A System of Dynamic Modal Logic

Maarten de Rijke
A System of Dynamic Modal Logic

Maarten de Rijke
Department of Mathematics and Computer Science
University of Amsterdam

CSLI was founded early in 1983 by researchers from Stanford University, SRI International, and Xerox PARC to further research and development of integrated theories of language, information, and computation. CSLI headquarters and the publication offices are located at the Stanford site.

CSLI/SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

CSLI/Stanford
Ventura Hall
Stanford, CA 94305

CSLI/Xerox PARC
3333 Coyote Hill Road
Menlo Park, CA 94304
The preparation and publication of this report have been made possible in part through an award from the System Development Foundation.

The investigations were supported by the Foundation for Philosophical Research (SWON), which is subsidized by the Netherlands Organization for Scientific Research (NWO).
A System of Dynamic Modal Logic

Maarten de Rijke

Abstract

In certain areas of logic dealing with information there is a need to make statements not only about cognitive states, but also about transitions between such states. In this paper a modal logic designed with this purpose in mind is analyzed. On top of an abstract informational ordering on states it has instructions to move forward or backward along this ordering, to states where a certain assertion holds or fails, while also allowing the combination of such instructions by means of the standard operations from relational algebra. In addition, the logic has devices for expressing whether or not in a given state a certain instruction can be carried out, and whether or not that state can be arrived at by carrying out a certain instruction.

This paper deals mainly with technical aspects of this dynamic modal language. It gives a precise description of the expressive power of this language. It also contains results on decidability for the language with ‘arbitrary’ structures and for the special case with a restricted class of admissible structures. In addition a complete axiomatization is given of the validities over arbitrary structures as well as of the validities over this restricted class of structures. The paper concludes with a remark about modal algebras appropriate for the language studied here, plus some speculations and suggestions for further work.

Although the paper contains some minor examples showing how the logic can be used to capture situations of dynamic interest, far more detailed applications are given in a companion to this paper.

Key words: dynamics of information, modal logic, axiomatic completeness, expressiveness, bisimulations, decidability.

1 Introduction

Over the last 10 or 15 years logicians have paid more and more attention to dynamic aspects of reasoning. Motivated by examples taken from such diverse disciplines as the

1The investigations were supported by the Foundation for Philosophical Research (SWON), which is subsidized by the Netherlands Organization for Scientific Research (NWO).

2Department of Mathematics and Computer Science, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.
semantics of natural language, linguistic analysis of discourse, the philosophy of science, a
multitude of logical systems have been proposed, each of them equipped with the predicate
"dynamic". In Van Benthem [3] a general perspective on dynamic matters is put forward,
and a somewhat informal description is given of a dynamic modal language designed
for reasoning about the processes of expanding and contracting with a given piece of
information. This language is not meant as just another device for reasoning about
information and its dynamics, but rather as a more general framework in which other
proposals can be described and compared.

Quite a number of such descriptions and comparisons have been given in Van Benthem [2, 3]. They include an analysis within our logic of various dynamic styles of in-
ference, and it is also shown there how a number of dynamic connectives that have been
proposed in the literature can be formulated in our logic. Furthermore, in a companion
to the present paper I show, among other things, how several sets of postulates govern-
ning contractions that have been proposed in the literature, fare in our language (cf. De
Rijke [27], or §3 below for a short sketch).

The dynamic modal language of this paper derives its generality from the following ob-
serveration. What most dynamic proposals have in common is a notion of states and a notion
of transitions between those states; of course, what these states and transitions are may
differ from one particular proposal to another. Now, our modal language has the right
means to deal with these two notions. To be precise, it is a two sorted language in that
it not only has the usual Boolean part, i.e. propositions with the usual connectives to
talk about states, but also a relational part containing procedures that may be combined
using the relation algebra operations ∩, ;, −, and ∼ to talk about transitions. In addition
these two realms are connected via modes and projections as depicted in Figure 1.

```
    propositions      procedures
      (BA)             (RA)

        projections
```

Figure 1: Propositions and procedures.

The choice of the projections and modes may depend on the particular application
one has in mind. Here, I will choose a very basic, and rather natural set of modes and
projections, one that is suggested in [3]. Let me motivate this choice somewhat. The
underlying idea is that we have some abstract informational structure about whose static
aspects we reason using the Boolean component of the language, while the procedural
part is to be used to reason about its dynamic aspects. The minimal requirements such
structures are usually supposed to satisfy in the literature are those of a pre-order. Of
course, pre-orders have a long tradition as informational structures, viz. their use as models for intuitionistic logic. The elements of our informational structures may intuitively be thought of as the cognitive states an agent passes through searching for knowledge.

Following Katsuno and Mendelzon [19] I use the term update to refer to any change to an agent’s cognitive state. As an agent’s perception of the world as it is encoded by his current cognitive state changes, his cognitive state will be updated. Several kinds of updates may be distinguished. If we simply acquire additional knowledge about the world, and the new knowledge does not conflict with the current beliefs, we can expand with the additional information. A different change occurs when a sentence previously believed becomes questionable and has to be given up; such an operation is called contraction. The basic updates an agent is able to perform in my set up are expansion with a formula φ (moving along the informational ordering to state where φ holds) and contraction with a formula (moving backwards along the ordering to a state where φ no longer holds). In addition there are tests to see whether a given formula holds. Using these three ‘basic procedures’ (expansions, contractions and tests), additional procedures may be defined using the standard operations from relational algebra. Some examples of compound procedures will be given in §3 below.

Going from procedures to propositions I will consider projections that return, given a procedure α as input, its domain, range and fix points. Given our interest in dynamic matters they are a natural choice, expressing, for instance, whether or not in a given state a certain transition is at all possible.

So much for an introduction. The main purpose of this paper is to study the above modal language and its logical properties in precise and formal detail. After some initial definitions in §2, I give some quick examples of the use of the language in §3. Then, in §4, the expressive power of our modal language is studied; a precise syntactic description is given of its first-order counterparts, as well as a semantic characterization by means of an appropriate kind of bisimulations. In §5 I establish (un-)decidability results for satisfiability in this language, both when interpreted on arbitrary structures and when interpreted on a restricted class of structures only. In §6 complete axiomatizations are given for validity on arbitrary structures, and, again, for validity over this special frame class. Some quick remarks about the kind of modal algebras appropriate for the language studied here are made in §7, and, finally, §8 contains some concluding remarks, speculations, and suggestions for further work.

1 A technical distinction between update and revision is sometimes made in the literature (cf. Katsuno and Mendelzon [18]); here I will ignore that distinction.
2 Some definitions

Although I will use a slightly different version of the language, here’s the version that appears in [3]:

Atomic formulas: \(p \in \Phi \),
Formulas: \(\varphi \in \text{Form}(\Phi) \),
Procedures: \(\alpha \in \text{Proc}(\Phi) \).

\[
\varphi ::= p | \bot | T | \varphi_1 \rightarrow \varphi_2 | \text{do}(\alpha) | \text{ra}(\alpha) | \text{fix}(\alpha), \\
\alpha ::= \text{exp}(\varphi) | \text{con}(\varphi) | \mu\text{-exp}(\varphi) | \mu\text{-con}(\varphi) | \alpha_1 \cap \alpha_2 | \alpha_1 ; \alpha_2 | - \alpha | \alpha^* | \varphi ?.
\]

I will refer to elements of \(\text{Form}(\Phi) \cup \text{Proc}(\Phi) \) as expressions.

The intended interpretation of the above connectives and mappings is the following. A formula \(\text{do}(\alpha) \) (\(\text{ra}(\alpha) \)) is true at a state \(x \) iff \(x \) is in the domain (range) of \(\alpha \), and \(\text{fix}(\alpha) \) is true at \(x \) if \(x \) is a fixed point of \(\alpha \). The interpretation of \(\text{exp}(\varphi) \) (read: expand with \(\varphi \)) in a model \(\mathcal{M} \) is the set of all moves along the “informational ordering” in \(\mathcal{M} \) that take you to a state where \(\varphi \) holds; the interpretation of \(\text{con}(\varphi) \) (read: contract with \(\varphi \)) consists of all moves backwards along the ordering to states where \(\varphi \) fails. The modes \(\mu\text{-exp} \) and \(\mu\text{-con} \) are minimal versions of \(\text{exp} \) and \(\text{con} \), respectively: the interpretation of \(\mu\text{-exp}(\varphi) \) consists of all moves \((x, y) \) along the ordering such that \(y \) satisfies \(\varphi \), while there is no point in between \(x \) and \(y \) that also satisfies \(\varphi \); the interpretation of \(\mu\text{-con} \) is defined likewise. As usual, \(\varphi ? \) is the “test-for-\(\varphi \)” relation, while the intended interpretation of the operators left unexplained should be clear.

The models for this language are structures of the form \(\mathcal{M} = (W, \subseteq, [\cdot], V) \), where \(\subseteq \subseteq W^2 \) is transitive and reflexive (the informational ordering), \([\cdot] : \text{Proc}(\Phi) \rightarrow 2^{W \times W} \), and \(V : \Phi \rightarrow 2^W \). The interpretation of the projections in our modal language is the following:

\[
\mathcal{M}, x \models \text{do}(\alpha) \iff \exists y ((x, y) \in [\alpha]), \\
\mathcal{M}, x \models \text{ra}(\alpha) \iff \exists y ((y, x) \in [\alpha]), \\
\mathcal{M}, x \models \text{fix}(\alpha) \iff (x, x) \in [\alpha].
\]

A model \(\mathcal{M} \) is called standard if the relational part of our language is interpreted as follows in \(\mathcal{M} \):
\[\begin{align*}
[\exp(\varphi)] &= \lambda xy. (x \subseteq y \land M, y \models \varphi), \\
[\con(\varphi)] &= \lambda xy. (x \supseteq y \land M, y \not\models \varphi), \\
[\mu\exp(\varphi)] &= \lambda xy. (x \subseteq y \land M, y \models \varphi \land \exists z (x \subseteq z \subseteq y \land M, z \models \varphi)), \\
[\mu\con(\varphi)] &= \lambda xy. (x \supseteq y \land M, y \not\models \varphi \land \exists z (x \supseteq z \supseteq y \land M, z \not\models \varphi)), \\
[\alpha \cap \beta] &= [\alpha] \cap [\beta], \\
[\alpha; \beta] &= [\alpha]; [\beta], \\
[-\alpha] &= -[\alpha], \\
[\alpha^*] &= \{ (x, y): (y, x) \in [\alpha] \}, \\
[\varphi^?] &= \{ (x, y): M, x \models \varphi \}.
\end{align*} \]

Note that the minimal procedures \(\mu\exp(\cdot) \) and \(\mu\con(\cdot) \) are definable using \(\exp(\cdot) \) (or \(\con(\cdot) \)) and \(\cap, - \) and \(; \) as follows:

\[(x, y) \in [\mu\exp(\varphi)] \text{ iff } (x, y) \in [\exp(\varphi) \cap -\exp(\varphi); (\exp(\top) \cap -\top)])],
\]

and similarly for \(\mu\con(\varphi) \). Consequently, I will leave out the ‘minimal’ versions of \(\exp(\cdot) \) and \(\con(\cdot) \) from the official definition of the language.

Of course, \(\text{ra} \) and \(\text{fix} \) are definable using the other operators, however, for conceptual and notational convenience they will be part of the official definition of the language.

As a second change to the original definition I will add a modal operator to the language. But before I do this, note that if \(\alpha \) is some procedure, then the modal operator \(\langle \alpha \rangle \) whose semantics is based on \(\alpha \), may be defined as \(\langle \alpha \rangle \varphi := \text{do}(\alpha; \varphi^?) \). The additional operator I will add below will be defined in this way. Thus, this addition is only a cosmetic one that will facilitate direct reference at the Boolean level to a procedure that is available at the relational level anyway. Note that we can define the diagonal relation \(\delta = \{ (x, y): x = y \} \) as \(\delta := T \top \). Hence the inequality relation is definable as \(\neg \delta \). The operator I want to add to the language is the so-called \(D \) operator, whose semantics is given by \(\lambda P. \exists y (x \neq y \land P(y)) \) (cf. De Rijke [25]). Using the \(D \) operator some other useful operators may be defined as well: \(A \varphi := \varphi \land \neg D \neg \varphi \) (\(\varphi \) holds at all points), and \(E \varphi := \varphi \lor D \varphi \) (there exists a point at which \(\varphi \) holds). The main reason for adding the \(D \) operator is that it will greatly simplify my completeness proofs in §6.

