
Expressiveness of First-Order Description LogicsNatasha Kurtonina1 and Maarten de Rijke21 IRCS, University of Pennsylvania3401 Walnut Street, Philadelphia, PA 19104-6228, USAnatashak@linc.cis.upenn.edu2Dept. of Computer Science, University of WarwickCoventry CV4 7AL, Englandmdr@dcs.warwick.ac.ukAbstractWe introduce a method for characterizing the expressive power of �rst-order description logics. The method is essentially model-theoreticin nature in that it gives preservation results uniquely identifying awide range of description logics as fragments of �rst-order logic. Thelanguages studied in the paper all belong to the well-known FL� andAL hierarchies.1 IntroductionDescription logics have been proposed in knowledge representation to specifysystems in which structured knowledge can be expressed and reasoned within a principled way. They provide a logical basis to the well-known traditionsof frame-based systems, semantic networks and KL-ONE-like languages,object-oriented representations, semantic data models, and type systems.In the design of description logics two important theoretical considerationsare complexity and expressive power. A popular slogan here is `complexityversus expressiveness': the more expressive a description logic is, the higherthe complexity of the reasoning tasks that can be performed in it. Thecomplexity of satis�ability and subsumption problems for description logicshas been studied extensively (cf. [DLNS96, DLNN97]), but the problem ofexpressiveness has hardly been addressed so far; we are aware of only twopublications on this topic [Baa96, Bor96]. The purpose of this paper is tohelp �ll this gap. We characterize and compare the expressive power of alllogics in two well-known hierarchies of description logics.The methods we use �rst identify description logics as fragments of �rst-order logic, and then characterize these fragments in terms of a uniquemodel-theoretic property. The main technical tool used is preservation under1



a suitable notion of (bi-)simulation. More precisely, with each descriptionlogic L we associate a characteristic (bi-)simulation such that all and only theL-expressions are preserved under this (bi-)simulation. Then, the expressivepower of two description logics can be compared by comparing the model-theoretic behaviour of their expressions with respect to their respective (bi-)simulations. The characteristic (bi-)simulations can then be used to classifythe properties that are de�nable in description logics.We think that our results are signi�cant for the knowledge represen-tation community because, for the �rst time, they give exact and explicitmodel-theoretic characterizations of the expressive power of a wide range ofdescription logics. In addition, they illustrate a general method for copingwith expressiveness issues; they may be used by the designer of knowledgebased systems to help choose the description logic that best �ts his or herdescriptive requirements.Baader [Baa96] seems to have been the �rst to propose a formal de�nitionof the expressive power of description logics; the only other formal paperon the issue is [Bor96]. Our de�nition of expressive power is somewhatsimpler than Baader's. Also, our paper di�ers from [Baa96, Bor96] in thatwe give exact and explicit model-theoretic characterizations of the expressivepower of a wide range of logics (cf. Section 5 for further discussion). Theresults in this paper are based on preservation theorems that are similar toones found in the literature on modal and temporal logic and the modal�-calculus [Ben85, JW96, KR97b]. However, as description logics often lacksome boolean operations, the proofs of our preservation theorems requirenovel technical tools and methods. Our preservation results are similar inspirit to the characterizations of �nite variable fragments in terms of pebblegames due to [IK87]. Furthermore, there is a considerable body of work onthe expressive power of query languages, but most of this is phrased in termsof complexity classes [AHV95, Imm86]. The results in the present paper,however, are entirely model-theoretic.We proceeds as follows. In Section 2 we describe the technical prereq-uisites for the paper, and review our notation. Section 3 then explains ourmethod and the de�nition of expressive power used. The main results ofthe paper are contained in Section 4, together with illustrations of their use.Section 6 contains concluding remarks and describes ongoing work. Formalproofs of the main characterization results are included in an appendix.2 Technical BackgroundThe main ingredients of description logics are concepts and roles. The for-mer are interpreted as subsets of a given domain, and the latter as binaryrelations on the domain. Table 1 lists constructors that allow one to build(complex) concepts and roles from (atomic) concept names and role names.2



For instance, the concept Manu9Child:>u8Child:Human denotes the set ofall fathers.Constructor name Syntax Semanticsconcept name A AI � �Itop > �Ibottom ? ;conjunction C uD CI \DIdisjunction (U) C tD CI [DInegation (C) :C �I n CIuniv. quant. 8R:C fd1 j 8d2 (d1; d2) 2 RI ! d2 2 CIgexist. quant. (E) 9R:C fd1 j 9d2 (d1; d2) 2 RI ^ d2 2 CIgnumber (� n R) fd1 j jf(d1; d2) 2 RIgj � ngrestriction (N ) (� n R) fd1 j jf(d1; d2) 2 RIgj � ngrole name R RI � �I ��Irole conj. (R) Q uR QI \RITable 1: Constructors in First-Order Description LogicsDescription logics di�er in the constructions they admit. By combiningconstructors taken from Table 1, two well-known hierarchies of descriptionlogics may be obtained. The logics we consider here are extensions of FL�;this is the logic with >, ?, universal quanti�cation, conjunction and un-quali�ed existential quanti�cation 9R:>.1 AL extends FL� by negation ofconcept names (that is, negations of the form :A, where A is an atomicconcept name). Extensions of FL� and AL are denoted by post�xing thename of the constructors being added. For instance, FLEU� is FL� with(full) existential quanti�cation and disjunction.Description logics are interpreted on interpretations I = (�I ; �I), where�I is a non-empty domain, and �I is an interpretation function assigningsubsets of �I to concept names and binary relations over �I to role names;complex concepts and roles are interpreted using the recipes speci�ed inTable 1. The semantic value of an expression E in an interpretation I issimply the set EI . Two expressions are called equivalent if they have thesame semantic value in every interpretation.For further details on both applications and theoretical aspects of de-scription logics, we refer the reader to [DLNS96], or to the description logichome page at http://dl.kr.org/dl/.1Some de�nitions of FL� don't include > and ? in the logic; cf. [DLNS96]. To simplifythe formulation of our results we have decided to include them.
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igure 1: The Method3 De�ning Expressive PowerIn this section we de�ne our notion of expressive power, and explain ourmethod for determining the expressive power of a given description logic.Our aim in this paper is to determine the expressive power of everyextension of FL� and AL that can be de�ned using the constructors inTable 1. We say that a logic L1 is at least as expressive as a logic L2 iffor every expression in L2 there is an equivalent expression in L1; notation:L2 � L1. If L2 � L1 and L1 6� L2, we write L2 < L1; if both L1 � L2 andL2 � L1 hold, we write L1 � L2.The method we use for explaining the expressive power of descriptionlogics has the following ingredients:1. a mapping taking description logics to fragments of �rst-order logic;2. characterizations of these fragments by model-theoretic means; and3. comparisons between (the expressive power of) description logics basedon comparisons between the corresponding �rst-order fragments; cf.Figure 1, where the rectangle denotes �rst-order logic, and the closedcurves denote (fragments corresponding to) description logics.In line with our methodology we will pursue the above items 1, 2, and3 for each of the description logics considered in this paper. First, item 1is next to trivial. The semantics given in Table 1 induces translations (�)�and (�)� taking concepts and roles, respectively, to formulas in a �rst-orderlanguage whose signature consists of unary predicate symbols correspondingto atomic concepts names, and binary predicate symbols corresponding to
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atomic role names:A�x = Ax (C uD)�x = C�x ^D�x>�x = (x = x) (C tD)�x = C�x _D�x?�x = (x 6= x) (:C)�x = :C�x(8R:C)�x = 8y (R�xy ! C�y); where y is a fresh variable(9R:C)�x = 9y (R�xy ^ C�y); where y is a fresh variable(� n R)�x = 9y1 : : : yn �Vi 6=j yi 6= yj ^ViR�xyi�where all yi are a fresh variables(� n R)�x = 8y1 : : : yn+1 �Vi 6=j yi 6= yj ! Wi :R�xyi�where all yi are a fresh variablesR�xy = Rxy (Q uR)�xy = Q�xy ^R�xyObserve that to translate concepts and roles in description logics withoutnumber restrictions we only need two individual variables.To be able to state that concepts and roles are equivalent to their trans-lations under � and �, we need to relate the semantics of description logicsand �rst-order logic. But interpretations can naturally be viewed as modelsfor the �rst-order language we consider here. Thus, we will for example writeI j= �(x)[d] to denote that the �rst-order formula � is true in I (viewed asa �rst-order model), with d assigned to �'s free variable x. Below we willexploit this connection, often without making it explicit.Proposition 3.1 Let C be a concept and R a role. For any interpretationI and any d, e 2 �I we have the following equivalences:1. d 2 CI i� I j= C�x [d]2. (d; e) 2 RI i� I j= R�xy [de].Given this proposition we are allowed to simply identify description logicswith their corresponding �rst-order fragments, and if no confusion is possiblewe write C instead of C� , and R instead of R�.Proposition 3.1 settles item 1 of our method. Next comes item 2 | thisis much more work. The semantic characterizations that we are after willbe formulated in terms of preservation under a suitable relation betweeninterpretations. To make this strategy more concrete we �rst recast a resultfrom modal logic in description logical terms.Schild [Sch91] was the �rst to give a precise formulation of the connectionbetween description logics and modal logics. Readers familiar with multi-modal logic will immediately recognize the similarity between existentialquanti�cation 9R:C and the diamond operator hRiC, and between univer-sal quanti�cation 8R:C and the box operator [R]C. Given this connectionbetween description logics and modal logics, results in the one domain be-come available to the other. In modal logic, the following notion is now5



