Machine Learning for Question Answering from Tabular Data

Mahboob Alam Khalid

Valentin Jijkoun

Maarten de Rijke

ISLA, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{mahboob,jijkoun,mdr} @science.uva.nl

Abstract

Question Answering (QA) systems automatically an-
swer natural language questions in a human-like manner.
One of the practical approaches to open domain QA con-
sists in extracting facts from free text offline and using a
lookup mechanism when answering user’s questions online.
This approach is related to natural language interfaces to
databases (NLIDBs) that were studied extensively from the
1970s to the 1990s. NLIDB systems employed a range of
techniques, from simple pattern-matching rules to formal
logical calculi such as the lambda calculus, but most were
restricted to specific domains. In this paper we describe a
machine learning approach to querying tabular data for QA
which is not restricted to specific domains. Our approach
consists of two steps: for an incoming question, we first use
a classifier to identify appropriate tables and columns in a
structured database, and then employ a free-text retrieval
to look up answers. The system uses part-of-speech tag-
ging, named-entity normalization and a statistical classifier
trained on data from the TREC QA task. With the TREC
QA data, our system is shown to significantly outperform
an existing rule-based table lookup method.

1 Introduction

Automatic Question Answering (QA) systems return
answers—not documents—in response to a user’s query.
One special type of QA systems extensively studied during
the 1970s—1990s comprised Natural Language Interfaces
to Databases (NLIDB), which used structured databases
(DBs) as the information source and aimed at hiding com-
plex database query languages from the user; see [5] for an
overview.

Since the late 1990s, and motivated by the TREC QA
track [20], the attention of the QA community has changed
to include access to open domain text collections (such as
newspapers). The canonical architecture of many open do-
main textual QA systems consists of a three-stage pipeline:
question analysis, document retrieval, and answer extrac-

tion [16]. There are several approaches to implementing
these stages. We focus on an offline approach [12, 9, 3],
where facts corresponding to commonly occurring question
types are extracted and stored in a databases for lookup
at question time. The main advantage of this approach is
that by moving the expensive text analysis and information
extraction stages offline (to the table creation phase), sys-
tems can achieve good run-time behavior even with a large
amount of information. In this paper we focus on the lookup
stage of this approach to QA. Our system uses a knowledge
base consisting of several tables. Answering a user’s ques-
tion consists in mapping the question to a knowledge base
query, executing the query, and presenting the results to the
user. Specifically, we map an incoming question to an SQL-
like query “select AF from T where sim(QF, Q),” where
T is the table that contains the answer candidate in field
AF and its other field QF has a high similarity with the
input question ().

Similarly to NLIDB systems, the main issue for our ap-
proach to QA is question analysis, i.e., the task of iden-
tifying for a given question which tables and fields in the
knowledge base should be searched and from which fields
answer candidates should be extracted. In our query for-
malism, the task consists in mapping an incoming ques-
tion @ to a tuple (T, QF, AF') (a table lookup label) and
defining and efficiently implementing the similarity func-
tion sim(QF, Q). We view the generation of table lookup
labels as a classification task and apply a standard ma-
chine learning approach to it. Furthermore, we imple-
ment sim(QF, Q) using keyword-based relevance func-
tions from Information Retrieval. In this paper we report on
experiments with the classification, with different retrieval
models and text normalization methods, including named
entity normalization.

Unlike NLIDB systems, in the context of open-domain
QA we have to deal with noisy data that has usually
been obtained automatically through information extraction
tools, from different sources, and that has some structure
(relational tables) with unknown semantics. For a real-
world open domain QA system it is important to integrate
as many information sources (tables and databases in our

case) as possible and to keep the information up-to-date, so
the ability to handle the data as a black box, without impos-
ing strict semantics, is crucial. Our main contribution is the
description of a system that addresses these issues.

The rest of the paper is structured as follows. Section 2
describes related work. Section 3 introduces our approach.
Sections 4 and Section 5 describe the two learning stages:
selecting the best retrieval method and training the query
generator. Section 6 presents an extrinsic evaluation on
TREC questions, and we conclude in Section 7.

