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Abstract— In this paper, we propose an automatic video
retrieval method basedon high-level conceptdetectors.Research
in video analysis has reachedthe point where over 100 concept
detectors can be learned in a generic fashion, albeit with mixed
performance.Such a set of detectorsis very small still compared
to ontologies aiming to capture the full vocabulary a user
has. We aim to thr ow a bridge between the two �elds by
building a multimedia thesaurus, i.e. a set of machine learned
conceptdetectorsthat is enriched with semanticdescriptionsand
semanticstructur e obtained fr om WordNet. Given a multimodal
user query, we identify thr ee strategies to select a relevant
detector fr om this thesaurus, namely: text matching, ontology
querying, and semantic visual querying. We evaluate the meth-
ods against the automatic search task of the TRECVID 2005
video retrieval benchmark, using a news video archive of 85
hours in combination with a thesaurus of 363 machine learned
concept detectors. We assessthe in�uence of thesaurus size on
video search performance,evaluate and compare the multimodal
selection strategies for concept detectors, and �nally discuss
their combined potential using oracle fusion. The set of queries
in the TRECVID 2005 corpus is too small to be de�nite in
our conclusions,but the results suggestpromising new lines of
research.

Index Terms— Video retrieval, concept learning, knowledge
modeling, content analysisand indexing, multimedia information
systems

I . INTRODUCTION

V Ideo hasbecomethe mediumof choice in applications
suchascommunication,education,andentertainment.In

eachof these,thevideocarriesa semanticmessagewhich can
be very versatile.For a humanthe meaningof the message
is immediate,but for a computerthat is far from true. This
discrepancy is commonlyreferredto as the semanticgap [1].

Semanticvideo indexing is the processof automatically
detecting the presenceof a semantic concept in a video
stream.It is impossibleto develop a dedicateddetectorfor
eachpossibleconceptas thereare just too many concepts.A
recent trend in semanticvideo indexing has thereforebeen
to search for generic methods that learn a detector from
a set of examples [2]. This emphasison generic indexing
has openedup the possibility of moving to larger sets of
conceptdetectors.MediaMill haspublisheda collectionof 101
machine-learneddetectors[3]. LSCOM is working towardsa
set of 1,000 detectors[4]. Both are learnedfrom manually
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annotatedexamples from a news video corpus and have
varyingperformance.Annotationconstitutesamajoreffort and
for any domain new conceptsand new exampleswill have
to be added.It is unrealistic to assumethat such a purely
data-driven approachwill ever reach the richnessof users'
vocabularies.

This richnessof vocabulary is also a well-known problem
for humansdescribingvideo in words. A variety of terms
are used to describethe samevideo fragment by different
users,or by the sameuser in different contexts. Exploiting
ontologies[5]–[7] to structuretermsemployed by userscan
make descriptionsmore consistentand can aid the user in
selectingthe right term for a semanticconcept.

Our aim in this paper is to link a general-purposeontol-
ogy (with over 100,000concepts)to a speci�c detectorset
(with several 100s of concepts).In this way, the inherently
uncertaindetectorresult will be embeddedin a semantically
rich context. Hencewe can,for example,disambiguatevarious
interpretationsor �nd more generalconcepts.As the news
domainis broadand can in theory containany topic, a large
anddomainindependentontologyis a must.As our ontology
we use WordNet [5], a lexical databasein which nouns,
verbs, adjectives and adverbs are organized into synonym
sets (synsets)basedon their meaningsand use in natural
language.We establisha link betweenWordNet and a set
of 363 detectorslearnedfrom both MediaMill and LSCOM
annotations.

The �rst to add semanticsto detectorsby establishing
links with a general-purposeontology were Hoogset al. [8]
who connecteda limited set of visual attributesto WordNet.
Combining low-level visual attributes with conceptsin an
ontology is dif�cult as there is a big gap betweenthe two.
In this paperwe take a different,moreintuitive approach:we
link high-level conceptdetectorsto conceptsin anontology. It
shouldbe noted,however, that detectorsand the elementsof
an ontologyareof a differentnature.Detectorsareuncertain
whereasontologies use symbolic facts. As a consequence
they have beenstudiedin completelydifferentresearch�elds.
Having establisheda relation doesnot necessarilymeanthat
theresultsof a taskoriginatingin one�eld will improve when
augmentedwith techniquesfrom the other �eld.