Here, finally, is the full language; I will refer to this language as the \(DML \)-language, and in more official parts of this paper also as \(DML(\Phi) \), where \(\Phi \) is the set of proposition letters.

\[
\begin{align*}
\varphi &:= p \mid \bot \mid T \mid \varphi_1 \rightarrow \varphi_2 \mid \text{do}(\alpha) \mid \text{ra}(\alpha) \mid \text{fix}(\alpha) \mid D\varphi, \\
\alpha &:= \exp(\varphi) \mid \con(\varphi) \mid \alpha_1 \cap \alpha_2 \mid \alpha_1; \alpha_2 \mid -\alpha \mid \alpha^* \mid \varphi^?.
\end{align*}
\]

(Here, \(p \in \Phi \), \(\varphi \in \text{Form}(\Phi) \) and \(\alpha \in \text{Proc}(\Phi) \), as before.)

There are obvious connections between \(DML \) and propositional dynamic logic (PDL,
cf. Harel [16]). For a start, as pointed out above, the ‘old diamonds’ $\langle \alpha \rangle$ from PDL can be simulated in DML by putting $(\langle \alpha \rangle \varphi) := \text{do}(\alpha; \varphi?)$. And conversely, the expansion and contraction operators are definable in a particular mutation of PDL where taking converses of program relations is allowed and a name for the informational ordering is available: $[\text{exp}(\varphi)] = \left[\subseteq; \varphi?\right]$ and $[\text{con}(\varphi)] = \left[\subseteq; \neg \varphi\right]$. The domain operator $\text{do}(\alpha)$ can be simulated in standard PDL by $\circ T$. An obvious difference between DML and PDL is that (at least in it’s more traditional mutations) PDL only has the regular program operations $\cup, ;$ and \circ, while DML has the full relational repertoire $\cup, -, ;$ and \circ, but not the Kleene star. Another difference is not a technical difference, but one in emphasis; whereas in PDL the Boolean part of the language clearly is the primary component of the language, in DML some effort is made to give the relational part the status of a first-class citizen as well by shifting the notation towards one that more clearly reflects the aspects of relations which we usually consider to be important.

A related formalism whose relational apparatus is more alike that of DML is the Boolean modal logic (BML) studied by Gargov and Passy [12]. This system has atomic relations ρ_1, ρ_2, \ldots, a constant for the cartesian product $W \times W$ of the underlying domain W, and relation-forming operators \cap, \cup and \circ. Relations are referred to within the BML-language by means of the PDL-like diamonds $\langle \alpha \rangle$. Since BML does not allow either $;\circ$ or \circ^{-} as operators on relations, it is a strict subsystem of $\text{DML}(\Phi)$ with multiple base relations $\{\rho_1, \rho_2, \ldots\}$.

3 Some examples

It is high time for an example or two. Here’s a simple-minded one. Suppose you’re sitting in a room, waiting for the start of a talk by a famous logician who is known for his lively presentation, and who has done a lot of work on non-monotonic logic. So, after some time the lights are dimmed and logician comes in (l). You can see that he’s carrying a birds cage with a bird in it, although you can not see what kind of bird it is. Having read the relevant literature you conclude that the bird must be a penguin (p) called Tweety (t). However, the first thing the speaker says, while holding up the cage and pointing at the bird in it, is: “This bird is not called Tweety”. In that case, you think, it’s probably not a penguin either. The speaker continues: “I want to do a little experiment with you. I want you to think of a name for this bird; any name will do, as long as it’s not Tweety”. Being a cooperative member of the audience you think of a name other than Tweety, say Bob (b) . . . Some of the changes brought about in your initial informational state during this story may schematically be represented as

\[\text{exp}(l); (\text{exp}(p) \cap \text{exp}(t)); \text{con}(t); \text{con}(p); (\text{exp}(b) \cap -\text{exp}(t)), \]
where \(; \) is the usual relational composition.

Here's another, more serious example having to do with Theory Change or Belief Revision. Assuming the so-called Levi identity (cf. Gärdenfors [11]), revisions, that is, operations to somehow resolve conflicts that arise when new knowledge is acquired that is inconsistent with the old beliefs, such revisions are usually explained as “contract with \(\neg \varphi \), and then expand with \(\varphi \), while changing as little as possible from the old theory.” In [27] this idea is implemented by defining a revision operator \([\varphi] \psi \) (“\(\psi \) belongs to every theory that results from revising by \(\varphi \)”)

\[
[\varphi] \psi := \mu \text{-con}(\neg \varphi); \mu \text{-exp}(\varphi).
\]

It can be shown that for many sets of postulates that have been proposed for theory change, this revision operator satisfies nearly all of the individual postulates in such a set.

Further formalisms to which \(DML \) has been linked include conditionals and other systems that somehow involve a notion of change. But, whereas the applications to Theory Change and conditionals do not require the states in \(DML \)-models to have any particular structure, others do. For example, one version of Frank Veltman’s update semantics [28] may be seen as a formalism for reasoning about models of the modal system \(S5 \) and certain transitions between such models. By imposing the structure of \(S5 \)-models on the individual states in a \(DML \)-model, the latter becomes a class of \(S5 \)-models in which the \(DML \)-apparatus can be used to reason about global transitions between \(S5 \)-models, while the language of \(S5 \) can be used to reason about the local structure of the states. When used in this way \(DML \) becomes a super-system of one particular brand of Veltman’s update semantics. Other brands of update semantics can be interpreted as being formalisms for reasoning about certain bi-modal, or even poly-modal models; following the strategy sketched above these formalisms too can be interpreted in a version of \(DML \) with appropriately structured states. Further applications given in [27] in which the states need to be equipped with some kind of structure include discourse representation and minimization.

Many of the dynamic operators that have been proposed in the literature can be defined in \(DML \). The underlying reason for this is that most dynamic proposals have some kind of two-dimensional structures in common as their underlying models, and that the \(DML \)-language is strong enough to define all the standard operations on binary relations, and many more besides. For instance, the residuals of Vaughan Pratt’s action logic [22] can be defined in the \(DML \)-language:

\[
\begin{align*}
\alpha \Rightarrow \beta &= \{ (x, y) : \forall z ((z, x) \in [\alpha] \rightarrow (z, y) \in [\beta]) \} = -(\alpha; \neg \beta), \\
\alpha \Leftarrow \beta &= \{ (x, y) : \forall z ((y, z) \in [\alpha] \rightarrow (x, z) \in [\beta]) \} = -(-\beta; \alpha^*).
\end{align*}
\]

As pointed out in [3] the test negation proposed in Groenendijk and Stokhof [13] becomes
\[\sim \alpha = \{ (x, x) : \exists y ((x, y) \in [\alpha]) \} = \delta \cap -\{\alpha; \top\}. \]

A logical system can be dubbed dynamic for a number of reasons: because it has dynamic connectives of some sort (as in the above examples), or because it has a dynamic notion of inference. Quite often these too can be simulated in the DML-language. Here are some examples taken from [3]. The standard notion of inference \models_1 ("every state that models all of the premises, should also model the conclusion") may be represented as

\[\varphi_1 \land \ldots \land \varphi_n \models_1 \psi \iff \text{fix}(\varphi_1) \land \ldots \land \text{fix}(\varphi_n) \rightarrow \text{fix}(\psi). \]

A more dynamic notion \models_2 taken from [13], which may be paraphrased as "process all premises consecutively, then you should be able to reach a state where the conclusion holds", has the following transcription in the DML-language:

\[\varphi_1 \land \ldots \land \varphi_n \models_2 \psi \iff \text{ra}(\exp(\varphi_1); \ldots; \exp(\varphi_n)) \rightarrow \text{do}(\exp(\psi)). \]

A third notion of inference, \models_3, found for example in Van Eijck and de Vries [7] which reads "whenever it is possible to consecutively expand with all premises, then it should be possible to expand with the conclusion", can be given the following representation:

\[\varphi_1 \land \ldots \land \varphi_n \models_3 \psi \iff \text{do}(\exp(\varphi_1); \ldots; \exp(\varphi_n)) \rightarrow \text{do}(\exp(\psi)). \]

4 The connection with classical logic

When interpreted on models ordinary modal formulas are equivalent to a special kind of first order formulas. To be precise, these first order translations form a restricted 2-variable fragment of the full first order language, one that can easily be described syntactically, and for which a semantic characterization can be given in terms of so-called p-relations or bisimulations (cf. Van Benthem [1] for details). Likewise, the first order transcriptions of modal formalisms used to reason about relation algebras live in a 3-variable fragment of the full first order language; they too can be given precise syntactic and semantic descriptions (cf. De Rijke [26]).

Of course, the above two are special cases of a much more general phenomenon, namely the relation between patterns or important features of structures and bisimulations that precisely preserve these patterns on the one hand, and (extended) modal formulas whose validity is invariant under such bisimulations on the other hand (again, cf. [26]). In the present case of the DML-language it is also possible to give a precise syntactic description of its first order transcriptions (this will be done in §4.1), and the notion of bisimulation can be adapted to obtain a semantic characterization of these first order transcriptions (in §4.2).
4.1 Translation into first order logic

The usual translation (·) taking modal formulas to first order ones (over a vocabulary \{ R, P_1, P_2, \ldots \}) can be extended to the full DML-language without too much trouble (cf. [1] for the standard modal case). However, whereas standard modal formulas translate into formulas having one free variable in a two-variable fragment, expressions in the DML-language translate into formulas of a three-variable fragment that may contain up to two free variables.

My approach will be a bit more general than the one suggested by the truth definition given in §2; instead of \(\sqsubseteq \) I will use an abstract binary relation symbol \(R \) to translate the modal operators and the ‘dynamic’ constructs.

Definition 4.1 Let \(\tau \) be the (first order) vocabulary \{ R, P_1, P_2, \ldots \}, with \(R \) a binary relation symbol, and the \(P_i \)'s unary relation symbols. Let \(L(\tau) \) be the set of all first order formulas over \(\tau \) (with identity). Define a translation (·) taking DML-formulas to formulas in \(L(\tau) \) as in Table 1.

\[
\begin{array}{ll}
(T)^* &= (x = x) \\
(\neg \varphi)^* &= \neg \varphi^* \\
(D \varphi)^* &= \exists y (x \neq y \land [y/x] \varphi^*) \\
(ra(\alpha))^* &= \exists y [y/x, z/y] (\alpha^*) \\
(P)^* &= P(x) \\
(\varphi \land \psi)^* &= \varphi^* \land \psi^* \\
(do(\alpha))^* &= \exists y (\alpha^*) \\
(fix(\alpha))^* &= [x/y] (\alpha^*)
\end{array}
\]

\[
\begin{array}{ll}
\delta &= (z = y) \\
(\alpha \land \beta)^* &= \alpha^* \land \beta^* \\
(\alpha; \beta)^* &= \exists z ([z/y] \alpha^* \land [z/x] \beta^*) \\
(\phi^?)^* &= (x = y) \land \varphi^* \\
(exp(\varphi))^* &= (xRy) \land [y/x] \varphi^* \\
(-\alpha)^* &= -\alpha^* \\
(con(\varphi))^* &= (yRx) \land -[y/x] \varphi^*
\end{array}
\]

Table 1: The standard translation.

Proposition 4.2 Let \(\theta \) be an expression in DML(\(\Phi \)). Then, for any \(\mathfrak{A} \), and for any \(x, y \in A \), we have \(\mathfrak{A}, x \models \theta \) iff \(\mathfrak{A}, x \models \theta^*[x] \), if \(\theta \in \text{Form}(\Phi) \), and \((x, y) \in [\theta]_{\mathfrak{A}} \) iff \(\mathfrak{A} \models \theta^*[x, y] \), in case \(\theta \in \text{Proc}(\Phi) \).

The (·)-translations of DML-formulas can be described exactly using the following definition.

Definition 4.3 Fix individual variables \(z_1, z_2, z_3 \) as before, and let \(\tau = \{ R, P_1, P_2, \ldots \} \) be as before. Let \(x, y \) range over \(\{ z_1, z_2 \} \), with the understanding that \(x \neq y \). The set of first order formulas (with identity) \(L_3^{1,2}(\tau) \) is the smallest set \(X \) such that
1. \(x_1 = x_1, P, x_1 \in X; \)
2. if \(\varphi(x_1), \psi(x_1) \in X \), then so are their conjunction, disjunction, and negations;
3. \(R x_1 x_2, (x_1 = x_2) \in X; \)
4. if \(\varphi(x, y), \psi(x, y) \in X \), then so are their conjunction, disjunction, and negations;
5. if \(\varphi(x, y) \in X \), then so is \(\varphi(y, x) \);
6. if \(\varphi(x, y) \in X \), then so is \(\exists z_2 \varphi(x, y) \);
7. if \(\varphi(x, y), \psi(x, y) \in X \), then so is \(\exists z_3 (\varphi(x, z_3) \land \psi(x, y)) \);
8. if \(\varphi(x, y), \psi(x_1) \in X \), then so is \(\varphi(x, y) \land \psi(x_2) \).

