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ABSTRACT
Named entity recognition is important for semantically ori-
ented retrieval tasks, such as question answering, entity re-
trieval, biomedical retrieval, trend detection, and event and
entity tracking. In many of these tasks it is important to be
able to accurately normalize the recognized entities, i.e., to
map surface forms to unambiguous references to real world
entities. Within the context of structured databases, this
task (known as record linkage and data de-duplication) has
been a topic of active research for more than five decades.
For edited content, such as news articles, the named entity
normalization (NEN) task is one that has recently attracted
considerable attention. We consider the task in the challeng-
ing context of user generated content (UGC), where it forms
a key ingredient of tracking and media-analysis systems.

A baseline NEN system from the literature (that normal-
izes surface forms to Wikipedia pages) performs consider-
ably worse on UGC than on edited news: accuracy drops
from 80% to 65% for a Dutch language data set and from
94% to 77% for English. We identify several sources of er-
rors: entity recognition errors, multiple ways of referring to
the same entity and ambiguous references.

To address these issues we propose five improvements to
the baseline NEN algorithm, to arrive at a language inde-
pendent NEN system that achieves overall accuracy scores of
90% on the English data set and 89% on the Dutch data set.
We show that each of the improvements contributes to the
overall score of our improved NEN algorithm, and conclude
with an error analysis on both Dutch and English language
UGC. The NEN system is computationally efficient and runs
with very modest computational requirements.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and
Retrieval—Content Analysis and Indexing
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1. INTRODUCTION
The task of record linkage (RL) is to find entries that re-

fer to the same entity in different data sources. This task
has been investigated since the 1950s—usually, entries are
considered with their attributes (e.g., person with phone, ad-
dress) [21]. The task proved important because data sources
have varying ways of referring to the same real-world entity
due to, e.g., different naming conventions, misspellings or
use of abbreviation. The task of reference normalization is
to analyze and detect these different references [6, 7]. When
we consider the special case of this problem for natural lan-
guage texts, we have to recognize entities in a text and re-
solve these references either to entities that exist within the
document or to real-world entities. These two steps consti-
tute the named entity normalization (NEN) problem.

We consider the NEN task within the setting of user gen-
erated content (UGC), such as blogs, discussion forums, or
comments left behind by readers of online documents. For
this type of textual data, the NEN task is particularly im-
portant within the settings of media and reputation analysis
(which motivated the work reported here) and of intelligence
gathering. Many strategies deployed in these areas revolve
around the idea of determining and tracking the impact of
an event, i.e., determining the number, intensity and ori-
entation of responses and identifying the stakeholders and
other actors and entities involved.

The specific scenario on which we focus concerns the anal-
ysis of data that is increasingly common: online texts dec-
orated with unedited comments left behind by web users.
Examples include news sites (such as BBC news), and dis-
cussion and collaboration forums (such as linuxforum.com).
These comments contain valuable information that comple-
ments the original text that triggered them, but the sheer
volume and their (usually) flat organization makes them
hard to comprehend. Hence, tools are needed that help orga-
nize the list of comments, by clustering them, summarizing
them, computing aggregate information, creating hyperlinks
between them, etc.

Let’s consider an example. In the data set that we use
for evaluation purposes in this paper (see Section 4 for de-
tails), one of the news stories is about racing driver Michael
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Figure 1: An excerpt from a BBC news article, with
the excerpts of three comments (out of total of 39).
Named entities are underlined.
• News item: Michael Schumacher wins his sixth vic-

tory in eight races—and tightens his grip on another
Championship title. Do you think the title race is
over? Have Your Say. Michael Schumacher extended
his lead to 43 points after Juan Pablo Montoya’s
Williams broke down with 12 laps to go. (. . . )

• Comments:

1. Ferrrari and Schumacher are now beyond the
point where anyone can stop them (. . . )

2. (. . . ) Ralf, Montoya or DC need to win all the
remaining seven races without Michael getting
any points (. . . )

3. (. . . ) Both Williams’ drivers could be giving
Schumi more of a challenge if their cars were
reliable, as could Coulthard at McLaren (. . . )

Schumacher (Figure 1). To normalize the named entities in
this news item and the comments it triggers, we need to re-
solve them to real world entities. We notice that there are
two types of reference in the data. One is within-document
reference, e.g., in the comments in Figure 1, Michael and
Schumi are used to refer to Michael Schumacher as men-
tioned earlier. The second kind of references are references
to real-world entities, e.g., in the second comment, DC is
used to refer to David Coulthard. Notice that resolving ref-
erences of the latter type involves named entity disambigua-
tion: in the context of Figure 1, DC is not used to refer to
“Daimler-Chrysler,” “direct current” or the number 600.1