being used as an important model-theoretic tool, even at the textbook level,cf. [Pop94].De�nition 3.2 Let I = (�I ; �I) and J = (�J ; �J ) be two interpretations.A non-empty relation Z � (�I ��J ) is called a bisimulation if it satis�esthe following clauses.1. If d1Zd2, then, for every (atomic) concept name A, d1 2 AI i� d2 2AJ .2. For every (atomic) role name R, if d1Zd2 and RId1e1, then there existse2 in �J such that RJ d2e2 and e1Ze2.3. For every (atomic) role name R, if d1Zd2 and RJ d2e2, then thereexists e1 in �I such that RId1e1 and e1Ze2.A �rst-order formula �(x) is said to be preserved under bisimulations if for allinterpretations I, J , all objects d1 2 �I and d2 2 �J , and all bisimulationsZ between I and J , we have that I j= �[d1] implies J j= �[d2] wheneverd1Zd2.Bisimulations are aso used extensively in concurrency theory [Mil89], andto a lesser extent in the area of semistructured data [BDHS96].What is the relevance of bisimulations for purposes of the present paper?Brie
y, bisimulations are relations between interpretations that preserve allALC-concepts. This is clear for atomic concept names (clause 1 in De�ni-tion 3.2), and a simple induction shows it to hold for boolean combinationsas well. The back-and-forth clauses 2 and 3 guarantee preservation of exis-tential and universal quanti�cation, respectively.The following theorem establishes a kind of converse for this preservationresult; it is the starting point for our investigations.Theorem 3.3 Let �(x) be a �rst-order formula. Then �(x) is (equivalentto) an ALC-concept i� it is preserved under bisimulations.Proof. The proof consists of two parts: as explained above, by a simpleinduction one can show that ALC-concepts are preserved under bisimula-tions. The proof of the other direction can be obtained as follows. As was�rst observed in [Sch91], ALC is a notational variant of normal multi-modallogic (with full boolean expressivity). The corresponding preservation the-orem for mono-modal logic may be found in [Ben85], but it can easily beextended to the multi-modal case. aIn words, preservation under bisimulations is the unique model-theoreticproperty that characterizes ALC as a fragment of �rst-order logic. One canput this property to good use in the following way: to show that a descriptionlogic L (extending ALC) is more expressive than ALC, by Theorem 3.3 itsu�ces to identify an L-concept that is not preserved under bisimulations.6



Corollary 3.4 Let L be a description logic that can be obtained from ALCby adding any non-empty combination of R or N . Then ALC < L.Proof. To prove ALC < ALCR (or ALCN or ALCRN , respectively), itsu�ces to provide two interpretations I, J and objects d1 2 �I , d2 2 �Jas well as a bisimulation Z linking d1 and d2, such that for some ALCR-concept C (or ALCN -concept or ALCNR-concept) we have d1 2 CI butd2 =2 CJ .Consider the interpretations I and J depicted below. (The arrows de-note the interpretation of R, an object is labeled A if it is in the interpreta-tion of A, and the dotted lines indicate the bisimulation.)RSRRS PPPPPPi ������) ������) uPPPPPPq������1uu uuu d1 d2I J
Let C1 := (9(R u S):>) and C2 := (� 2 R). Then, clearly, d1 2 CI1 andd1 2 CI2 , but d2 =2 CJ1 and d2 =2 CJ2 .We leave it to the reader to check that the relation indicated by thedotted lines is indeed a bisimulation. It follows from Theorem 3.3 thatneither 9(R u S):> nor (� 2 R) is (equivalent to) an ALC-concept. Hence,ALC < ALCR, ALCN , ALCRN . aNow, what do we need to do to adapt the above result for other exten-sions of FL� de�ned by Table 1? For logics less expressive than ALC wecan not just use bisimulations, as such logics lack negation or disjunction,and these are automatically preserved under bisimulations; moreover, theproof of Theorem 3.3 uses the presence of the booleans in an essential way.For logics more expressive than ALC some of their constructors need not bepreserved under bisimulations. Therefore we have to develop new notions of(bi-)simulation; this wil be the focus of our attention in Section 4.4 Separating Description LogicsThis section contains the main results of the paper. For FL�, AL, and allof their extensions that can be de�ned using the constructors in Table 1,we present semantic characterization analogous to Theorem 3.3. We subse-quently use these to separate logics, thus completing items 2 and 3 of themethodology outlined in Section 3, and obtain a complete classi�cation ofthe full FL� and AL-hierarchies.We proceed as follows. We �rst consider the `minimal' logic FL�, char-acterize it semantically, and use the characterization to separate FL� from7



richer logics. After that, we treat each of the constructors in Table 1 thatare not in FL�, and examine which changes are needed to characterize theresulting logics. This is followed by a section in which we consider combina-tions of constructors. Our classi�cation results are summarized in a diagramat the end of the section. Proofs of the characterization results are given inan appendix.Throughout this section the following abbreviations will prove to beuseful; let X, Y be subsets of a given domain.XR"Y i� for all d 2 X there exists e 2 Y such that RdeXR#Y i� for all e 2 Y there exists d 2 X such that Rde.In words, X is R"-related to Y if every object in X `sees' an object in Y ;and X is R#-related to Y if every object in Y is `seen' by an object in X. Asan aside, the two relations R" and R# are two particular instances of `lifting'a binary relation on objects to a binary relation on sets of objects. In thesetting of program semantics they are known as the Hoare power order andthe Egli-Milner power order, respectively; cf. [Vic89].4.1 The Base Case: FL�Recall that the logic FL� has >, ?, universal quanti�cation 8R:C, conjunc-tion C uD, and unquali�ed existential quanti�cation 9R:>.What do we need to develop a notion of bisimulation that can be usedto characterize FL�? First of all, ordinary bisimulations as de�ned in Def-inition 3.2 preserve negations of concepts | this is obviously too much forFL�, as it does not have negations. To destroy preservation of negations wewill introduce a direction in the atomic clause of De�nition 3.2, and hencemake bisimulations non-symmetric. This change will enable us to preservepositive (negation-free) information only.However, disjunctions would still be preserved under such non-symmetricbisimulations. As FL� does not allow disjunctions of concepts, we need toblock this as well. To achieve this, we change the format of bisimulations:instead of linking an object to an object, we will link a set of objects toan object. The notion of preservation will then say that if a concept orformula holds for every object in the set, then it must hold in the similarobject. If a disjunctive concept or formula holds for all objects in a set (ofsize at least two) this no longer implies that one of the disjuncts holds forall objects in the set; as a consequence the inductive argument needed toprove Theorem 3.3 may break down.22As an aside, by linking sets (or objects) to sets we would also be able to deal withlogics without conjunction. 8



De�nition 4.1 Let I = (�I ; �I) and J = (�J ; �J ) be two interpretations.An FL�-simulation is a non-empty relation Z � P(�I)��J such that thefollowing hold.1. If X1Zd2 then, for every (atomic) concept name A, if X1 � AI , thend2 2 AJ .2. For every (atomic) role name R, if X1(RI)"Y1 and X1Zd2, then thereexists e2 2 �J with RJ d2e2.3. For every (atomic) role name R, if RJ d2e2 and X1Zd2, then thereexists Y1 � �I with X1(RI)#Y1 and Y1Ze2.A �rst-order formula �(x) is preserved under FL�-simulations if for allinterpretations I and J , all sets X � �I and objects d2 2 �J , and allFL�-simulations Z between I and J , we have that if XZd2 and for alld1 2 X, I j= �[d1], then J j= �[d2].The basic intuition underlying the clauses in De�nition 4.1 is that atomicroles need to be preserved (clause 1); we only need to preserve unquali�edexistential quanti�cations (clause 2), but we need to preserve full universalquanti�cation 8R:C, where C may itself be a complex concept | this ne-cessitates the `and Y1Ze2' in clause 3. Of course, in addition we need topreserve conjunctive concepts C uD, but this we get for free.Theorem 4.2 (Characterization of FL�) Let �(x) be a �rst-order for-mula. Then �(x) is equivalent to an FL�-concept i� it is preserved underFL�-simulations.Corollary 4.3 Let L be either AL or any description logic that can beobtained from FL� or AL by adding any non-empty combination of U , C,E, N , or R. Then FL� < L.Proof. We only show this for one logic, and we do so by displaying a conceptthat can not be equivalent to a concept in FL�. The concept 9R:A (whichlives in FLE� and its extensions) is not equivalent to an FL�-concept,as it is not preserved under FL�-simulations. To see why, consider theinterpretations I and J depicted below. (The dashed boxes indicate sets.)A � uuPPPPPPq������1 uuud1 d2I J
Here we have that fd1g � (9R:A)I but d2 =2 (9R:A)J , even though thereis an FL�-simulation relating fd1g to d2. Hence, by Theorem 4.2, 9R:Acan not be equivalent to an FL�-concept. As FL� � FLE� is obvious, itfollows that FL� < FLE�. a 9



