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Abstract—In this paper, we propose an automatic video
retrieval method basedon high-level conceptdetectors.Reseach
in video analysis has reachedthe point where over 100 concept
detectors can be learned in a generic fashion, albeit with mixed
performance. Such a set of detectorsis very small still compared
to ontologies aiming to capture the full vocakulary a user
has. We aim to throw a bridge between the two elds by
building a multimedia thesaurus, i.e. a set of machine learned
conceptdetectorsthat is enriched with semanticdescriptionsand
semantic structur e obtained from WordNet. Given a multimodal
user query, we identify three strategies to select a relevant
detector from this thesaurus, namely: text matching, ontology
querying, and semantic visual querying. We evaluate the meth-
ods against the automatic search task of the TRECVID 2005
video retrieval benchmark, using a news video archive of 85
hours in combination with a thesaurus of 363 machine learned
concept detectors. We assesghe in uence of thesaurus size on
video search performance, evaluate and compare the multimodal
selection strategies for concept detectors, and nally discuss
their combined potential using oracle fusion. The set of queries
in the TRECVID 2005 corpus is too small to be de nite in
our conclusions,but the results suggestpromising new lines of
reseach.

Index Terms—Video retrieval, concept learning, knowledge
modeling, content analysisand indexing, multimedia information
systems

I. INTRODUCTION

Ideo hasbecomethe mediumof choicein applications
suchascommunicationgducationandentertainmentin
eachof these the video carriesa semantianessagevhich can
be very versatile.For a humanthe meaningof the message
is immediate,but for a computerthat is far from true. This
discrepang is commonlyreferredto asthe semanticgap [1].
Semanticvideo indexing is the processof automatically
detecting the presenceof a semantic conceptin a video
stream.It is impossibleto develop a dedicateddetectorfor
eachpossibleconceptasthereare just too mary conceptsA
recenttrend in semanticvideo indexing has thereforebeen
to searchfor generic methodsthat learn a detector from
a set of examples[2]. This emphasison generic indexing
has openedup the possibility of moving to larger sets of
concepidetectorsMediaMill haspublisheda collectionof 101
machine-learnedetectorg3]. LSCOM is working towardsa
set of 1,000 detectors[4]. Both are learnedfrom manually
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annotatedexamples from a news video corpus and have
varying performanceAnnotationconstitutesa majoreffort and
for any domain newv conceptsand nev exampleswill have
to be added.It is unrealisticto assumethat such a purely
data-drven approachwill ever reachthe richnessof users'
vocahularies.

This richnessof vocahlulary is also a well-known problem
for humansdescribingvideo in words. A variety of terms
are usedto describethe samevideo fragmentby different
users,or by the sameuserin different contets. Exploiting
ontologies[5]-[7] to structuretermsemplo/ed by userscan
make descriptionsmore consistentand can aid the userin
selectingthe right term for a semanticconcept.

Our aim in this paperis to link a general-purposentol-
ogy (with over 100,000concepts)to a speci ¢ detectorset
(with several 100s of concepts).In this way, the inherently
uncertaindetectorresultwill be embeddedn a semantically
rich contet. Hencewe can,for example,disambiguatevarious
interpretationsor nd more generalconcepts.As the newvs
domainis broadand canin theory containary topic, a large
anddomainindependenbntologyis a must.As our ontology
we use WordNet [5], a lexical databasein which nouns,
verbs, adjectves and adwerbs are organized into synorym
sets (synsets)basedon their meaningsand use in natural
language.We establisha link betweenWordNet and a set
of 363 detectorslearnedfrom both MediaMill and LSCOM
annotations.

The rst to add semanticsto detectorsby establishing
links with a general-purposentology were Hoogset al. [8]
who connecteda limited setof visual attributesto WordNet.
Combining low-level visual attributes with conceptsin an
ontology is dif cult asthereis a big gap betweenthe two.
In this paperwe take a different, moreintuitive approachwe
link high-level conceptdetectorgo conceptsn anontology It
shouldbe noted, however, that detectorsand the elementsof
an ontology are of a differentnature.Detectorsare uncertain
whereasontologies use symbolic facts. As a consequence
they have beenstudiedin completelydifferentresearchelds.
Having established relation doesnot necessarilymeanthat
theresultsof ataskoriginatingin one eld will improve when
augmentedvith techniquedrom the other eld.

Our main researchquestiontherefore addresseghe fol-
lowing: do semanticallyenricheddetectorsactually enhance
resultsin semantiaetrieval tasksA\Ve evaluateretrieval results
on 85 hoursof internationabroadcashews datafrom the 2005
TRECVID benchmarK9].

The paperis organizedasfollows. We discussrelatedwork
in Sectionll. We explain the processof addingsemanticgo
detectorsn Sectionlll. We thenpresentifferentstratgiesfor
selectingsemanticallyenricheddetectordor videoretrieval in



SectionlV. Our experimentalsetupis presentedn SectionV
and the experimentalresultsin SectionVI. Finally, we con-
cludein SectionVII.

Il. RELATED WORK

Traditional video retrieval methodshandle the notion of
conceptsimplicitly. They extract low-level featuresfrom the
video data and map this to a user query assumingthat the
low-level featurescorrespondto the high-level semanticsof
the query Featuresanstemfrom textual resourceshatcanbe
associatedo video, lik e closedcaptionsor speectrecognition
results,e.g.,[10], [11]. Alternatively, low-level visualfeatures,
e.g., color [12], texture [13], shape[14], and spatiotemporal
features[15], are usedin combinationwith query images.
More recently approachesiave beenproposedthat combine
text andimagefeaturedor retrieval, e.g.,[16]-[21]. We adhere
to a multimedia approachalso, but we use the notion of
conceptsexplicitly, by expressinguser queriesin terms of
high-level conceptdetectorsatherthan low-level features.

Suchahigh-level videoretrieval approachrequiresdetection
of concepts.Early approachesiming for conceptdetection
focused on the feasibility of mapping low-level features,
e.g., color, pitch, and term frequeng, directly to high-level
semanticconcepts,like commecials [22], nature [23], and
baseball[24]. This hasyielded a variety of dedicatedmeth-
ods, which exploit simple decision rules to map low-level
featuresto a single semanticconcept.Genericapproaches$or
conceptdetection[3], [25]-[29] have emepgedasan adequate
alternatve for speci c methods.Genericapproachedearn a
wide variety of conceptsfrom a set of low-level features,
which are often fusedin variousways. In contrastto speci c
methods,theseapproache®xploit the obsenation that map-
ping multimediafeaturesto conceptsrequiresmary decision
rules. Theserules are distilled using machine-learningThe
machine-learningparadigmhasproven to be quite successful
in terms of generic detection[26], [28]. However, concept
detectionperformanceis still far from perfect; the state-of-
the-arttypically obtainsreasonablgrecision,but low recall.