The main challenge in normalizing named entities (NEs)
occurring in the comments on a news story is that commen-
tators often do not use the full name of an already men-
tioned NE, use nicknames, misspell words or creatively pun
with them. For example, in one of the examples in our
Dutch data set (a news article with 90 comments), singer
Anneke Grönloh is referred to in 11 different ways, includ-
ing variants such as Anneke Grohnloh, anneke gr ?hnloh,
Mw. Gronloh, Anneke Kreunlo, Mevrouw G., etc. Other ex-
amples of creative language use include G@@Gle and Bu$h.
Besides, commentators often introduce additional NEs not
even mentioned in the triggering news story, and some of
the NEs used may actually refer to earlier comments. All in
all, this turns NEN on UGC into a challenging problem.

NEN has been considered before, on structured data and
on edited content. Of particular relevance to us is recent
work by Cucerzan [4], comparing methods for NEN on edited
content. In the present paper we apply similar methods to
user generated content. We find several main sources of er-
rors: NE recognition errors (incorrect boundaries of named
entities as well as missing NEs), multiple ways of referring
to the same entity, and ambiguous (out of context) refer-
ences. We present five improvements to the baseline NEN
algorithm to address these error types, namely: trimming,
joining and ngramming NEs, approximate name matching,
identification of missing references and name disambigua-
tion. We assess the overall performance of the improved

1See http://en.wikipedia.org/wiki/DC

system as well as the individual contributions of the im-
provements. In this paper, we aim to create a named entity
normalization algorithm for use in Dutch/English language
media and reputation analysis settings that performs well
on user generated content (UGC). We use Wikipedia, the
largest encyclopedia to date, to assign unique identifiers to
real world entities in the entity normalization process. For
NEs not found in Wikipedia, we use the most complete vari-
ant of the name found in the text as the identifier.

The main contributions of the paper are: presentation
and analysis of the problem of NEN in UGC, an algorithm
for addressing the problem, and evaluation and analysis of
the algorithm. Our algorithm was developed for Dutch and
using Dutch data, but experiments with an English data
set indicate that it is well applicable to other languages.
Moreover, the algorithm is computationally efficient.

The remainder of the paper is organized as follows. In
Section 2 we discuss related work. In Section 3 we present
a baseline algorithm for named entity normalization in user
generated content, and describe an improved version based
on an error analysis. In Section 4 we present our experi-
mental setup and in Section 5 we present and analyze the
results of our evaluation. A set of conclusions in Section 6
completes the paper.

2. RELATED WORK
Name matching and disambiguation has been recognized

as an important problem in various domains. Borgman and
Siegfried [2] present an overview of motivations, applica-
tions, common problems and techniques for name matching
in the art domain; see [17] for recent experiments with classi-
fication for name matching. A dual problem, personal name
disambiguation has also attracted a lot of attention, and a
number of unsupervised methods were proposed [14, 18].

A similar problem has been known in the database com-
munity for over five decades as the record linkage or the
record matching problem [8, 21]. However, there the task
is more general: matching arbitrary types of records, not
just person names or other types of named entities. An-
other type of research focuses on identification, disambigua-
tion and matching of text objects other than named entities,
specifically, temporal expressions [1].

Related problems occur in a different task: discovering
links in text. Like NEN, this task involves identifying and
disambiguating references to entities, and has also attracted
attention of the research community [10, 15].

Research on named entity extraction and normalization
has been carried out in both restricted and open domains.
For example, for the case of scientific articles on genomics,
where gene and protein names can be both synonymous and
ambiguous, Cohen [3] normalizes entities using dictionaries
automatically extracted from gene databases. For the news
domain, Magdy et al. [13] address cross-document Arabic
person name normalization using a machine learning ap-
proach, a dictionary of person names and frequency infor-
mation for names in a collection. Cucerzan [4] considers the
entity normalization task for news and encyclopedia articles;
they use information extracted from Wikipedia combined
with machine learning for context-aware name disambigua-
tion; the baseline that we use in this paper (taken from [11])
is a modification (and improved version) of Cucerzan [4]’s
baseline. Cucerzan [4] also presents an extensive literature
overview on the problem.
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Recent research has also examined the impact of normal-
izing entities in text on specific information access tasks.
Zhou et al. [22] show that appropriate use of domain-specific
knowledge base (i.e., synonyms, hypernyms, etc.) yields sig-
nificant improvement in passage retrieval in the biomedical
domain. Similarly, Khalid et al. [11] demonstrate that NEN
based on Wikipedia helps text retrieval in the context of
Question Answering in the news domain.