Our main researchquestion therefore addressesthe fol-
lowing: do semanticallyenricheddetectorsactually enhance
resultsin semanticretrieval tasks?We evaluateretrieval results
on85hoursof internationalbroadcastnewsdatafrom the2005
TRECVID benchmark[9].

The paperis organizedasfollows. We discussrelatedwork
in SectionII. We explain the processof addingsemanticsto
detectorsin SectionIII. We thenpresentdifferentstrategiesfor
selectingsemanticallyenricheddetectorsfor videoretrieval in



2 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. V, NO. N, MONTH 2007

SectionIV. Our experimentalsetupis presentedin SectionV
and the experimentalresultsin SectionVI. Finally, we con-
clude in SectionVII.

I I . RELATED WORK

Traditional video retrieval methodshandle the notion of
conceptsimplicitly. They extract low-level featuresfrom the
video data and map this to a user query, assumingthat the
low-level featurescorrespondto the high-level semanticsof
thequery. Featurescanstemfrom textual resourcesthatcanbe
associatedto video,like closedcaptions,or speechrecognition
results,e.g.,[10], [11]. Alternatively, low-level visual features,
e.g., color [12], texture [13], shape[14], and spatiotemporal
features[15], are used in combinationwith query images.
More recently, approacheshave beenproposedthat combine
text andimagefeaturesfor retrieval, e.g.,[16]–[21]. Weadhere
to a multimedia approachalso, but we use the notion of
conceptsexplicitly, by expressinguser queries in terms of
high-level conceptdetectorsratherthan low-level features.

Suchahigh-level videoretrieval approachrequiresdetection
of concepts.Early approachesaiming for conceptdetection
focused on the feasibility of mapping low-level features,
e.g., color, pitch, and term frequency, directly to high-level
semanticconcepts,like commercials [22], nature [23], and
baseball[24]. This hasyielded a variety of dedicatedmeth-
ods, which exploit simple decision rules to map low-level
featuresto a singlesemanticconcept.Genericapproachesfor
conceptdetection[3], [25]–[29] have emergedasan adequate
alternative for speci�c methods.Genericapproacheslearn a
wide variety of conceptsfrom a set of low-level features,
which areoften fusedin variousways.In contrastto speci�c
methods,theseapproachesexploit the observation that map-
ping multimediafeaturesto conceptsrequiresmany decision
rules. Theserules are distilled using machine-learning.The
machine-learningparadigmhasproven to be quite successful
in terms of generic detection[26], [28]. However, concept
detectionperformanceis still far from perfect; the state-of-
the-arttypically obtainsreasonableprecision,but low recall.

Learningrequireslabeledexamples.To copewith the de-
mandfor labeledexamples,Lin et al. initiated a collaborative
annotationeffort in the TRECVID 2003 benchmark[30].
Using tools from Christelet al. [31] andVolkmer et al. [32],
[33] a common annotationeffort was again made for the
TRECVID 2005benchmark,yielding a large andaccurateset
of labeledexamplesfor 39 conceptstaken from a prede�ned
collection [4]. We provided an extensionof this compilation,
increasingthe collectionto 101 conceptannotations,andalso
donatedthe low-level features,classi�er models,andresulting
conceptdetectorsfor this setof conceptson TRECVID 2005
and 2006 data as part of the MediaMill Challenge[3]. Re-
cently, the LSCOM consortium�nished a manualannotation
effort for 1,000 concepts[4]; conceptdetectorsare expected
to follow soon.This bringsconceptdetectionwithin reachof
researchin ontologyengineering,i.e.,creatingandmaintaining
large, typically 10,000+structuredsetsof sharedconcepts.

Ontologiesprovide backgroundknowledge about various
topics. Examplesare SnoMed, MeSH, the Gene Ontology

and the metathesaurusUMLS for health care, AAT and
Iconclassfor art, and the generic ontologiesWordNet and
Cyc. Ontologies have various uses in the annotation and
searchprocess.Existing, well-establishedontologiesprovide
a sharedvocabulary. The vocabulary terms and their mean-
ings are agreedupon. Meaning is partially capturedin the
(hierarchical) structure of the ontology. Polysemousterms
can be disambiguated,and relationsbetweenconceptsin the
ontology can be used to support the annotationand search
process[34], [35]. Ontologiesare currently being used for
manualannotation[36], [37], and wheremanualannotations
are not feasible or available, they have been used to aid
retrieval basedon captionsor other text associatedwith the
visual data [38]. Theseontologiesare, however, not suitable
for semanticretrieval basedonthevisualpropertiesof thedata,
sincethey containlittle visual informationaboutthe concepts
they describe.