Learningrequireslabeledexamples.To copewith the de-
mandfor labeledexamplesLin et al. initiated a collaboratve
annotationeffort in the TRECVID 2003 benchmark[30].
Using tools from Christel et al. [31] and Volkmer et al. [32],
[33] a common annotationeffort was again made for the
TRECVID 2005benchmarkyielding a large and accurateset
of labeledexamplesfor 39 conceptgaken from a prede ned
collection [4]. We provided an extensionof this compilation,
increasingthe collectionto 101 conceptannotationsandalso
donatedhe low-level featuresclassi er models,andresulting
conceptdetectordfor this setof conceptson TRECVID 2005
and 2006 data as part of the MediaMill Challenge[3]. Re-
cently the LSCOM consortium nished a manualannotation
effort for 1,000 concepts[4]; conceptdetectorsare expected
to follow soon.This brings conceptdetectionwithin reachof
researclin ontologyengineeringi.e., creatingandmaintaining
large, typically 10,000+structuredsetsof sharedconcepts.

Ontologies provide backgroundknowledge about various
topics. Examplesare SnoMed, MeSH, the Gene Ontology
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and the metathesaurus2JMLS for health care, AAT and

Iconclassfor art, and the generic ontologies WordNet and

Cyc. Ontologies have various usesin the annotationand

searchprocess.Existing, well-establishecontologiesprovide

a sharedvocahulary. The vocahulary terms and their mean-
ings are agreedupon. Meaning is partially capturedin the

(hierarchical) structure of the ontology Polysemousterms
can be disambiguatedand relationsbetweenconceptsin the

ontology can be usedto supportthe annotationand search
process[34], [35]. Ontologiesare currently being used for

manualannotation[36], [37], and where manualannotations
are not feasible or available, they have been usedto aid

retrieval basedon captionsor other text associatedvith the

visual data[38]. Theseontologiesare, however, not suitable
for semantiaetrieval basednthevisualpropertiesof thedata,
sincethey containlittle visualinformationaboutthe concepts
they describe.

Somework hasbeendoneto combineontologieswith visual
featuresHoogset al. [8] linked ontologiesandvisual features
by manuallyextendingWordNetwith tagsdescribingvisibility,
different aspectsof motion, location inside or outside, and
frequeng of occurrenceln [39] a visual ontology was built
that containsgeneraland visual knowledgefrom two existing
sourcesWordNetand MPEG-7.Bertini et al. [40] proposea
“pictorially enriched”ontologyin which both linguistic terms
and visual prototypesmake up the nodesof the ontology
To the bestof our knowledge, no work exists that links an
ontologyto the high-level conceptsappearingn video data.

I1l. ADDING SEMANTICS TO DETECTORS

Fig. 1 shavs the schemausedfor semanticallyenriching
conceptdetectorsWe call the semanticallyenrichedcollection
of conceptdetectorsa multimediathesaurus It consistsof
textual descriptions,links to WordNet synsets,and visual
modelsof the conceptdetectorsas detailedbelow.

Video Performance
<t hasExamples = Semantically Enriched Concept Detector hasPerformance:
Examples ® 4 a Measure
asLeamed

isDescribedBy
WordNet
Synset

Textual
Description
isDescribedBy
WordNet
Gloss

Fig. 1. Data model for semanticallyenricheddetectors.A semantically
enricheddetectorconsistsof a textual description,a link to WordNet, and
a visual model. We refer to a collection of semanticallyenrichedconcept
detectorsas a multimediathesaurus.

correspondsTo h

AJ A

Visual
Model

A. Textual Descriptions

Each conceptdetector! is associatedwith a manually
createdtextual description,d; . It elaborateson the visual
elementsthat should — or should not — be present.For
example, the descriptionfor the conceptdetectorstormsis
“outdoor scenef stormyweatheythunderstormsljghtning”
It explicitly indicates that video containing lightning and
thunderstormsshould be taggedas storms. The descriptions



SNOEKET AL.: ADDING SEMANTICS TO DETECTORSFOR VIDEO RETRIEVAL

are by no meansexhaustve, usually consisting of one or
two sentenceg3], [4], but do containa signi cant amount
of information about the different kinds of visual content
associatedvith eachdetector

B. Linksto WordNet

We manually createlinks betweenconceptdetectorsand
WordNetsynsetsTo allow for scalabilityoneprefersto obtain
thelink betweenconceptdetectorsaand WordNetsynsetsaauto-
matically However, automaticallymappinga conceptdetector
to an ontology is a dif cult issuestill. The manualprocess
guaranteedigh quality links, which are necessaryto avoid
obscuringthe experimentalresults.Whenautomaticreasoning
methodsbecomeavailable that automatically link concepts
with high accurag, thesemight at leastpartly substitutethe
manual process.The links, |, , are basedon a comparison
betweenthe textual descriptionsassociatedavith eachconcept
detectorand WordNet “glosses, which are shortdescriptions
of the synsetsEachconceptis linked to 1-6 synsetswith at
mosttwo per part of speech(noun, verb, adjectve). Concept
detectordfor speci ¢ personghatarenot presentn WordNet
arelinked asinstancesf a noun-synsetE.g., Ariel Shaon is
not presentin WordNetand is thereforelinked asan instance
of the noun-synsetPrime Minister” Eachconceptwaslinked
to WordNetby two peopleindependentlyOverlapbetweerthe
linkerswasconsistentlyaround65%, andthe conceptswithout
initial agreementwerediscussedintil agreementvasreached.

C. Visual Model

To arrive at a visual modelv, for a conceptdetectoy we
build on previous work in genericconceptdetection,e.g.[3],
[25]-[29]. Similar to this work, we view conceptdetectionin
video asa patternrecognitionproblem.Given a patternx, part
of a shot, the aim is to obtaina con dencemeasurep(! jx),
which indicateswhethersemanticconcept! is presentin a
shot.