Finally, in recent years, there has been a steady increase
in the development or adaptation of language technology for
UGC. Most of the attention has gone to blogs (see [16] for
a recent survey on text analytics for blogs). Online discus-
sion fora are more closely related to the data with which
we work; recent research includes work on finding authori-
tative answers in forum threads [9, 12], as well as attempts
to assess the quality of forum posts [20]. To the best of our
knowledge, discussion threads as triggered by news stories
of the kind considered here have not been studied before.

3. AN ALGORITHM FOR NAMED ENTITY
NORMALIZATION IN USER GENERATED
CONTENT

In this section we present a baseline algorithm for NE-
normalization based on [4, 11], perform an error analysis and
describe five improvements to the baseline, each accounting
for a specific type of error identified.

3.1 Baseline algorithm
Algorithm 1, our baseline algorithm, takes as input a pair
〈A, R〉 where A is the triggering news article and R is the list
of comments on A in reverse chronological order. It returns
an entity model, i.e., a list of triples 〈s, n, p〉, where s is a
surface form (i.e., a named entity as it occurs in text), n is
the normalized form of s (e.g., a title of the corresponding
Wikipedia article), and p is the character position of s in
the document. For example, one of the entity triples from
the text in Figure 1 is 〈Schumi, Michael Schumacher, 57〉.

Line 1 of Algorithm 1 performs the NE recognition, i.e.,
it identifies NEs of types PERSON, LOCATION, ORGA-
NIZATION or MISC (miscellaneous). Lines 2 and 4 do the
preprocessing: we remove all noisy NEs, i.e., short (length
≤ 2 characters) or stopword-only NEs, with the exception
of (capitalized) abbreviations, and remove diacritics (e.g.,
replacing ö with o).

Next, on line 5 we normalize each found NE using the
function shown as Algorithm 2. This normalization algo-
rithm treats NEs that are person names differently from
other NE types (lines 2 and 3). Specifically, for persons
we further remove common titles (such as Mr, Mrs) and
perform within-document reference resolution, as detailed in
Algorithm 3.

Algorithm 2 continues (line 5) by trying to link the NE
to a Wikipedia article, calling the function findWikiEntity

shown in Algorithm 4. If even after this step the NE is not
normalized, we take the string itself as its normalized form
(lines 6–7 of Algorithm 1).

The function ResolveRefInDoc, described in Algorithm 3,
examines the list of entities already found and normalized
earlier in the document, and finds matches based on first or
last names.

The function findWikiEntity, described in Algorithm 4,
first tries to match the input reference string with a Wiki-

Algorithm 1 Compute the entity model of a document

Require: a text document DOC
1: REFSdoc ⇐ NE-Recognition(DOC)
{REFSdoc: list of 〈NE, type, position〉 triples}

2: REFSdoc ⇐ Remove-NoinsyNEs(REFSdoc)
3: for each 〈NE, type, position〉 ∈ REFSdoc do
4: REF ⇐ Removing diacritics(NE)
5: REF-norm ⇐ NormalizeNE( 〈REF, type〉, REF-

NORMSdoc) {see Algorithm 2}
6: if REF-norm = NULL then
7: REF-norm ⇐ NE
8: end if
9: REF-NORMSdoc ⇐ 〈REF, REF-norm, position〉

10: end for
11: return REF-NORMSdoc

pedia article title (either exact match or case-insensitive, in
this order).2 If we find a matched Wikipedia page title,
WT, we check whether the page is a Wikipedia redirection
page (line 2). In case of a redirect, we take the title of the
target Wikipedia page instead. Then we check if WT refers to
a Wikipedia disambiguation page,3 i.e., it lists a number of
possible candidate pages for a given term. If this is the case,
we select one of them, disambiguating between candidates
using a heuristic from [11]: we select the candidate that has
the highest number of incoming links in Wikipedia.

