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Abstract— In this paper, we propose an automatic video
retrieval method based on high-level concept detectors. Research
in video analysis has reached the point where over 100 concept
detectors can be learned in a generic fashion, albeit with mixed
performance. Such a set of detectors is very small still compared
to ontologies aiming to capture the full vocabulary a user
has. We aim to throw a bridge between the two fields by
building a multimedia thesaurus, i.e. a set of machine learned
concept detectors that is enriched with semantic descriptions and
semantic structure obtained from WordNet. Given a multimodal
user query, we identify three strategies to select a relevant
detector from this thesaurus, namely: text matching, ontology
querying, and semantic visual querying. We evaluate the meth-
ods against the automatic search task of the TRECVID 2005
video retrieval benchmark, using a news video archive of 85
hours in combination with a thesaurus of 363 machine learned
concept detectors. We assess the influence of thesaurus size on
video search performance, evaluate and compare the multimodal
selection strategies for concept detectors, and finally discuss
their combined potential using oracle fusion. The set of queries
in the TRECVID 2005 corpus is too small to be definite in
our conclusions, but the results suggest promising new lines of
research.

Index Terms— Video retrieval, concept learning, knowledge
modeling, content analysis and indexing, multimedia information
systems

I. INTRODUCTION

V Ideo has become the medium of choice in applications
such as communication, education, and entertainment. In

each of these, the video carries a semantic message which can
be very versatile. For a human the meaning of the message
is immediate, but for a computer that is far from true. This
discrepancy is commonly referred to as the semantic gap [1].

Semantic video indexing is the process of automatically
detecting the presence of a semantic concept in a video
stream. It is impossible to develop a dedicated detector for
each possible concept as there are just too many concepts. A
recent trend in semantic video indexing has therefore been
to search for generic methods that learn a detector from
a set of examples [2]. This emphasis on generic indexing
has opened up the possibility of moving to larger sets of
concept detectors. MediaMill has published a collection of 101
machine-learned detectors [3]. LSCOM is working towards a
set of 1,000 detectors [4]. Both are learned from manually
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annotated examples from a news video corpus and have
varying performance. Annotation constitutes a major effort and
for any domain new concepts and new examples will have
to be added. It is unrealistic to assume that such a purely
data-driven approach will ever reach the richness of users’
vocabularies.

This richness of vocabulary is also a well-known problem
for humans describing video in words. A variety of terms
are used to describe the same video fragment by different
users, or by the same user in different contexts. Exploiting
ontologies [5]–[7] to structure terms employed by users can
make descriptions more consistent and can aid the user in
selecting the right term for a semantic concept.

Our aim in this paper is to link a general-purpose ontol-
ogy (with over 100,000 concepts) to a specific detector set
(with several 100s of concepts). In this way, the inherently
uncertain detector result will be embedded in a semantically
rich context. Hence we can, for example, disambiguate various
interpretations or find more general concepts. As the news
domain is broad and can in theory contain any topic, a large
and domain independent ontology is a must. As our ontology
we use WordNet [5], a lexical database in which nouns,
verbs, adjectives and adverbs are organized into synonym
sets (synsets) based on their meanings and use in natural
language. We establish a link between WordNet and a set
of 363 detectors learned from both MediaMill and LSCOM
annotations.

The first to add semantics to detectors by establishing
links with a general-purpose ontology were Hoogs et al. [8]
who connected a limited set of visual attributes to WordNet.
Combining low-level visual attributes with concepts in an
ontology is difficult as there is a big gap between the two.
In this paper we take a different, more intuitive approach: we
link high-level concept detectors to concepts in an ontology. It
should be noted, however, that detectors and the elements of
an ontology are of a different nature. Detectors are uncertain
whereas ontologies use symbolic facts. As a consequence
they have been studied in completely different research fields.
Having established a relation does not necessarily mean that
the results of a task originating in one field will improve when
augmented with techniques from the other field.

Our main research question therefore addresses the fol-
lowing: do semantically enriched detectors actually enhance
results in semantic retrieval tasks? We evaluate retrieval results
on 85 hours of international broadcast news data from the 2005
TRECVID benchmark [9].

The paper is organized as follows. We discuss related work
in Section II. We explain the process of adding semantics to
detectors in Section III. We then present different strategies for
selecting semantically enriched detectors for video retrieval in
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Section IV. Our experimental setup is presented in Section V
and the experimental results in Section VI. Finally, we con-
clude in Section VII.

II. RELATED WORK

Traditional video retrieval methods handle the notion of
concepts implicitly. They extract low-level features from the
video data and map this to a user query, assuming that the
low-level features correspond to the high-level semantics of
the query. Features can stem from textual resources that can be
associated to video, like closed captions, or speech recognition
results, e.g., [10], [11]. Alternatively, low-level visual features,
e.g., color [12], texture [13], shape [14], and spatiotemporal
features [15], are used in combination with query images.
More recently, approaches have been proposed that combine
text and image features for retrieval, e.g., [16]–[21]. We adhere
to a multimedia approach also, but we use the notion of
concepts explicitly, by expressing user queries in terms of
high-level concept detectors rather than low-level features.

Such a high-level video retrieval approach requires detection
of concepts. Early approaches aiming for concept detection
focused on the feasibility of mapping low-level features,
e.g., color, pitch, and term frequency, directly to high-level
semantic concepts, like commercials [22], nature [23], and
baseball [24]. This has yielded a variety of dedicated meth-
ods, which exploit simple decision rules to map low-level
features to a single semantic concept. Generic approaches for
concept detection [3], [25]–[29] have emerged as an adequate
alternative for specific methods. Generic approaches learn a
wide variety of concepts from a set of low-level features,
which are often fused in various ways. In contrast to specific
methods, these approaches exploit the observation that map-
ping multimedia features to concepts requires many decision
rules. These rules are distilled using machine-learning. The
machine-learning paradigm has proven to be quite successful
in terms of generic detection [26], [28]. However, concept
detection performance is still far from perfect; the state-of-
the-art typically obtains reasonable precision, but low recall.