Featureextractionis basedon the methoddescribedn [3],
[29], which is robust acrossdifferent video data setswhile
maintainingcompetitve performanceWe rst extracta num-
ber of color invariant texture featuresper pixel. Basedon
these,we label a set of prede nedregionsin a key frame
with similarity scoresfor a total of 15 low-level visual region
conceptsresultingin a 15-bin histogram.We vary the size of
theprede nedregionsto obtainatotal of 8 conceptoccurrence
histogramghatcharacterizédothglobalandlocal colortexture
information. We concatenatehe histogramsto yield a 120-
dimensionalvisual featurevector per key frame, x.

For machinelearning of conceptdetectorswe adopt the
experimentalsetupproposedn [3]. Hence,we divide a data
seta priori into a non-overlappingtrain andvalidationset. The
training setA contains70% of the data,andthe validationset
B holds the remaining30%. We obtain the a priori concept
occurrenceby dividing the numberof labeledvideo examples
by the total numberof shotsin the archive. To obtain the
con dence measurep(! jx) we usethe SupportVector Ma-
chine(SVM) framework [41]; see[3], [26], [28]. Herewe use
the LIBSVM implementation[42] with radial basisfunction

and probabilisticoutput[43]. SVM classi ersthustrainedfor
I', resultin an estimatep(! jx; §), whereg are parameterof
the SVM. We obtain good parametersettingsby performing
an iteratve searchon a large number of SVM parameter
combinationson training data. We measureperformanceof
all parametercombinationsand selectthe combinationthat
yields the bestperformanceafter 3-fold crossvalidation. The
result of the parametersearchover ¢ is the improved visual
modelv, = p(! j¥; & ), contractedto p (! jx).

Summarizingthis section,a semanticallyenricheddetector
I is de ned as:

P=Tdishisw]; 1)

andthe multimediathesaurus is the unionover all ! .

IV. DETECTOR SELECTION STRATEGIES

In the video retrieval paradigm,user queriesmay consist
of example videos, natural languagetext, or both. Although
current practice suggeststhat combining concept detectors
with traditional text and image retrieval techniques[44],
[45] may yield improved performancethey might as well
hurt performanceas none of thesetechniquess perfectyet.
Speechrecognitionfor the Dutch language for example,is
problematicstill. We thereforeopt for automaticselectionof
a conceptdetectorappropriateto the query allowing usersto
quickly retrieve a list of relevant video fragments.We focus
on the selectionof a singlebestdetectorto maximizeretrieval
performanceandbaseour selectiormethodson themodalities
associatedvith the userquery: the textual modality and the
visual modality We alsotry to modelthe original userintent
motivating the query by using ontology knowledge.

Basedon the differentquery modalitiesand the userintent
we identify three different approachedor selectingthe most
appropriateletectorasshavn in Fig. 2. In thetextual modality
we use a detectorselectionmethodbasedon text matching.
Whenmodelingthe users intent,we elicit semanticknowledge
throughnaturallanguageanalysisand ontologylinking, using
this to createa detectorselectionmethodbasedon ontology
guerying.In the visual modality we use a detectorselection
methodbasedon semanticvisual queries Below we detail our
detectorselectionstrateies.

A. Selectionby Text Matching

As in our multimediathesaurusachdetectoris associated
with a textual descriptiond, , we canmatchthetext speci ca-
tion of a querywith the textual descriptionof a detector Both
the descriptionand the query text are normalized:commonly
occurringwordsareremoved usingthe SMART stoplist [46],
all text is corvertedto lower case andpunctuatioris removed.
Each detectordescription,or document,is representedy a
term vector wherethe elementsin the vector correspondo
uniguenormalizedwords, or terms.The conceptdescriptions
arewritten in naturallanguage assuch,theterm distribution
roughly correspondswith Zipf's law. Therefore,the vector
spacemodel [47], which discountsfor frequently occurring
termsand emphasizesare ones,is appropriateto matchthe
wordsin the userqueryto wordsin the detectordescriptions.
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Fig. 2. Threedifferentstrat@iesfor selectinga semanticallyenrichedconcept
detectorfrom a multimediathesaurusgiven a multimodal user query: text
matching,ontology querying,and semanticvisual querying.

Speci cally, with a collectionof descriptiondD, a candidate
descriptiond, in D and queryq containingtermst;, we use
the following implementatiorof the vector spacemodel [48]:

. tfy.q idfy tf.q, idf
sim(gdy) = ol St SU S gordy ; (2)
12q NOrMg normgq
g
where
p Y RV EY p T
tfi.x freq(t; X) normy = jdij
- _ iDj i\ di j
idfy, = a+ 09 tearioy C00rdy:q T
normy t2qtfta idf?

We selectthe detectorwith the highest similarity between
the query vector and the descriptionvector sim(g; d, ), from
multimediathesaurus

l4=arg r'nzax sim(q; d; ) :

®)

B. Selectionby Ontolagy Querying

When designinga detectorselectionmethodbasedon on-
tology querying,we attemptto modelthe userintent from the
query We rst performsyntacticdisambiguatiorof the words
in thetext query The memory-baseadhallov parserdescribed
in [49] is usedto extract nounsand noun chunksfrom the
text. Theseare thentranslatedto ontological conceptsFirst,
we look up eachnounin WordNet. When a matchhasbeen
foundthe matchedwvordsareeliminatedfrom furtherlookups.
Then,we look up arny remainingnounsin WordNet. Theresult
is anumberof WordNetnoun-synsetselatedto the querytext.

As describedn Sectionlll-B, the concepidetectorsarealso
linked to WordNetsynsetsWe now querythe ontologyto de-
terminewhich conceptdetectoris mostrelatedto the original
querytext®. Here,we mustde ne what“most related’means.

1An RDF/OWL representatiorof the ontology can be queriedat http:
[ww.cs.vu.nl/ ~ laurah/semantics2detectors.html/
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Simply counting the number of relations betweena query-
synsetand a concept-detectesynsetdoes not give a good
indication of relatednesssincethe distancesof the relations
in WordNet are not uniform. In addition, we encounterthe
problemof distinguishingbetweenconceptdetectorsthat are
equally closeto the textual query To overcomethis we use
Resniks measuref informationcontenf50], wherea concept
is viewed as the compositeof its synoryms and its sub-
conceptsE.qg., vehicleis de ned not only by all occurrences
of theword “vehicle”, but alsoby all occurrencesf thewords
“car”, “truck”, “SUV”", andsoon. Theinformationcontentof a
concepis negative thelog likelihoodof thatconceptoccurring
in a taggedtext, wherethe likelihood of a conceptis de ned
in termsof occurrence®f that conceptand all subconcepts,
or subsumersof that ch)ncept:

pl1 ) = 2wt ) UL @)
wherel, is alinked conceptwords(; ) is the setof all noun
lemmasbelongingto I, andall subsumersf |, , N is thetotal
numbernoun lemmasn obsened in an external corpus,and
countf) is the numberof timeseachmemberof words(; ) is
obsered in the external corpus.We usedthe SemCornens
corpus [51] as our external corpus. We selectthe concept
detectorthat maximizesinformation content:

I = argmzax ( logp(l)) :

()

C. Selectionby Semanticvisual Querying

Conceptdetectorsmay also be selectedby using semantic
visual querying. Although it is hard to expect that general
userswill preferto provide anumberof imageexamplesrather
than explicitly specifying the semanticconceptthey need,
semanticvisual querying might prove a valuable additional
stratgy when other selection stratgies fail. For semantic
visual querying we follow the approachby Rasiwasia et
al. [52]. In this scenaricall availablevisualmodelsareapplied
to the queryimage;next, the modelwith the highestposterior
probabilityis selectecasmostrelevant.In ourimplementation,
conceptdetectorselectionbasedon semanticvisual querying
rst extracts visual featuresfrom the query imagesf, as
explainedin Sectionlll-C. Basedon the featureswe predict
for eachqueryimagea posteriorconcepiprobability We select
the detectorwith the maximumposteriorprobability:

(6)

ty=argmax p (v f) :

V. EXPERIMENTAL SETUP

For evaluationwe usethe automaticsearchtaskof the 2005
TREC Video Retrieval Evaluation (TRECVID) [9]. Rather
thanaimingfor the bestpossibleretrieval result,our goalis to
assesghe in uence of addingsemanticgo detectors.To that
end, our experimentsfocus on the evaluationof strategiesfor
selectionof a single conceptdetector given an information
need. We rst determinethe best possible single concept
detectorfor aninformationneed,or topic, givenanincreasing
thesaurusof concept detectors. Then, we assessdifferent
algorithms for the three stratgjies describedin Section IV
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andselectthe bestimplementatiorfor eachstratey. We com-
parethe individual approachesanalyzingtheir strengthsand
weaknessedkinally, we explore a combinationmethod that
fusesindividual detectorresults.A schematicovervien of the
experimentss depictedn Fig. 3. We will now detailthesearch
task, dataset, multimediathesaurusand our experiments.

A. TRECVIDAutomaticVideo Seach Task

The goal of the searchtaskis to satisfya numberof video
informationneeds Given sucha needasinput, a video search
engineshouldproducea ranked list of resultswithout human
intervention. The 2005 searchtask contains24 searchtopics
in total. For eachtopic we returna ranked list of up to 1,000
results.The groundtruth for all 24 topicsis madeavailableby
the TRECVID organizers,andto asses®ur retrieval methods
we use average precision (AP), following the standardin
TRECVID evaluations[9]. The averageprecisionis a single-
valuedmeasurehatis proportionalto the areaundera recall-
precision curve. This value is the averageof the precision
over all relevant judgedresults.Hence,it combinesprecision
and recall into one performancevalue. We report the mean
averageprecision(MAP) over all searchtopicsasanindicator
for overall searchsystemperformance.

B. Data Set& Multimedia ThesaurusBuilding

The TRECVID 2005 video archve contains 169 hours
of video data, with 287 episodesfrom 13 broadcastnewns
shaws from US, Arabic, and Chinesesourcesrecordedduring
November 2004. The test data collection contains approx-
imately 85 hours of video data. The video archives come
accompaniedy a commoncamerashot sggmentationwhich
senesasthe unit for retrieval. We facethe task of specifying
a set of semanticconceptdetectorsfor the TRECVID 2005
data set. We adopt the set of 101 conceptdetectorsmade
publicly available as part of the MediaMill Challenge[3].
Theseusetheimplementatiorsketchedn SectionllI-C. Using
the samemethod,we learn conceptdetectorsbasedon the
manualannotationof LSCOM [4]. Conceptdetectorsn both
setsof annotationsarerelatedto programcateyories,settings,
people,objects,actiities, events,and graphics.Conceptsare
addedo the combinedhesaurusnly whenatleast30 positive
instancesare identi ed in the TRECVID 2005 training set.
When conceptsin the MediaMill and LSCOM thesaurilink
to the sameWordNetsynsetthey are consideredo be similar.
In those cases,the performanceon validation setB is used
as selection criterion. This processresults in a combined
thesauruf 363 conceptdetectors.

C. Experiments
We investigate the impact of addingsemanticgo detectors
by performingthe following 3 experiments.
Experiment 1: Whatis the In uence of IncreasingCon-
ceptDetector ThesaurusSizefor Video Seach?
To assesghe in uence of growing conceptdetectorthesauri
on video retrieval performancewe randomly selecta bag of
10 conceptsrom our thesaurudf 363 detectorsWe evaluate

Experiment 2: Comparing Detector
Selection Strategies
Semantic

Visual
Querying

v

Ontology
Querying

_________ .~  Fusion -

v

Text
Matching

Experiment 3:
Oracle Fusion

Experiment 1: Influence of Thesaurus Size

Fig. 3. Schematicovervien of our video retrieval experiments,using the
conventionsof Fig. 2. In experimentl we assesshein uence of anincreasing
thesaurussize on video retrieval performanceln experiment2 we evaluate
three conceptdetectorselectionstratgies. Experiment3 exploresan oracle
fusion of individual detectorselectionmethods.

eachdetectorin the bag againstall 24 searchtopics and de-
terminethe onethat maximizesAP for eachtopic. Hence,we
determinethe upperlimit in MAP scoreobtainablewith this
bag.In thenext iteration,we selectarandombagof 20 concept
detectordrom the thesaurusandoncemorethe optimal MAP
is computedThis processs iterateduntil all conceptdetectors
have beenselectedTo reducethe in uence of randomeffects,
which may disturbour judgemenif increasinghesaurusize
on video searchperformancen both a positive and negative
manner we repeatthe randomselectionprocessl00 times.

Experiment 2: How to Selectthe Most Appropriate
ConceptDetectorfor a Video Seach Query?

For each of the three modalities identied in Fig. 2, we
wantto identify the mostappropriateconceptdetector Hence,
our secondexperimentconsistsof three sub-eperiments,as
detailedbelow, anda fourth sub-experimentthatcompareghe
threeindividual methods.