Algorithm 2 NormalizeNE: named entity normalization

Require: a pair 〈NAME, Type〉, a list REF-NORMS
1: if Type = PERSON then
2: NAME ⇐ RemoveTitles(NAME)
3: REF-norm ⇐ ResolveRef-InDoc( NAME, REF-

NORMS) {see Algorithm 3}
4: end if
5: if REF-norm = NULL then
6: REF-norm ⇐ findWikiEntity(REF) {see Algo-

rithm 4}
7: end if
8: return REF-norm

3.2 Error analysis of the baseline algorithm
For development purposes, we annotated one news story

(about two personalities in Dutch show business, Anneke
Grönloh and Paul de Leeuw) and the first 90 accompanying
comments.4 We found 166 entities in the development data.
Then, we compared the performance of our baseline algo-
rithm against this gold standard, and performed an error
analysis. Below we list the most common types of errors.

Recognition errors The boundaries of some NEs are rec-
ognized incorrectly: NEs include noise or are split
in the middle, e.g., <ne>Gronloh!!!</ne>, and <ne>

Paul</ne> de <ne>Leeuw</ne>. Commentators use

2The order matters, e.g., “MAC” and “Mac” are two dif-
ferent Wiki entities, the former is an abbreviation and the
latter may refer to Mac OS X.
3I.e., a page that uses the Wikipedia Disambiguation
template, or whose title ends in “ (disambiguation)” or
“ (surname).”
4This development document was not included in the test
set described in Section 4 below.



Algorithm 3 ResolveRef-InDoc: within-document corefer-
ence resolution
Require: a string NAME, a list REF-NORMS
{REF-NORMS: list of 〈REF, REF-norm, position〉
triples}

1: for each 〈REF, REF-norm, position〉 ∈ REF-NORMS
do

2: if NAME = REF or NAME = REF-norm then
3: return 〈REF, REF-norm, position〉
4: else if NAME = firstName(REF) or NAME = last-

Name(REF) or NAME = firstName(REF-norm) or
NAME = lastName(REF-norm) then

5: {firstName is the first token of the input string, and
the lastName is the rest}

6: return 〈REF, REF-norm, position〉
7: end if
8: end for

Algorithm 4 findWikiEntity

Require: a string NAME
1: WT ⇐ findWikiTitle(NAME) {If NAME matches with

a Wikipedia page’s title}
2: if isRedirectPage(WT) then
3: WT ⇐ getTargetPage(WT)
4: end if
5: if isDisambiguationPage(WT) then
6: return Disambiguate(WT)
7: end if
8: return WT

capitalization and punctuation in non-standard ways,
confusing the NE recognizer, which produces results
like <ne>Gronloh ,Maak</ne> or <ne>Gronloh .Die
</ne>. We found 27 such errors in the development
data.

Multi-references Commentators sometimes do not bother
with punctuation, and the NER recognizes a group of
adjacent names as a single NE. For example, <ne> An-
neke Gronloh Paul de Leeuw</ne>, actually contains
references to two persons. The development data con-
tains only one such error.

Variants Commentators often use partial (first or last) names
or nicknames of the entities mentioned in the trigger
article. Users also misspell names in comments or use
creative puns. The development data contains 14 vari-
ants of 4 entities.

Missing NEs Often, capitalization is absent in Dutch UGC.
Our NE recognizer misses all those variants like an-
neke, gronloh, paul and anneke gr”ohnloh. In the de-
velopment data, 16 occurrences of entities were not
detected.

Incomplete entities Commentators introduce new named
entities without using full names, e.g., Pronk (refers to
Dutch ex-minister Jan Pronk). Finding full names of
such entities is difficult because we don’t know what is
in the mind of the commentator. In the development
data, only one incomplete entity was found.

3.3 Improving named entity normalization
Based on the types of errors just listed we suggest five

improvements of our baseline algorithm:

1. Pre-processing NEs: We clean the entities and fix some
of the NE boundary recognition errors. Specifically,
we perform the following two steps before calling the
function NormalizeNE.

• Clean up: remove non-alphabetical characters from
both sides of an NE;

• Gluing NEs: (Dutch-specific) to improve recog-
nition of Dutch multi-word last names such as
“van Gogh” or “ten Cate,” we glue two adjacent
person names if they are separated by one of the
standard Dutch infixes (van, ten, de, van der, van
ten, van t, vt).