Learning requires labeled examples. To cope with the de-
mand for labeled examples, Lin et al. initiated a collaborative
annotation effort in the TRECVID 2003 benchmark [30].
Using tools from Christel et al. [31] and Volkmer et al. [32],
[33] a common annotation effort was again made for the
TRECVID 2005 benchmark, yielding a large and accurate set
of labeled examples for 39 concepts taken from a predefined
collection [4]. We provided an extension of this compilation,
increasing the collection to 101 concept annotations, and also
donated the low-level features, classifier models, and resulting
concept detectors for this set of concepts on TRECVID 2005
and 2006 data as part of the MediaMill Challenge [3]. Re-
cently, the LSCOM consortium finished a manual annotation
effort for 1,000 concepts [4]; concept detectors are expected
to follow soon. This brings concept detection within reach of
research in ontology engineering, i.e., creating and maintaining
large, typically 10,000+ structured sets of shared concepts.

Ontologies provide background knowledge about various
topics. Examples are SnoMed, MeSH, the Gene Ontology

and the metathesaurus UMLS for health care, AAT and
Iconclass for art, and the generic ontologies WordNet and
Cyc. Ontologies have various uses in the annotation and
search process. Existing, well-established ontologies provide
a shared vocabulary. The vocabulary terms and their mean-
ings are agreed upon. Meaning is partially captured in the
(hierarchical) structure of the ontology. Polysemous terms
can be disambiguated, and relations between concepts in the
ontology can be used to support the annotation and search
process [34], [35]. Ontologies are currently being used for
manual annotation [36], [37], and where manual annotations
are not feasible or available, they have been used to aid
retrieval based on captions or other text associated with the
visual data [38]. These ontologies are, however, not suitable
for semantic retrieval based on the visual properties of the data,
since they contain little visual information about the concepts
they describe.

Some work has been done to combine ontologies with visual
features. Hoogs et al. [8] linked ontologies and visual features
by manually extending WordNet with tags describing visibility,
different aspects of motion, location inside or outside, and
frequency of occurrence. In [39] a visual ontology was built
that contains general and visual knowledge from two existing
sources: WordNet and MPEG-7. Bertini et al. [40] propose a
“pictorially enriched” ontology in which both linguistic terms
and visual prototypes make up the nodes of the ontology.
To the best of our knowledge, no work exists that links an
ontology to the high-level concepts appearing in video data.

III. ADDING SEMANTICS TO DETECTORS

Fig. 1 shows the schema used for semantically enriching
concept detectors. We call the semantically enriched collection
of concept detectors a multimedia thesaurus. It consists of
textual descriptions, links to WordNet synsets, and visual
models of the concept detectors, as detailed below.

Semantically Enriched Concept Detector hasPerformance Performance

Measure

Textual

Description

WordNet

Synset

Visual

Model

isDescribedBy correspondsTo

isDescribedBy

WordNet

Gloss

hasLearned
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Fig. 1. Data model for semantically enriched detectors. A semantically
enriched detector consists of a textual description, a link to WordNet, and
a visual model. We refer to a collection of semantically enriched concept
detectors as a multimedia thesaurus.

A. Textual Descriptions
Each concept detector ω is associated with a manually

created textual description, dω . It elaborates on the visual
elements that should — or should not — be present. For
example, the description for the concept detector storms is
“outdoor scenes of stormy weather, thunderstorms, lightning.”
It explicitly indicates that video containing lightning and
thunderstorms should be tagged as storms. The descriptions
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are by no means exhaustive, usually consisting of one or
two sentences [3], [4], but do contain a significant amount
of information about the different kinds of visual content
associated with each detector.

B. Links to WordNet
We manually create links between concept detectors and

WordNet synsets. To allow for scalability one prefers to obtain
the link between concept detectors and WordNet synsets auto-
matically. However, automatically mapping a concept detector
to an ontology is a difficult issue still. The manual process
guarantees high quality links, which are necessary to avoid
obscuring the experimental results. When automatic reasoning
methods become available that automatically link concepts
with high accuracy, these might at least partly substitute the
manual process. The links, lω , are based on a comparison
between the textual descriptions associated with each concept
detector and WordNet “glosses,” which are short descriptions
of the synsets. Each concept is linked to 1–6 synsets, with at
most two per part of speech (noun, verb, adjective). Concept
detectors for specific persons that are not present in WordNet
are linked as instances of a noun-synset. E.g., Ariel Sharon is
not present in WordNet and is therefore linked as an instance
of the noun-synset “Prime Minister.” Each concept was linked
to WordNet by two people independently. Overlap between the
linkers was consistently around 65%, and the concepts without
initial agreements were discussed until agreement was reached.

C. Visual Model
To arrive at a visual model vω for a concept detector, we

build on previous work in generic concept detection, e.g. [3],
[25]–[29]. Similar to this work, we view concept detection in
video as a pattern recognition problem. Given a pattern ~x, part
of a shot, the aim is to obtain a confidence measure, p(ω|~x),
which indicates whether semantic concept ω is present in a
shot.

Feature extraction is based on the method described in [3],
[29], which is robust across different video data sets while
maintaining competitive performance. We first extract a num-
ber of color invariant texture features per pixel. Based on
these, we label a set of predefined regions in a key frame
with similarity scores for a total of 15 low-level visual region
concepts, resulting in a 15-bin histogram. We vary the size of
the predefined regions to obtain a total of 8 concept occurrence
histograms that characterize both global and local color-texture
information. We concatenate the histograms to yield a 120-
dimensional visual feature vector per key frame, ~x.