Proposition 4.4 Every expression in the DML-language translates into a formula in \(L_3^{1,2}(\tau) \) via \((\cdot)^* \). And conversely, for every \(\varphi \in L_3^{1,2}(\tau) \) there is an expression \(\theta \in DML(\Phi) \) such that \(\models \theta^* \iff \varphi \).

Proof. One may use an inductive argument to see that every expression in \(DML(\Phi) \) translates into a formula in \(L_3^{1,2}(\tau) \) via the mapping \((\cdot)^* \). For the converse, define a mapping \((\cdot)^{\dagger} : L_3^{1,2}(\tau) \rightarrow DML(\Phi) \) as follows:

\[
\begin{align*}
(x_1 = x_1)^{\dagger} & = T & (P x_1)^{\dagger} & = p \\
(\varphi(x_1) \land \psi(x_1))^{\dagger} & = \varphi(x_1)^{\dagger} \land \psi(x_1)^{\dagger} & (\varphi(x_1) \lor \psi(x_1))^{\dagger} & = \varphi(x_1)^{\dagger} \lor \psi(x_1)^{\dagger} \\
(\neg \varphi(x_1))^{\dagger} & = \neg \varphi(x_1)^{\dagger} & (R x_1 x_2)^{\dagger} & = \exp(T) \\
(R x_1 x_2)^{\dagger} & = \text{con}(1) & (x_1 = x_2)^{\dagger} & = T? \\
(\varphi(x, y) \land \psi(x, y))^{\dagger} & = \varphi(x, y)^{\dagger} \land \psi(x, y)^{\dagger} & (\neg \varphi(x, y))^{\dagger} & = \neg \varphi(x, y)^{\dagger} \\
(\varphi(x, y) \lor \psi(x, y))^{\dagger} & = \varphi(x, y)^{\dagger} \lor \psi(x, y)^{\dagger} & (\exists z_2 \varphi(x_1, x_2))^{\dagger} & = \text{do}(\varphi(x_1, x_2)^{\dagger}) \\
(\exists z_2 \varphi(x, z_3) \land \psi(x_3, y))^{\dagger} & = \varphi(x, y)^{\dagger} ; \psi(x, y)^{\dagger} & (\exists z_2 \varphi(x_1, x_2)^{\dagger})^{\dagger} & = \text{ra}(\varphi(x_1, x_2)^{\dagger}) \\
(\varphi(x, y) \land \psi(x_2))^{\dagger} & = \varphi^{\dagger}; (T? \land (\psi(x_1)^{\dagger})^?) \\
\end{align*}
\]

Then, for all \(\varphi \in L_3^{1,2}(\tau) \), and all \(M, \vec{v} \), we have \(M, \vec{v} \models \varphi \) iff \(M, \vec{v} \models \varphi^{\dagger} \).

Let \(X \) be a set of (first order) formulas, and let \(K \) be a class of models. Then the DML-language is called expressively complete with respect to \(X \) over \(K \) if for all \(\chi \in X \) there is a DML-expression \(\varphi \) such that \(K \models \varphi^* \iff \chi \). If \(K \) is the class of all models \(I \) will suppress 'over \(K \).

The two-variable fragment \(L_2(\tau) \) is the set of all first order formulas over \(\tau \) using only two variables.

Corollary 4.5 The DML-language is expressively complete with respect to the two-variable fragment \(L_2(\tau) \) of first order logic over \{ \(R, P_1, \ldots \) \} with identity.
Proof. This is immediate from 4.4: since the two-variable fragment $L_2(\tau)$ over \{ R, P_1, \ldots \} (with identity) is contained in $L_{1,2}^2(\tau)$, it follows that $DML(\Phi)$ is expressively complete for that fragment.

Alternatively, one can give an explicit algorithm for transforming $L_2(\tau)$ in DML-expressions. Since this would take up too much space here without yielding additional insights, I will only give an illustrative example. Consider

\[x \neq y \land \forall x \exists y (xRy \land \forall z (yRx \rightarrow \neg Pz)) \land (\neg Qx \rightarrow \forall y (Qy \rightarrow \neg Ryz)). \]

Abbreviating $exp(\tau)$ by R, this formula may be given the following modal transcription:

\[-\delta \cap [\text{do}(R; -\text{do}(R^*; p?)?); \delta \cup -\delta] \cap -[\neg q \cap \text{do}(R^*; q?)?; \delta \cup -\delta]. \]

What about expressive completeness of the DML-language with respect to the full first order language? It may amuse the reader to check that the temporal operator $UNTIL$, whose truth definition is

\[\forall, x \models UNTIL(p, q) \text{ iff } \exists y (xRy \land Py \land \neg \exists z (xRzRy \land z \neq y \land \neg Qz)), \]

can be defined by

\[\text{do}(\text{exp}(p) \cap \neg [\text{exp}(\neg q); (R \cap -\delta)]). \]

(And similarly for $SINCE$, the backward-looking version of $UNTIL$.) Hence, by Kamp's Theorem (cf. Kamp [17]), the DML-language is expressively complete with respect to the full first order language over continuous linear orders.

An obvious question here is whether the Stavi connectives $SINCE'$ and $UNTIL'$ are definable in the DML-language, and, thus, by a result of J. Stavi, whether the DML-language is expressively complete with respect to the language of first order logic over all linear orders (cf. Gabbay [9]). Here, $UNTIL'(p, q)$ is defined by

\[\exists y \left(xRy \land \forall z (xRzRy \rightarrow Qz) \right) \land \]

\[\forall y \left(xRy \land \forall z (xRzRy \rightarrow Qz) \rightarrow (Qy \land \exists z (yRx \land \forall z (yRzRx \rightarrow Qz))) \right) \land \]

\[\exists y \left(xRy \land \neg Qy \land Py \land \forall z (xRzRy \land \exists y (xRyRz \land \neg Qy) \rightarrow Pz) \right). \]

Of course $SINCE'(p, q)$ is the ‘backward-looking’ version of $UNTIL'(p, q)$. In the DML-language the operator $UNTIL'(p, q)$ can be defined as follows:

\[\text{do}(R \cap -[\text{exp}(\neg q); R]) \land \]

\[\neg \text{do}(R \cap -[\text{exp}(\neg q); R] \cap -[\text{exp}(q) \cap \text{do}(R \cap -[\text{exp}(\neg q); R])] ?) \land \]

\[\text{do}(\text{exp}(\neg q \land p) \cap -[\text{exp}(\neg p) \cap (\text{exp}(\neg q); R)]) \land \]

\[\text{do}(\text{exp}(\neg q \land p) \cap -[\text{exp}(\neg p) \cap (\text{exp}(\neg q); R)]) \land. \]
I leave it as an exercise to check that (1), (2) and (3) are defined by the DML-formulas (4), (5) and (6), respectively.

4.2 Bisimulations

I will now characterize $L^1,2_{\tau}$, and hence, by 4.4, the DML-language, semantically. The key notion here will be an appropriate kind of bisimulations, generalizing the so-called p-relations of [1, Theorem 3.9] and [25, Theorem 4.7].

A 2-partial isomorphism f from \mathcal{M} to \mathcal{N} is simply an isomorphism $f : \mathcal{M}_0 \cong \mathcal{N}_0$, where \mathcal{M}_0, \mathcal{N}_0 are substructures of \mathcal{M} and \mathcal{N} respectively, whose domains have cardinality at most 2. A set I of 2-partial isomorphisms from \mathcal{M} into \mathcal{N} has the back and forth property if

\[
\text{for every } f \in I \text{ with } |f| \leq 1, \text{ and every } x \in \mathcal{M} \text{ (or } y \in \mathcal{N}) \text{ there is a } g \in I \text{ with } f \subseteq g \text{ and } x \in \text{domain}(g) \text{ (or } y \in \text{range}(g)).
\]

I write $I : \mathcal{M} \cong_2 \mathcal{N}$ if I is a non-empty set of 2-partial isomorphisms and I has the back and forth property.

By 4.5 the full 2-variable fragment of $L(\tau)$ is contained in the DML-language. Hence any relation between models that is to preserve truth of DML-formulas should ‘act’ like a (partial) isomorphism on sequences of length at most 2. Indeed, modulo one additional requirement the latter completely characterizes the DML-language (cf. 4.11).

Definition 4.6 A bisimulation between \mathcal{M}_1 and \mathcal{M}_2 is a relation $B \subseteq (W_1 \times W_2) \cup (W_1^2 \times W_2^2)$ such that

1. $B \neq \emptyset$,
2. $\bar{x}B\bar{y}$ implies $lh(\bar{x}) = lh(\bar{y})$, where $lh(\bar{x})$ is the length of \bar{x},
3. if $x_1 x_2 B y_1 y_2$ then $x_1 B y_1$ and $x_2 B y_2$,
4. if $x_1 x_2 B y_1 y_2$ and $x_3 \in \mathcal{M}_1$ then there is a $y_3 \in \mathcal{M}_2$ such that $x_1 x_3 B y_1 y_3$ and $x_2 x_3 B y_3 y_2$,
5. for $I = \{ \emptyset \} \cup \{ (\bar{x}, \bar{y}) : \bar{x}B\bar{y} \}$ we have $I : \mathcal{M}_1 \cong_2 \mathcal{M}_2$.

Example 4.7 The conditions in Definition 4.6 are rather strong, as is witnessed, for instance, by the fact that two finite linear models are isomorphic iff they are bisimilar in the sense of 4.6. The truth of this claim may be seen as follows: any two finite linear models that have the same first order theory are isomorphic, and on linear models the two notions of first order equivalence and of being equivalent for all DML-formulas coincide, by my remarks in §4.1; furthermore, by Proposition 4.10 two models that are bisimilar verify the same DML-formulas.
However, on the class of all finite models bisimilarity and isomorphism do not coincide. Here are two models establishing this claim:

\[M : 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \]
\[M' : 1' \rightarrow 2' \rightarrow 3' \]

where for all points (in \(M \) and \(M' \)) have the same valuation. Define \(B \subseteq (W \times W') \cup (W^2 \times W'^2) \) by putting

\[
B = \{(i, i') : 1 \leq i = i' \leq 3 \} \cup \{(4, i') : 1 \leq i' \leq 3 \} \\
\cup \{(i, i') : 1 \leq i = i' \leq 3, 1 \leq j = j' \leq 3 \} \\
\cup \{(i, j', k'), (4i, j'k') : 1 \leq i \leq 3, 1 \leq j' \neq k' \leq 3 \} \\
\cup \{(44, i'') : 1 \leq i'' \leq 3 \}.
\]

The reader may verify that this is indeed a bisimulation between \(M \) and \(M' \); hence, bisimulations and isomorphisms do not coincide on all finite models.

Example 4.8 Given two finite models \(\mathcal{M}_1, \mathcal{M}_2 \) with \(\bar{x} \in \mathcal{M}_1, \bar{y} \in \mathcal{M}_2 \) such that for all \(\varphi \in L(\tau) \), \(\mathcal{M}_1, \bar{x} \models \varphi \iff \mathcal{M}_2, \bar{y} \models \varphi \), one may define a ‘canonical’ bisimulation between \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \) that connects \(\bar{x} \) and \(\bar{y} \), by putting

\[\bar{u}B\bar{v} \text{ iff for all } \varphi \in DML(\Phi), \mathcal{M}_1, \bar{u} \models \varphi \iff \mathcal{M}_2, \bar{v} \models \varphi. \]

(That this does indeed define a bisimulation is essentially because \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \), being finite, are saturated, cf. the proof of 4.11.) It follows that two finite DML-models are bisimilar iff they satisfy the same formulas.

Proposition 4.9 Let \(B \) be a bisimulation between \(M \) and \(N \). Then

1. \(\text{domain}(B) = M, \text{range}(B) = N \)
2. if \(x \in M, y \in N, xBy \text{ and } x' \in M \), then there is a \(y' \in N \) with \(xx'yBy'y' \), and similarly in the opposite direction.