2. N-gram NE normalization: we use ngramming to split
NEs that cannot be normalized. This is a modifica-
tion of part of the baseline algorithm (lines 6–8 of Al-
gorithm 1). Specifically, if an NE cannot be normal-
ized, we split the NE into a set of all overlapping word
ngrams (all possible values of n) and try to normalize
each ngram using the function NormalizeNE. We pro-
ceed from longer to shorter ngrams, and when one of
the ngrams is normalized successfully, all other ngrams
that overlap with it are ignored.

3. Person-name matching : we improve our within-docu-
ment coreference resolution (Algorithm 3), handling
common variants of person names as they are used in
UGC. Specifically, we use a set of heuristics (based
on first and last names) and inexact string matching
(based on Levenshtein edit distance) to identify vari-
ants of person names. This is a modification of lines
4–6 of Algorithm 3. The details of the improved name
matching algorithm are given in the Appendix.

4. Finding missing NEs: we add a post-processing step to
the baseline algorithm, in order to improve the recall of
NEs. Specifically, after the recognition and normaliza-
tion has been done (line 10 of Algorithm 1), we look for
phrases which have not been recognized as NEs, but
which are similar to those already recognized and nor-
malized. We consider text segments outside the rec-
ognized NEs, and use a procedure similar to improve-
ment 2 above: we split the text segments into word
ngrams and try to resolve each ngram within the doc-
uments (calling the function ResolveRef-InDoc, Al-
gorithm 3). Again, we proceed from longer to shorter
ngrams, and ignore ngrams overlapping with those we
detect as NEs. For efficiency, in this step we only con-
sider ngrams that contain at most n + 2 tokens, where
n is the maximal number of tokens of a normalized
form of NEs in the document.

5. Normalizing new entities: Wikipedia disambiguation
pages do not cover all possible ambiguous entities, e.g.,
incomplete entity references such as “Pronk” (a Dutch
surname). As noted in [4, 11], anchor texts in Wikipedia
often cover these cases. Following [11], if an NE ex-
actly matches the anchor text of some hyperlink in
Wikipedia, we take as its normalized form the title of
the Wikipedia article (the target of the hyperlink) with
the highest number of incoming links. This is a modi-
fication of the function Disambiguate of Algorithm 4.

In the following sections we describe experiments used to
test the effect of the improvements listed above.



4. EXPERIMENTAL SETUP

4.1 Research questions
In Section 3 we have described the baseline NEN algo-

rithm and five improvements. Now we turn to set up our
experiments in order to answer the following research ques-
tions:

RQ1 How does the baseline NEN algorithm from the liter-
ature perform on UGC?

RQ2 What is the overall performance achieved by the com-
bined improvements proposed in Section 3.3?

RQ3 How important are the proposed improvements, indi-
vidually? That is, if we leave out one of them, how
much do we lose in terms of effectiveness?

RQ4 To what extent is our NEN algorithm work language
dependent? I.e., does it achieve comparable scores
across languages? We do not have the resources to
answer this question for all possible language pairs,
but compare the performance of our NEN algorithm
on two related languages: Dutch and English.

While our main interest lies with the effectiveness of our
NEN algorithm, we also include some results on efficiency.

4.2 Test data
As there is no standard data set available for assessing

NEN on user generated comments, we decided to create
our own data set. Given our application scenario (Dutch
language media and reputation analysis), we selected five
articles with comments from online versions of two leading
Dutch national newspapers.5 To be able to answer RQ4,
we added five BBC6 articles with comments from the “Have
your say” section. For both languages, we selected articles in
such a way as to cover the main named entity types (persons,
locations, organizations and miscellaneous), and a variety of
spelling variants of names. We expected that commentators
vary more with names of people from show business than
with politicians: document of both types were included. We
choose documents with more than 50 comments, in order to
have a larger chance for many variants and some internal
discussion among the commentators. There are 69.6 per-
sons, 55.8 location, 44.4 organization and 50 miscellaneous
entities on average per document (news article plus com-
ments) in the data set. On average, each real world entity
was mentioned 5.6 and 5.3 times in the Dutch and English
data sets, respectively. In the entire annotated data set 29%
of the entities were referred to using more than one surface
form and 5% had five or more distinct forms. See Table 1
for details.

We asked two assessors to extract and normalize all refer-
ences to NEs in the articles and comments. For this purpose
we split the input in such a way that each token of the data
occurs on a line; on the same line, following the token, an
NE tag (if applicable) and the normalized form had to be
provided by our assessors. Assessors were asked to provide
a Wikipedia article title as the normalization result, if pos-
sible, or perform within-document normalization otherwise.