1) Experiment2a: Whatis the Most Appropriate Concept
Detector using Text Matching?: We assesghe in uence of
text matchingon conceptdetectorselectionby indexing the
concepidetectordescriptionsn the Lucene[48] searctengine,
using the implementationdescribedin SectionlV-A. Within
text retrieval, collectionsare generally quite large compared
to the 363 conceptdescriptionsthat we have available. We
hypothesizethat in this small collection, where there are
comparatrely few text termsto match,recallis a biggerissue
thanin large collections.Effective waysto increaserecall are
stemming,wherewords are reducedto their root forms, and
charactem-gramming,wherewords are iteratively broken up
into sequencesf n charactersWe performthreeexperiments
for text matching — perfect match, stemmedmatch, and
charactern-gram match. For stemmingwe use the popular



Porterstemmingalgorithm[53]. For characten-gramswe use
sequencesf 4 characterasthis approachhasbeenshavn to
performwell for English [54].

2) Experiment2b: Whatis the Most Appropriate Concept
Detector using Ontolagy Querying?: As describedin Sec-
tion 1V-B, we query the ontology for the conceptdetector
mostcloselyrelatedto the noun-synsetin the query Several
approachesxist for semanticdistancebetweensynsets(see
for example[55]). In this paper we employ two approaches
that have shavn promisingresultsin earlier studies.The rst
usesResniksimilarity, which is a measuref semanticsimilar
ity in anis-ataxonomybasedon informationcontent50] (see
SectionlV-B); in the caseof WordNet, the “is-a taxonomy”
translatesto the hypornym/hyperrym hierarcly. The second
approachusessubsumptiorrelations(hyporym/hyperrym) as
well as part-of relations.While the useof hyporym relations
is commonly accepteda recentstudy [35] shaved that the
inclusion of part-of and hyperrym relationsfurther improves
retrieval results,especiallyfor visual data.A conceptdetector
directly matchingthe querysynsetis considerectlosest After
that, a conceptdetectorthat has a hyperrym relation to the
qguery synsetis consideredclosest, followed by a concept
detectorthat hasa hyporym or part-of relation to the query
synset.Many queriesconsistof more than one noun synset.
Whenthisis thecasewe rst seektheclosesttonceptdetector
thatis relatedto the rst querysynsetlf thereareno matching
conceptdetectorswe proceedto the next query synset,until
a detectoris found or the last synsethas beenreached.In
addition,we testtwo methodsto breakties betweendetectors
that are equally closeto a query synset:(1) the information
contentof the conceptdetectorand(2) the a priori chancethat
a conceptis presentin our dataset.

3) Experiment2c: Whatis the Most Appropriate Concept
Detectorusing Semanticvisual Querying?: Selectingconcept
detectorsusing semanticvisual querying may be a brittle
approachwhenconceptsarenot distributedequallyin the data
set,asis oftenthe casein realisticvideoretrieval applications.
Ratherthanselectingthe conceptwith the maximumscore—
which is often the most robust but also the leastinformative
one,e.g.person face outdoor— we alsoassess heuristicse-
lection mechanisnthat takes conceptfrequeng into account.
Similar to the vector spacemodel usedin SectionlV-A, we
discountfor frequentlyoccurringtermsandwe emphasizeare
ones.We take the posteriorprobability asa substitutefor term
frequeng anddivide by the logarithm of the inverseconcept
frequeng. By doing so, we prioritize lessfrequent,but more
discriminatve, conceptswith reasonablgosteriorprobability
scoresover frequent, but less discriminatve, conceptswith
high posteriorprobability scores.

4) Experiment2d: Whatare the Strengthsand Weaknesses
of the SelectionStrategies?: We comparethe three differ-
ent selectionstratgies quantitatvely aswell as qualitatively.
Basedon previous TRECVID searchresults[9], [16]-[21],
we anticipatethat the AP varieshighly per topic. Therefore,
we normalizethe AP scoresof the threemethodsby dividing
them by the AP score of the best possibledetector These
percentagegive a betterindicationof the differencesetween
the methodsthan the raw AP data. This has the added
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adwantagethat unreliablestatisticalresultsdue to outliersare
avoided.

We examine if there are signi cant differencesbetween
the three detectorselectionmethods.Since the data are not
normally distributed we perform a nonparametricKruskal-
Wallis test. Then,we perform pairwise Wilcoxon signedrank
tests. We look for correlation betweenthe three selection
methodswith Spearmars rank correlationcoefcient. Finally,
we qualitatively examinethe differencesby looking at which
detectorsare selectedby the three methods.

Experiment 3: What is the Inuence of Combining
DetectorSelectionStrategies?
Since the individual conceptdetectorselectionstratgies in
experiment3 work with differentmodalities,it is naturalto ask
to which extent they complementeachother A combination
of someor all of them could further improve video retrieval
performance[56]. Various combination methodsexists; the
linear combinationof individual methodsis often evaluated
as one of the most effective combinationmethods,see for
example [57], [58]. We adopta linear combinationfunction,
similar to [21], [58], which usesa single combinationfactor
1 for pairwise combinationof two conceptdetectorsde ned
as:

Pt itej®)= 1 p(ta)+ (1 1) p(P2i); (V)

where ; 2 [0;1]. To allow for three-way combination of
selectecconceptdetectorsve extendeq.(7) with anadditional
combinationfactor »,, de ned as:

P31t 2t ajx) = 1 p(Pa)+ 2 p (!2x%)
+(1 (1t 2) p (39

where , 2 [0;1], and 1+ . 1. To assesshein uence
of combining detectorselectionmechanismswe perform an
experimentthatevaluatesall possiblelinear combinationswith
stepsof 0:1 for both ; and ;. We term this combination
“oracle fusion” as it usesthe test set resultsto selectthe
optimal combinationon a perquery basis.lIt is includedto
explore the upperlimits of performancehat are reachabley
combiningdetectorselectionstratgies.

We compare the oracle fusion experiments using a
Kruskal-Wallis test and pairwise Wilcoxon signedrank tests.
Wilcoxon's testis also usedto examine differencesbetween
the resultsof the fusion experimentsand the resultsof the
single-methodexperiments.

