closed for X7 and Y7, it follows that Xj((Ry M
--MR,)7)Y, and hence X1 C (A(Ry M ---MNR,).T)7 . Since X1 Zyds it
follows that dy € (3(Ry M--- M R,).T)T, hence there exists es with (Ry M
N Rn)I* dses. Now, using the fact that 7* is w-saturated, it follows that
all of X(ds,y) is satisfiable in Z*, say by es. Clearly, for this e; we have
(HR)I* d262.

Repeat the above argument for every collection of atomic role names
that is meet maximal for X; and Y7, and collect the satisfying objects e
together in a set Fs. This proves clause 4(a).

As to clause 4(b), assume X;Zyds and R? dye;. We need a Y3 C AT
with (X1,Y1)Z2(d2, e2). Choose C with ey ¢ CZ", and define

2(z,y) := {~C} U{Raxy | RT dses}.

We claim that X(z,y) is finitely satisfiable in J* in such a way that z takes
its value in X;. To see this, take Ry (z,y), ..., Ry(z,y) € X(z,y). Thends ¢
(Y(RyM---MR,).C)%", and hence X; (V(R1M---NR,).C)7", as X1 Zyds.
It follows that there exists d; € X; and e; € A7 with (RyM---MNR,) dye;

33

and e; ¢ C7. By w-saturation, all of X(z,y) is satisfiable in J* in such
a way that = takes its value in X;. This yields an object e; such that for
some di € X3

(di,e1) € ﬂ{RJ* | RI*d262} and ey ¢ cJ".

Repeating this argument for every C such that es ¢ C", we obtain a set Y3
as desired.

Using a by now familiar argument, we can use the existence of an FLR -
simulation as the main step in showing that Z = a(z)[w]. -

34