5De Telegraaf http://www.telegraaf.nl and Algemeen
Dagblad http://www.ad.nl.
6http://news.bbc.co.uk/.

Table 1: Evaluation data: length in words of article
with comments (#W); number of comments (#C);
total number of named entities (#NE); number of
unique real world entities referred to (#RWE).

Category #W #C #NE #RWE
Dutch language evaluation set
Persons (politics) 8,602 196 508 67
Persons (show business) 3,705 90 166 22
Locations 7,133 175 214 64
Organizations 2,516 47 190 34
Products 2,642 50 172 32
English language evaluation set
Persons (politics) 4,265 62 241 43
Persons (show business) 2,230 30 80 16
Locations 4,050 67 257 49
Organizations 2,353 42 137 29
Products 2,324 39 163 26

4.3 Evaluation measures
The media analysis use case that motivated the work

in this paper, suggests two important analysis dimensions:
(1) who/what is mentioned and (2) how often. Our evalua-
tion measures reflect this interest. For both dimensions we
define separate notions of recall and precision.

Measuring real-world entities.
Let UNF gt and UNFnen denote the sets of real-world en-

tities discovered by the assessors and by our NEN algorithm,
respectively. We then define

entity-recall =
|UNFnen ∩UNF gt|

|UNF gt|
(1)

entity-precision =
|UNFnen ∩UNF gt|

|UNFnen|
. (2)

It is natural to order the sets of real world entities UNF gt

and UNFnen by the number of mentions of each real world
entity. Using that order we define entity-precision@n as the
number of correctly identified entities within the first n re-
turned entities, divided by n.

Measuring occurrences.
Let EMgt and EMnen denote the sets of triples (reference-

string, normalized-form, position) discovered by the asses-
sors and by our NEN algorithm, respectively. We define the
set of true positives TP as: EMnen∩EMgt. Now define the
standard notions of precision and recall:

recall =
|TP |
|EMgt|

(3)

precision =
|TP |
|EMnen|

. (4)

We also want to measure the quality of normalization sepa-
rately from the recognition step. Let FPnorm be the set of
triples 〈reference-string, normalized-form, position〉 which
are correctly recognized but incorrectly normalized. Thus
FPnorm = {〈e, n, p〉 ∈ EMnen | (e, n′, p) ∈ EMgt and n 6=
n′}. We measure the accuracy of normalization using the
following metric:

accuracy =
|TP |

|TP |+ |FPnorm|
. (5)

http://www.telegraaf.nl
http://www.ad.nl
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Because the last three measures work on individual NE oc-
currences we use those to evaluate the effect of each of our
five improvements.

4.4 Significance testing
We perform significance testing only for accuracy (Eq. 5).

There we compare two lists of triples and check for each
triple if either they match perfectly with each other or there
is no match. Thus we have a list of binary comparison num-
bers. In this case the McNemar test is appropriate. We look
for significance at the p = 0.01 level.

5. EXPERIMENTAL EVALUATION
For evaluation purposes, we used the test set described

in Section 4.2. We used two named entity recognition tools
in our NEN algorithm: [19] for Dutch and [5] for English.
For our NEN algorithm we used the Dutch Wikipedia of
November 2006 and the English Wikipedia of August 2007.

5.1 Results
The overall accuracy of the baseline NEN algorithm was

80% and 65% for Dutch news articles and news articles plus
comments, respectively, and 94% and 77% for English news
articles and news articles plus comments, respectively. This
answers our first research question, RQ1: the baseline NEN
algorithm performs worse on UGC than on edited text (news
only).

In order to answer the remaining research questions, we
evaluated the baseline system, the full system with all im-
provements, and the full system with individual improve-
ments switched off. Table 2 lists the results for the Dutch
and English data. Table 3 shows the entity-recall, entity-
precision and entity-precision@10 measurements. Baseline

denotes the baseline NEN algorithm, FS denotes the com-
bined improvements, and Ignorek denotes the system with
the kth improvement disabled (k = 1, . . . , 5, see Section 3.3).