2 Related work

Machine learning is used by many QA systems to extend
the standard pipeline architecture in different ways. E.g.,
[18] describes a QA system where passages identified by
an information retrieval engine are re-ranked by a machine
learning component trained of a corpus of questions and
answers to classify passages for “answerhood.” Machine
learning is also applied to question classification, often un-
derstood as identification of the expected answer type for a
question. E.g., [14] represents a question with syntactic and
semantic features and applies a supervised SVM classifier
to the question classification task; [13] presents a cascaded
classifier and describes a training corpus of 5,500 questions
manually annotated with expected answer types.

There has also been much research in defining the sim-
ilarity or relevance functions for short text segments (e.g.,
questions and answer sentences). E.g., [4] presents an in-
depth exploration of the TREC Novelty task [10], i.e., iden-
tifying relevant and novel sentences in a ranked list of rele-
vant documents. In [6], different query expansion methods
are compared; [17] uses WordNet to disambiguate between
different word senses in order to assign appropriate sense to
each query term for query expansion.

3 Our approach

Our QA system uses a set of databases as the source
of answers. For our experiments we use tables automati-
cally extracted from the TREC QA corpus [20] by the in-
formation extraction module of an open domain QA sys-
tem, QUARTZ [1]. There are 23 tables containing 8M rows
(403MB of text) in total. For example, the Roles(role,name)
table contains role of George Bush as United States presi-
dent, Birthdays(name, birthdate) contains 1962 as the birth-
date of Tom Cruise. Our system views the content of the
database as a black box and has no prior knowledge of the
semantics of the table and field names.

When a user posts a question, we first extract features
and apply a statistical classifier that assigns a table-lookup
label, i.e., atuple (T, QF, AF'). Then we translate the ques-
tion into a retrieval query which is run against an index that

question text
4> Feature Extractor

feature vector i

R query Classifier

Table-lookup label
<T,QF AF>

Answer II
candidates

Figure 1. QA from tabular data

Retrieval Engine

contains values of all fields of all rows in our database as
separate documents. We restrict the retrieval engine so that
it only considers values in the field QF of the table T pre-
dicted by the classifier. We take the top n field values re-
turned by the IR engine and return the values of the AF
fields from the corresponding rows of 7" as the top n answer
candidates. Figure 1 shows the architecture of our system.

Our architecture depends on two modules: the classi-
fier that predicts table lookup labels and the retrieval model
along with the text representation and the retrieval query
formulation. We use a corpus of questions with correct an-
swers available from TREC! to determine the best query
formulation and retrieval models, and to train a statistical
classifier. As to the former task, we apply several retrieval
models, text representations and query formulation methods
to the TREC questions and our database of facts. For each
candidate retrieval method M and each question ¢, we find
the most relevant field values in all rows of all tables. We
then check whether other fields of the rows contain the cor-
rect answer. If so, we consider the question ¢ as correctly
answered. We select the retrieval method that allows our
system to answer the largest number of questions.

At the second stage, we use the selected retrieval method
to generate training data for the classifier. For each ¢ we
have a ranked list of field values, each value is associated
with a table and a field (T" and QF’). For some field val-
ues, the answer can be found in field AF of the same ta-
ble T'. We select the top most label (T', QF, AF’) such that
the table 7" and the field QF were first encountered. In
other words, for each ¢ we find labels such that the query
“select AF from T where sim(Q, QF)” returns the correct
answer at the top rank. Questions for which such labels are
found form the training set for our question classifier.

The next two sections we describe the stages in detail.

4 Selecting the retrieval method

As described above, in order to select the best retrieval
method for our QA system, we use a collection of ques-

'http://trec.nist.gov/data/qga.html

synf{1. shrub, bush (a low woody planet)

synfi2. bush (a large wilderness area)

synf{3. scrub, bush

synfi4. public hair, bush, crotch hair

synfi5. George Walker Bush, (43rd Presidentof United States)
synfi6. George H.W. Bush, (41st President of United States)
synfi7. Vannevar Bush (United States electrical engineer)

Figure 2. WordNet synsets of nhoun "Bush”.

tions with known correct answers. For each IR method M,
we count the number of questions for which at least one of
the retrieval results at rank < k (k = 1,10, 100) is a field
value from a table row that contains the correct answer in
some other field. When selecting a retrieval method for our
QA system, we are faced with several choices: (1) how to
represent the text of documents, in our case, field values,
(2) how to formulate queries for the retrieval, and (3) which
text retrieval model to use. We consider two choices for the
retrieval model: a standard vector space model with TE.IDF
weighting (we use the implementation of [2]) and a statisti-
cal language model [11]. For the representation of queries
and documents, we consider standard stemming and named
entity normalization as possible choices.