An \(L(\tau) \)-formula \(\varphi(\bar{x}) \) is invariant for bisimulations if for all models \(\mathcal{M}_1, \mathcal{M}_2 \) and all bisimulations \(B \) between \(\mathcal{M}_1 \) and \(\mathcal{M}_2 \), and all \(\bar{x} \in W_1, \bar{y} \in W_2 \) such that \(\bar{x}B\bar{y} \), we have \(\mathcal{M}_1, \bar{x} \models \varphi \iff \mathcal{M}_2, \bar{y} \models \varphi \).

Proposition 4.10 \(L_3^{1,2}(\tau) \)-formulas are invariant for bisimulations.

Proof. By induction on DML-expressions plus an application of 4.4. Here are some cases in the inductive proof. Let \(B \) be a bisimulation between \(M \) and \(N \).
do(α). Suppose \(zB y \). Then

\[
\mathfrak{M}, x \models \text{do}(\alpha) \iff \text{for some } z' \left((x, z') \in [\alpha]_{\mathfrak{M}} \right),
\]

\[
\Rightarrow \exists y' \left(z x' B y' \land (y, y') \in [\alpha]_{\mathfrak{M}} \right), \text{ by 4.9(2) and IH},
\]

\[
\Rightarrow \mathfrak{M}, y \models \text{do}(\alpha).
\]

\(\exp(\phi) \). Suppose \(z x' B y' \). Then

\[
(x, x') \in [\exp(\phi)]_{\mathfrak{M}} \Rightarrow (x, x') \in R_{\mathfrak{M}} \models R_{xy} \text{ and } \mathfrak{M}, x' \models \phi,
\]

\[
\Rightarrow (y, y') \in R_{\mathfrak{M}} \text{ and } \mathfrak{M}, y' \models \phi \text{ by 4.6(5) and IH},
\]

\[
\Rightarrow (y, y') \in [\exp(\phi)]_{\mathfrak{M}}.
\]

\(\alpha; \beta \). Suppose \(z x' B y' \). Then

\[
(x, x') \in \left[\alpha; \beta \right]_{\mathfrak{M}} \Rightarrow \text{for some } z'' \left((x, z'') \in [\alpha]_{\mathfrak{M}} \text{ and } (z'', x') \in [\beta]_{\mathfrak{M}} \right),
\]

\[
\Rightarrow \exists y'' \left(z x'' B y'' \land z'' x' B y' \land (y, y'') \in [\alpha]_{\mathfrak{M}} \land (y'', y') \in [\beta]_{\mathfrak{M}} \right),
\]

by 4.6(4) and IH,

\[
\Rightarrow (y, y') \in [\alpha; \beta]_{\mathfrak{M}}.
\]

It's the converse of 4.10 that is more interesting:

Theorem 4.11 A first order formula \(\varphi(\vec{x}) \) in \(L(\tau) \) is equivalent to an \(L_3^{1,2}(\tau) \)-formula only if it is invariant for bisimulations.

Proof. The proof is an extension of [25, Theorem 4.7]. Define

\[
E(\varphi) = \{ \psi \in L_3^{1,2}(\tau) : \varphi \equiv \psi \text{ and } FV(\psi) \subseteq FV(\varphi) \}.
\]

We show that \(E(\varphi) \models \varphi \). Then, by compactness the result follows.

So assume \(\mathfrak{M}, \vec{w} \models E(\varphi) \). Introduce new constants \(\vec{w} \) to stand for the objects \(\vec{w} \).

Set \(L^*(\tau) = L(\tau) \cup \{ \vec{w} \} \), and expand \(\mathfrak{M} \) to an \(L^*(\tau) \)-model in the obvious way. For \(\{ \psi \} \cup T \subseteq L(\tau) \), \(\psi^* \) and \(T^* \) have the obvious meaning.

Define \(T = \{ \psi \in L_3^{1,2}(\tau) : \mathfrak{M}, \vec{w} \models \psi, FV(\psi) \subseteq FV(\varphi) \} \). By compactness there is an \(L_3^*(\tau) \)-model \(\mathfrak{N}^* \) such that \(\mathfrak{N}^* \models T^* \cup \{ \varphi^* \} \). By standard model theory there are \(\omega \)-saturated extensions \(\mathfrak{M}_1^* = (W_1, \ldots, \vec{w}_1) \succ \mathfrak{M}^* \) and \(\mathfrak{M}_2^* = (W_2, \ldots, \vec{w}_2) \succ \mathfrak{N}^* \) such that \(\vec{w}_1 \) and \(\vec{w}_2 \) both realize \(T \), and \(\mathfrak{N}_1^* \models \varphi^* \).

Define a relation \(B \subseteq (W_1 \times W_2) \cup (W_1^2 \times W_2^2) \) between (the \(L(\tau) \)-reducts of) \(\mathfrak{M}_1^* \) and \(\mathfrak{N}_1^* \), by putting

\[
x_1 B y_1 \quad \text{iff for all } \psi(x) \in L_3^{1,2}(\tau), \text{ and } \mathfrak{M}_1, x_1 \models \psi \text{ iff } \mathfrak{N}_1, x_1 \models \psi, \text{ and } x_1 x_2 B y_1 y_2 \quad \text{iff for all } \psi(x, y) \in L_3^{1,2}(\tau), \mathfrak{M}_1, x_1, x_2 \models \psi \text{ iff } \mathfrak{N}_1, x_1, x_2 \models \psi.
\]
I claim that \mathcal{B} is in fact a bisimulation between \mathfrak{M}_1 and \mathfrak{M}_1. To see this, let us check that the conditions of 4.6 hold. Firstly, we have $\mathcal{B} \neq \emptyset$ because $\bar{w}_1 \mathcal{B} \bar{w}_2$ holds. For, suppose that $\psi(\bar{x}) \in L^{2,2}_3(\tau)$; then $\psi \in T$, hence $\mathfrak{M}, \bar{w}_2 \models \psi$; and similarly in the opposite direction.

Conditions 2 and 3 are trivial, and to see that 4 is fulfilled, assume that $x_1x_2B\bar{y}_1\bar{y}_2$ and $x_3 \in \mathfrak{M}_1$. What I need to show is: $\exists y_3 (x_1x_2B\bar{y}_1y_3 \land x_3x_2B\bar{y}_3y_2)$. To this end set
\[
\Psi(x, y) = \{ \psi(x, y) \in L^{1,2}_3(\tau) : \mathfrak{M}_1^*, x_1, x_3 \models \psi \},
\]
\[
\Xi(x, y) = \{ \psi(x, y) \in L^{1,2}_3(\tau) : \mathfrak{M}_1^*, x_3, x_3 \models \psi \}.
\]
Then $\Psi(\bar{y}_1, y) \cup \Xi(y, \bar{y}_2)$ is finitely satisfiable in $(\mathfrak{M}_1^*, \bar{y}_1, \bar{y}_2)$. Hence, since \mathfrak{M}_1^* is ω-saturated, it is satisfiable in $(\mathfrak{M}_1^*, \bar{y}_1, \bar{y}_2)$. But this means that for some $y_3 \in W_2$, $x_1x_2B\bar{y}_1y_3$ and $x_3x_2B\bar{y}_3y_2$, as required. The other half of Condition 4 may be established in a similar way.

Next, we have to check that for $I = \{ \emptyset \} \cup \{ (\bar{z}, \bar{y}) : \bar{z}B\bar{y} \}$ we have $I : \mathfrak{M}_1 \cong_2 \mathfrak{M}_1$. Now obviously, since each of $(\neg)P_i, x, (\neg)x = y, (\neg)Rxy$ and $(\neg)Rxz$ is in $L^{1,2}_3(\tau)$, any $f \in I$ must be a 2-partial isomorphism. So all we have left to do is show that I has the back and forth property. But this may done along the lines of the proof that Condition 4 is satisfied.

To conclude, \mathcal{B} is a bisimulation between \mathfrak{M}_1 and \mathfrak{M}_1. So, by invariance for bisimulations $\mathfrak{M}_1^* \models \varphi^*$ implies $\mathfrak{M}_1^* \models \varphi$. Since $\mathfrak{M}_1^* \approx \mathfrak{M}_1^*$ it follows that $\mathfrak{M}_1^* \models \varphi^*$, and so $\mathfrak{M}, \bar{w} \models \varphi$. -

Using 4.11 some results about definability of classes of DML-models can easily be derived. For an elegant formulation of these results it is convenient to consider so-called pointed models as our fundamental structures (as in Kripke's original publications). Here, a pointed model is a structure of the form $(W, \sqsubseteq, [\cdot], V, w)$, where $(W, \sqsubseteq, [\cdot], V)$ is an ordinary DML-model, and $w \in W$.

Corollary 4.12 Let M be a class of pointed models. Then M is definable by means of a DML-formula iff it is closed under bisimulations and ultraproduacts, while its complement is closed under ultraproduacts.

Proof. Similar to [25, Theorem 4.8]. -

5 Decidability

In the preceding sections I have given several examples demonstrating that the DML-language is a powerful one as far as expressiveness is concerned. Of course, this power does not come without a price: I will show that satisfiability in the DML-language is not decidable. After that I show that decidability may be restored either by restricting the language, or by restricting the class of structures used to interpret the DML-language.
5.1 The full language interpreted on pre-orders

As a language, DML is somewhere in between the language of $S4_t$, the temporal analogue of the modal system S4, and full relational algebra. It is well-known that the latter is undecidable. Since in the intermediate case of DML we only have the operations of relation algebra on top of a single relation, it may be hoped that we are closer to $S4_t$ than to relational algebra, and hence that DML is decidable.

But here is already an important difference between the two: $S4_t$ enjoys the finite model property, while DML does not. To see this, define

- $R := \exp(\top),$
- $\infty := \neg \text{Endo}((R \cap -\delta) \cap R^\cap).$

Then, since ∞ forces the absence of loops, the formula $\text{Ado}(R \cap -\delta) \land \infty$ is satisfiable only on infinite DML-models. And in fact we have the following result:

Theorem 5.1 Satisfiability in DML is Π^0_2-hard.

Proof. This is a reduction of a known Π^0_2-complete problem, a so-called unbounded tiling problem (UTP), to satisfiability in DML. The version of the UTP that I will use here is given by the following data. Given a set of tiles $T = \{d_0, \ldots, d_m\}$, each having 4 sides whose colors are in $C = \{c_0, \ldots, c_k\}$, is there a tiling of $\mathbb{N} \times \mathbb{N}$? The rules of the tiling game are

1. every point in the grid is associated with a single tile,
2. adjacent edges have the same color.

Now, the version of the UTP presented here is known to be Π^0_2-complete (cf. Harel [15]). So to prove the theorem it suffices to define, for a given set of tiles T, a formula φ_T in the DML-language such that

1. its models look like grids,
2. it says that every point is covered by a tile from T,
3. and that colors match right and above neighbors,

and show that φ_T is satisfiable iff T can tile $\mathbb{N} \times \mathbb{N}$. Let's get to work now. To make a grid, define

- $\text{LEAVE}(\varphi) := (\varphi?; R),$
- $\text{ONE} := (R \cap -\delta) \cap -[(R \cap -\delta) \cap (R \cap -\delta)];$ then, for all \mathcal{M}, and for all $x, y \in \mathcal{M},$

 $$(x, y) \in [\text{ONE}]_\mathcal{M} \text{ iff } xRy \land x \neq y \land \exists z (xRz \land z \neq x \land zRy \land z \neq y),$$
Figure 2: The unbounded tiling problem.

- UP := [ONE \land LEAVE($p \land q$) \land exp($p \land \neg q$)]
 \cup [ONE \land LEAVE($p \land \neg q$) \land exp($p \land q$)]
 \cup [ONE \land LEAVE($\neg p \land q$) \land exp($\neg p \land \neg q$)]
 \cup [ONE \land LEAVE($\neg p \land \neg q$) \land exp($\neg p \land q$)],

- RIGHT := [ONE \land LEAVE($p \land q$) \land exp($\neg p \land q$)]
 \cup [ONE \land LEAVE($\neg p \land q$) \land exp($p \land q$)]
 \cup [ONE \land LEAVE($p \land \neg q$) \land exp($\neg p \land \neg q$)]
 \cup [ONE \land LEAVE($\neg p \land \neg q$) \land exp($p \land \neg q$)],

- EQUAL(α, β) := \negEdo($\alpha \land \neg \beta$) \land \negEdo($\beta \land \neg \alpha$),

- CR := EQUAL((UP; RIGHT), (RIGHT; UP)).