Table 2: Precision, recall and accuracy of baseline,
full system (FS) and derived versions of the NEN
algorithm. Ignorek is FS without the k-th improve-
ment. Significant improvements over the baseline
are marked with N (p = 0.01)

recall% precision% accuracy%
Evaluation results on the Dutch language data set
Baseline 46 45 65
Ignore1 70 60 87N

Ignore2 64 53 79N

Ignore3 80 65 88N

Ignore4 70 66 88N

Ignore5 70 54 78N

FS 81 62 89N

Evaluation results on the English language data set
Baseline 70 72 77
Ignore1 85 84 90N

Ignore2 79 75 83N

Ignore3 84 80 87N

Ignore4 84 85 89N

Ignore5 85 81 88N

FS 89 82 90N

Tables 2 and 3 provide an answer to our second research
question, RQ2. FS outperformed the baseline for both Dutch
and English, according to all evaluation metrics. Also, FS is
highly recall-oriented (81% vs. 46% for Dutch, and 89% vs.

Table 3: Entity-precision, Entity-recall and Entity-
precision@10 of the baseline and the full system.

e-recall e-precision e-precision@10
Evaluation results on the Dutch language data set
Baseline 51 21 68
FS 69 34 85
Evaluation results on the English language data set
Baseline 73 54 68
FS 78 67 84

70% for English) and more accurate than the baseline (89%
vs. 65% for Dutch, and 90% vs. 77% for English).

In order to answer our third research question, RQ3, we
zoom in on the evaluation results in Figure 2, where we com-
pare the reduced versions of the full system Ignorek with the
full system FS itself. When we ignore the first improvement
(Pre-processing NEs), Ignore1, we find no effect on the accu-
racy for the English data set, but the accuracy drops a little
on the Dutch data set. The reason is that comment threads
in the English data set tend to be cleaner than in the Dutch
articles. The results in Table 2 also show that this improve-
ment is important in increasing recall for both data sets.
When we ignore the second improvement (N-gram NE Nor-
malization), the third improvement (Person-name match-
ing), or the fifth improvement (Use Wikipedia link text for
disambiguation), the NEN algorithm performs worse than
the full system FS, not only in terms of accuracy, but also in
terms of recall and precision. These three improvements are
really important for the performance of our NEN algorithm.
When we ignore the fourth improvement (Finding missing
NEs), we find the highest precision (bold face numbers in
Table 2). The reason is that in this improvement we greedily
extract all kinds of reference strings. When we split the text
into ngrams and use our Person-name matching algorithm
to handle variants of NEs, a string is sometimes incorrectly
matched with an NE. E.g., “grapes” was considered as the
last name of “Bill Gates.” Finally, the NEN algorithm with
all combined improvements and each of its derived versions
(denoted by Ignorek) are significantly better than the base-
line at p = 0.01.

We now switch to our fourth research question, RQ4, that
concerns the performance on different languages. Apart
from the language specific rule concerning infixes in Dutch
last names (part of the first improvement, in Section 3.3),
the only difference between the Dutch and English language
version of our NEN method is the corpus we use for nor-
malization, namely, Wikipedia. We examine the difference
in accuracy between the baseline NEN algorithm, the NEN
algorithm with combined improvements, and its derived al-
gorithms, for Dutch and English. Consider Figure 2. First,
while it is hard to draw very firm conclusions given the small
number of articles we were able to annotate, we see that,
mostly, the different versions of the system perform com-
parably for the two languages. Ignore5 (Use Wikipedia link
text for disambiguation) seems to be a clear exception: on
the Dutch data set the accuracy of the NEN algorithm is
affected more strongly than on the English data set. The
reason for this seems clear: the English version of Wikipedia
constitutes a much larger knowledge base than the Dutch
version, with ∼88,000 vs. ∼13,000 disambiguation pages.

Finally, we now look at how well our full NEN system han-



Figure 2: Accuracy of different versions of the NEN
algorithm for Dutch and English.
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dles the types errors discussed in Section 3.2. For the single
development article, the full system corrected 22 our of 27
recognition errors, 1 out 1 multi-references were correctly
split and resolved, 13 variants out of 14 were normalized
correctly, 15 out of 16 missing entities were detected, and 1
out of 1 incomplete entity was resolved correctly. We also
examined the same error types on the test data (containing
1,980 entities). Table 4 compares the performance of the
baseline and the full system for different error types.

Table 4: Sources of errors in the test data generated
by the baseline and the full NEN system.