For machine learning of concept detectors we adopt the
experimental setup proposed in [3]. Hence, we divide a data
set a priori into a non-overlapping train and validation set. The
training set A contains 70% of the data, and the validation set
B holds the remaining 30%. We obtain the a priori concept
occurrence by dividing the number of labeled video examples
by the total number of shots in the archive. To obtain the
confidence measure p(ω|~x) we use the Support Vector Ma-
chine (SVM) framework [41]; see [3], [26], [28]. Here we use
the LIBSVM implementation [42] with radial basis function

and probabilistic output [43]. SVM classifiers thus trained for
ω, result in an estimate p(ω|~x, ~q), where ~q are parameters of
the SVM. We obtain good parameter settings by performing
an iterative search on a large number of SVM parameter
combinations on training data. We measure performance of
all parameter combinations and select the combination that
yields the best performance after 3-fold cross validation. The
result of the parameter search over ~q is the improved visual
model vω = p(ω|~x, ~q∗), contracted to p∗(ω|~x).

Summarizing this section, a semantically enriched detector
ω is defined as:

ω = [dω, lω, vω] , (1)

and the multimedia thesaurus Ω is the union over all ω.

IV. DETECTOR SELECTION STRATEGIES

In the video retrieval paradigm, user queries may consist
of example videos, natural language text, or both. Although
current practice suggests that combining concept detectors
with traditional text and image retrieval techniques [44],
[45] may yield improved performance, they might as well
hurt performance as none of these techniques is perfect yet.
Speech recognition for the Dutch language, for example, is
problematic still. We therefore opt for automatic selection of
a concept detector appropriate to the query, allowing users to
quickly retrieve a list of relevant video fragments. We focus
on the selection of a single best detector to maximize retrieval
performance, and base our selection methods on the modalities
associated with the user query: the textual modality and the
visual modality. We also try to model the original user intent
motivating the query by using ontology knowledge.

Based on the different query modalities and the user intent
we identify three different approaches for selecting the most
appropriate detector, as shown in Fig. 2. In the textual modality
we use a detector selection method based on text matching.
When modeling the user’s intent, we elicit semantic knowledge
through natural language analysis and ontology linking, using
this to create a detector selection method based on ontology
querying. In the visual modality we use a detector selection
method based on semantic visual queries. Below we detail our
detector selection strategies.

A. Selection by Text Matching
As in our multimedia thesaurus each detector is associated

with a textual description dω , we can match the text specifica-
tion of a query with the textual description of a detector. Both
the description and the query text are normalized: commonly
occurring words are removed using the SMART stop list [46],
all text is converted to lower case, and punctuation is removed.
Each detector description, or document, is represented by a
term vector, where the elements in the vector correspond to
unique normalized words, or terms. The concept descriptions
are written in natural language - as such, the term distribution
roughly corresponds with Zipf’s law. Therefore, the vector
space model [47], which discounts for frequently occurring
terms and emphasizes rare ones, is appropriate to match the
words in the user query to words in the detector descriptions.
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Fig. 2. Three different strategies for selecting a semantically enriched concept
detector from a multimedia thesaurus, given a multimodal user query: text
matching, ontology querying, and semantic visual querying.

Specifically, with a collection of descriptions D, a candidate
description dω in D and query q containing terms ti, we use
the following implementation of the vector space model [48]:

sim(q, dω) =
∑

t∈q

tft,q · idft
normq

·
tft,dω

· idft
normd

· coordq,d , (2)

where
tft,X =

√

freq(t,X) normd =
√

|dω|

idft = 1 + log |D|
freq(t,D) coordq,d = |q∩dω|

|q|

normq =
√

∑

t∈q tft,q · idft
2 .

We select the detector with the highest similarity between
the query vector and the description vector, sim(q, dω), from
multimedia thesaurus Ω :

ωd = arg max
ω∈Ω

sim(q, dω) . (3)

B. Selection by Ontology Querying
When designing a detector selection method based on on-

tology querying, we attempt to model the user intent from the
query. We first perform syntactic disambiguation of the words
in the text query. The memory-based shallow parser described
in [49] is used to extract nouns and noun chunks from the
text. These are then translated to ontological concepts. First,
we look up each noun in WordNet. When a match has been
found the matched words are eliminated from further lookups.
Then, we look up any remaining nouns in WordNet. The result
is a number of WordNet noun-synsets related to the query text.

As described in Section III-B, the concept detectors are also
linked to WordNet synsets. We now query the ontology to de-
termine which concept detector is most related to the original
query text1. Here, we must define what “most related” means.

1An RDF/OWL representation of the ontology can be queried at http:
//www.cs.vu.nl/˜laurah/semantics2detectors.html/

Simply counting the number of relations between a query-
synset and a concept-detector-synset does not give a good
indication of relatedness, since the distances of the relations
in WordNet are not uniform. In addition, we encounter the
problem of distinguishing between concept detectors that are
equally close to the textual query. To overcome this we use
Resnik’s measure of information content [50], where a concept
is viewed as the composite of its synonyms and its sub-
concepts. E.g., vehicle is defined not only by all occurrences
of the word “vehicle”, but also by all occurrences of the words
“car”, “truck”, “SUV”, and so on. The information content of a
concept is negative the log likelihood of that concept occurring
in a tagged text, where the likelihood of a concept is defined
in terms of occurrences of that concept and all subconcepts,
or subsumers, of that concept:

p(lω) =

∑

n∈words(lω) count(n)

N
, (4)

where lω is a linked concept, words(lω) is the set of all noun
lemmas belonging to lω and all subsumers of lω , N is the total
number noun lemmas n observed in an external corpus, and
count(n) is the number of times each member of words(lω) is
observed in the external corpus. We used the SemCor news
corpus [51] as our external corpus. We select the concept
detector that maximizes information content:

ωl = arg max
ω∈Ω

(− log p(lω)) . (5)