Here, finally, is the formula that will force our models to contain a copy of $\mathbb{N} \times \mathbb{N}$:

- GRID := ($p \land q$) \land Ado(UP) \land Ado(RIGHT) \land CR \land ∞.

Next we have to define formulas that force 2 and 3. Let $T = \{d_0, \ldots, d_m\}$ and $C = \{c_0, \ldots, c_k\}$ be given. For each color $c_i \in C$ introduce four proposition letters, suggestively denoted by $up = c_i$, right = c_i, down = c_i, left = c_i. Identifying each tile $d \in T$ with its four sides I assume that each tile d is represented as

\[
(\up = c_i \land \text{right} = c_i \land \text{down} = c_i \land \text{left} = c_i) \\
\land (\bigwedge_{c \in T \setminus \{c_i\}} \neg \up = c \land \ldots \land \bigwedge_{c \in T \setminus \{c_i\}} \neg \text{left} = c).
\]
Then, put

- \(\text{COVER} := A \bigvee_{d \in T} d, \)

and

- \(\text{MATCH} := A \left(\bigwedge_{c \in C} (\text{up} = c \rightarrow \text{[UP]down} = c) \right) \)

\(\land \bigwedge_{c \in C} (\text{right} = c \rightarrow \text{[RIGHT]left} = c) \).

Put \(\varphi_T := \text{GRID} \land \text{COVER} \land \text{MATCH} \). Then \(\varphi_T \) is satisfiable in an DML-model iff \(T \) can tile \(\mathbb{N} \times \mathbb{N} \). The if-direction is trivial, since if a tiling exists \(\varphi_T \) is satisfiable in \(\mathbb{N} \times \mathbb{N} \), simply by verifying \((p \land q)\) in \((0,0)\), switching the truth values of \(p \) and \(q \) while going right and up through the grid, respectively, while the tiling will tell you how to satisfy COM and MATCH. Conversely, the domain of any DML-model in which \(\varphi_T \) is satisfied in some point \(x \), must contain a copy of \(\mathbb{N} \times \mathbb{N} \) with \(x \) as its origin; as COVER and MATCH are satisfied in \(x \) there must be a tiling of this copy of \(\mathbb{N} \times \mathbb{N} \).

\[\square \]

Corollary 5.2 Satisfiability in DML is \(\Pi^0_1 \)-hard.

One may get a reduction of the UTP to DML-satisfiability with somewhat less than what I have used in the proof of 5.1. For instance, it is not necessary to actually have a real grid inside models satisfying the ‘reduction formula’ \(\varphi_T \); instead it suffices to have structures satisfying a Church-Rosser like property like \(\forall yz \ (Rxy \land Rzx \rightarrow \exists u \ (Ryu \land Rzu)) \).

5.2 Fragments and special frame classes

A natural move at this point is to try and find reasonably large fragments of the DML-language that are decidable. To this end, let’s step back a second and see what made the proof of 5.1 work. Essentially, we were able to build a grid there, thanks to the availability of \(; \), \(\cap \) and \(\frown \). Thus, when looking for reasonably large decidable fragments of the DML-language, giving up some of these three might get us results. Indeed, giving up \(; \) (and \(\frown \), by the way) restricts DML to the Boolean modal logic of Gargov and Passy as mentioned in §2, and this is a decidable system (cf. [12]). Alternatively, giving up – again yields decidability by Danecki [6]. Of course, in these fragments some of the more complex operators like \(D \) and \(\mu-\text{exp}(\cdot), \mu-\text{con}(\cdot) \) will no longer be definable, thus it remains to be seen whether adding any of these to the above fragments preserves decidability.

Another approach towards obtaining decidability is not to restrict the Language, but to restrict the structures used to interpret the language. As an example I will consider the class of all trees. Just to be precise, by a tree is a meant a structure \((W, \sqsubseteq)\) with \(\sqsubseteq \subseteq W^2 \).
a transitive, asymmetric relation such that for each \(x \in W \) the set of \(\sqsubseteq \)-predecessors of \(x \) is linearly ordered by \(\sqsubseteq \).

Let \(\text{Th}_{DML}(\text{TREES}) \) denote the set of \(DML \)-formulas valid on the class \(\text{TREES} \) of all trees. In §6.3 I will axiomatize \(\text{Th}_{DML}(\text{TREES}) \), but for the moment all we need to know about it, is that it lacks the finite model property. (To see this simply consider the formula \(\text{Ado}(R) \land \infty \).

Thus, to establish decidability of this theory some other tools will have to be employed. Of course, one obvious candidate is Rabin’s Theorem [24]; to apply this result the semantics of \(\text{Th}_{DML}(\text{TREES}) \) has to be embedded in \(S_\omega S \), the monadic second order theory of infinitely many successor functions. Here, I will take an easier way out by appealing to a result by Gurevich and Shelah [14]. Let \(L_{GS} \) be the language of monadic second order with additional unary predicates, i.e. it has individual variables and unary predicate variables (ranging over branches) as well as a binary relation symbol \(< \) and unary predicate constants \(P_0, P_1, \ldots \). And let \(\text{Th}_{GS}(\text{TREES}) \) be the set of \(L_{GS} \) formulas valid on all trees. Then obviously, the question whether a given \(DML \) formulas \(\varphi \) is valid on all trees, boils down to the question whether its standard translation \(\varphi^* \) is a theorem of \(\text{Th}_{GS}(\text{TREES}) \). But by [14] the latter question is decidable.

Theorem 5.3 Given a \(DML \) formula \(\varphi \), the question “Is \(\text{Th}_{DML}(\text{TREES}) \cup \{ \varphi \} \) satisfiable?” is decidable.

Several variations on the above, variations, moreover, that will still yield decidable theories, are quite natural and worth considering. They include, for example, the set of \(DML \) formulas valid on all trees of finite depth, or the \(DML \) formulas valid on all well-founded trees.

6 Completeness

Before presenting a complete calculus \(DML \) for the \(DML \)-language in §6.2, I will sketch a construction for a completeness proof involving the \(D \) operator; this construction is presented in more detail in Venema [29], and generalizes some constructions that may be found in Gabbay and Hodkinson [10]. Then, in §6.3, this construction will be used to prove \(DML \) complete; §6.3 also contains a finite axiomatization for the set \(\text{Th}_{DML}(\text{TREES}) \cup \{ \varphi \} \) of \(DML \) formulas valid on all trees.

6.1 How to use the \(D \) operator

Let me first present the logic governing the \(D \) operator:

Definition 6.1 Let \(\bar{D} \) abbreviate \(\neg D \). Besides the classical tautologies \(DL \) has the following axioms
(D1) $\Box(p \rightarrow q) \rightarrow (\Box p \rightarrow \Box q)$,
(D2) $p \rightarrow D\Box p$,
(D3) $D\Box p \rightarrow p \lor Dq$.

Its rules of inference are:

(MP) $\varphi \rightarrow \psi, \varphi \rightarrow \psi$,
(UG\Box) $\Box \varphi$,
(IR$_D$) $p \land \neg Dp \rightarrow \varphi \rightarrow \varphi$, provided p does not occur in φ.

Let $\mathcal{O} = \{ D \} \cup \{ \Diamond_1, \Diamond_2, \ldots, \Diamond_i, \Diamond_{i+1}, \ldots \}$ be a collection of unary modal operators. I will write \square_i for the dual $\neg \Diamond_i$ of \Diamond_i, and I suppose that for every $\Diamond \in \mathcal{O}$ we have its converse \Diamond^* available in \mathcal{O} (the converse of D is D itself). For the time being I assume the language does not contain any operators like $d_0, r_0, $ or fix.

Let Λ be a logic which contains the axioms of DL plus $\square_i(\varphi \rightarrow \psi) \rightarrow (\square_i \varphi \rightarrow \square_i \psi)$, $\varphi \rightarrow \square_i \Diamond_i \varphi$, $\varphi \rightarrow \square_i \Diamond_i \varphi$, and $\Diamond_i \varphi \rightarrow \varphi \lor D \varphi$, for every $\Diamond_i \in \mathcal{O}$, and which has MP, UG$\Box_i$, IR$_D$, and SUB as its rules of inference.

Definition 6.2 Let Λ be a logic as specified above. A theory Δ is Λ-consistent if $\Delta \not\vdash \bot$.

Let Φ be a collection of proposition letters. A theory Δ is called a Φ-theory if all proposition letters occurring in formulas in Δ are elements of Φ. Δ is called a complete Φ-theory if $\varphi \in \Delta$ or $\neg \varphi \in \Delta$, for all formulas built up using proposition letters in Φ.

Δ is a distinguishing Φ-theory if (i) for some proposition letter p, $p \land \neg Dp \in \Delta$, and (ii) whenever $\Diamond_1(\varphi_1 \land \Diamond_2(\varphi_2 \land \ldots \land \Diamond_m \varphi_m) \ldots) \in \Delta$, then for some proposition letter p, $\Diamond_1(\varphi_1 \land \Diamond_2(\varphi_2 \land \ldots \land \Diamond_m \varphi_m \land p \land \neg Dp) \ldots) \in \Delta$.

Lemma 6.3 Let Σ be a consistent theory in Λ, and let p be a proposition letter not occurring in any formula in Σ. Suppose $\varphi_1 \land \Diamond_1(\varphi_2 \land \Diamond_2(\ldots \land \Diamond_m \varphi_m) \ldots) \in \Sigma$. Then the union of Σ and $\{ \varphi_1 \land \Diamond_1(\varphi_2 \land \Diamond_2(\ldots \land \Diamond_m \varphi_m \land p \land \neg Dp) \ldots) \}$ is consistent.

Proof. Cf. [10, Corollary 2.2.3].

Lemma 6.4 (Extension Lemma) Let Σ be a Λ-consistent Φ-theory. Let $\Phi' \supseteq \Phi$ be an extension of Φ by a countably infinite set of proposition letters. Then there is a complete, Λ-consistent, distinguishing Φ'-theory Δ containing Σ.

Proof. This is similar to the proof of [10, Theorem 2.3.1] or [29, Lemma 4.6]. Nevertheless, it is short enough to be included here.

Define $\Delta = \bigcup_{n \in \omega} \Delta_n$, where each Δ_n is a consistent Φ'-theory, satisfying $|\Delta_n \setminus \Delta_1| < \omega$, for all n. To define these Δ_ns, let $p \in \Phi' \setminus \Phi$. Then, by 6.3, $\Sigma \cup \{ p \land \neg Dp \}$ is Λ-consistent. Set $\Delta_1 = \Sigma \cup \{ p \land \neg Dp \}$.
Let \(\varphi_2, \varphi_3, \ldots \) be an enumeration of all \(\Phi' \)-formulas, and suppose that \(\Delta_n \) has been defined and has the properties cited. Define \(\Delta_{n+1} = \Delta_n \cup E_n \), where

\[
(*) \quad E_n = \{ \neg \varphi_n \}, \text{ if } \Delta_n \cup \{ \varphi_n \} \text{ is not } \Lambda\text{-consistent},
\]

\[
(**) \quad E_n = \{ \varphi_n \}, \text{ if } \Delta_n \cup \{ \varphi_n \} \text{ is } \Lambda\text{-consistent, and } \varphi \text{ is not of the form } \Box_1(\psi_1 \land \\
\Box(\psi_2 \land \ldots \land \Box_m \psi_m) \ldots),
\]

\[
(***) \quad \text{if } \varphi_n \text{ does have this form, then, since } |\Delta_n \setminus \Delta_1| < \omega, \text{ there are proposition letters } p_1, \ldots, p_m \in \Phi \setminus \Phi \text{ that do not occur in } \Delta_n. \text{ Set}
\]

\[
E_n = \{ \varphi_n, \Box_1(\psi_1 \land p_1 \land \neg \Box p_1 \land \Box_2(\ldots \land \Box_m (\psi_m \land p_m \land \neg \Box p_m)) \ldots) \}.
\]

It is obvious that \(\Delta_{n+1} \) is \(\Lambda \)-consistent if it has been defined according to (*) or (**). But, by repeated applications of 6.3 it is also consistent when defined according to (**). I leave it to the reader to check that \(\Delta \) is complete, \(\Lambda \)-consistent and distinguishing. \(\blacksquare \)

Definition 6.5 Let \(\Phi \) be a countably infinite set of proposition letters. Let \(W_e \) be the set of all complete, \(\Lambda \)-consistent, distinguishing \(\Phi \)-theories. On \(W_e \) we define relations \(R_{cO} \), for \(\Diamond \in \mathcal{O} \), by putting \(\Delta_1 R_{cO} \Delta_2 \) iff for all \(\Phi \)-formulas \(\varphi \), if \(\Box \varphi \in \Delta_1 \), then \(\varphi \in \Delta_2 \) (or equivalently: if \(\varphi \in \Delta_2 \) then \(\Diamond \varphi \in \Delta_1 \), or equivalently: if \(\Box \varphi \in \Delta_2 \) then \(\varphi \in \Delta_1 \)).