(8)

VI. RESULTS

A. Experimentl: Whatis the In uence of IncreasingConcept
DetectorThesaurusSizefor Video Seach?

We summarizethe in uence of an increasingthesaurusof
conceptdetectorson video searchperformancein the box
plot in Fig. 4. Thereis a clear positive correlationbetween
the numberof conceptdetectorsin the thesaurusand video
retrieval performanceThebox plot alsoshavs thatthe median
is shiftedtowardsthe bottomof the box for the rst 30 concept
detectors,even when the outliers are ignored. This indicates
that, on average,performanceis low for small thesauri,but
somedetectorsperform well for speci ¢ topics. However, it
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Fig. 4. Box plot shaving the positive in uence of an increasingthesaurus
size,in randombagsof 10 machinelearnedconceptdetectorspn MAP over
24 topicsfrom the TRECVID 2005videoretrieval benchmarkExtremevalues
after 100 repetitionsare marked (+) asoutliers.

is unlikely that a large variety of topics can be addressed
with a smallthesauruswhich explainsthe skew. With only 10
randomlyselectecconceptdetectordhe medianMAP scoreis
0.008.Indeed the usageof few conceptdetectords of limited
usefor videoretrieval. However, a steadyincreasen thesaurus
size hasa positive in uence on searchperformance For the
rst 60 conceptdetectorghisrelationis evenlinear, increasing
MAP from 0.008to 0.047.Whenthesaurigrow, more search
topics can be addressedvith good performance.However,
the shift towards the high end of the box indicatesthat a
substantiahumberof conceptdetectorsn ourthesaurusio not
performaccurateenough,yet, to be decisve for performance.
As a result, when more than 70 conceptdetectorsare added,
the increaseis lessstrong, but it keepsrising until the limit
of this thesauruss reachedor the maximumobtainableMAP
of 0.087.Note that this valueis competitve with the state-of-
the-artin video search[9].

B. Experimen®: Howto Selecthe MostAppropriate Concept
Detectorfor a Video Seach Query?

Due to lack of spacewe are not able to provide detailed
breakdaevns of scoresfor all our experimentsTablel lists the
AP scoredfor the selectecconceptdetectormethodscolumns
3-5) andfor the bestpossiblesingle detector(column 2).

1) Experiment2a: Whatis the Most Appropriate Concept
Detectorusing Text Matching?: Contraryto our expectations,
we found that using exact text matchingprovided the bestre-
sultswith a MAP scoreof 0.0449,versus0.0161for stemmed
text, and 0.0290for n-grammedtext. It appearsthat when
retrieving detectordescriptionsusing query text, it is more
importantto get exact matchesto the original query terms
thanit is to aim for recallandincreasethe numberof detector
descriptiongetrieved. We expectthatthis is dueto our choice
to selectonly a singlebestconceptdetectormatch.If we allow
multiple detectorgo bereturnedtechniquesuchasstemming
and n-grammingmight have a bene cial impact.

In the remainderwe will use the exact text matching
approachfor conceptdetectorselectionusingtextual matches.

2) Experiment2b: Whatis the Most Appropriate Concept
Detector using Ontolagy Querying?: The approachusing

Resnik similarity (approachl) was outperformedby the
approachusing subsumption/part-ofrelations (approach?2)
regarding meanaverageprecision(0.0218and 0.0485respec-
tively), but the difference was not statistically signi cant.
Examining the selecteddetectors,we see that approachl
performsbetteron personx querieswhile approact? bene ts
from the useof hyperryms.

A comparisonbetweenthe use of information contentto
the useof a priori chancedor distinguishingbetweenconcept
detectorsthat are equally close to the topic, shavs that the
differencesare minimal. Only four topics get a different
detectorandthe differencein MAP is only 0.0034.A possible
explanationis thatfor mosttopicswe nd oneconcepidetector
that is closestto the topic synsetswhich meansthat neither
information content, nor a priori chanceshave to be used.
In the remainingsectionswe continuewith the resultsof the
subsumption/part-cdipproactusinginformationcontent since
this gives us the highestAP scores.

Using this approach,a detector was found for all but
one of the queriesof TRECVID 2005 that is at most one
hyperym/hyporym/part-of relation away from a topic synset.
This suggestshatour large detectorpool hasa goodcoverage
of the TRECVID queries.

3) Experiment2c: Whatis the Most Appropriate Concept
Detectorusing Semanticvisual Querying?: We obsere that
selectionof conceptdetectorsfrom semanticvisual examples
prots from a normalizationstepthat takes a priori concept
occurrenceinto account. When we do not normalize the
posterior probability selectionbasedon semanticexamples
picks in 23 out of 24 queries(data not shavn) one of the
four mostfrequentconceptsappearingn this dataset,namely
people face overlayedtext, or outdoor ( [3, Table1]). While
this is often correct,the conceptis so generalthat it hardly
contritutesto retrieval performanceThe only exceptionis the
searchtopic for tennisplayers,wherethe selectedsportgames
detectorhasgood AP.

When we take a priori conceptfrequeny into account,
searchresultsimprove. Resultsof this experimentare summa-
rized in the last columnof Tablel. We obsere that selected
detectorssometimesaccuratelyre ect the semanticsof the
searchtopics,e.g.,lyad Allawi, Graphical Map, TennisGame
Helicopter Hovering Cigar Boats Basletball Game and
Grass This is not alwaysthe casehowever, and questionable
detectorsare selectedfor somesearchtopics. This especially
hurtsthe personx queries;for the topic nd shotsof Geoige
Bushenteringor leaving a vehicle for example,the optimal
detectoris rodket propelledgrenadesHowever, a detectorthat
matcheswell in termsof semanticss no guarantedor good
searchperformanceln casessuchas nd shotsof graphical
mapswith Baghdadmarked or nd shotsof ships the selected
detectorst the topic, but perform only moderatelywell. In
the rst casethe detectoris not speci ¢c enough,n the second
caseits performances not goodenough Theseresultssuggest
that a measureis neededindicating when incorrect optimal
detectorsshouldbe preferredover correctoneswith badvideo
searchresults.

4) Experiment2d: Whatare the Strengthsand Weaknesses
of the SelectionStrategies?: We found no signi cant differ-
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TABLE |

COMPARISON OF THREE DETECTOR SELECTION STRATEGIES FOR VIDEO RETRIEVAL. SEARCH RESULTS ARE COMPARED AGAINST THE BEST POSSIBLE
CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE PERCENTAGES OF AVERAGE PRECISION (AP%). THE BEST RESULT IS GIVEN IN BOLD.