4.2 Adding NegationWe now consider the changes that need to be made to the basic set-upfor FL�-simulations if some form of negation is present in the logic. Inparticular, we consider the logic AL; recall that it extends FL� by negationof (atomic) concept names. It turns out that only minor changes are requiredas compared to De�nition 4.1.De�nition 4.4 Let I = (�I ; �I) and J = (�J ; �J ) be two interpretations.An AL-simulation is a non-empty relation Z � P(�I)��J such that thefollowing hold.1. If X1Zd2 then, for every (atomic) concept name A, if X1 � AI , thend2 2 AJ , and if X1 � :AI , then d2 2 :AJ .2. For every (atomic) role name R, if X1(RI)"Y1 and X1Zd2, then thereexists e2 2 �J with RJ d2e2.3. For every (atomic) role name R, if RJ d2e2 and X1Zd2, then thereexists Y1 � �I with X1(RI)#Y1 and Y1Ze2.A �rst-order formula �(x) is preserved under AL-simulations if for all in-terpretations I and J , all sets X � �I and objects d2 2 �J , and all AL-simulations Z between I and J , we have that if XZd2 and for all d1 2 X,I j= �[d1], then J j= �[d2].The intuition underlying the change in clause 1 of De�nition 4.4 (ascompared to clause 1 of De�nition 4.1) is that both positive and negativeatomic information information now needs to be preserved in passing fromI to J .Theorem 4.5 (Characterization of AL) Let �(x) be a �rst-order for-mula. Then �(x) is equivalent to an AL-concept i� it is preserved underAL-simulations.Corollary 4.6 Let L be a description logic that can be obtained from ALby adding any non-empty combination of U , C, E, N , or R. Then AL < L.Also, if L is obtained from FL� by adding one of U , E, N , or R, thenL 6< AL.Proof. As in Corollary 4.3, by way of example we only consider one casefor the proof of the �rst claim. We show that AL is strictly less expressivethan ALU by providing an ALU-concept that is not equivalent to any AL-concept.
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AB uuud1e1 d2I J
The ALU-concept A t B is not equivalent to an AL-concept. In the twointerpretations I, J depicted above we have that fd1; e1g � (A t B)I , andthere exists an AL-simulation linking fd1; d01g to d2, but d2 =2 (AtB)J . ByTheorem 4.5, then, (A tB) can not be equivalent to an AL-concept.Similar arguments may be used to establish the second claim of thecorollary. a4.3 Adding Existential Quanti�cationNext we consider adding full existential quanti�cation as a constructor toFL�. For the resulting logic FLE� we obtain the appropriate notion ofsimulation by taking De�nition 4.1 and adding `and Y1Ze2' as a conjunctto clause 2. Clearly, what we need for FLE�-concepts to be preserved byan appropriate notion of simulation, is that concepts of the form 9R:C arepreserved, and the additional condition `Y1Ze2' achieves this | it simplymirrors clause 3 (which achieves preservation of universal quanti�cations),and hence to a certain degree it restores symmetry.De�nition 4.7 Let I = (�I ; �I) and J = (�J ; �J ) be two interpretations.An FLE�-simulation is a non-empty relation Z � P(�I) ��J such thatthe following hold.1. If X1Zd2 then, for every (atomic) concept name A, if X1 � AI , thend2 2 AJ .2. For every (atomic) role name R, if X1(RI)"Y1 and X1Zd2, then thereexists e2 2 �J with RJ d2e2 and Y1Ze2.3. For every (atomic) role name R, if RJ d2e2 and X1Zd2, then thereexists Y1 � �I with X1(RI)#Y1 and Y1Ze2.A �rst-order formula �(x) is preserved under FLE�-simulations if for allinterpretations I and J , all sets X � �I and objects d2 2 �J , and allFLE�-simulations Z between I and J , we have that if XZd2 and for alld1 2 X, I j= �[d1], then J j= �[d2].Theorem 4.8 (Characterization of FLE�) Let �(x) be a �rst-order for-mula. Then �(x) is equivalent to an FLE�-concept i� it is preserved underFLE�-simulations. 11



Corollary 4.9 Let L be a description logic that can be obtained from FLE�by adding any non-empty combination of U , C, N , or R. Then FLE� < L.Also, if L is either AL or obtained from FL� by adding one of U , N , orR, then L 6< FLE�.Proof. As before, we will only prove the corollary for one case. We will showthat FLE� is strictly less expressive than FLEN�. The interpretations inthe following �gure show that the FLEN�-concept (� 2 R) is not equivalentto an FLE�-concept. � uuPPPPPPq������1 uuud1 d2I J
In the above �gure we have fd1g � (� 2 R)I but d2 =2 (� 2 R)J even thoughthere is an FLE�-simulation (indicated by the dotted lines) that links fd1gto d2. a4.4 Adding DisjunctionFor FLU� we obtain the appropriate notion of simulation by taking Def-inition 4.1, but instead of linking sets of objects to objects, we now linkobjects (or: singleton sets) to objects. As explained in the introduction tothis section, if a notion of simulations links sets of objects to single objects,disjunctions need not preserved, the reason being that from the fact that,if X is a set, then X � (C t D)I does not imply X � CI or X � DI .Working with single objects, however, we would of course be able to inferfrom d 2 (C tD)I that d 2 CI or d 2 DI , and this would allow us to givean inductive proof of a preservation result for disjunctions.De�nition 4.10 Let I = (�I ; �I) and J = (�J ; �J ) be two interpreta-tions. An FLU�-simulation is a non-empty relation Z � �I � �J suchthat the following hold.1. If d1Zd2 then, for every (atomic) concept name A, if d1 2 AI , thend2 2 AJ .2. For every (atomic) role name R, if RId1e1 and d1Zd2, then there existse2 2 �J with RJ d2e2.3. For every (atomic) role name R, if RJ d2e2 and d1Zd2, then thereexists e1 2 �I with RId1e1 and e1Ze2.12



A �rst-order formula �(x) is preserved under FLU�-simulations if for allinterpretations I and J , all objects d1 2 �I , d2 2 �J , and all FLU�-simulations Z between I and J , we have that if d1Zd2 and I j= �[d1], thenJ j= �[d2].Theorem 4.11 (Characterization of FLU�) Let �(x) be a �rst-orderformula. Then �(x) is equivalent to an FLU�-concept i� it is preservedunder FLU�-simulations.Corollary 4.12 Let L be a description logic that can be obtained fromFLU� by adding any non-empty combination of C, E, N , or R. ThenFLU� < L. Also, if L is either AL or obtained from FL� by adding oneof E, N , or R, then L 6< FLU�.Proof. As before, we will only prove the corollary for one case. We willseparate FLU� from FLUR�. The interpretations in the following �gureshow that the FLUR�-concept 9(R u S):> is not equivalent to an FLU�-concept. RSRS�� uPPPPPPq������1 uuuu d1 d2I J
In the above �gure we have d1 2 (9(R u S):>)I but d2 =2 (9(R u S):>)Jeven though there is an FLU�-simulation (indicated by the dotted lines)that links d1 to d2. a4.5 Adding Number RestrictionsTo arrive at a notion of simulation for FLN� we use the above ideas togetherwith ideas from [Rij96]. The main feature of the notion of FLN�-simulationis that in order to guarantee preservation of number restrictions it recordsthe size of sets of objects taking part in the simulation. It does this using awhole sequence of relations between sets of sets of objects on the one handand sets of objects on the other; later on, in the presence of disjunction wewill be able to simplify these to relations between sets of objects on bothsides.The following notation will prove to be useful. We write R�d1Y1 if for alle1 2 Y1, Rd1e1 holds. As before, since FLN� is a logic without disjunction,our notion of simulation for FLN� needs to relate sets of objects to objects.But we need a bit more. For, let I be an interpretation, and let X1 � �Ibe such that X1 � (� n R)I ; then, for each d1 2 X1 there exists Yd1 � �Iwith jYd1 j � n and (RI)�d1Yd1 . Now, to ensure preservation of (� n R)13



from X1 to any object d2 similar to X1, we need to consider the collectionof all these sets Yd1 , where d1 ranges over elements of X1. The followingde�nition captures this idea.De�nition 4.13 Let R be a role name, and i > 0. Assume that X1 � �I ,where I is some interpretation. An i-cloud is a set X of subsets of �I suchthat for all Y 2 X , jY j = i.An i-cloud X is said to be R-above X1 � �I if for all d1 2 X1 thereexists Y1 2 X such that (RI)�d1Y1.A set X1 is said to be R-below an i-cloud X if for every Y1 2 X thereexists d1 2 X1 such that (RI)�d1Y1.By indexing i-clouds with the set above which they hang, we can ensurethat every cloud is above exactly one set only.We are ready now for the de�nition of an FLN�-simulation. We useP<!(X) to denote the collection of �nite subsets of X.De�nition 4.14 Let I = (�I ; �I) and J = (�J ; �J ) be two interpreta-tions. An FLN�-simulation between I and J is a sequence of relationsZ = (Z0, Z1, . . . , Zn, : : :) such that the following hold.1. Z0 is non-empty;2. (a) Z0 � P(�I)��J ;(b) for all i > 0, Zi � P(P<!(�I))�P<!(�J );3. for all i > 0, if XZiY2, then, for any X 2 X , jXj = jY2j = i;4. if X1Z0d2, then, for any (atomic) concept name A, if X1 � AI thend2 2 AJ ;5. if X1Z0d2 and X � P(P<!(�I)) is a non-empty i-cloud R-above X1,where i > 0, then there exists Y2 � �J with (RJ )�d2Y2 and XZiY2;6. if X1Z0d2 and (RJ )�d2Y2, where jY2j = i > 0, then there exists anon-empty i-cloud X � P(P<!(�I)) such that X1 is R-below X andXZiY2;7. if RJ d2e2 and X1Z0d2, then there exists a 1-cloud X such that X1 isR-below X and (SX )Z0e2.A �rst-order formula �(x) is preserved under FLN�-simulations if for allinterpretations I and J , all sets of objects X1 � �I and objects d2 2 �J ,and all FLN�-simulations Z = (Z0; Z1; : : :) between I and J , we have thatif X1Z0d2 and for all d1 2 X1, I j= �[d1], then J j= �[d2].14