I use \(R_{cD} \) to denote the relation defined using the \(D \) operator.

Lemma 6.6 (Successor Lemma) Let \(\Delta_1 \in W_e \). Assume \(\Box_i \varphi \in \Delta_1 \). Then there is a \(\Delta_2 \in W_e \) with \(\Delta_1 R_{cD} \Delta_2 \) and \(\varphi \in \Delta_2 \).

Proof. Cf. [10, Proposition 2.3.2] or [29, Lemma 4.7]. \(\blacksquare \)

I now turn to defining a model in which the interpretation of the \(D \) operator is real inequality.

Define \(\Delta \sim_D \Delta_2 \) if \(\Delta_1 = \Delta_2 \) or \(\Delta_1 R_{cD} \Delta_2 \). By [25, Theorem 3.2] or [29, Lemma 4.9] \(\sim_D \) is an equivalence relation. A subset of \(W_e \) is called connected if it is a \(\sim_D \)-equivalence class. By an easy argument one can show that \(R_{cD} \) is real inequality when restricted to a connected subset of \(W_e \) (cf. [25, Theorem 3.2] or [29, Lemma 4.11]). Also, since \(\Lambda \) contains the axioms \(\Diamond_i \varphi \to \varphi \lor D \varphi \), any connected subset of \(W_e \) must be closed under \(R_{cO} \).

Definition 6.7 A \(d \)-canonical frame for \(\Lambda \) is a tuple \(\mathfrak{F}_d = (W_d, \{ R_{dO} : \Diamond \in \mathcal{O} \}) \), where \(W_d \) is a connected subset of \(W_e \), and \(R_{dO} = R_{cO} \upharpoonright (W_d \times W_d) \).

A \(d \)-canonical model for \(\Lambda \) is a tuple \(\mathfrak{M}_d = (\mathfrak{F}_d, V_d) \), where \(\mathfrak{F}_d \) is \(d \)-canonical frame, and \(V_d \) is given by \(\Delta \in V_d(p) \) iff \(p \in \Delta \).
Lemma 6.8 (Truth Lemma) For all formulas \(\varphi \) in the language containing the modal operators in \(\mathcal{C} \), and all \(\Delta \in \mathbb{M}_d \), we have \(\mathbb{M}_d, \Delta \models \varphi \) iff \(\varphi \in \Delta \).

Proof. I argue by induction on \(\varphi \), and only treat the case \(\varphi \equiv \lozenge \psi \). If \(\mathbb{M}_d, \Delta_1 \models \lozenge \psi \), then there is a \(\Delta_2 \in W_d \) with \(\Delta_1 R_d \circ \Delta_2 \) and \(\mathbb{M}_d, \Delta_2 \models \psi \). By the induction hypothesis \(\psi \in \Delta_2 \). Since \(\Delta_1 R_d \circ \Delta_2 \) this implies \(\lozenge \psi \in \Delta_1 \).

Conversely, by the Successor Lemma and the remarks preceding Definition 6.7 \(\lozenge \psi \in \Delta_1 \) implies that for some \(\Delta_2 \in W_d \), \(\Delta_1 R_d \circ \Delta_2 \) and \(\psi \in \Delta_2 \). By the induction hypothesis this gives \(\mathbb{M}_d, \Delta_1 \models \psi \), and hence \(\mathbb{M}_d, \Delta_1 \models \lozenge \psi \). \(\dashv \)

6.2 Axioms

We may as well start with a definition:

Definition 6.9 Let \(\langle \alpha \rangle \varphi \) abbreviate \(\text{do}(\alpha; \varphi) \), let \([\alpha] \varphi \equiv \neg(\alpha) \neg \varphi \), and let \((\exists) \varphi \) be short for \(\langle \exp(T) \rangle \varphi \). Besides enough classical tautologies, and the axioms of \(DL \) (taken as axioms over \(DML(\Phi) \)) the system \(DML \) has the following axioms:

\[
\begin{align*}
(D4) & \quad Dp \leftrightarrow \text{do}(\neg \delta; p), \\
(A1) & \quad [\alpha](p \rightarrow q) \rightarrow ([\alpha]p \rightarrow [\alpha]q), \\
(A2) & \quad \langle \alpha \rangle p \rightarrow p \lor Dp, \\
(A3) & \quad \langle \exists \rangle \langle \exists \rangle p \rightarrow \langle \exists \rangle p, \\
(A4) & \quad p \rightarrow \langle \exists \rangle p, \\
(A5) & \quad \text{do}(\exp(p)) \leftrightarrow \langle \exists \rangle p, \\
(A6) & \quad \text{do}(\text{con}(\varphi)) \leftrightarrow \langle \exists \rangle p, \\
(A7) & \quad \text{ra}(\exp(p)) \leftrightarrow p, \\
(A8) & \quad \text{ra}(\text{con}(p)) \leftrightarrow \neg p, \\
(A9) & \quad \text{fix}(\exp(p)) \leftrightarrow p, \\
(A10) & \quad \text{fix}(\text{con}(p)) \leftrightarrow \neg p, \\
(A11) & \quad \langle \alpha \cap \beta \rangle p \rightarrow \langle \alpha \rangle p \land \langle \beta \rangle p, \\
(A12) & \quad E(p \land \neg Dp) \rightarrow ((\langle \alpha \rangle p \land (\beta) p) \rightarrow (\alpha \cap \beta) p), \\
(A13) & \quad \text{do}(\alpha \cap \beta) \neg ((\langle \alpha \cap \beta \rangle \neg T), \\
(A14) & \quad \text{ra}(\alpha \cap \beta) \neg ((\alpha \cap \beta) \neg T, \\
(A15) & \quad p \land \neg Dp \rightarrow (\text{fix}(\alpha \cap \beta) \leftrightarrow (\alpha \cap \beta) p), \\
(A16) & \quad (\langle \alpha \rangle \beta) p \leftrightarrow (\alpha) (\beta) p, \\
(A17) & \quad \text{do}(\alpha; \beta) \leftrightarrow (\alpha) (\beta) T, \\
(A18) & \quad \text{ra}(\alpha; \beta) \leftrightarrow (\beta) (\alpha) T, \\
(A19) & \quad p \land \neg Dp \rightarrow (\text{fix}(\alpha; \beta) \leftrightarrow (\beta) p).
\end{align*}
\]
(A20) \(\mathbb{E}(p \land \neg \mathbb{D}p) \rightarrow ((\alpha)p \leftrightarrow \neg(\alpha)p) \),
(A21) \(\text{do}(\neg \alpha) \leftrightarrow (\neg \alpha)T \),
(A22) \(\text{ra}(\neg \alpha) \leftrightarrow ((\neg \alpha)^\exists)T \),
(A23) \(p \land \neg \mathbb{D}p \rightarrow (\text{fix}(\neg \alpha) \leftrightarrow (\neg \alpha)p) \),
(A24) \(p \rightarrow [\alpha](\alpha^\exists)p \),
(A25) \(p \rightarrow [\alpha^\exists](\alpha)p \),
(A26) \(\text{do}(\alpha^\exists) \leftrightarrow (\alpha^\exists)T \),
(A27) \(\text{ra}(\alpha^\exists) \leftrightarrow (\alpha)T \),
(A28) \(p \land \neg \mathbb{D}p \rightarrow (\text{fix}(\alpha^\exists) \leftrightarrow (\alpha)p) \),
(A29) \((p?\overline{g}) \leftrightarrow (p \land q) \),
(A30) \(\text{do}(p?) \leftrightarrow p \),
(A31) \(\text{ra}(p?) \leftrightarrow p \),
(A32) \(\text{fix}(p?) \leftrightarrow p \).

Besides those of DL, the rules of inference of DML are:

\[(\text{UG}_\alpha) \quad \varphi / [\alpha] \varphi, \text{ for } \alpha \in \text{Proc}(\Phi).\]

Remark 6.10 Obviously there are various redundancies and dependencies in the above list of axioms. For instance, as pointed out earlier, the modes ra and fix are definable via \(\text{ra}(\alpha) \leftrightarrow \text{do}(\alpha^\exists) \) and \(\text{fix}(\alpha) \leftrightarrow \text{do}(\alpha \land \delta) \). Hence, all axioms involving ra and fix can be left out when these axioms are added. But I am not after the most economic set of axioms here.

Note by the way how the above list is organized. Apart from some initial bookkeeping axioms and axioms ensuring that the canonical structure will be transitive and reflexive, there are, for every relational connective \(\bullet \), one or two axioms to make sure that the interpretation of \(\bullet \) in the canonical model is the intended one, plus three more axioms to make the Truth Lemma work for \(\bullet \).

Definition 6.11 The system \(\text{DML}_T \) is defined as the extension of \(\text{DML} \) with the following axioms. Let \((\subseteq)\varphi \) abbreviate \(\text{do}(\exp(T) \cap \neg \delta; \varphi?) \), and let \([\subseteq] \) be the dual of \((\subseteq) \). (And similarly for \((\in) \) and \([\in] \).)

\[(T1) \quad p \land \neg \mathbb{D}p \rightarrow [\subseteq][\in]p,\]
\[(T2) \quad (\in)(p \land \neg \mathbb{D}p) \rightarrow [\subseteq]((\subseteq)p \lor p \lor (\subseteq)p).\]

Axiom T1 will make sure that in the canonical model the relation \(\subseteq \) is asymmetric, while axiom T2 will guarantee that sets of predecessors in the canonical model are linearly ordered by \(\subseteq \).
6.3 Theorems

Theorem 6.12 The system DML is sound and complete with respect to its standard models.

Proof. Proving soundness is left to the reader. To prove completeness, define O to be the union of $\{D, \langle\varnothing\rangle, \langle\top\rangle\}$ and $\{(\alpha) : \alpha \in \text{Proc}(\Phi')\}$, where $\langle\varnothing\rangle$ and $\langle\top\rangle$ abbreviate $\text{do}(\exp(T); \cdot)$ and $\text{do}(\text{con}(\bot); \cdot)$, and repeat the construction of §6.1.

Define $\mathfrak{M} = (W, \subseteq, [\cdot], V)$, where W, V are as in 6.7, \subseteq denotes $R_0(\bot)$, and for $\alpha \in \text{Proc}(\Phi')$, $[\cdot] = R_0(\alpha)$. Then, by axioms A3 and A4 \subseteq is both transitive and reflexive.

First I check that \mathfrak{M} is a standard model. Checking that \mathfrak{M} is standard as far as \exp and con is concerned, is left to the reader (use A5–A10).

A useful thing to note for dealing with the relational operators of DML is that, by 6.4 for any $\Delta \in \mathfrak{M}$ there is a (unique) proposition letter p_Δ such that $p_\Delta \land \neg Dp_\Delta \in \Delta$. Let’s first consider $[\alpha \land \beta]$. By A11 $[\alpha \land \beta] \subseteq [\alpha] \cap [\beta]$. To prove the converse, assume $(\Delta_1, \Delta_2) \in [\alpha] \cap [\beta]$. Let p be a proposition letter such that $p \land \neg Dp \in \Delta_2$. Then $E(p \land \neg Dp), (\alpha)p, (\beta)p \in \Delta_1$. Hence, by A12, $(\alpha \land \beta)p \in \Delta_1$. But this is possible only if $(\Delta_1, \Delta_2) \in [\alpha \land \beta]$, as required.

It is easily verified that $[\alpha; \beta] = [\alpha]; [\beta]$, by using A16. To prove that $[-\alpha] = -[\alpha]$ argue as follows. Assume that $(\Delta_1, \Delta_2) \in [-\alpha]$. Let p be a proposition letter such that $p \land \neg Dp \in \Delta_2$. Then $E(p \land \neg Dp), (\neg \alpha)p \in \Delta_1$. Ergo, $-(\alpha)p \in \Delta_1$, by A20. Hence $(\Delta_1, \Delta_2) \not\in [\alpha]$. This establishes $[-\alpha] \subseteq -[\alpha]$. The converse inclusion may be established in a similar way.