Named entities like “U.S.” and “United States” are dif-
ficult for keyword-based retrieval systems because they are
semantically close, but have no common terms. To address
this problem, [15] proposed a query expansion technique.
They expanded short text segments by posting them against
a commercial search engine’s index and used the top 200
titles and snippets as expanded representation.

We apply a different approach to reducing the seman-
tic gap: we normalize named entities (NEs) to canonical
forms. We use WordNet synsets’ as canonical forms of
NEs. E.g., “U.S.” and “United States” belong to the same
WordNet synset and thus would become identical after nor-
malization. One problem with this approach is ambiguity:
a single string of characters can be used to refer to differ-
ent entities. In WordNet, some terms belong to multiple
synsets; e.g., “Bush” has seven synsets as a noun, three as a
proper noun and four as a common noun (Figure 2).

To address the ambiguity problem, we exclude synsets
that contain non-capitalized entries and apply a simple
heuristic to disambiguate between the remaining synsets,
whenever an ambiguity arises. If a named entity belongs
to multiple synsets, we pick the synset with the highest fre-
quency in a reference corpus,’ calculated as:

score(synset) =3, e cunser COUNE(NE;) (1)

If a named entity cannot be normalized using WordNet in
this way (as WordNet does not cover all names), the terms

2 A group of words gathered under one sense in WordNet.
3We use the TREC QA newspaper corpus

exact New York’s Triangle Shirtwaist factory
stemmed new york triangl shirtwaist factori
normalized WnEn21n432 ’s Triangle Shirtwaist factory
stemmed & norm. WnEn21n432 triangl shirtwaist factori

Figure 3. Different text representations

expansion Top-1 Top-10 Top-100

Imvsm Ilm vsm Im vsm
exact 232244 618 607 968 945
normalized 231232 554568 935 905
stemmed 259257 645650 986 994
stem&norm 250244 587 601 960 957
exact+norm 252249 638 596 985 950
exact+stemmed 274259 682643 1018 993
exact+stem&norm 275258 669 621 1023 982

Table 1. The number of questions answered
at ranks 1, 10 and 100 using different text rep-
resentations and retrieval models (see text).
Best scores in boldface.

of the entity are stemmed and left as-is. Since stemming
can also be applied to common words, we consider three
versions of text normalization: stemming, NE normaliza-
tion, and both. See Figure 3 for an example.

In order to select the best retrieval method, we evalu-
ated the performance of different methods on the TREC
QA dataset. We consider the four text representations men-
tioned previously as well as their combinations, and experi-
mented with vector space retrieval and language modeling-
based retrieval. When combining representations for re-
trieval, we sum the relevance scores of individual repre-
sentations: e.g., for the combined exact+stemd&norm rep-
resentation, we sum the relevance scores obtained with the
exact and stemed&norm representations. Table 1 shows the
evaluation results on the set of 2,136 TREC QA questions
with correct answers. We show the results both for the vec-
tor space model (vsm) and language modeling (Im). The
evaluation, as described above, uses £ = 1,10 and 100.
Retrieval using language modeling with exact+stemd&norm
shows the best performance at rank 1, substantially im-
proving over the baseline text representation (“exact” row).
Hence, this model is used in our subsequent experiments.

S Learning table lookup labels

We consider the mapping of a question to a table lookup
label (T, QF, AF) as a classification task and apply a su-
pervised machine learning method. Since we consider our
knowledge base a black box and make no assumptions
about the semantics of table and field names, we need to

Qword When/What/When/Name etc.
Qtype First noun after Qword
QfocusNoun First noun of the question # Qtype
Qverb First verb in the question

Number of occurrences of Locations/
Persons/Organizations etc.

freq(type of NEs)

Table 2. Question features

automatically generate data to train the classifier.

We generate training data using the model selected in
Section 4. For each question ¢ we use the retrieval model to
generate a ranked list of field values from our database. We
select field values whose table name 7" and field name QF
occur for the first time in the ranked list, and the value of
some other field AF of the corresponding row of 7" contains
the correct answer. Le., we find 7', QF and AF such that
the query “select AF from T where sim(QF, Q)” returns a
correct answer to question ¢ at the top rank. For training
we use label (T, QF, AF') as a correct class for question
q. This way, we may find multiple labels for a question;
therefore, we implemented two modes of creating labeled
data. In single-class mode a question fits in only one class
and selects as correct the table lookup label found first in the
ranking. In multiple-class mode we allow multiple classes
for a question and assume all labels found to be correct.