To grasp the intuition behind De�nition 4.14, observe that Z0 is the `en-gine' of the simulation that guarantees preservation, and the other relationsZ1, Z2, . . . are needed for matching �nite sets of the same size. Clauses 1{3of De�nition 4.14 are bookkeeping clauses, and clause 4 is the familiar oneabout preservation of atomic concepts. Clauses 5 and 6 are the back-and-forth clauses that guarantee preservation of number restrictions (� i R) and(� i R), respectively. Clause 7 is needed to preserve universal quanti�cations8R:C.Theorem 4.15 (Characterization of FLN�) Let �(x) be a �rst-orderformula. Then �(x) is equivalent to an FLN�-concept i� it is preservedunder FLN�-simulations.Corollary 4.16 Let L be a description logic that can be obtained fromFLN� by adding any non-empty combination of U , C, E, or R. ThenFLN� < L. Also, if L is either AL or obtained from FL� by adding oneof E, U , or R, then L 6< FLN�.Proof. We only prove the corollary for one case: FLN� < FLNE�. Con-sider the interpretations I, J depicted below (the dotted lines indicate Z0;other relations Zi, for i > 0, are speci�ed in the text below).
A PPPPPPi ������) uuuPPPPPPq������1 uuud1 e1f1 d2e2f2I J

Clearly, fd1g � (9R:A)I , but d2 =2 (9R:A)J , so if there exists an FLN�-simulation linking fd1g and d2, then 9R:A cannot be (equivalent to) anFLN�-concept. We leave it to the reader to show that the following tupleZ is indeed an FLN�-simulation linking fd1g and d2: Z = (Z0, Z1, Z2,. . . ), where, for i > 2, Zi = ;, whileZ0 = f(fd1g; d2); (fe1g; e2); (ff1g; f2); (fe1; f1g; e2); (fe1; f1g; f2)gZ1 = f(ffe1; ff1gg; fe2g); (ffe1 ; ff1gg; ff2g)gZ2 = f(ffe1; f1gg; fe2; f2g)g: a4.6 Adding Role ConjunctionCombining ideas from [Hol, KR97a] and the preceding sections, we arriveat a notion of simulation for FLR�. Its distinguishing feature is that it notonly relates sets of objects to objects (as in De�nition 4.1), but to cater forrole intersection it also links pairs of (sets of) objects to pairs of objects.We will need the following auxiliary notion.15



Let X, Y be two sets of objects. A collection of (atomic) role names Ris called meet closed for X and Y if X(dR)"Y .De�nition 4.17 Let I = (�I ; �I) and J = (�J ; �J ) be two interpreta-tions. An FLR�-simulation is a triple Z = (Z0; Z1; Z2) such that thefollowing hold.1. (a) Z0 � P(�I)��J ;(b) Z1 � (P(�I)�P(�I))� (�J �P(�J )).(c) Z2 � (P(�I)�P(�I))� (�J ��J ).2. If X1Z0d2, then, for every (atomic) concept name A, if X1 � AI , thend2 2 AJ .3. (a) If (X1; Y1)Z1(d2; E2) then, for every collection of role names Rthat is meet closed for X1 and Y1, there exists an e2 2 E2 suchthat (dR)Id2e2.(b) If (X1; Y1)Z2(d2; e2) then, for every role R, if RJ d2e2 holds, thenX1(RI)#Y1.4. (a) If X1Z0d2, then, for every (atomic) role name R, if X1(RI)"Y1,then there exists E2 � �J with (X1; Y1)Z1(d2; E2).(b) If X1Z0d2, then, for every (atomic) role name R, if RJ d2e2, thenthere exists Y1 � �I with (X1; Y1)Z2(d2; e2).5. If (X1; Y1)Z2(d2; e2), then Y1Z0e2.A �rst-order formula �(x) is preserved under FLR�-simulations if for everytwo interpretations I and J , all sets X � �I and objects d2 2 �J , and allFLR�-simulations Z between I and J , we have that if X1Z0d2 and for alld1 2 X1, I j= �[d1], then J j= �[d2].Let us brie
y explain what the clauses in De�nition 4.17 are meantto achieve. Clause 2 is the familiar clause about preservation of atomicconcepts. Clause 3(a) is about preservation of intersecting roles from I toJ ; there is slight technical complication here: X1R"Y1 and X1S"Y1 doesnot imply X1(R u S)"Y1, and this failure forces us to consider only thosecollections of role names R (with X1R"Y1, for R 2 R) that are closed underintersection in this sense; the notion of meet closure tries to capture thisidea. Next, clause 3(b) simply tries to mirror intersections from J to I.Clauses 4(a) and 4(b) are the real back-and-forth clauses, where simulationsbetween sets and objects extend to pairs of sets and pairs of objects (andsets). Clause 5 relates such simulations between pairs to simulations betweensets and objects (but, by analogy with clauses 2 and 3 of De�nition 4.1, thisis only required in one direction, viz. from J to I).16



Theorem 4.18 (Characterization of FLR�) Let �(x) be a �rst-orderformula. Then �(x) is equivalent to an FLR�-concept i� it is preservedunder FLR�-simulations.Corollary 4.19 Let L be a description logic that can be obtained fromFLR� by adding any non-empty combination of U , C, E, or N . ThenFLR� < L. Also, if L is either AL or obtained from FL� of AL by addingone of E, U , or N , then L 6< FLR�.Proof. We only prove the corollary for the case FLR� < FLRN�. Con-sider the two interpretations below. � uuPPPPPPq������1 uuud1 e1f1 d2e2I J
The dotted lines indicate the Z0-component of an FLR�-simulation linkingfd1g to d2; it, and the remaining components, are de�ned as follows:Z0 = f(fd1g; d2); (fe1g; e2); (ff1g; e2); (fe1; f1g; e2)gZ1 = f((fd1g; fe1g); (d2; fe2g)) ; ((fd1g; ff1g); (d2; fe2g))((fd1g; fe1; f1g); (d2; fe2g))gZ2 = f((fd1g; fe1g); (d2; e2)) ; ((fd1g; ff1g); (d2; e2)) ;((fd1g; fe1; f1g); (d2; e2))gWe leave it to the reader that this (Z0; Z1; Z2) is indeed an FLR�-simulationsuch that fd1gZ0d2. Clearly, fd1g � (� 2 R)I , but d2 =2 (� 2 R)J . It followsthat (� 2 R) is not equivalent to an FLR�-concept. As we obviously haveFLR� � FLRN�, we conclude FLR� < FLRN�. a4.7 CombinationsThe semantic characterization results obtained so far form the basic build-ing blocks for our further results. Brie
y, the idea is to obtain semanticcharacterizations of logics that contain combinations of the constructors C,U , E , N and R by combining the characterizations of the logics admittingonly one of the constructors. It will turn out that there is surprisingly littleinteraction between the various characterizations, and where there is inter-action this results in a simpli�cation (especially when U is added) or inrestoring symmetry of various clauses (when E or C is added). Only in rarecases (such as FLNR�) does the characteristic notion of simulation becomemore complex. 17