C. Selection by Semantic Visual Querying
Concept detectors may also be selected by using semantic

visual querying. Although it is hard to expect that general
users will prefer to provide a number of image examples rather
than explicitly specifying the semantic concept they need,
semantic visual querying might prove a valuable additional
strategy when other selection strategies fail. For semantic
visual querying we follow the approach by Rasiwasia et
al. [52]. In this scenario all available visual models are applied
to the query image; next, the model with the highest posterior
probability is selected as most relevant. In our implementation,
concept detector selection based on semantic visual querying
first extracts visual features from the query images ~f , as
explained in Section III-C. Based on the features, we predict
for each query image a posterior concept probability. We select
the detector with the maximum posterior probability:

ωv = arg max
ω∈Ω

p∗(vω|~f) . (6)

V. EXPERIMENTAL SETUP

For evaluation we use the automatic search task of the 2005
TREC Video Retrieval Evaluation (TRECVID) [9]. Rather
than aiming for the best possible retrieval result, our goal is to
assess the influence of adding semantics to detectors. To that
end, our experiments focus on the evaluation of strategies for
selection of a single concept detector, given an information
need. We first determine the best possible single concept
detector for an information need, or topic, given an increasing
thesaurus of concept detectors. Then, we assess different
algorithms for the three strategies described in Section IV
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and select the best implementation for each strategy. We com-
pare the individual approaches; analyzing their strengths and
weaknesses. Finally, we explore a combination method that
fuses individual detector results. A schematic overview of the
experiments is depicted in Fig. 3. We will now detail the search
task, data set, multimedia thesaurus, and our experiments.

A. TRECVID Automatic Video Search Task
The goal of the search task is to satisfy a number of video

information needs. Given such a need as input, a video search
engine should produce a ranked list of results without human
intervention. The 2005 search task contains 24 search topics
in total. For each topic we return a ranked list of up to 1,000
results. The ground truth for all 24 topics is made available by
the TRECVID organizers, and to assess our retrieval methods
we use average precision (AP), following the standard in
TRECVID evaluations [9]. The average precision is a single-
valued measure that is proportional to the area under a recall-
precision curve. This value is the average of the precision
over all relevant judged results. Hence, it combines precision
and recall into one performance value. We report the mean
average precision (MAP) over all search topics as an indicator
for overall search system performance.

B. Data Set & Multimedia Thesaurus Building
The TRECVID 2005 video archive contains 169 hours

of video data, with 287 episodes from 13 broadcast news
shows from US, Arabic, and Chinese sources, recorded during
November 2004. The test data collection contains approx-
imately 85 hours of video data. The video archives come
accompanied by a common camera shot segmentation, which
serves as the unit for retrieval. We face the task of specifying
a set of semantic concept detectors for the TRECVID 2005
data set. We adopt the set of 101 concept detectors made
publicly available as part of the MediaMill Challenge [3].
These use the implementation sketched in Section III-C. Using
the same method, we learn concept detectors based on the
manual annotations of LSCOM [4]. Concept detectors in both
sets of annotations are related to program categories, settings,
people, objects, activities, events, and graphics. Concepts are
added to the combined thesaurus only when at least 30 positive
instances are identified in the TRECVID 2005 training set.
When concepts in the MediaMill and LSCOM thesauri link
to the same WordNet synset they are considered to be similar.
In those cases, the performance on validation set B is used
as selection criterion. This process results in a combined
thesaurus of 363 concept detectors.

C. Experiments
We investigate the impact of adding semantics to detectors

by performing the following 3 experiments.
• Experiment 1: What is the Influence of Increasing Con-

cept Detector Thesaurus Size for Video Search?
To assess the influence of growing concept detector thesauri
on video retrieval performance we randomly select a bag of
10 concepts from our thesaurus of 363 detectors. We evaluate

Fig. 3. Schematic overview of our video retrieval experiments, using the
conventions of Fig. 2. In experiment 1 we assess the influence of an increasing
thesaurus size on video retrieval performance. In experiment 2 we evaluate
three concept detector selection strategies. Experiment 3 explores an oracle
fusion of individual detector selection methods.

each detector in the bag against all 24 search topics and de-
termine the one that maximizes AP for each topic. Hence, we
determine the upper limit in MAP score obtainable with this
bag. In the next iteration, we select a random bag of 20 concept
detectors from the thesaurus, and once more the optimal MAP
is computed. This process is iterated until all concept detectors
have been selected. To reduce the influence of random effects,
which may disturb our judgement of increasing thesaurus size
on video search performance in both a positive and negative
manner, we repeat the random selection process 100 times.

• Experiment 2: How to Select the Most Appropriate
Concept Detector for a Video Search Query?

For each of the three modalities identified in Fig. 2, we
want to identify the most appropriate concept detector. Hence,
our second experiment consists of three sub-experiments, as
detailed below, and a fourth sub-experiment that compares the
three individual methods.

1) Experiment 2a: What is the Most Appropriate Concept
Detector using Text Matching?: We assess the influence of
text matching on concept detector selection by indexing the
concept detector descriptions in the Lucene [48] search engine,
using the implementation described in Section IV-A. Within
text retrieval, collections are generally quite large compared
to the 363 concept descriptions that we have available. We
hypothesize that in this small collection, where there are
comparatively few text terms to match, recall is a bigger issue
than in large collections. Effective ways to increase recall are
stemming, where words are reduced to their root forms, and
character n-gramming, where words are iteratively broken up
into sequences of n characters. We perform three experiments
for text matching — perfect match, stemmed match, and
character n-gram match. For stemming we use the popular
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Porter stemming algorithm [53]. For character n-grams we use
sequences of 4 characters as this approach has been shown to
perform well for English [54].