Next, in order to train a classifier on the labeled data, we
represent each question as a set of features (see Table 2). We
use a stastical part-of-speech tagger TnT [7] and a named
entity tagger based on TnT to generate question features.
Finally, we train Timbl [8], a memory-based classifier, and
use a parameter optimization tool [19] to find the best set-
ting for Timbl; see Figure 4 for an overview.

[IE tools DB Tables

Questi IR query add text representation
uestion I layers

Retrieval Engine
<T,,QF,, AF,, answer-candidate >
<T, QF, AF, answer-candidate,>

Answer
‘ Feature Extractor ‘ ‘ Filter correct labels patterns

Table-lookup labels <T,QF, AF>

Train Classifier

Figure 4. Learning table lookup labels

facts

question text

feature vector

6 Evaluation

We have described how we select the best retrieval
method and train a classifier that assigns table lookup labels

QUARTZ This paper
a@1 a@1 a@5 a@l0 a@20 MRR
11.09% ‘ 213% 254% 27.1% 28.7% 0.234

Table 3. Evaluation of the QA system.

Single class Multiple class
—norm —+norm | —norm 4-norm
a@1 17.9% 21.3% 13.8% 15.8%
a@5 | 22.8% 25.4% 18.6% 21.0%
a@10 | 24.5% 27.1% 20.7% 23.1%
a@20 | 26.5% 28.7% 22.2% 24.6%

Table 4. The impact of training data genera-
tion mode and NE normalization.

to questions. Now we turn to the evaluation of the resulting
QA system. Our research question in setting up the experi-
ments is whether our machine-learning method for answer-
ing questions from tabular data can compete with a system
that uses manually created lookup rules.

We used a standard set of question/answer pairs from the
TREC QA tasks of 2001-2003 and a knowledge base with
tables extracted from the AQUAINT corpus using the in-
formation extraction tools of QUARTZ [1] (see Section 3).
We index these tables using a vector space model [2] and a
language modeling approach [11], using different layers of
text representation as described in Section 3.

We split our training corpus of 2,136 TREC questions
with answers into 10 sets and run a 10-fold cross-validation.
For each 9/1 split we train a classifier to predict table lookup
labels of questions using the 9 sets and evaluate the result-
ing QA system on the questions of the remaining set. The
performance of the system is measured using the Mean Re-
ciprocal Rank (MRR, the inverse of the rank of the first cor-
rect answer, averaged over all questions) and accuracy at n
(a@n, the number of questions answered at rank < n).

Table 3 shows the evaluation results averaged over our
10 folds. We measure the performance of the system, using
the accuracy at n (for n = 1,5,10 and 20) and the mean
reciprocal rank. For comparison, we also give the results
of the same 10-fold cross validation for the Table Lookup
stream of the QA system QUARTZ [1], that uses exactly the
same knowledge base but employs a series of manually cre-
ated pattern-based rules to map questions to SQL queries to
the database and return the answers. The machine learning-
based system clearly outperforms the rule-based method of
QUARTZ on the same set of tables.

The results shown in Table 3 use the single-class mode
of training data generation (see Section 5). Table 4 also
shows the results for the multi-class mode, with and without
named entity normalization.

The experimental results show that named-entity nor-

malization improves accuracy of our QA system, even given
the incompleteness of WordNet.

7 Conclusions and further work

We described an open domain QA system that answers
natural language questions using tabular data that has been
automatically extracted from a newspaper collection. The
system maps an incoming question to a table lookup la-
bel (T,QF, AF) and returns as an answer the content of
the field AF' of the row of table T for which the simi-
larity between the content of the field QF and the ques-
tion is the highest, according to some retrieval model. Ef-
fectively, the system retrieves the answer by executing a
query “select AF from T where sim(Q, QF).” We have
compared several retrieval models (i.e., implementations of
stm(+,-)) and we have described a classifier that maps ques-
tions to table lookup labels, using a training corpus of ques-
tion/answer pairs. Our evaluation results show that our data-
driven method for answering questions from tabular data
outperforms a rule-based QA system on the same tabular
data, and moreover, a simple named entity normalization
step has a positive effect on the system’s performance.