Let us brie
y consider the various combinations now. So as not to get lostin a plethora of logics, we will focus on extensions of AL, FLE�, FLU�,FLN�, and FLR� by the addition of a single construction. By way ofexample we show how a characteristic notion of simulation for any logic inthe FL� and AL-hierarchy may be obtained from such extensions.4.7.1 Extensions of ALAs we have seen from the de�nitions of bisimulation and AL-simulation(De�nitions 3.2 and 4.4), in the presence of negation or negated atomic con-cept names, the clause guaranteeing preservation of atomic concept nameseither becomes symmetric (in the case of full negation) or we have to addpreservation of negated atomic concepts as well.That is, let ALX be one of ALE, ALU , ALN , or ALR. To obtain acharacteristic notion of simulation for ALX , we simply take the characteris-tic notion of simulation for FLX� and add to the clause for preservation ofatomic concept names the clause that negations of atomic concepts shouldalso be preserved (as in De�nition 4.4). Then, the relevant preservationtheorems may be proved.4.7.2 Extensions of FLE�With full (quali�ed) existential quanti�cation 9R:C present in the logic, theback-and-forth conditions that record the presence of roles, have to becomesymmetric: not only does the relational pattern need to be matched, but itneeds to be matched with a similar object. For the semantic characteriza-tion results for the logics FLEU�, FLEN�, and FLER�, this requires thefollowing.� FLEU�-simulations are de�ned just like FLU�-simulations (De�ni-tion 4.10) except for clause 2, which needs to be20. For every (atomic) role name R, if RId1e1 and d1Zd2, then thereexists e2 2 �J with RJ d2e2 and e1Ze2.� FLEN�-simulations are de�ned like FLN�-simulations (De�nition4.14) except for clause 7, which needs to be70. (a) If X1(RI)"Y1 and X1Z0d2, then there exists e2 such thatRJ d2e2 and Y1Z0e2.(b) If RJ d2e2 and X1Z0d2, then there exists a 1-cloud X suchthat X1 is R-below X and (SX )Z0e2.� FLER�-simulations are de�ned like FLR�-simulations (De�nition4.17) except for clause 5, which needs to be50. (a) If (X1; Y1)Z1(d2; e2), then Y1Z0e2.18



(b) If (X1; Y1)Z2(d2; e2), then Y1Z0e2.Using the above de�nitions, semantic characterizations may be given foreach of the languages involved.4.7.3 Extensions of FLU�From a logical point of view having disjunctions of concepts available in adescription logic simpli�es matters considerably: we no longer have to relatesets of objects to single objects, but can simply relate objects to objects.Extending FLU� by number restrictions or role conjunction requires thefollowing changes to arrive at a characteristic notion of simulation.� FLUN�-simulations are de�ned just like FLN�-simulations (De�ni-tion 4.14) except that Z0 should now be a relation linking objects toobjects, and the Zi (i > 0) should link �nite sets to �nite sets (of thesame size). Clauses 4{7 should then be replaced by40. If d1Z0d2 then, for any (atomic) concept name A, if d1 2 AI thend2 2 AJ ;50. if d1Z0d2 and (RI)�d1Y1, where jY1j = i > 0, then there existsY2 � �J with (RJ )�d2Y2 and Y1ZiY2;60. If d1Z0d2 and (RJ )�d2Y2, where jY2j = i > 0, then there existsY1 � �I with (RI)�d1Y1 and Y1ZiY2;70. IfRJ d2e2 and d1Z0d2, then there exists e1 2 �I such that RId1e1and e1Z0e2.� FLUR�-simulations are de�ned just like FLR�-simulations (De�ni-tion 4.17) except that Z0 should now link objects to objects, and Z1and Z2 should link pairs of objects to pairs of objects. Then, clause 2should be replace by clause 40 above, while clauses 3{5 should be re-place by30. (a) If (d1; e1)Z1(d2; e2) then, for every role name R, if RId1e1,then RJ d2e2;(b) If (d1; e1)Z2(d2; e2) then, for every role name R, if RJ d2e2,then RId1e1;40. (a) If d1Z0d2, then for every role name R, if RId1e1, then thereexists e2 2 �J with (d1; e1)Z1(d2; e2).(b) If d1Z0d2, then for every role name R, if RJ d2e2, then thereexists e1 2 �I with (d1; e1)Z2(d2; e2).50. If (d1; e1)Z2(d2; e2) then e1Z0e2.Using the above ammendements, semantic characterizations may be givenfor of the languages involved. 19



4.7.4 Extensions of FLN�The only extension of FLN� (with a single constructor) that has not beenconsidered so far is FLNR�. The notion of an FLNR�-simulation isarrived at by simply adding together the de�nitions for an FLN�-simulationand an FLR�-simulation, respectively. That is, an FLNR�-simulation isa tuple (Z0, Z1, Z2, . . . ; Zr1 , Zr2) such that (Z0, Z1, Z2, : : :) is an FLN�-simulation, and (Z0, Zr1 , Zr2) is an FLR�-simulation. Then, the usualsemantic characterization results may be given for FLNR�.4.7.5 Extensions of FLR�Extensions of FLR� by one of C, E , U , or N are all covered in the precedingparagraphs.4.7.6 Classifying an Arbitrary Description LogicTo obtain a characterization of an arbitrary description logic (de�ned fromTable 1), somply combine the observations listed in Sections 4.7.1{4.7.5.More concretely, one may proceed as follows. Let L be an arbitrary descrip-tion logic. First, determine how much negation it admits. If it admits fullnegation, then we have at least ALC � L and we can use the ideas in xx4.7.1,4.7.2; the only further options are that L admits N or R, and in that casex4.7.3 applies. If, on the other hand, L does not admit full negation, we�rst see whether it does admit U , and we consult xx4.7.1{4.7.3 if it does. IfL does not admit U , then one of xx4.7.1, 4.7.2 and 4.7.4 applies.As a concrete example, consider L = ALENR. As AL � L, the atomicclause in the notion of an L-simulation needs to preserve both atomic con-cepts and their negations. On top of that we need to ensure preservation ofE (as explained in x4.7.2), and of N and R (as explained in x4.7.4). Puttingthings together, we get that the notion of simulation needed to characterizeALENR, is a tuple (Z0, Z1, . . . ; Zr1 , Zr2), where (Z0, Z1, : : :) is an ALEN -simulation (which is just like FLEN�-simulations, except for the atomicclause), and where (Z0; Zr1 ; Zr2) is an ALER�-simulation (which is just likeFLEN�-simulations, except for the atomic clause).4.8 HarvestWe summarize our results in Figure 2. The way one should read the diagramis as follows. Every logic coincides with one of the logics in the diagram,and if a description logic L1 is above a logic L2 (via a sequence of one ormore arcs), then L2 < L1. If two logics are incomparable in the diagram,then they are incomparable with respect to their expressive power.Several comments are in order. First, the diagram does not mention allpossible combinations of the constructors listed in Table 1. The reason for20



this is that some logics coincide with others (for example, FLC� coincideswith ALEU�).Second, it should be noted that the classi�cation obtained in Figure 2 isexactly the classi�cation that one would expect from an intuitive point ofview (where one logic is more expressive than another if it has more construc-tors). We view this absence of suprises both as an intuitive justi�cation ofour results, and as an indication that we have provided a mathematical un-derpinning for the basic intuitions one has concerning the expressive powerof description logics.And �nally, we should point out that expressive power and complexitydo not induce the same classi�cations of description logics. There are de-scription logics that have the same expressive power but di�erent complexityresults for their satis�ability problems. For example, ALC and ALCi (thatis, ALC with inverse of roles) both have a PSPACE-complete satis�abilityproblem, but the latter is more expressive than the former. The precise rela-tion between these alternative ways of classifying description logics remainsto be investigated.

FL�FLE� FLU� AL FLN� FLR�FLEU� ALE FLEN� FLER� ALU FLUN� FLUR� ALN ALR FLNR�ALC FLEUN� FLEUR� ALEN ALER FLENR� ALUN ALUR FLUNR� ALNRALCN ALCR FLEUNR� ALENR ALUNRALCNR

Figure 2: Classifying Description Logics5 DiscussionWe see two major lines of work related to this paper, the �rst one centeredaround the use of model-theoretic methods similar to the ones we have used,the second one focusing on the expressive power of description logics.21



As to the �rst theme, the technique of Ehrenfeucht-Fra��ss�e games in�rst-order logic is closely related to our simulations, and it has been usedto obtain numerous separation and preservation results; see [Doe96]. [IK87]use pebble games to obtain model-theoretic expressivity results about �nitevariable logics, and related techniques have been used in modal logic aswell; for instance, [KR97b] use various kinds of bisimulations to characterizetemporal logics with Since and Until . Also, [TN97] use similar methodsto separate query languages. One of the principle advantages shared bythese methods is their explicit and intuitive descriptions of the languagesbeing studied. The results in this paper are di�erent from the above ones,as we are interested in relatively poor languages with limited expressivepower and without closure under some of the boolean operators; this focusnecessitates both new notions of simulations and novel techniques for provingthe characterization results.As to the second theme | expressiveness of description logics |, weknow of only two earlier references: [Baa96] and [Bor96]. We will brie
ydiscuss each of these. Baader's work is di�erent from ours in two importantways. First, Baader's de�nition [Baa96, De�nition 3.2] of expressive powerdi�ers from ours. Recall that we we de�ne a logic L1 to be at least asexpressive as a logic L2 if for every L2-expression there is an equivalent L1-expression over the same vocabulary. Intuitively, Baader's de�nition allowsL1 to use additional concepts and roles in �nding L1-equivalents for everyL2-expression. More formally, let � be a collection of concepts, and letVoc(� ) denote the collection of all atomic concepts and roles occurring in� . Further, assume that we have a mapping f : Voc(�1) ! Voc(�2), andinterpretations I1 and I2 that satisfy all of I1 and I2, respectively. Then fembeds I1 in I2 if for all S 2 Voc(�1) we have SI1 = f(S)I2 . Then, �2 canbe expressed by �1 if there exists f : Voc(�2)! Voc(�1) such that1. every interpretation that validates all of �2 can be embedded by f insome interpretation that validates all of �1, and2. for every interpretation I1 that validates all of �1 there exists an in-terpretation I2 that validates all of �2 and that can be embedded inI1 by f .Then, L1 is at least as expressive as L2 (according to Baader) if everycollection of L2-concepts can be expressed by some collection of L1-concepts.Clearly, this more involved de�nition allows one to equate more descrip-tion logics with respect to their expressive power than ours does; for instance,under Baader's de�nition negation of atomic concepts can be simulated bynumber restrictions over additional roles, whereas according to our resultsnegations of atomic concepts can't be expressed using number restrictions(over the same vocabulary).3 While we agree that it may be useful to be3As an aside, the di�erence between our de�nition and Baader's is analogous to the22