2) Experiment 2b: What is the Most Appropriate Concept
Detector using Ontology Querying?: As described in Sec-
tion IV-B, we query the ontology for the concept detector
most closely related to the noun-synsets in the query. Several
approaches exist for semantic distance between synsets (see
for example [55]). In this paper, we employ two approaches
that have shown promising results in earlier studies. The first
uses Resnik similarity, which is a measure of semantic similar-
ity in an is-a taxonomy based on information content [50] (see
Section IV-B); in the case of WordNet, the “is-a taxonomy”
translates to the hyponym/hypernym hierarchy. The second
approach uses subsumption relations (hyponym/hypernym) as
well as part-of relations. While the use of hyponym relations
is commonly accepted, a recent study [35] showed that the
inclusion of part-of and hypernym relations further improves
retrieval results, especially for visual data. A concept detector
directly matching the query synset is considered closest. After
that, a concept detector that has a hypernym relation to the
query synset is considered closest, followed by a concept
detector that has a hyponym or part-of relation to the query
synset. Many queries consist of more than one noun synset.
When this is the case, we first seek the closest concept detector
that is related to the first query synset. If there are no matching
concept detectors, we proceed to the next query synset, until
a detector is found or the last synset has been reached. In
addition, we test two methods to break ties between detectors
that are equally close to a query synset: (1) the information
content of the concept detector and (2) the a priori chance that
a concept is present in our data set.

3) Experiment 2c: What is the Most Appropriate Concept
Detector using Semantic Visual Querying?: Selecting concept
detectors using semantic visual querying may be a brittle
approach when concepts are not distributed equally in the data
set, as is often the case in realistic video retrieval applications.
Rather than selecting the concept with the maximum score —
which is often the most robust but also the least informative
one, e.g. person, face, outdoor — we also assess a heuristic se-
lection mechanism that takes concept frequency into account.
Similar to the vector space model used in Section IV-A, we
discount for frequently occurring terms and we emphasize rare
ones. We take the posterior probability as a substitute for term
frequency and divide by the logarithm of the inverse concept
frequency. By doing so, we prioritize less frequent, but more
discriminative, concepts with reasonable posterior probability
scores over frequent, but less discriminative, concepts with
high posterior probability scores.

4) Experiment 2d: What are the Strengths and Weaknesses
of the Selection Strategies?: We compare the three differ-
ent selection strategies quantitatively as well as qualitatively.
Based on previous TRECVID search results [9], [16]–[21],
we anticipate that the AP varies highly per topic. Therefore,
we normalize the AP scores of the three methods by dividing
them by the AP score of the best possible detector. These
percentages give a better indication of the differences between
the methods than the raw AP data. This has the added

advantage that unreliable statistical results due to outliers are
avoided.

We examine if there are significant differences between
the three detector selection methods. Since the data are not
normally distributed we perform a nonparametric Kruskal-
Wallis test. Then, we perform pairwise Wilcoxon signed rank
tests. We look for correlation between the three selection
methods with Spearman’s rank correlation coefficient. Finally,
we qualitatively examine the differences by looking at which
detectors are selected by the three methods.

• Experiment 3: What is the Influence of Combining
Detector Selection Strategies?

Since the individual concept detector selection strategies in
experiment 3 work with different modalities, it is natural to ask
to which extent they complement each other. A combination
of some or all of them could further improve video retrieval
performance [56]. Various combination methods exists; the
linear combination of individual methods is often evaluated
as one of the most effective combination methods, see for
example [57], [58]. We adopt a linear combination function,
similar to [21], [58], which uses a single combination factor
λ1 for pair-wise combination of two concept detectors, defined
as:

p∗2(ω1, ω2|~x) = λ1 · p
∗(ω1|~x) + (1 − λ1) · p

∗(ω2|~x), (7)

where λ1 ∈ [0, 1]. To allow for three-way combination of
selected concept detectors we extend eq. (7) with an additional
combination factor λ2, defined as:

p∗3(ω1, ω2, ω3|~x) =λ1 · p
∗(ω1|~x) + λ2 · p

∗(ω2|~x)

+ (1 − (λ1 + λ2)) · p
∗(ω3|~x),

(8)

where λ2 ∈ [0, 1], and λ1 + λ2 ≤ 1. To assess the influence
of combining detector selection mechanisms, we perform an
experiment that evaluates all possible linear combinations with
steps of 0.1 for both λ1 and λ2. We term this combination
“oracle fusion” as it uses the test set results to select the
optimal combination on a per-query basis. It is included to
explore the upper limits of performance that are reachable by
combining detector selection strategies.

We compare the oracle fusion experiments using a
Kruskal-Wallis test and pairwise Wilcoxon signed rank tests.
Wilcoxon’s test is also used to examine differences between
the results of the fusion experiments and the results of the
single-method experiments.

VI. RESULTS

A. Experiment 1: What is the Influence of Increasing Concept
Detector Thesaurus Size for Video Search?

We summarize the influence of an increasing thesaurus of
concept detectors on video search performance in the box
plot in Fig. 4. There is a clear positive correlation between
the number of concept detectors in the thesaurus and video
retrieval performance. The box plot also shows that the median
is shifted towards the bottom of the box for the first 30 concept
detectors, even when the outliers are ignored. This indicates
that, on average, performance is low for small thesauri, but
some detectors perform well for specific topics. However, it
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Influence of Thesaurus Size on Video Search Performance

Concept Detectors in Thesaurus

M
e

a
n

A
v

e
ra

g
e

 P
re

c
is

io
n

Fig. 4. Box plot showing the positive influence of an increasing thesaurus
size, in random bags of 10 machine learned concept detectors, on MAP over
24 topics from the TRECVID 2005 video retrieval benchmark. Extreme values
after 100 repetitions are marked (+) as outliers.

is unlikely that a large variety of topics can be addressed
with a small thesaurus, which explains the skew. With only 10
randomly selected concept detectors the median MAP score is
0.008. Indeed, the usage of few concept detectors is of limited
use for video retrieval. However, a steady increase in thesaurus
size has a positive influence on search performance. For the
first 60 concept detectors this relation is even linear, increasing
MAP from 0.008 to 0.047. When thesauri grow, more search
topics can be addressed with good performance. However,
the shift towards the high end of the box indicates that a
substantial number of concept detectors in our thesaurus do not
perform accurate enough, yet, to be decisive for performance.
As a result, when more than 70 concept detectors are added,
the increase is less strong, but it keeps rising until the limit
of this thesaurus is reached for the maximum obtainable MAP
of 0.087. Note that this value is competitive with the state-of-
the-art in video search [9].