Unlike other NLIDB approaches, our QA method does
not require any information about the semantics of the
knowledge base, but treats it as a black box. Given a set
of tables containing short textual facts, the only input that
our system needs is a set of questions with correct answers
that can be used for training. The evaluation shows that the
system copes well with the noise in the data which is un-
avoidable if the tables are generated automatically.

In future work we will look at more sophisticated named
entity normalization techniques (e.g., using Wikipedia) and
a proper word sense disambiguation module. We will also
experiment with different classifiers and feature extraction
modules and evaluate our approach on different datasets.

Acknowledgements

We thank Katja Hofmann for her help with the named
entity normalization. This research was supported by the
Netherlands Organization for Scientific Research (NWO)
under project numbers 017.001.190, 220-80-001, 264-70-
050, 354-20-005, 600.065.120, 612-13- 001, 612.000.106,
612.066.302, 612.069.006, 640.001.501, 640.002.501, and
by the E.U. IST programme of the 6th FP for RTD under
project MultiMATCH contract IST-033104.

References

[1] D. Ahn, S. Fissaha, V. Jijkoun, K. Miiller, M. de Rijke and
E. Tjong Kim Sang. Towards a Multi-Stream QA-as-XML-
Retrieval Strategy. In Proc. TREC 2005, 2006.

(2]

(3]

(4]

(5]

(6]

(7]

8]

(9]

(10]

[11]

[12]

(13]

[14]

[15]

(16]

(17]

(18]

(19]

[20]

Jakarta Lucene text search engine.
apache.org, 2002.

D. Ahn, V. Jijkoun, K. Miiller, M. de Rijke, and E. Tjong
Kim Sang. Towards an offline XML-based strategy for an-
swering questions. In Accessing Multilingual Information
Repositories, pages 449-456, 2006.

J. Allan, C. Wade, and A. Bolivar. Retrieval and novelty
detection at the sentence level. In Proc. SIGIR 2003, pages
314-321, 2003.

I. Androutsopoulos, G. Ritchie, and P. Thanisch. Natural
language interfaces to databases—an introduction. Journal of
Language Engineering, 1(1):29-81, 1995.

M. W. Bilotti, B. Katz, and J. Lin. What works better for
question answering: Stemming or morphological query ex-
pansion? In Proc. IR4QA Workshop at SIGIR 2004, 2004.

T. Brants. TnT — A Statistical Part-Of-Speech tagger. In
Proc. of the 6th Applied NLP Conference, 2000.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van den
Bosch. Timbl: Tilburg memory-based learner - version 4.0
reference guide.

M. Fleischman, E. Hovy, and A. Echihabi. Offline strategies
for online question answering: answering questions before
they are asked. In Proc. ACL ’03, pages 1-7, 2003.

D. Harman. Overview of the TREC 2002 novelty track. In
Proc. TREC 2002, pages 17-28, 2002.

D. Hiemstra. A linguistically motivated probabilistic model
of information retrieval. In Proc. ECDL 1998, pages 569—
584, 1998.

V. Jijkoun, M. de Rijke, and J. Mur. Information extraction
for question answering: Improving recall through syntactic
patterns. In Proc. COLING 2004, 2004.

X. Li and D. Roth. Learning question classifiers. In Proc.
COLING 2002, 2002.

D. Metzler and W. Croft. Analysis of statistical question
classification for fact-based questions. Journal of Informa-
tion Retrieval, 8:481-504, 2005.

D. Metzler, S. Dumais, and C. Meek. Similarity measures
for short segments of text. In Proc. ECIR 2007, pages 16-27,
2007.

C. Monz. From Document Retrieval to Question Answering.
PhD thesis, University of Amsterdam, 2003.

M. Negri. Sense-based blind relevance feedback for ques-
tion answering. In Proc. IR4QA Workshop at SIGIR 2004,
2004.

G. Ramakrishnan, S. Chakrabarti, D. Paranjpe, and P. Bhat-
tacharyya. Is question answering an acquired skill? In Proc.
WWW, pages 111-120, 2004.

A. van den Bosch. Wrapped progressive sampling search for

optimizing learning algorithm parameters. In Proc. BNAIC
2004, 2004.

E. Voorhees and D. Tice. The TREC-8 question answering
track evaluation. In Proc. TREC-8, 1999.

http://lucene.