Somework hasbeendoneto combineontologieswith visual
features.Hoogset al. [8] linkedontologiesandvisual features
by manuallyextendingWordNetwith tagsdescribingvisibility,
different aspectsof motion, location inside or outside,and
frequency of occurrence.In [39] a visual ontology was built
that containsgeneralandvisual knowledgefrom two existing
sources:WordNetandMPEG-7.Bertini et al. [40] proposea
“pictorially enriched”ontologyin which both linguistic terms
and visual prototypesmake up the nodesof the ontology.
To the best of our knowledge,no work exists that links an
ontology to the high-level conceptsappearingin video data.

I I I . ADDING SEMANTICS TO DETECTORS

Fig. 1 shows the schemausedfor semanticallyenriching
conceptdetectors.We call thesemanticallyenrichedcollection
of conceptdetectorsa multimedia thesaurus. It consistsof
textual descriptions,links to WordNet synsets,and visual
modelsof the conceptdetectors,asdetailedbelow.

Semantically Enriched Concept Detector hasPerformance Performance
Measure

Textual
Description

WordNet
Synset

Visual
Model

isDescribedBy correspondsTo

isDescribedBy

WordNet
Gloss

hasLearned

hasExamples
Video

Examples

Fig. 1. Data model for semanticallyenricheddetectors.A semantically
enricheddetectorconsistsof a textual description,a link to WordNet, and
a visual model. We refer to a collection of semanticallyenrichedconcept
detectorsasa multimediathesaurus.

A. Textual Descriptions

Each concept detector ! is associatedwith a manually
createdtextual description,d! . It elaborateson the visual
elementsthat should — or should not — be present.For
example, the descriptionfor the conceptdetectorstorms is
“outdoorscenesof stormyweather, thunderstorms,lightning.”
It explicitly indicates that video containing lightning and
thunderstormsshould be taggedas storms.The descriptions
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are by no meansexhaustive, usually consisting of one or
two sentences[3], [4], but do contain a signi�cant amount
of information about the different kinds of visual content
associatedwith eachdetector.

B. Links to WordNet

We manually createlinks betweenconceptdetectorsand
WordNetsynsets.To allow for scalabilityoneprefersto obtain
the link betweenconceptdetectorsandWordNetsynsetsauto-
matically. However, automaticallymappinga conceptdetector
to an ontology is a dif�cult issuestill. The manualprocess
guaranteeshigh quality links, which are necessaryto avoid
obscuringtheexperimentalresults.Whenautomaticreasoning
methodsbecomeavailable that automatically link concepts
with high accuracy, thesemight at leastpartly substitutethe
manual process.The links, l ! , are basedon a comparison
betweenthe textual descriptionsassociatedwith eachconcept
detectorandWordNet “glosses,” which areshortdescriptions
of the synsets.Eachconceptis linked to 1–6 synsets,with at
most two per part of speech(noun,verb, adjective). Concept
detectorsfor speci�c personsthat arenot presentin WordNet
arelinked asinstancesof a noun-synset.E.g.,Ariel Sharon is
not presentin WordNetandis thereforelinked asan instance
of thenoun-synset“Prime Minister.” Eachconceptwaslinked
to WordNetby two peopleindependently. Overlapbetweenthe
linkerswasconsistentlyaround65%,andtheconceptswithout
initial agreementswerediscusseduntil agreementwasreached.

C. Visual Model

To arrive at a visual model v! for a conceptdetector, we
build on previous work in genericconceptdetection,e.g. [3],
[25]–[29]. Similar to this work, we view conceptdetectionin
videoasa patternrecognitionproblem.Givena pattern~x, part
of a shot, the aim is to obtaina con�dencemeasure,p(! j~x),
which indicateswhethersemanticconcept! is presentin a
shot.