B. Experiment 2: How to Select the Most Appropriate Concept
Detector for a Video Search Query?

Due to lack of space we are not able to provide detailed
breakdowns of scores for all our experiments. Table I lists the
AP scores for the selected concept detector methods (columns
3–5) and for the best possible single detector (column 2).

1) Experiment 2a: What is the Most Appropriate Concept
Detector using Text Matching?: Contrary to our expectations,
we found that using exact text matching provided the best re-
sults with a MAP score of 0.0449, versus 0.0161 for stemmed
text, and 0.0290 for n-grammed text. It appears that when
retrieving detector descriptions using query text, it is more
important to get exact matches to the original query terms
than it is to aim for recall and increase the number of detector
descriptions retrieved. We expect that this is due to our choice
to select only a single best concept detector match. If we allow
multiple detectors to be returned, techniques such as stemming
and n-gramming might have a beneficial impact.

In the remainder we will use the exact text matching
approach for concept detector selection using textual matches.

2) Experiment 2b: What is the Most Appropriate Concept
Detector using Ontology Querying?: The approach using

Resnik similarity (approach 1) was outperformed by the
approach using subsumption/part-of relations (approach 2)
regarding mean average precision (0.0218 and 0.0485 respec-
tively), but the difference was not statistically significant.
Examining the selected detectors, we see that approach 1
performs better on person x queries, while approach 2 benefits
from the use of hypernyms.

A comparison between the use of information content to
the use of a priori chances for distinguishing between concept
detectors that are equally close to the topic, shows that the
differences are minimal. Only four topics get a different
detector, and the difference in MAP is only 0.0034. A possible
explanation is that for most topics we find one concept detector
that is closest to the topic synsets, which means that neither
information content, nor a priori chances have to be used.
In the remaining sections, we continue with the results of the
subsumption/part-of approach using information content, since
this gives us the highest AP scores.

Using this approach, a detector was found for all but
one of the queries of TRECVID 2005 that is at most one
hypenym/hyponym/part-of relation away from a topic synset.
This suggests that our large detector pool has a good coverage
of the TRECVID queries.

3) Experiment 2c: What is the Most Appropriate Concept
Detector using Semantic Visual Querying?: We observe that
selection of concept detectors from semantic visual examples
profits from a normalization step that takes a priori concept
occurrence into account. When we do not normalize the
posterior probability, selection based on semantic examples
picks in 23 out of 24 queries (data not shown) one of the
four most frequent concepts appearing in this data set, namely
people, face, overlayed text, or outdoor ( [3, Table 1]). While
this is often correct, the concept is so general that it hardly
contributes to retrieval performance. The only exception is the
search topic for tennis players, where the selected sport games
detector has good AP.

When we take a priori concept frequency into account,
search results improve. Results of this experiment are summa-
rized in the last column of Table I. We observe that selected
detectors sometimes accurately reflect the semantics of the
search topics, e.g., Iyad Allawi, Graphical Map, Tennis Game,
Helicopter Hovering, Cigar Boats, Basketball Game, and
Grass. This is not always the case however, and questionable
detectors are selected for some search topics. This especially
hurts the person x queries; for the topic find shots of George
Bush entering or leaving a vehicle, for example, the optimal
detector is rocket propelled grenades. However, a detector that
matches well in terms of semantics is no guarantee for good
search performance. In cases such as find shots of graphical
maps with Baghdad marked or find shots of ships, the selected
detectors fit the topic, but perform only moderately well. In
the first case the detector is not specific enough, in the second
case its performance is not good enough. These results suggest
that a measure is needed indicating when incorrect optimal
detectors should be preferred over correct ones with bad video
search results.

4) Experiment 2d: What are the Strengths and Weaknesses
of the Selection Strategies?: We found no significant differ-
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TABLE I
COMPARISON OF THREE DETECTOR SELECTION STRATEGIES FOR VIDEO RETRIEVAL. SEARCH RESULTS ARE COMPARED AGAINST THE BEST POSSIBLE

CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE PERCENTAGES OF AVERAGE PRECISION (AP%). THE BEST RESULT IS GIVEN IN BOLD.

Detector Selection Strategies

Best Possible 2a: Text Matching 2b: Ontology Querying 2c: Semantic Visual Querying