Error type Baseline Full system
Recognition errors 227 16
Missing entities 210 85
Multi-references 28 2
Variants 54 3
Incomplete entities 13 9

5.2 Efficiency
On standard desktop hardware, the baseline NEN algo-

rithm took on average 4.5s per document (article plus com-
ments), and the full system FS and all other versions except
Ignore4 took 15.2s. The fourth improvement (Finding miss-

ing NEs) is the most expensive step of the NEN algorithm,
accounting for approx. 10s of the running time of the full sys-
tem. Hence, this improvement, although helpful to increase
recall, is expensive in terms of running time.

5.3 NEN on real world data
We applied the full NEN system to the articles and user

comments collected during 3 months (February 14 to May 14
2008) from 9 Dutch online newspapers. In total, we collected
38,629 articles with 88,651 comments. We further analyzed
7,980 articles that had at least one user comment. For this
subset, on average we found 11.1 comments per article.

On average, our NEN system identified 8.2 normalized en-
tities (NoEs) in the content of an article, and 15.0 NoEs in
an article together with all its comments. In the content
of the 7,980 articles with comments, on average there were
1.65 distinct surface variants for each NoE. When the arti-
cles are considered together with comments, we found 1.94
variants per NoE. Moreover, in the latter set, for 28% of
NoEs we found more than one variant, and for 4%—more
than 5 variants. These numbers show that NEN is indeed
an important problem for user generated content.

We looked at NoEs with the largest number of variants.
These were: Nederland (The Netherlands) with 704 vari-
ants, Geert Wilders (controversial Dutch politician) with
350, Verenigde Staten (United States) with 341, Rotter-
dam with 282. Below we list the most frequent variants
for Verenigde Staten, as identified by our NEN algorithm,
with their English description and frequency:

Amerikaanse American 670
VS US 353
Amerika America 271
Verenigde Staten United States 172
Amerikanen Americans 149
USA USA 122
NS The Dutch national railway 65
US US 42
Amerikaans American 41
Amerikaan American 35
Witte Huis White House 33
De VS The US 22
America America 21

6. CONCLUSION
Our aim in this paper was to create a named entity nor-

malization algorithm for use in Dutch language media and
reputation analysis settings that performs well on user gen-
erated content (UGC). For this purpose we started with a
baseline NEN system from the literature, and found that it
performed much worse on UGC than on edited news: 65%
vs. 80% accurracy on a Dutch language data set and 77%
vs. 94% accuracy on an English language data set.

We identified the following main sources of errors of the
baseline system when applied to UGC: NE recognition er-
rors (incorrect boundaries of named entities or missing NEs),
multiple ways of referring to the same entity, and ambigu-
ous (out of context) references. We addressed these issues
by proposing five improvements to the baseline NEN algo-
rithm. Our experimental results showed that all improve-
ments are important in increasing recall, precision and accu-
racy of the algorithm. While helpful in increasing the recall,
the improvement that we introduced to cover missing NEs



is expensive in terms of running time. The overall system
can run on multiple languages, and the main source of dif-
ferences in performance between languages seems to be the
size of the underlying corpus against which named entities
are normalized, Wikipedia.

In future work we will attempt to further improve the
performance of our NEN algorithm by using context-aware
named entity disambiguation, creating small entity-specific
language models. In addition, we want to improve the un-
derlying NER tools we use and to consider other measures
of string similarity than we have used so far (edit distance)
to handle misspellings of the person names better.
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APPENDIX
Person name matching algorithm
Algorithm 5 takes three arguments: a source string, a target
string and a flag indicating whether the target string follows
a person title (e.g., Mr, Mrs, etc.). The algorithm checks
whether the target string is a variant of the source string.

Algorithm 5 Person name matching algorithm

Require: a source string S, a target string T , a flag L
1: if T = S, or T = firstName(S), or T = lastName(S) then
2: return matched
3: end if
4: if lastName(S) 6= NULL then
5: if lastName(T) = NULL then
6: if L = TRUE and lastName(S) startsWith T then
7: return matched
8: else if firstChar(T) = firstChar(lastName(S)) then
9: return isSimilar(lastName(S), T) {isSimilar(str1,

str2) returns true if
editDist(str1,str2)

length(str2)
≤ 0.34}

10: end if
11: else if firstName(S) startsWith firstName(T) then
12: if lastName(S) startsWith lastName(T) then
13: return matched
14: else
15: return isSimilar(S, T)
16: end if
17: else if lastName(S) startsWith firstName(T) then
18: return isSimilar(lastName(S), T)
19: end if
20: else if lastName(T) = NULL and

firstChar(S) = firstChar(T) then
21: return isSimilar(S, T)
22: end if