I leave it to the reader to use A24 and A25 to verify that $(\cdot)^*$ does indeed act as the converse operator. The final case we have to check, $[\varphi?]$, is easy: simply use A31.

We are now in a position to prove a Truth Lemma: for all formulas $\varphi \in \text{DML}(\Phi')$, and all $\Delta \in \mathfrak{M}$, we have $\mathfrak{M}, \Delta \models \varphi$ if $\varphi \in \Delta$. Of course the proof is by induction on φ, and the only interesting cases are $\mathfrak{D} \varphi$ (but this case is covered by the construction in §6.1), and $\mathfrak{x}(\exp(\varphi), \mathfrak{x}(\text{con}(\varphi)), \mathfrak{x}(\alpha \land \beta), \mathfrak{x}(\alpha; \beta), \mathfrak{x}(\neg \alpha), \mathfrak{x}(\neg \alpha'))$, where $\mathfrak{x} \in \{\text{do, ra, fix}\}$.

Here we go: the cases $\mathfrak{x}(\exp(\varphi))$ and $\mathfrak{x}(\text{con}(\varphi))$ (for $\mathfrak{x} \in \{\text{do, ra, fix}\}$) can either be established by standard modal arguments, or are immediate from axioms A5–A10.

By A13 $\text{do}(\alpha \land \beta) \in \Delta$ iff $(\alpha \land \beta)T \in \Delta$. By the Extension Lemma and the definition of $[\cdot]$ this is equivalent to $\exists \Delta_1((\Delta, \Delta_1) \in [\alpha \land \beta])$, which is the case iff $\mathfrak{M}, \Delta \models \text{do}(\alpha \land \beta)$.

Next, by a similar argument, using A14 plus the fact that \mathfrak{M} is standard, we have that $\text{ra}(\alpha \land \beta) \in \Delta$ iff $\mathfrak{M}, \Delta \models \text{ra}(\alpha \land \beta)$. Furthermore, let p be a proposition letter such that $p \land \neg Dp \in \Delta$; then $\text{fix}(\alpha \land \beta) \in \Delta$ iff $(\alpha \land \beta)p \in \Delta$ (by A15) iff $(\Delta, \Delta) \in [\alpha \land \beta]$ iff $\mathfrak{M}, \Delta \models \text{fix}(\alpha \land \beta)$.

The next procedure operator to consider is ;. But this one may be treated completely analogous to ∩, using A17–A19. We move on to ‘−’. By A21 we have do(−α) ∈ Δ iff (−α)T ∈ Δ iff for some Δ₁, (Δ, Δ₁) ∈ [−α] (by the Extension Lemma and the definition of []) iff M, Δ ⊨ do(−α). The case ra(−α) is entirely analogous and uses A22, while the case fix(−α) is similar to the earlier ‘fix-cases’ (use A23). A similar line of reasoning (using A26–A28) establishes all cases for the converse operator (· · ·) , so I’ll skip that one, leaving only procedures of the form ϕ? to consider. But here one may use the induction hypothesis together with axioms A30–A32.

Of course, from the Truth Lemma the completeness of DML follows by a standard argument. ⊢

Theorem 6.13 ThDM(L(TREES), the set of DML formulas valid on all trees, is axiomatized by DMLT.

Proof. Obviously, if ⊩DM(L(TREES) then ϕ then ϕ ∈ ThDM(L(TREES). To prove the converse, assume ϕ /∈ThDM(L(TREES). Repeat the construction used in the proof of 6.12, and let M = (W, ⊑, [] , V) be a d-canonical structure such that for some Δ ∈ M, ϕ /∈ Δ. All we have to do is complete the proof of the theorem, is show that (W, ⊑) is a tree.

First, ⊑ is obviously transitive, and it is asymmetric by axiom T1. To see that the predecessors are linearly ordered by ⊑, use T2: let Δ₁, Δ₂ ⊑ Δ. By construction there is a proposition letter p such that p ∧ ¬Dp ∈ Δ₁. By T2 this yields p ∨ p ∨ p ∈ Δ₂, implying that either Δ₂ ⊑ Δ₁, Δ₂ = Δ₁ or Δ₁ ⊑ Δ₂, as required. ⊢

7 Which algebras?

In this section I will define modal algebras appropriate for the DML-language. I will need one or two preliminary definitions. First, a Boolean module is a structure M = (B, M, o), where B is a Boolean algebra, M is a relation algebra and o is a mapping M × B → B such that

M1 o(r, a + b) = o(r, a) + o(r, b),
M2 o(r + s, a) = o(r, a) + o(s, a),
M3 o(r, o(s, a)) = o((r; s), a),
M4 o(δ, a) = a,
M5 o(0, a) = 0,
M6 o(r", o(r, a')) ≤ a'.

Just as Boolean algebras formalize reasoning about sets, and relation algebras formalize reasoning about relations, Boolean modules formalizes reasoning about sets interacting with relations through o. In the full Boolean module M(U) = (B(U), M(U), o) over a set
$U \neq \emptyset$ the operation \circ is defined by

$$\circ(R, A) = (R)A = \{ x : \exists y ((x, y) \in R \land y \in A) \}.$$

(See Brink [4] for a formal definition of Boolean modules and some examples.)

Now, Boolean modules are almost, but not quite, the modal algebras of the DML-language. To obtain a perfect match, what we need in addition to the set forming operation or projection \circ, is an operation that forms new relations, i.e., a *mode*. This brings us to the notion of a Peirce algebra, which is a two-sorted algebra $\mathfrak{B} = (\mathfrak{B}, \mathfrak{A}, \circ, \cdot)$ with $(\mathfrak{B}, \mathfrak{A}, \circ)$ a Boolean module, and $(\cdot)^c : \mathfrak{B} \to \mathfrak{A}$ a mapping, called (left) cylindrification, such that for every $a \in \mathfrak{B}$, $r \in \mathfrak{A}$ we have

- $\circ(a^c, 1) = a$, and
- $\circ(r, 1)^c = r; 1$.

In the full Peirce algebra $\mathfrak{F}(U)$ over a set $U \neq \emptyset$, $(\cdot)^c$ is defined as $A^c = \{ (x, y) : x \in A \}$. The algebraic apparatus of Peirce algebras has been used as an inference mechanism in terminological representation (cf. Brink and Schmidt [5]).

The precise connection between the DML-language and Peirce algebras is:

the modal algebras for the DML-language $DML(\Phi)$ are the Peirce algebras generated by a single relation R and the ‘propositions’ Φ.

To see this, it suffices to show that \circ and c are definable in the DML-language, and that $\text{do}, \text{ra}, \text{fix}$ and $\text{exp}, \text{con}, ?$ are definable in Peirce algebras generated by R and Φ:

$$\circ(\alpha, \varphi) = \{ x : \exists y ((x, y) \in [\alpha]_R \land y \models \varphi) \} = \text{do}(\alpha; \varphi),$$

$$\varphi^c = \{ (x, y) : \mathfrak{M}, x \models \varphi \} = \varphi; (\delta \cup -\delta),$$

and

$$\text{do}(\alpha) = \circ(\alpha, 1), \quad \text{exp}(\varphi) = R \cap \varphi^c, \quad \text{ra}(\alpha) = \circ(\alpha^c, 1), \quad \text{con}(\varphi) = R^c \cap (-\varphi)^c, \quad \text{fix}(\alpha) = \circ(\alpha \cap \delta, 1), \quad \varphi? = \delta \cap \varphi^c.$$

Given Theorem 6.12, the connection between DML and Peirce algebras established here may be interpreted as saying that (the obvious algebraic counterpart of) DML completely axiomatizes the identities valid in all representable Peirce algebras over a single relation R.

Of course, as DML is closely related to propositional dynamic logic PDL (cf. §2), its modal algebras for DML are closely related to the dynamic algebras $\mathcal{D} = (\mathfrak{B}, \mathfrak{A}, \circ)$ of Kozen [20], Pratt [23]. These too are structures that serve to interpret a two-sorted language: propositions are represented in a Boolean algebra \mathfrak{B} as in our case, but relations
(or programs) are represented in a Kleenean algebra $\mathcal{K} = (K, \cup, ;, 0^*)$, where * is the Kleene star. However Kleenean algebras need not be Boolean ones, and in most definitions they don’t include a converse operation \cdot. Like Boolean modules dynamic algebras have a projection $\diamond : \mathcal{K} \times \mathcal{B} \to \mathcal{B}$; but in most definitions they are not equipped with any modes.

8 What’s next?

Here are some afterthoughts and suggestions for further work.

As I mentioned in §§2, 7, there is a close connection between the DML-language and dynamic algebras/logic, with an obvious difference being the absence of the Kleene star * in the DML-language. Adding the * to the DML-language seems a natural move, but as a corollary to a result of Gargov’s (cf. [21]) this will bring up the undecidability to (at least) Σ^1_1.

Of course, another possible extension of the DML-language would be to have multiple ‘base’ relations in the procedural component. This would bring the system closer to the ‘general’ Peircean algebras of §7 based on multiple relations, and it would also allow us to analyze the interaction between expansions and contractions ‘performed’ by different agents, and it might even be of some use in modeling the exchange of information.

And finally, as pointed out in §3, for some application it may be necessary to be more precise about the structure of the states in DML-models, rather than treating them as some kind of ‘black boxes’. Using a result by Finger and Gabbay [8], if we have a complete ‘local’ logic governing what happens inside these boxes, this local system can be amalgamated with the DML-language as a global system on top of it—while preserving such properties as completeness. In a similar fashion it may be useful to add (more) structure to the transitions or changes as well. One can think of formalisms involving intricate plans or processes here as an area where this could be of use. Although at this stage I have no clear idea on how this should be implemented, I do think that interesting applications and technical questions will arise from implementations of this idea, and that results similar to the Finger and Gabbay result should be aimed for.

Acknowledgments

I would like to thank Johan van Benthem; some questions of his were the main incentive to writing this paper. A special thanks to Edith Spaan; as always discussions with her on matters of complexity and (un-) decidability were very inspiring. Thanks also to Valentin Shehtman for showing me the “easy way out” in §5.2. Remarks by Dimiter Vakarelov and Frank Veltman provided the finishing touch.
References