Search Topic Best Detector AP Selected Detector AP% Selected Detector AP% Selected Detector AP%
Two visible tennis players on the court Athlete 0.6501 Tennis Game 89.7% Athlete 100.0% Tennis Game 89.7%
A goal being made in a soccer match Stadium 0.3429 Soccer Game 31.7% Soccer Game 31.7% Grass 51.0%
Basketball players on the court Indoor Sports Venue 0.2801 Court 0.0% Athlete 30.4% Basketball Game 81.5%
A meeting with a large table and people Furniture 0.1045 Conference Room 73.6% Meeting 24.8% Flag 1.0%
People with banners or signs People Marching 0.1013 Demonstration or Protest 73.7% Group 5.3% Desert 0.4%
One or more military vehicles Armored Vehicles 0.0892 Tanks 38.1% Tanks 38.1% Charts 0.0%
Helicopter in flight Helicopters 0.0791 Helicopter Hovering 53.1% Helicopters 100.0% Helicopter Hovering 53.1%
A road with one or more cars Car 0.0728 Car Crash 7.9% Road 65.9% Helicopters 4.4%
An airplane taking off Classroom 0.0526 Airplane Flying 10.8% Airplane Flying 10.8% Helicopters 87.3%
A tall building Office Building 0.0469 Tower 89.8% Building 98.8% Grass 0.2%
A ship or boat Cloud 0.0427 Boat or Ship 46.5% Boat or Ship 46.5% Cigar Boats 39.5%
George Bush entering or leaving vehicle Rocket Propelled Grenades 0.0365 George Bush jr 6.6% George Bush jr 6.6% Helicopter Hovering 0.0%
Omar Karami Chair 0.0277 Ariel Sharon 0.8% Ariel Sharon 0.8% Yasser Arafat 3.5%
Graphic map of Iraq, Baghdad marked Graphical Map 0.0269 Graphical Map 100.0% Graphical Map 100.0% Graphical Map 100.0%
Condoleeza Rice US National Flag 0.0237 - 0.0% - 0.0% Capitol 0.4%
One or more palm trees Weapons 0.0225 Tropical Setting 1.6% Trees 23.4% Fire Weapon 44.3%
Something on fire with flames and smoke Violence 0.0151 Smoke 95.1% Vehicle 41.4% Soccer Game 18.9%
Mahmoud Abbas Conference Room 0.0134 Ariel Sharon 0.5% Ariel Sharon 0.5% Yasser Arafat 2.3%
Hu Jintao Iyad Allawi 0.0123 Hu Jintao 4.3% George Bush sr 2.4% Non-US National Flags 55.0%
People shaking hands Beards 0.0110 Handshaking 14.6% Group 10.2% Yasser Arafat 18.0%
Office setting Computers 0.0095 Computers 100.0% Office 90.4% Emile Lahoud 1.9%
Iyad Allawi Iyad Allawi 0.0095 Iyad Allawi 100.0% Ariel Sharon 46.6% Iyad Allawi 100.0%
Tony Blair Election Campaign Address 0.0067 Tony Blair 0.0% Tony Blair 0.0% George Bush jr 29.6%
People entering or leaving a building Muslims 0.0044 USA Government Building 6.4% Group 27.0% Reporters 8.5%
Mean 0.0867 50.8% 56.0% 55.6%
Number of highest scores . 9 9 12

ences between the results of the three individual selection
experiments. Experiments 2a-2b, 2a-2c and 2b-2c also failed
to show differences. We found a positive correlation between
experiments 2a-2b, which was lacking between 2a-2c and
2b-2c. This suggests that the text-based and WordNet-based
concept detector selection methods perform well on the same
set of topics (and perform badly on the same set of topics)
while the visual method scores well on other topics. This is
supported by the fact that the text-based and WordNet-based
methods select the same detector for 10 topics, while the visual
method agreed on a detector only four times with the text-
based method and only once with the WordNet based method.

C. Experiment 3: What is the Influence of Combining Detector
Selection Strategies?

We summarize the results of our combination experiments
in Table II. The increase in MAP for all fusion experiments
indicates that combining detector selection strategies pays
off in general. Pair-wise combination is especially effective
when two different concept detectors obtain good average
precision in isolation. For search topics such as find shots
with tall buildings and find shots of an office setting the
pair-wise combination of detectors selected by text matching
and ontology querying even improves substantially upon the
best possible single detector. A combination of selection by
ontology querying and selection using semantic visual exam-
ples yields the most effective pair-wise combination strategy
in terms of overall performance. However, no significant
differences were found between the three types of pair-wise

combination results. Since a large overlap in selected detectors
exists between the three different selection strategies, three-
way combination often boils down to pair-wise combination.
For those search topics where three different concept detec-
tors are selected, e.g., find shots of palm trees, three-way
combination yields a further, but modest, increase over the
best pair-wise combination. Again, no significant difference
was found between pair-wise and three-way combination.
However, using a Wilcoxons signed rank test, we did find
significant differences between the results of the combination
experiments and the results of the single-method experiments.
The fusion experiments were consistently better at the 0.01
α-level.

VII. DISCUSSION & CONCLUSION

We view this paper as a first step in a novel multi-
disciplinary approach to tackle the tough problem of semantic
video retrieval. The results are certainly not conclusive in the
sense that they provide a solid basis for preferring a particular
approach over others.

Experiment 1 gives indications about the number of the-
saurus concepts (= thesaurus size) needed for maximum video
retrieval performance. In Fig. 4 we can see that a thesaurus size
of 100–200 already comes close to maximum performance.
However, our experiments consider only 24 topics. A wider
range of topics will likely require a larger thesaurus size to
reach this same performance level.

In the detector selection experiment, experiment 2 we see
that both in terms of MAP and in terms of the highest number



SNOEK ET AL.: ADDING SEMANTICS TO DETECTORS FOR VIDEO RETRIEVAL 9

TABLE II
COMPARISON OF PAIR-WISE (EQ. 7) AND THREE-WAY (EQ. 8) ORACLE FUSION OF THE DETECTOR SELECTION STRATEGIES FROM TABLE I. SEARCH

RESULTS ARE COMPARED, WITH VARYING λ1 AND λ2 , AGAINST THE BEST POSSIBLE CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE

PERCENTAGES OF AVERAGE PRECISION (AP%). FUSION RESULTS THAT RELY ON ONE DETECTOR ONLY ARE INDICATED WITH —. THE BEST RESULT IS

GIVEN IN BOLD.