able to use additional concepts and roles in �nding equivalent expressions,as Baader himself points out, what is lacking from his de�nition is a measureon how much additional material one may use and on the complexity of thefunction that maps L2-expressions to equivalent L1-expressions over a richervocabulary.A second important di�erence between Baader's work and ours lies inthe results that have been obtained. Baader only establishes a small numberof separation results, whereas we provide a complete classi�cation of alllanguages de�nable using the constructors in Table 1. More importantly,our separation results our based on semantic characterizations; this gives adeeper insight into the properties of logics than mere separation results.In [Bor96] the author shows that certain description logics have the sameexpressive power as the two or three variable fragment of �rst-order logic(over the same vocabulary). Two remarks are in order. First, it is well-known that there is a correspondence between some description logics andmodal logics (see [Sch91]), and modal logicians have considered the linkswith �nite variable fragments for quite some time (see [Gab81]). Thus,Borgida's results could also have been obtained this way. Secondly, thedescription logics considered in this paper are all expressible in the twovariable fragment of �rst-order logic (possibly with counting), however, nonecoincides with the full two-variable fragment.6 ConclusionIn this paper we have introduced a model-theoretic method for determiningthe expressive power of description logics. The method consists of three com-ponents: a translation into a common background logic (here �rst-order logicover a suitable vocabulary), semantic characterizations of the translated log-ics, and using these characterizations to separate logics. The method wassuccessfully applied to obtain expressiveness results for all logics in the FL�and AL hierarchies.The main bene�ts of our methods are that they give exact and explicitcharacterizations of description logics that explain in semantic terms whyone logic is or is not di�erent from another. While the proofs of the se-mantic characterizations in terms of various notions of (bi)-simulation areadmittedly somewhat technical, the use of the characterizations in sepa-rating logics is fairly intuitive, as we hope to have demonstrated with ourexamples. As summarized in the diagram in Figure 2, our mathematical�ndings corroborate the intuitions one has concerning the expressive powerof description logics; we view this as additional evidence in support of ourmethods.di�erence between de�nability and projective de�nability in the area of model-theoreticlogics; see [BF85]. 23



It should be noted that the role of our semantic characterization resultsis in separating the expressive power of description logics, not in showingthat they coincide with respect to their expressive power. For the latter, weuse explicit syntactic de�nitions of the constructions of one logic in termsof the constructions of the other.Future research in this area will concentrate on the following themes.First, as was pointed out above, the proofs for our characterization resultsuse �rst-order techniques in an essential way. We aim to avoid these tech-niques, and thus to extend our methods method to description logics withnon-�rst-order features (like transitive closure). Second, we want to gaina better understanding of the di�erence between our approach and that of[Baa96]. In particular, we want to extend our model-theoretic tools in waysthat will characterize the expressive power of description logics in Baader'ssense. Third, there is an in
uential line of work in the database literaturethat characterizes the expressive power of query languages in terms of thecomplexity of the recognition problem associated with queries expressiblein the language at hand; see, for instance, [AHV95]. Can this approachbe adapted to description logics? And if it can, would it induce the sameclassi�cation of description logics as ours? Finally, what is the complexityof separating description logics. it is known from the literature on bisimu-lation that, in general, even the question whether two given interpretationsare bisimilar, is undecidable, but for �nite interpretations the question be-comes decidable. In our case, the question is not just to check bisimilarity,but to determine whether there exists an L1-concept that is not preservedunder L2-relations. Are there special cases of this question that becomedecidable?Acknowledgments. We would like to thank Franz Baader, Wilfrid Hodg-es, and Mike Paterson for useful comments on (presentations of) earlierversions of this paper.This research was partially supported by the Research and TeachingInnovation Fund at the University of Warwick.References[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.Addison-Wesley, Reading, MA, 1995.[Baa96] F. Baader. A formal de�nition for the expressive power of ter-minological knowledge representation languages. J. Logic andComputation, 6:33{54, 1996.[Ben85] J. van Benthem. Modal Logic and Classical Logic. Bibliopolis,Napoli, 1985. 24
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[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall,1989.[Pop94] S. Popkorn. First Steps in Modal Logic. Cambridge UniversityPress, 1994.[Rij96] M. de Rijke. A note on graded modal logic. Technical ReportRR318, Department of Computer Science, University of War-wick, 1996.[Sch91] K. Schild. A correspondence theory for terminological logics. InProc. 12th IJCAI, pages 466{471, 1991.[TN97] D. Toman and D. Niwi�nski. First-order queries over temporaldatabases inexpressible in temporal logic. Manuscript, 1997.[Vic89] S. Vickers. Topology via Logic. Cambridge University Press,1989.A Appendix: Proofs of the Main ResultsFor each of the logics obtained by adding constructors from Table 1 wewill now prove the main semantic characterization theorems announced inSection 4. The proofs all follow the same basic strategy. One half of theresult is proved by a simple induction; the other half is more involved anduses compactness arguments, and, in some cases, additional techniques from�rst-order logic.Theorem 4.2 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an FL�-concept i� it is preserved under FL�-simulations.Proof. The implication from left to right is proved by induction on concepts.The atomic case is immediate from the de�nition of FL�-simulations, andconjunction is easy. Let us consider the existential case. Assume X1Zd2.Suppose that X1 � (9R:>)I . Let Y1 := fv 2 �I j 9w 2 X1 (RIwv)g.Then X1R"Y1. So by clause 2 of De�nition 4.1 there exists e2 with RJ d2e2.Clearly, d2 2 (9R:>)J , as required. The universal case is next. Assumethat X1 � (8R:C)I . Suppose that there is a e2 with RJ d2e2 but e2 =2 CJ .Then, by clause 3 of De�nition 4.1 there exists Y1 � �I with X1R#Y1 andY1Ze2. By induction hypothesis, e2 =2 CJ implies Y1 6� CI . This contradictsX1 � (8R:C)I .Now, for the right to left implication, assume that �(x) is preserved underFL�-simulations, and let Con(�) be the set of its FL�-consequences.Claim A.1 Con(�) j= �. 26



If we can prove Claim A.1, then, by compactness, there exists a �nite con-junction of elements of Con(�) that is equivalent to �(x). So let us proveClaim A.1. Assume that I j= Con(�)[w]. We need to show that I j= �[w].Let � = f:C j C is in FL� and w =2 CIg.Claim A.2 For every :C 2 � , the set f�(x);:Cg is consistent.If the claim were false, then C would be a consequence of �, contradicting thede�nition of � . As a corollary we �nd, for every :C 2 � , an interpretationIC and element vC 2 �IC such that vC 2 �(x)IC \ (:C)IC .Let J be the disjoint union of the pairs (IC ; vC), where :C 2 � .4 Byresults from standard modal logic (cf. [Ben85]), it follows that for every:C 2 � there is a bisimulation linking vC in �IC to vC 2 �J . Then, forevery :C 2 � there is an FL�-simulation linking fvCg in�IC , and an FL�-simulation linking fvCg in �J to vC in �IC | simply link every singletonfdg in the one interpretation to the copy of d in the other interpretation.By assumption, �(x) is preserved under FL�-simulations, so fvCg ��(x)IC implies vC 2 �(x)J , for every vC . Also, as there is an FL�-simulation linking fvCg in �J to vC 2 �IC , the fact that vC =2 CIC impliesvC =2 CJ .Claim A.3 For every FL�-concept D, if for all vC (with :C 2 � ), vC 2DJ , then w 2 DI .To see why, assume w =2 DI . Then :D 2 � , so there exists vD 2 J withvD =2 DJ . Next, de�ne a relation Z � P(�J ) � �I by putting X1Zd2 i�for all FL�-concepts D, X1 � DJ implies d2 2 DI .Claim A.4 The relation Z is an FL�-simulation.Clause 1 of De�nition 4.1 is trivially satis�ed. For the second clause, supposethat X1R"Y1 and X1Zd2; we have to show that there exists e2 2 �I withRId2e2. This is easy: if X1R"Y1, then X1 � (9R:>)J ; so from X1Zd2 weget d2 2 (9R:>)I , so the required e2 exists. For the third clause, assumethat RId2e2 and X1Zd2; we need to �nd a Y1 � �I with X1(RI)#Y1 andY1Ze2. Let C be any concept with e2 =2 CI ; then d2 =2 (8R:C)I . So fromX1Zd2 we get X1 6� (8R:C)J . Therefore, there exists d1 2 X1 and e1 2 �Jwith RJ d1e1 but e1 =2 CJ . If we repeat this argument for every concept Cwith d2 =2 CI , we obtain a set Y1 � �I with X1R#Y1 and Y1Ze2, as desired.Finally, then, as a corollary to Claims A.3 and A.4 there is an FL�-simulation relating fvC 2 �J j :C 2 �g and w. As for every vC 2 �J4That is, �J is the disjoint union of the sets �IC ; for every concept D, DJ is thedisjoint union of the sets DIC ; and for every role R, RJ is the disjoint union of the setsRIC . 27