Best Possible

Detector Selection Strategies

2a: Text Matching

2b: Ontology Querying

2c: Semantic Visual Querying

Search Topic BestDetector AP SelectedDetector AP%  SelectedDetector AP%  SelectedDetector AP%
Two visible tennisplayerson the court Athlete 0.6501 TennisGame 89.7% Athlete 100.0% TennisGame 89.7%
A goal beingmadein a soccermatch Stadium 0.3429 SoccerGame 31.7% SoccerGame 31.7% Grass 51.0%
Basletball playerson the court Indoor SportsVenue 0.2801 Court 0.0% Athlete 30.4% Basketball Game 81.5%
A meetingwith a large tableandpeople  Furniture 0.1045 ConferenceRoom 73.6% Meeting 24.8% Flag 1.0%
Peoplewith bannersor signs PeopleMarching 0.1013 Demonstration or Protest 73.7%  Group 5.3% Desert 0.4%
Oneor moremilitary vehicles Armored Vehicles 0.0892 Tanks 38.1% Tanks 38.1% Charts 0.0%
Helicopterin ight Helicopters 0.0791 HelicopterHovering 53.1% Helicopters 100.0% HelicopterHovering 53.1%
A roadwith oneor more cars Car 0.0728 CarCrash 7.9% Road 65.9% Helicopters 4.4%
An airplanetaking off Classroom 0.0526 Airplane Flying 10.8%  Airplane Flying 10.8% Helicopters 87.3%
A tall building Of ce Building 0.0469 Tower 89.8% Building 98.8% Grass 0.2%
A ship or boat Cloud 0.0427 Boat or Ship 46.5% Boat or Ship 46.5% Cigar Boats 39.5%
Geopge Bush enteringor leaving vehicle Roclet PropelledGrenades 0.0365 George Bush jr 6.6%  George Bush jr 6.6%  HelicopterHovering 0.0%
Omar Karami Chair 0.0277  Ariel Sharon 0.8% Ariel Sharon 0.8% YasserArafat 3.5%
Graphicmap of Iraq, Baghdadmarked GraphicalMap 0.0269 Graphical Map 100.0%  Graphical Map 100.0%  Graphical Map 100.0%
CondoleezaRice US National Flag 0.0237 - 0.0% - 0.0% Capitol 0.4%
Oneor more palm trees Weapons 0.0225 Tropical Setting 1.6% Trees 23.4% Fire Weapon 44.3%
Somethingon re with ames andsmole Violence 0.0151 Smoke 95.1% Vehicle 41.4% SoccerGame 18.9%
MahmoudAbbas ConferenceRoom 0.0134  Ariel Sharon 0.5% Ariel Sharon 0.5% YasserArafat 2.3%
Hu Jintao lyad Allawi 0.0123 Hu Jintao 4.3% Geoge Bushsr 2.4% Non-US National Flags  55.0%
Peopleshakinghands Beards 0.0110 Handshaking 14.6% Group 10.2% YasserArafat 18.0%
Of ce setting Computers 0.0095 Computers 100.0% Ofce 90.4% Emile Lahoud 1.9%
lyad Allawi lyad Allawi 0.0095 lyad Allawi 100.0%  Ariel Sharon 46.6% lyad Allawi 100.0%
Tony Blair Election CampaignAddress 0.0067 Tony Blair 0.0% Tony Blair 0.0% George Bush jr 29.6%
Peopleenteringor leaving a building Muslims 0.0044 USA GovernmentBuilding 6.4% Group 27.0% Reporters 8.5%
Mean 0.0867 50.8% 56.0% 55.6%
Numberof highestscoes 9 9 12

encesbetweenthe results of the three individual selection
experiments. Experiments2a-2b,2a-2cand 2b-2c also failed
to shav differencesWe found a positive correlationbetween
experiments 2a-2b, which was lacking between?2a-2c and
2b-2c. This suggestghat the text-basedand WordNet-based
conceptdetectorselectionmethodsperformwell on the same
set of topics (and perform badly on the sameset of topics)
while the visual methodscoreswell on other topics. This is
supportedby the fact that the text-basedand WordNet-based
methodsselectthe samedetectoifor 10topics,while thevisual
method agreedon a detectoronly four times with the text-
basedmethodandonly oncewith the WordNetbasedmethod.

C. ExperimenB: Whatis theln uence of CombiningDetector
SelectionStrategies?

We summarizethe resultsof our combinationexperiments
in Table ll. The increasein MAP for all fusion experiments
indicates that combining detector selection stratgies pays
off in general.Pair-wise combinationis especiallyeffective
when two different conceptdetectorsobtain good average
precisionin isolation. For searchtopics such as nd shots
with tall buildings and nd shots of an ofce setting the
pairwise combinationof detectorsselectedby text matching
and ontology querying even improves substantiallyupon the
best possiblesingle detector A combinationof selectionby
ontology queryingand selectionusing semanticvisual exam-
plesyields the most effective pairwise combinationstratey
in terms of overall performance.However, no signi cant
differenceswere found betweenthe threetypes of pair-wise

combinatiorresults.Sincea large overlapin selecteddetectors
exists betweenthe three different selectionstratayies, three-
way combinationoften boils down to pair-wise combination.
For those searchtopics where three different conceptdetec-
tors are selected,e.g., nd shots of palm trees three-vay
combinationyields a further, but modest,increaseover the
best pairwise combination.Again, no signi cant difference
was found between pairwise and three-way combination.
However, using a Wilcoxons signed rank test, we did nd

signi cant differencesbetweenthe resultsof the combination
experimentsandthe resultsof the single-methodexperiments.
The fusion experimentswere consistentlybetter at the 0.01

-level.

VIl. DiscussiON & CONCLUSION

We view this paper as a rst step in a novel multi-
disciplinaryapproacho tacklethe toughproblemof semantic
video retrieval. The resultsare certainly not conclusve in the
sensdhatthey provide a solid basisfor preferringa particular
approachover others.

Experimentl gives indications aboutthe numberof the-
saurusconcepty= thesaurusize) neededor maximumvideo
retrieval performanceln Fig. 4 we canseethatathesaurusize
of 100-200already comesclose to maximum performance.
However, our experimentsconsideronly 24 topics. A wider
rangeof topics will likely require a larger thesaurussize to
reachthis sameperformancdevel.

In the detectorselectionexperiment,experiment2 we see
thatbothin termsof MAP andin termsof the highestnumber
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TABLE 1

COMPARISON OF PAIR-WISE (EQ. 7) AND THREE-WAY (EQ. 8) ORACLE FUSION OF THE DETECTOR SELECTION STRATEGIES FROM TABLE |. SEARCH
RESULTS ARE COMPARED, WITH VARYING 1 AND 2, AGAINST THE BEST POSSIBLE CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE

PERCENTAGES OF AVERAGE PRECISION (AP%). FUSION RESULTS THAT RELY ON ONE DETECTOR ONLY ARE INDICATED WITH —. THE BEST RESULT IS

GIVEN IN BOLD.