Oracle Fusion of Detector Selection Strategies

Best Possible 2a + 2b 2a + 2c 2b + 2c 2a + 2b + 2c

Search Topic Best Detector AP λ1 AP% λ1 AP% λ1 AP% λ1 λ2 AP%
Two visible tennis players on the court Athlete 0.6501 0.7 105.4% — 89.7% 0.3 105.4% 0.0 0.3 105.4%
A goal being made in a soccer match Stadium 0.3429 — 31.7% 0.3 76.5% 0.3 76.5% 0.0 0.3 76.5%
Basketball players on the court Indoor Sports Venue 0.2801 0.9 30.4% 0.2 81.6% 0.2 86.1% 0.0 0.2 86.1%
A meeting with a large table and people Furniture 0.1045 — 73.6% — 73.6% 0.9 25.0% — — 73.6%
People with banners or signs People Marching 0.1013 — 73.7% — 73.7% 0.6 5.3% — — 73.7%
One or more military vehicles Armored Vehicles 0.0892 — 38.1% — 38.1% — 38.1% — — 38.1%
Helicopter in flight Helicopters 0.0791 — 100.0% — 53.1% — 100.0% — — 100.0%
A road with one or more cars Car 0.0728 0.9 66.9% — 7.9% 0.5 66.6% 0.9 0.1 66.9%
An airplane taking off Classroom 0.0526 — 10.8% — 87.3% — 87.3% — — 87.3%
A tall building Office Building 0.0469 0.8 141.2% — 89.8% 0.9 98.8% 0.8 0.2 141.2%
A ship or boat Cloud 0.0427 — 46.5% 0.1 55.8% 0.1 55.8% 0.0 0.1 55.8%
George Bush entering or leaving vehicle Rocket Propelled Grenades 0.0365 — 6.6% 0.6 6.6% 0.6 6.6% 0.0 0.6 6.6%
Omar Karami Chair 0.0277 — 0.8% 0.9 4.0% 0.9 4.0% 0.0 0.9 4.0%
Graphic map of Iraq, Baghdad marked Graphical Map 0.0269 — 100.0% — 100.0% — 100.0% — — 100.0%
Condoleeza Rice US National Flag 0.0237 — 0.4% — 0.4% — — 0.4%
One or more palm trees Weapons 0.0225 0.1 23.4% 0.9 48.7% 0.8 49.7% 0.5 0.4 53.2%
Something on fire with flames and smoke Violence 0.0151 0.9 100.7% 0.9 102.6% 0.7 38.4% 0.8 0.1 103.0%
Mahmoud Abbas Conference Room 0.0134 — 0.5% 0.9 2.4% 0.9 2.4% 0.0 0.9 2.4%
Hu Jintao Iyad Allawi 0.0123 0.9 5.5% 0.9 55.5% 0.8 55.5% 0.4 0.4 56.2%
People shaking hands Beards 0.0110 — 14.6% 0.9 19.6% 0.1 29.7% 0.0 0.1 29.7%
Office setting Computers 0.0095 0.1 154.9% — 100.0% — 90.4% 0.1 0.9 154.9%
Iyad Allawi Iyad Allawi 0.0095 0.1 121.1% — 100.0% 0.9 121.1% 0.0 0.9 121.1%
Tony Blair Election Campaign Address 0.0067 — 0.0% 0.9 29.7% 0.9 29.7% 0.0 0.9 29.7%
People entering or leaving a building Muslims 0.0044 0.9 28.2% 0.4 9.2% 0.6 28.3% 0.8 0.1 29.3%
Mean 0.0867 65.5% 72.4% 75.9% 83.4%
Number of highest scores . 10 12 15 24

of “best detector selections” the three selection strategies show
comparable results. For text matching (2a) we found that
exact matching works best, but this is probably a consequence
of the fact that we select only a single detector. For on-
tology querying (2b) it is interesting to note the distinction
between the hyponym/part-of and the Resnik method; the
former performing best on “general concept” queries, the
latter on “person x” queries. This suggests the use of a more
refined concept-detector selection mechanism. Semantic visual
querying (2c) was shown to correlate better with a different
set of topics than both text matching and ontology querying.
For this selection method we note the importance of avoiding
frequently occurring but non-discriminative concept detectors,
such as for people and outdoor.

The fusion experiments (3) clearly show that we can gain
by combining selection methods. It indicates that we can
come close to achieving optimal concept-detector selection
scores if we understand the situations in which it is useful to
combine selection mechanisms. We should consider including
a “selector-of-selector” step based on the query topic, which
would propose a (combination of) selection method(s) that is
likely to be optimal. At the moment, the set of topics included
in this study provides insufficient information as a basis for

such a meta-selection. More experimentation will be needed
to clarify in which cases (e.g., for which classes of topics) two
or more selection methods benefit from combination. The goal
should be to identify, for example, whether topics involving
named people require a different selection method than a topic
involving a general concept such as road. Studying the nature
of query topics might also reveal whether we are missing out
important other categories of topics.

One limitation of our approach is that we have only con-
sidered situations in which the three individual methods select
precisely one detector. This is likely to have been too strong. It
is easy to imagine situations in which the selection strategies
produce a set of multiple detectors. In principle, this would
make it possible to get a higher average precision score than
that of a single detector (which is the maximum score we can
achieve in this study). However, a major increase in detection
performance is needed before concept detector combination is
really successful. We are planning experiments in which we
lift this limitation.

Taking a broader look, we also need to consider the effect
of the domain we are working in. News video is a domain with
special characteristics. The stylized shots, the highly domain-
specific concepts (female anchor) and other factors are likely
to make it difficult to predict how our methods would behave
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in other video retrieval domains, such as documentaries.
Finally, coming back to the research question we started

with: have we shown that semantically-enriched detectors
enhance results in semantic retrieval tasks? Our results do not
yet permit us to respond with a firm “yes” to this question,
but the results are encouraging. We have scratched the surface
of a semantic video retrieval approach which combines dif-
ferent techniques. The results suggest promising new lines of
research.
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