with :C 2 � we have J j= �(x)[vC ] and as �(x) is preserved under FL�-simulations, it follows that I j= �(x)[w]. This proves Claim A.1, and hencethe theorem. aTheorem 4.5 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an AL-concept i� it is preserved under AL-simulations.Proof. Repeat all of the Claims A.1, A.2, A.3 and A.4 verbatim, but withFLE� instead of FL�. aThe key result used in the proofs of Theorems 4.2 and 4.5 is the com-pactness theorem. To prove characterization results for languages that arericher than FL� we need additional semantic tools, over and above thecompactness theorem. The proof of our characterization result for FLE�,Theorem 4.8, uses so-called !-saturated models. Brie
y, an interpretation Ifor a �rst-order language L is !-saturated if whenever � is a set of �rst-orderformulas in a language L0, where L0 extends L1 by the addition of �nitelymany new individual constants, and each �nite subset of � is satis�able inan L0-expansion of I, then � is satis�able in this expansion.A key result about !-saturated models that will be used in our proofsbelow says that, in a countable language, every interpretation I has an!-saturated elementary extension I�; that is, for every interpretation Ithere is an !-saturated interpretation I� such that �I � �I� and for every�rst-order formula �(x1; : : : ; xn) and any objects d1, . . . , dn 2 �I , I j=�[d1; : : : ; dn] i� I� j= �[d1; : : : ; dn]. We refer the reader to any textbook onmodel theory for further details; see e.g., [Hod93].Theorem 4.8 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an FLE�-concept i� it is preserved under FLE�-simulations.Proof. We leave the left to right direction to the reader, and only give asketch of the right to left direction to the extent that it di�ers from theproof of Theorem 4.2.As in the proof of Theorem 4.2 we assume that �(x) is preserved underFLE�-simulations, and we concentrate on proving that Con(�) j= �, whereCon(�) is the set of FLE�-consequences of �(x). So, we assume that I j=Con(�)[w], and we need to show that I j= �(x)[w]. Let � = f:C j C is inFLE� and w =2 CIg. As in Claim A.2 one can show that for every :C 2 � ,the set f�(x);:Cg is consistent. Consequently, for every :C 2 � there areinterpretations IC and objects vC such that vC 2 �(x)IC \ (:C)IC .Let J be the disjoint union of the interpretations IC . The relationf(Xd; d) j d 2 Xdg is an FLE�-simulation linking fvCg in J (or IC) to vCin IC (or J ). It follows that vC 2 �(x)J n CJ .We leave it to the reader to establish an analog of Claim A.3. As ex-plained above, there exists an !-saturated elementary extension I� of I. Itfollows that for every FLE�-concept D, v 2 DI i� v 2 DI�.28



Next, de�ne a relation Z � (P(�J )��I�) by putting X1Zd2 i� for allFLE�-concepts D, X1 � DJ implies d2 2 DI�.Claim A.5 The relation Z is an FLE�-simulation.We only check clause 2 of De�nition 4.7. (Clause 1 is easy, and clause 3is similar to clause 2 in the proof of Claim A.4.) Assume that X1(RJ )"Y1and X1Zd2. We need to �nd an e2 2 �I� with RI�d2e2 and Y1Ze2. LetC1 u � � � u Cn be an arbitrary �nite conjunction of concepts such that Y1 �(C1 u � � � u Cn)J . Clearly, then, X1 � (9R:(C1 u � � � u Cn))J . By thede�nition of Z we �nd that d2 2 (9R:(C1 u � � � u Cn))I� . This implies thatthere exists e2 2 �I� such that e2 2 (C1 u � � � u Cn)I� . At this point weuse the fact that I� is !-saturated. As we have been able to �nd an objecte2 in I� that satis�es RI�d2e2 together with an arbitrary �nite collectionof concepts satis�ed by all the objects in Y1, by !-saturation we can in fact�nd an object e2 in I� with RI�d2e2 that satis�es all concepts satis�ed bythe objects in Y1. This means that Y1Ze2, as required.With the proof of Claim A.5 completed, we have found an FLE�-simulation between J and I� that relates fvC 2 �J j :C 2 �g and w.Hence we have the situation depicted in the following diagram.w I�
w IJ fvC 2 �J j :C 2 �g u
u

����������uFLE�-simulation elementaryextension
A walk around the diagram completes the proof. From fvC 2 �J j :C 2�g � �(x)J and the fact that there is an FLE�-simulation linking fvC 2�J j :C 2 �g to w in I�, it follows that w 2 �(x)I� . As I� is an elementaryextension of I, we get w 2 �(x)I , and we are done. aRecall that the change required to prove a characterization result forFLU� is that we no longer work with simulations involving sets, but withones involving single objects only. for this characterization result we willalso need to use !-saturated models.Theorem 4.11 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an FLU�-concept i� it is preserved under FLU�-simulations.Proof. As before, we leave the left to right direction to the reader, andonly give a sketch of the right to left direction to the extent that it di�ers29



from previous proofs (Theorems 4.2, 4.8). Assume that �(x) is preservedunder FLU�-simulations, and consider the set of its consequences in FLU�,Con(�). As before it su�ces to prove that Con(�) j= �. So, we assume thatI j= Con(�)[w], and we need to show that I j= �(x)[w]. Let � = f:C j Cis in FLU� and w =2 CIg.Claim A.6 The set f�(x)g [ � is consistent.If the claim were false, there would be concepts :C1, . . . , :Cn 2 � suchthat � j= :(:C1 u � � � u :Cn), or, in other words, � j= C1 t � � � t Cn. Sow 2 (C1 t � � � t Cn)I as w 2 �(x)I , and hence w 2 CIi for some i with1 � i � n. But, as C1, . . . , Cn are FLU�-concepts, then :Ci =2 � , which isa contradiction. This proves Claim A.6.As a corollary we �nd an interpretation J and an object v 2 �J withv 2 (�(x)J \Tf:CJ j :C 2 �g).Claim A.7 For every FLU�-concept D, if v 2 DJ , then w 2 DI.Now, let J � be an !-saturated elementary extension of J . It follows thatfor every FLU�-concept D, v 2 DJ i� v 2 DJ � . Next, de�ne a relationZ � (�J � ��I) by putting d1Zd2 i� for all FLU�-concepts D, d1 2 DJ �implies d2 2 DI .Claim A.8 The relation Z is an FLU�-simulation.We only check clauses 2 and 3 of De�nition 4.10. Assume that RJ d1e1 andd1Zd2. We need to �nd an e2 2 �I with RI�d2e2. But this is almost trivial:given the existence of e1 we have d1 2 (9R:>)J � , and hence d2 2 (9R:>)I ,as d1Zd2; from this the existence of the required e2 follows.As to clause 3, assume RId2e2 and d1Zd2. We need an e1 2 �J � withRJ �d1e1 and e1Ze2. Let C1, . . . , Cn be an arbitrary �nite number of FLU�-concepts such that e2 =2 (C1 u � � � uCn)I . Then, d2 =2 (8R:(C1 u � � � uCn))I .By the de�nition of Z we �nd that d1 =2 (8R:(C1 u � � � u Cn))J � . So thereexists e1 2 �J � with e2 =2 (C1 u � � � u Cn)J � . By !-saturation of J � thisargument can be generalized to the collection of all FLU�-concepts notsatis�ed by e2. So, there exists an e1 2 �J � such that RJ �d1e1 and, for anyD, e2 =2 DI implies e1 =2 DJ � . Hence, e1Ze2. This proves Claim A.8.The proof may now be completed in the same way as the proof of The-orem 4.8. aTheorem 4.15 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an FLN�-concept i� it is preserved under FLN�-simulations.Proof. We �rst prove the left to right direction. We prove by induction onFLN�-concepts that ifX1Z0d2 andX1 � DI , then d2 2 DJ . We only treat30