32. Finite State Morphology: A Review of Koskenniemi (1983) Gerald Gazdar ($1.50)
33. The Role of Logic in Artificial Intelligence Robert C. Moore ($2.00)
34. Applicability of Indexed Grammars to Natural Languages Gerald Gazdar ($2.00)
36. Limits of Correctness in Computers Brian Cantwell Smith ($2.50)
38. The Coherence of Incoherent Discourse Jerry R. Hobbs and Michael H. Agar ($2.50)
40. A Complete, Type-free “Second-order” Logic and Its Philosophical Foundations Christopher Menzel ($4.50)
41. Possible-world Semantics for Autoepistemic Logic Robert C. Moore ($2.00)
42. Deduction with Many-Sorted Rewrite Joseph Meseguer and Joseph A. Goguen ($1.50)
43. On Some Formal Properties of Meta-rules Hans Uszkoreit and Stanley Peters ($1.50)
44. Language, Mind, and Information John Perry ($2.00)
46. Constraints on Order Hans Uszkoreit ($3.00)
47. Linear Precedence in Discontinuous Constituents: Complex Fronting in German Hans Uszkoreit ($2.50)
48. A Compilation of Papers on Unification-Based Grammar Formalisms, Parts I and II Stuart M. Shieber, Fernando C.N. Pereira, Lauri Karttunen, and Martin Kay ($10.00)
51. Noun-Phrase Interpretation Mats Rooth ($2.00)
52. Noun Phrases, Generalized Quantifiers and Anaphora Jon Barwise ($2.50)
53. Circumstantial Attitudes and Benevolent Cognition John Perry ($1.50)
54. A Study in the Foundations of Programming Methodology: Specifications, Institutions, Charters and Parchments Joseph A. Goguen and R. M. Burstall ($2.50)
56. Intentionality, Information, and Matter Ivan Blair ($3.50)
58. Computer Aids for Comparative Dictionaries Mark Johnson ($2.00)
62. A Sheaf-Theoretic Model of Concurrency Luis F. Monteiro and Fernando C. N. Pereira ($3.00)
63. Tarski on Truth and Logical Consequence John Etchemendy ($3.50)
66. Categorial Unification Grammars Hans Uszkoreit ($2.50)
67. Generalized Quantifiers and Plurals Godfried Link ($2.00)
68. Radical Lexicalism Lauri Karttunen ($2.50)
69. What is Intention? Michael E. Bratman ($2.00)
71. The Correspondence Continuum Brian Cantwell Smith ($4.00)
72. The Role of Propositional Objects of Belief in Action David J. Israel ($2.50)
74. Two Replies Jon Barwise ($3.00)
75. Semantics of Clocks Brian Cantwell Smith ($2.50)
77. The Parts of Perception Alexander Pentland ($4.00)
80. The Situated Processing of Situated Language Susan Stucky ($1.50)
81. Muir: A Tool for Language Design Terry Winograd ($2.50)
82. Final Algebras, Cosemimcomputable Algebras, and Degrees of Unsolvability Lawrence S. Moss, José Meseguer, and Joseph A. Goguen ($3.00)
85. An Architecture for Intelligent Reactive Systems Leslie Pack Kaelbling ($2.00)
87. Modular Algebraic Specification of Some Basic Geometrical Constructions Joseph A. Goguen ($2.50)
88. Persistence, Intention and Commitment Phil Cohen and Hector Levesque ($2.50)
89. Rational Interaction as the Basis for Communication Phil Cohen and Hector Levesque ($4.00)
91. Models and Equality for Logical Programming Joseph A. Goguen and José Meseguer ($3.00)
92. Order-Sorted Algebra Solves the Constructor-Selector, Multiple Representation and Coercion Problems Joseph A. Goguen and José Meseguer ($2.00)
93. Extensions and Foundations for Object-Oriented Programming Joseph A. Goguen and José Meseguer ($3.50)
95. Change, Process and Events Carol E. Cleland ($4.00)
96. One, None, a Hundred Thousand Specification Languages Joseph A. Goguen ($2.00)
97. Constituent Coordination in HPSG Derek Proudnik and David Godette ($1.00)
98. A Language/Action Perspective on the Design of Cooperative Work Terry Winograd ($2.50)
99. Implicature and Definite Reference Jerry R. Hobbs ($1.50)
101. Situation Semantics and Semantic Interpretation in Constraint-based Grammars Per-Kristian Halvorsen ($1.50)
102. Category Structures Gerald Gazdar, Geoffrey K. Pullum, Robert Carpenter, Euan Klein, Thomas E. Hakari, Robert D. Levine ($8.00)
103. Cognitive Theories of Emotion Ronald Alan Nash ($2.50)
104. Toward an Architecture for Resource-bounded Agents Martha E. Pollack, David J. Israel, and Michael E. Bratman ($2.00)
105. On the Relation Between Default and Autoepistemic Logic Kurt Konolige ($3.00)
106. Three Responses to Situation Theory Terry Winograd ($2.50)
107. Subjects and Complements in HPSG Robert Borsley ($2.50)
108. Tools for Morphological Analysis Mary Dalrymple, Ronald M. Kaplan, Lauri Karttunen, Kimmo Koskenniemi, Sami Shao, Michael Wescott ($10.00)
111. Fourth Year Report of the Situated Language Research Program (free)
113. Events and "Logical Form" Stephen Neale ($2.00)
114. Backwards Anaphora and Discourse Structure: Some Considerations Peter Selk ($2.50)
115. Toward a Linking Theory of Relation Changing Rules in LFG Lori Levin ($4.00)
116. Fuzzy Logic L. A. Zadeh ($2.50)
117. Dispositional Logic and Commonsense Reasoning L. A. Zadeh ($2.00)
118. Intention and Personal Policies Michael Bratman ($2.00)
120. Unification and Agreement Michael Barlow ($2.50)
121. Extended Categorial Grammar Susan Yoo and Kiyoung Lee ($4.00)
123. Unaccusative Verbs in Dutch and the Syntax-Semantics Interface Annie Zeeuwen ($8.00)
125. Types and Tokens in Linguistics Sylvain Bromberger ($3.00)
126. Determination, Uniformity, and Relevance: Normative Criteria for Generalization and Reasoning by Analogy Todd Davies ($4.50)
127. Modal Subordination and Pronominal Anaphora in Discourse Craig Roberts ($4.50)
128. The Prince and the Phone Booth: Reporting Puzzling Beliefs Mark Crimmins and John Perry ($3.50)
129. Set Values for Unification-Based Grammar Formalisms and Logic Programming William Rounds ($4.00)
130. Fifth Year Report of the Situated Language Research Program (free)
131. Locative Inversion in Chichewa: A Case Study of Factorization in Grammar Joan Brennan and John M. Kenner ($3.00)
132. An Information-Based Theory of Agreement Carl Pollard and Ivan A. Sag ($4.00)
133. Relating Models of Polymorphism José Meseguer ($4.50)
135. Psychology, Semantics, and Mental Events under Descriptions Peter Ludlow ($8.50)
136. Mathematical Proofs of Computer System Correctness Jon Barwise ($3.50)
137. The X-bar Theory of Phrase Structure Andrist Kornai and Geoffrey K. Pullum ($4.00)
138. Discourse Structure and Performance Efficiency in Interactive and Noninteractive Spoken Modalities Sharon L. Oviatt and Philip R. Cohen ($5.50)
139. The Contributing Influence of Speech and Interaction on Some Aspects of Human Discourse Sharon L. Oviatt and Philip R. Cohen ($5.50)
140. The Connectionist Construction of Concepts Adrian Cussins ($8.00)
141. Sixth Year Report (free)
142. Categorical Grammar Meets Unification Johan van Benchem ($4.50)
143. Point of View Edit Doron ($3.50)
144. Modal Logic as a Theory of Information Johan van Benchem ($8.50)
145. What is Information? David Israel and John Perry ($4.50)
146. Fodor and Psychological Explanations John Perry and David Israel ($4.50)
147. Decision Problems for Propositional Logic Patrick Lincoln, John Mitchell, André N. S. Hoare, and Natraj Shankar ($10.90)
149. Overloading Intentions for Efficient Practical Reasoning Martha E. Pollack ($5.50)
150. Introduction to the Project on People, Computers, and Design Terry Winograd ($5.50)
151. Ecological Psychology and Dewey's Theory of Perception Tom Burks ($3.50)
152. The Language/Action Approach to the Design of Computer-Support for Cooperative Work Finn Kensing and Terry Winograd ($5.50)
153. The Absorption Principle and E-Type Anaphora Joan Mark Gawron, John Nerbonne, and Stanley Peters ($6.00)
154. Ellipsis and Higher-Order Unification Mary A. D'Agostino, Stuart M. Skeeter, and Fernando C. N. Pereira ($5.50)
155. Sheaf Semantics for Concurrent Interacting Objects Joseph A. Goguen ($4.00)
156. Communication and Strategic Inference Prashant Parikh ($5.00)
157. Shared Cooperative Activity Michael E. Bratman ($5.50)
158. Practical Reasoning and Acceptance in a Context Michael E. Bratman ($5.50)
159. Planning and the Stability of Intention Michael E. Bratman ($9.50)
160. Logic and the Flow of Information Johan van Benchem ($5.00)
161. Learning HCI Design: Mentoring Project Groups in a Course on Human-Computer Interaction Brad Hartfield, Terry Winograd, and John Bennett ($5.95)
162. How to Read Winograd's & Flores's Understanding Computers and Cognition Hugh McGuire ($6.00)
163. In Support of a Semantic Account of Resultatives Adele E. Goldberg ($4.00)
164. Augmenting Informativeness and Learnability of Items in Large Computer Networks Clarisse S. de Souza ($4.00)
165. Computers, Ethics, and Social Responsibility Terry Winograd ($4.00)
166. A Semiotic Approach to User Interface Language Design Clarisse S. de Souza ($4.00)
167. 1991 Annual Report (free)
168. Romance is so complex Christopher Manning ($6.00)
169. Types, Tokens and Templates David M. Levy and Kenneth R. Olson ($5.00)
170. A System of Dynamic Modal Logic Maarten de Rijke ($4.00)
171. Situation Theory and the Design of Interactive Information Systems Keith Devlin ($4.00)
172. Logic as Programming Johan van Benchem ($8.00)

Books Distributed by CSLI

The Proceedings of the Third West Coast Conference on Formal Linguistics (WCCFL 3) ($10.95)
The Proceedings of the Fourth West Coast Conference on Formal Linguistics (WCCFL 4) ($11.95)
The Proceedings of the Fifth West Coast Conference on Formal Linguistics (WCCFL 5) ($10.95)
The Proceedings of the Sixth West Coast Conference on Formal Linguistics (WCCFL 6) ($15.95)
Hausar You Da Kulim: Intermediate and Advanced Lessons in Hausa Language and Culture ($19.95)
Hausar You Da Kulim Workbook ($7.50)

Titles distributed by CSLI may be ordered directly from CSLI Publications, Ventura Hall, Stanford University, Stanford, California 94305-4115 or by phone (415)723-1712, (415)723-1839. Orders can also be placed by e-mail (pubs@csli.stanford.edu) or FAX (415)723-0758.

All orders must be prepaid by check or Visa or MasterCard (include card name, number, and expiration date). California residents add 8.25% sales tax. For shipping and handling, add $2.50 for first book and $0.75 for each additional book; $1.75 for first report and $0.25 for each additional report.
For overseas shipping, add $4.50 for first book and $2.25 for each additional book; $2.25 for first report and $0.75 for each additional report. All payments must be made in U.S. currency.

Lecture Notes Series

The titles in this series are distributed by the University of Chicago Press and may be purchased in academic or university bookstores or ordered directly from the distributor at 11030 South Langley Avenue, Chicago, Illinois 60628 or by phone 1-800-621-2736, (312)568-1550. For overseas orders, see information below.

1. A Manual of Intensional Logic Johan van Bentham, second edition, revised and expanded
2. Emotion and Focus Helen Fay Nissenbaum
3. Lectures on Contemporary Syntactic Theories Peter Sells
4. An Introduction to Unification-Based Approaches to Grammar Stuart M. Shieber
5. The Semantics of Destructive Lisp Ian A. Mason
6. An Essay on Facts Ken Olson
7. Logics of Time and Computation Robert Goldblatt, second edition, revised and expanded
8. Word Order and Constituent Structure in German Hans Uszkoreit
10. Prolog and Natural-Language Analysis Fernando C. N. Pereira and Stuart M. Shieber
12. Natural Language Processing in the 1980s: A Bibliography Gerald Gazdar, Alex Franz, Karen Osborne, and Roger Evans
13. Information-Based Syntax and Semantics Carl Pollard and Ivan Sag
14. Non-Well-Founded Sets Peter Aczel
15. Partiality, Truth and Persistence Tore Langholm
16. Attribute-Value Logic and the Theory of Grammar Mark Johnson
17. The Situation in Logic Jon Barwise
18. The Linguistics of Punctuation Geoff Nunberg
19. Anaphora and Quantification in Situation Semantics Jean Mark Gawron and Stanley Peters
20. Propositional Attitudes: The Role of Content in Logic, Language, and Mind C. Anthony Anderson and Joseph Owens
21. Literature and Cognition Jerry R. Hobbs
22. Situation Theory and Its Applications, Vol. 1 Robin Cooper, Kuniko Mukai, and John Perry (Eds.)
23. The Language of First-Order Logic (including the Macintosh program, Tarski’s World) Jon Barwise and John Etchemendy, second edition, revised and expanded
24. Lexical Matters Ivan A. Sag and Anna Szabolcsi, editors
25. Tarski’s World Jon Barwise and John Etchemendy
27. Literate Programming Donald E. Knuth
29. Lectures on Linear Logic A. S. Troelstra
30. A Short Introduction to Modal Logic Grigorii Mints

Other Books from CSLI

Agreement in Natural Language: Approaches, Theories, Descriptions Michael Barlow and Charles A. Ferguson (Eds.)
Papers from the Second International Workshop on Japanese Syntax William J. Poser (Ed.)
The Proceedings of the Seventh West Coast Conference on Formal Linguistics (WCCFL 7)
The Proceedings of the Eighth West Coast Conference on Formal Linguistics (WCCFL 8)
The Phonology-Syntax Connection Sharon Inkelas and Draga Zec (Eds.) (co-published with The University of Chicago Press)
The Proceedings of the Ninth West Coast Conference on Formal Linguistics (WCCFL 9)
Japanese/Korean Linguistics Hajime Hoji (Ed.)
Experiencer Subjects in South Asian Languages Manindra K. Verma and K. P. Mohanan (Eds.)
Grammatical Relations: A Cross-Theoretical Perspective Kataryzna Dziwirck, Patrick Farrell, Errapel Mejias Bikandi (Eds.)
The Proceedings of the Tenth West Coast Conference on Formal Linguistics (WCCFL 10)