Featureextraction is basedon the methoddescribedin [3],
[29], which is robust acrossdifferent video data setswhile
maintainingcompetitive performance.We �rst extract a num-
ber of color invariant texture featuresper pixel. Basedon
these,we label a set of prede�ned regions in a key frame
with similarity scoresfor a total of 15 low-level visual region
concepts,resultingin a 15-bin histogram.We vary the sizeof
theprede�nedregionsto obtaina total of 8 conceptoccurrence
histogramsthatcharacterizebothglobalandlocalcolor-texture
information. We concatenatethe histogramsto yield a 120-
dimensionalvisual featurevectorper key frame,~x.

For machinelearning of conceptdetectorswe adopt the
experimentalsetupproposedin [3]. Hence,we divide a data
seta priori into a non-overlappingtrain andvalidationset.The
trainingsetA contains70%of thedata,andthevalidationset
B holds the remaining30%. We obtain the a priori concept
occurrenceby dividing the numberof labeledvideo examples
by the total number of shots in the archive. To obtain the
con�dence measurep(! j~x) we use the SupportVector Ma-
chine(SVM) framework [41]; see[3], [26], [28]. Herewe use
the LIBSVM implementation[42] with radial basisfunction

andprobabilisticoutput[43]. SVM classi�ers thustrainedfor
! , result in an estimatep(! j~x; ~q), where~q are parametersof
the SVM. We obtain good parametersettingsby performing
an iterative searchon a large number of SVM parameter
combinationson training data. We measureperformanceof
all parametercombinationsand select the combinationthat
yields the bestperformanceafter 3-fold crossvalidation.The
result of the parametersearchover ~q is the improved visual
modelv! = p(! j~x; ~q� ), contractedto p� (! j~x).

Summarizingthis section,a semanticallyenricheddetector
! is de�ned as:

! = [d! ; l ! ; v! ] ; (1)

and the multimediathesaurus
 is the union over all ! .

IV. DETECTOR SELECTION STRATEGIES

In the video retrieval paradigm,user queriesmay consist
of example videos,natural languagetext, or both. Although
current practice suggeststhat combining concept detectors
with traditional text and image retrieval techniques[44],
[45] may yield improved performance,they might as well
hurt performanceas noneof thesetechniquesis perfectyet.
Speechrecognitionfor the Dutch language,for example, is
problematicstill. We thereforeopt for automaticselectionof
a conceptdetectorappropriateto the query, allowing usersto
quickly retrieve a list of relevant video fragments.We focus
on theselectionof a singlebestdetectorto maximizeretrieval
performance,andbaseourselectionmethodson themodalities
associatedwith the userquery: the textual modality and the
visual modality. We also try to model the original userintent
motivating the queryby usingontologyknowledge.

Basedon the differentquerymodalitiesandthe userintent
we identify threedifferent approachesfor selectingthe most
appropriatedetector, asshown in Fig. 2. In thetextualmodality
we usea detectorselectionmethodbasedon text matching.
Whenmodelingtheuser's intent,weelicit semanticknowledge
throughnaturallanguageanalysisandontologylinking, using
this to createa detectorselectionmethodbasedon ontology
querying.In the visual modality we usea detectorselection
methodbasedon semanticvisualqueries.Below we detailour
detectorselectionstrategies.

A. Selectionby Text Matching

As in our multimediathesauruseachdetectoris associated
with a textual descriptiond! , we canmatchthe text speci�ca-
tion of a querywith the textual descriptionof a detector. Both
the descriptionand the query text arenormalized:commonly
occurringwordsareremovedusingtheSMART stoplist [46],
all text is convertedto lower case,andpunctuationis removed.
Each detectordescription,or document,is representedby a
term vector, where the elementsin the vector correspondto
uniquenormalizedwords,or terms.The conceptdescriptions
arewritten in naturallanguage- assuch,the term distribution
roughly correspondswith Zipf 's law. Therefore,the vector
spacemodel [47], which discountsfor frequently occurring
termsand emphasizesrare ones,is appropriateto match the
wordsin the userqueryto wordsin the detectordescriptions.
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Fig. 2. Threedifferentstrategiesfor selectingasemanticallyenrichedconcept
detectorfrom a multimedia thesaurus,given a multimodal user query: text
matching,ontologyquerying,andsemanticvisual querying.