the quanti�cational cases. First, assume that X1Z0d2 and X1 � (� i R)I .Then, for every d1 2 X1 there exists Yd1 � �I with (RI)�d1Y1 and jYd1 j = i.Collect these sets Ydj together into a collection X � P(P<!(�I)); then Xis a an i-cloud that is R-above X1. So, by clause 5 of De�nition 4.14 thereexists Y2 � �J with (RJ )�d2Y2 and XZiY2. By clause 3 it follows thatjY2j = i, as required.Next, to prove preservation of (� i R), assume X1Z0d2 as before, whiled2 =2 (� i R)J . Choose Y2 � �J such that jY2j = i+ 1 and (RJ )�d2Y2. Byclause 6 of De�nition 4.14 there exists an i+1-cloud X � P(P<!(�I)) suchthat X1 is R-below X . Then, for all Y1 2 X , jY1j = i + 1, by clause 3, soX1 6� (� i R)I , as required.Finally, we have to prove preservation of concepts of the form 8R:C (thecase 9R:> is covered by (� 1 R)). Assume X1Z0d2, RJ d2e2 and e2 =2 CJ .By clause 7 of De�nition 4.14 there exists a 1-cloud X � P(P<!(�I)) suchthat X1 is R-below X and (SX )Z0e2. By induction hypothesis, (SX ) 6�CI . That is, there exists e1 2 SX such that e1 =2 CI . As X1 is R-below X ,there exists d1 2 X1 with (RI)�d1fe1g, or in other words, RId1e1. It followsthat d1 =2 (8R:C)I , and therefore X1 6� (8R:C)I , and we are done.Now, to prove the harder right to left direction, assume that �(x) is pre-served under FLN�-simulations. As in the proofs of our previous preser-vation results, we proceed to prove that Con(�) j= �, where Con(�) is theset of FLN�-consequences of �(x). So, we assume that I j= Con(�)[w],and we need to show that I j= �(x)[w]. Let � = f:C j C is in FLN� andw =2 CIg. As in Claim A.2 we �nd interpretations IC and objects vC suchthat vC 2 �(x)IC \ (:C)IC , and we form the disjoint union J of the inter-pretations IC . Clearly, the relation f(Xd; d) j d 2 Xdg is the `Z0'-componentof an FLN�-simulation linking fvCg in J (or IC) to vC in IC (or J ). Asa consequence, we obtain that vC 2 �(x)J n CJ .We leave it to the reader to establish an analog of Claim A.3. De�ne thefollowing sequence of relations Z0, Z1, . . .Z0 := f(X1; d2) j X1 � �J ; d2 2 �I ; and for all D, X1 � DJimplies d2 2 DIgZi := f(X ; Y2) j i > 0; X � P(P<!(�J )); Y2 � �I ; and for allY1 2 X , jY1j = jY2j = ig:We tacitly assume that all the collections of sets X occurring in the abovede�nition are i-clouds above some set X1 � �J , for some i.Claim A.9 The tuple Z = (Z0; Z1; : : : ; Zn; : : :) is an FLN�-simulation.To prove the claim, observe �rst that clauses 1{4 of De�nition 4.14 aretrivially ful�lled, so we only have to check clauses 5, 6 and 7. As to clause 5,assume that X1Z0d2, and that X � P(P<!(�J )) is an i-cloud which is R-above X1. We need a set Y2 � �I with (RI)�d2Y2 and jY2j = i. Clearly, we31



have that for every d1 2 X1, d1 2 (� i R)J , hence X1 � (� i R)J . Then,X1Z0d2 gives d2 2 (� i R)I . This implies the existence of the required Y2.Next comes clause 6 of De�nition 4.14. Assume X1Z0d2, and (RI)�d2Y2,where jY2j = i > 0. We need to �nd an i-cloud X � P(P<!(�J )) suchthat X1 is R-below X and XZiY2. Reason as follows: as d2 =2 (� i� 1 R)I ,we get X1 =2 (� i � 1 R)J , and it follows that for some d1 2 �J we haved1 =2 (� i� 1 R)J , so d1 2 (� i R)J . LetXd1 = fY � �J j jY j = i and (RJ )�d1Y g;and put X =[fXd1 j d1 2 X and d1 2 (� i R)J g:Then X is a non-empty i-cloud such that X1 is R-below X and XZiY2, asrequired.Next we turn to clause 7. Assume X1Z0d2 and RId2e2; we need to �nda 1-cloud X such that X1 is R-below X and (SX )Z0e2. For every conceptC such that e2 =2 CI , we can �nd e1, d1 2 �J with d1 2 X1 and RJ d1e1.Let X be the collection of all singletons fe1g obtained in this way; then X1is R-below X and (SZ)Z0e2, as required.This proves Claim A.9. Using a by now familiar argument the proof ofTheorem 4.15 can now be completed. aTheorem 4.18 Let �(x) be a �rst-order formula. Then �(x) is equivalentto an FLR�-concept i� it is preserved under FLR�-simulations.Proof. We �rst prove the left to right direction. We prove by inductionon FLR�-concepts that if X1Z0d2 and X1 � DI , then d2 2 DJ . Weonly treat the quanti�cational cases. First, assume that X1Z0d2 and X1 �(9(R1u� � �uRn):>)I , where all Ri are atomic role names. For each d1 2 X1select e2 2 �I with (R1 u � � � u Rn)Id2e2, and collect these e2's together ina set Y1. Let R be a collection of (atomic) role names such that R1, . . . ,Rn 2 R and such that R is meet closed for X1 and Y1. By clause 4(a) ofDe�nition 4.17 there exists E2 � �I with (X1; Y1)Z1(d2; E2). By clause3(a) there exists e2 2 E2 such that (dR)J d2e2. Hence, d2 2 (9(dR):>)J ,and therefore d2 2 (9(R1 u � � � u Rn):>)J , as required. Next, to provepreservation of 8R:C, assume that X1Z0d2 and d2 =2 (8R:C)J . Let e2be such that RJ d2e2 and e2 =2 CJ . Then, by clause 4(b), there existsY1 with (X1; Y1)Z1(d2; e2). By clause 3(b), X1(RI)#Y1, and clause 5 givesY1Z0e2. Together with e2 =2 CJ and the induction hypothesis this impliesX1 6� (8R:C)I , and we're done.Next, to prove the right to left direction, we assume that �(x) is pre-served under FLR�-simulations, and proceed to prove that Con(�) j= �,where Con(�) is the set of FLR�-consequences of �(x). So, we assume thatI j= Con(�)[w], and we need to show that I j= �(x)[w]. Let � = f:C j C32



is in FLR� and w =2 CIg. As in Claim A.2 we �nd interpretations IC andobjects vC such that vC 2 �(x)IC \ (:C)IC , and we form the disjoint unionJ of the interpretations IC . We leave it to the reader to check that thereis an FLR�-simulation linking fvCg in J (or IC) to vC in IC (or J ). Itfollows that vC 2 �(x)J n CJ .We also leave it to the reader to establish an analog of Claim A.3. Next,take !-saturated elementary extensions J � and I� of J and I, respectively.De�ne the following relations Z0, Z1, and Z2:Z0 := f(X1; d2) j for all D, X1 � DJ � implies d2 2 DI�g.Z1 := f((X1; Y1); (d2; E2)) j for some R, X1R"Y1, and for everymeet closed collection of atomic concepts R for X1 and Y1there exists e2 2 E2 with (dR)I�d2e2g.Z2 := f((X1; Y1); (d2; e2)) j Y1Z0e2 and for all concepts R,RI�d2e2 implies X1(RJ �)#Y1g.Claim A.10 The tuple Z = (Z0; Z1; Z2) is an FLR�-simulation.To prove the claim, observe �rst that conditions 1, 2, 3, and 5 of De�ni-tion 4.17 are trivially satis�ed. As to condition 4(a), assume that X1Z0d2and X1(RJ �)"Y1. Let R be any meet closed collection of atomic role namesfor X1 and Y1, and consider the set�(d2; y) := fRd2y j R 2 Rg:�(d2; y) is �nitely satis�able in I�. For, consider R1d2y, . . . , Rnd2y 2�(d2; y). As R is meet closed for X1 and Y1, it follows that X1((R1 u� � � u Rn)J �)"Y1, and hence X1 � (9(R1 u � � � u Rn):>)J � . Since X1Z0d2 itfollows that d2 2 (9(R1 u � � � u Rn):>)I� , hence there exists e2 with (R1 u� � � uRn)I�d2e2. Now, using the fact that I� is !-saturated, it follows thatall of �(d2; y) is satis�able in I�, say by e2. Clearly, for this e2 we have(dR)I�d2e2.Repeat the above argument for every collection of atomic role namesthat is meet maximal for X1 and Y1, and collect the satisfying objects e2together in a set E2. This proves clause 4(a).As to clause 4(b), assume X1Z0d2 and RI�d2e2. We need a Y1 � �J �with (X1; Y1)Z2(d2; e2). Choose C with e2 =2 CI�, and de�ne�(x; y) := f:Cg [ fRxy j RI�d2e2g:We claim that �(x; y) is �nitely satis�able in J � in such a way that x takesits value inX1. To see this, take R1(x; y), . . . , Rn(x; y) 2 �(x; y). Then d2 =2(8(R1 u � � � uRn):C)I� , and hence X1 6� (8(R1 u � � � uRn):C)J � , as X1Z0d2.It follows that there exists d1 2 X1 and e1 2 �J � with (R1u� � �uRn)J �d1e133



and e1 =2 CJ � . By !-saturation, all of �(x; y) is satis�able in J � in sucha way that x takes its value in X1. This yields an object e1 such that forsome d1 2 X1 (d1; e1) 2\fRJ � j RI�d2e2g and e1 =2 CJ � :Repeating this argument for every C such that e2 =2 CI�, we obtain a set Y1as desired.Using a by now familiar argument, we can use the existence of an FLR�-simulation as the main step in showing that I j= �(x)[w]. a
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