Oracle Fusion of Detector Selection Strategies

Best Possible 2a+2b 2a+ 2c 2b + 2c 2a+2b+ 2c
Search Topic BestDetector AP 1 AP% 1 AP% 1 AP% 1 2 AP%
Two visible tennisplayerson the court Athlete 0.6501 0.7 105.4% — 89.7% 0.3 1054% 0.0 0.3 105.4%
A goal being madein a soccermatch Stadium 0.3429 — 31.7% 0.3 76.5% 0.3 76.5% 0.0 0.3 76.5%
Basletball playerson the court Indoor SportsVenue 0.2801 0.9 30.4% 0.2 81.6% 0.2 86.1% 0.0 0.2 86.1%
A meetingwith a large tableandpeople  Furniture 0.1045 — 73.6% — 73.6% 0.9 250% — — 73.6%
Peoplewith bannersor signs PeopleMarching 0.1013 — 73.7% — 73.7% 0.6 53% — — 73.7%
One or more military vehicles Armored Vehicles 0.0892 — 38.1% — 381% — 381% — — 38.1%
Helicopterin ight Helicopters 0.0791 — 100.0% — 531% — 1000% — —  100.0%
A roadwith one or more cars Car 0.0728 0.9 66.9% — 7.9% 0.5 66.6% 0.9 0.1 66.9%
An airplanetaking off Classroom 0.0526 — 10.8% — 87.3% — 87.3% — — 87.3%
A tall building Of ce Building 0.0469 0.8 141.2% — 89.8% 0.9 98.8% 0.8 0.2 141.2%
A ship or boat Cloud 0.0427 — 46.5% 0.1 558% 01 558% 0.0 0.1 558%
Geoge Bush enteringor leaving vehicle Roclet PropelledGrenades 0.0365 — 6.6% 0.6 6.6% 0.6 6.6% 0.0 0.6 6.6%
Omar Karami Chair 0.0277 — 0.8% 0.9 4.0% 0.9 40% 0.0 0.9 4.0%
Graphicmap of Iraq, Baghdadmarlked GraphicalMap 0.0269 — 100.0% — 100.0% — 100.0% — —  100.0%
CondoleezaRice US National Flag 0.0237 — 04% — 04% — — 0.4%
Oneor more palm trees Weapons 0.0225 0.1 234% 0.9 48.7% 0.8 49.7% 05 04 53.2%
Somethingon re with ames andsmole Violence 0.0151 0.9 100.7% 0.9 102.6% 0.7 38.4% 08 0.1 103.0%
MahmoudAbbas ConferenceRoom 0.0134 — 0.5% 0.9 24% 0.9 24% 00 0.9 2.4%
Hu Jintao lyad Allawi 0.0123 0.9 55% 0.9 55.5% 0.8 555% 0.4 04 56.2%
Peopleshakinghands Beards 0.0110 — 14.6% 0.9 19.6% 0.1 29.7% 0.0 0.1 29.7%
Of ce setting Computers 0.0095 0.1 154.9% — 100.0% — 90.4% 0.1 0.9 154.9%
lyad Allawi lyad Allawi 0.0095 0.1 121.1% — 100.0% 0.9 121.1% 0.0 0.9 121.1%
Tony Blair ElectionCampaignAddress 0.0067 — 0.0% 0.9 29.7% 0.9 29.7% 0.0 0.9 29.7%
Peopleenteringor leaving a building Muslims 0.0044 0.9 282% 0.4 9.2% 0.6 283% 0.8 0.1 29.3%
Mean 0.0867 65.5% 72.4% 75.9% 83.4%
Numberof highestscoes 10 12 15 24

of “bestdetectorselectionsthethreeselectionstratgiesshov
comparableresults. For text matching (2a) we found that
exactmatchingworks best,but this is probablya consequence
of the fact that we selectonly a single detector For on-
tology querying (2b) it is interestingto note the distinction
betweenthe hyporym/part-of and the Resnik method; the
former performing best on “general concept” queries, the
latter on “personx” queries.This suggestghe useof a more
re ned concept-detectmselectionrmechanismSemantiovisual
querying (2c) was shavn to correlatebetterwith a different
setof topicsthan both text matchingand ontology querying.
For this selectionmethodwe notethe importanceof avoiding
frequentlyoccurringbut non-discriminatre conceptdetectors,
suchasfor peopleand outdoor.

The fusion experiments(3) clearly shav that we can gain
by combining selection methods.It indicatesthat we can
come close to achieving optimal concept-detectoselection
scoresif we understandhe situationsin which it is usefulto
combineselectionmechanismsWe shouldconsiderincluding
a “selectorof-selector” stepbasedon the query topic, which
would proposea (combinationof) selectionmethod(s)that is
likely to be optimal. At the moment the setof topicsincluded
in this study provides insufcient information as a basisfor

sucha meta-selectionMore experimentationwill be needed
to clarify in which caseqe.qg.,for which classe®f topics)two

or moreselectionmethodsbene t from combination.The goal

should be to identify, for example, whethertopics involving

namedpeoplerequirea differentselectionmethodthana topic

involving a generalconceptsuchasroad Studyingthe nature
of querytopics might alsoreveal whetherwe are missingout

importantother catgyoriesof topics.

One limitation of our approachis that we have only con-
sideredsituationsin which the threeindividual methodsselect
preciselyonedetector Thisis likely to have beentoo strong.It
is easyto imaginesituationsin which the selectionstratgies
producea set of multiple detectors.In principle, this would
male it possibleto get a higher averageprecisionscorethan
that of a singledetector(which is the maximumscorewe can
achieve in this study).However, a majorincreasdn detection
performanceas neededeforeconceptdetectorcombinationis
really successfulWe are planning experimentsin which we
lift this limitation.

Taking a broaderlook, we also needto considerthe effect
of thedomainwe areworking in. News videois a domainwith
specialcharacteristicsThe stylized shots,the highly domain-
speci ¢ conceptyfemaleandor) and otherfactorsarelikely
to make it dif cult to predicthow our methodswould behae
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in othervideo retrieval domains,suchas documentaries.

Finally, coming back to the researchquestionwe started
with: have we shawvn that semantically-enrichedletectors
enhanceesultsin semanticretrieval tasks?0ur resultsdo not
yet permit us to respondwith a rm “yes” to this question,
but the resultsareencouragingWe have scratchedhe surface
of a semanticvideo retrieval approachwhich combinesdif-
ferenttechniquesThe resultssuggesipromisingnew lines of
research.
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