Speci�cally, with a collectionof descriptionsD , a candidate
descriptiond! in D andqueryq containingtermst i , we use
the following implementationof the vectorspacemodel [48]:

sim(q; d! ) =
X

t 2 q

tf t ;q � idf t

normq
�

tf t ;d! � idf t

normd
� coordq;d ; (2)

where

tf t ;X =
p

freq(t; X ) normd =
p

jd! j
idf t = 1 + log jD j

freq( t;D ) coordq;d = j q\ d! j
j qj

normq =
q P

t 2 q tf t ;q � idf t
2 :

We select the detectorwith the highest similarity between
the queryvectorand the descriptionvector, sim(q; d! ), from
multimediathesaurus
 :

! d = argmax
! 2 


sim(q; d! ) : (3)

B. Selectionby Ontology Querying

When designinga detectorselectionmethodbasedon on-
tology querying,we attemptto modeltheuserintent from the
query. We �rst performsyntacticdisambiguationof thewords
in the text query. Thememory-basedshallow parserdescribed
in [49] is usedto extract nounsand noun chunksfrom the
text. Theseare then translatedto ontologicalconcepts.First,
we look up eachnoun in WordNet.When a matchhasbeen
foundthematchedwordsareeliminatedfrom further lookups.
Then,we look up any remainingnounsin WordNet.Theresult
is a numberof WordNetnoun-synsetsrelatedto thequerytext.

As describedin SectionIII-B, theconceptdetectorsarealso
linked to WordNetsynsets.We now querytheontologyto de-
terminewhich conceptdetectoris mostrelatedto the original
querytext1. Here,we mustde�ne what “most related”means.

1An RDF/OWL representationof the ontology can be queriedat http:
//www.cs.vu.nl/ ˜ laurah/semantics2detectors.html/

Simply counting the number of relations betweena query-
synsetand a concept-detector-synsetdoes not give a good
indication of relatedness,since the distancesof the relations
in WordNet are not uniform. In addition, we encounterthe
problemof distinguishingbetweenconceptdetectorsthat are
equally close to the textual query. To overcomethis we use
Resnik's measureof informationcontent[50], whereaconcept
is viewed as the compositeof its synonyms and its sub-
concepts.E.g., vehicleis de�ned not only by all occurrences
of theword “vehicle”,but alsoby all occurrencesof thewords
“car”, “truck”, “SUV”, andsoon.Theinformationcontentof a
conceptis negative thelog likelihoodof thatconceptoccurring
in a taggedtext, wherethe likelihoodof a conceptis de�ned
in termsof occurrencesof that conceptand all subconcepts,
or subsumers,of that concept:

p(l ! ) =

P
n 2 words( l ! ) count(n)

N
; (4)

wherel ! is a linked concept,words(l ! ) is the setof all noun
lemmasbelongingto l ! andall subsumersof l ! , N is thetotal
numbernoun lemmasn observed in an external corpus,and
count(n) is the numberof timeseachmemberof words(l ! ) is
observed in the external corpus.We usedthe SemCornews
corpus [51] as our external corpus. We select the concept
detectorthat maximizesinformationcontent:

! l = argmax
! 2 


(� logp(l ! )) : (5)

C. Selectionby SemanticVisual Querying

Conceptdetectorsmay also be selectedby using semantic
visual querying. Although it is hard to expect that general
userswill preferto providea numberof imageexamplesrather
than explicitly specifying the semanticconcept they need,
semanticvisual querying might prove a valuableadditional
strategy when other selection strategies fail. For semantic
visual querying we follow the approachby Rasiwasia et
al. [52]. In this scenarioall availablevisualmodelsareapplied
to thequeryimage;next, themodelwith thehighestposterior
probabilityis selectedasmostrelevant.In our implementation,
conceptdetectorselectionbasedon semanticvisual querying
�rst extracts visual featuresfrom the query images ~f , as
explainedin SectionIII-C. Basedon the features,we predict
for eachqueryimageaposteriorconceptprobability. Weselect
the detectorwith the maximumposteriorprobability:

! v = argmax
! 2 


p� (v! j ~f ) : (6)

V. EXPERIMENTAL SETUP

For evaluationwe usetheautomaticsearchtaskof the2005
TREC Video Retrieval Evaluation (TRECVID) [9]. Rather
thanaimingfor thebestpossibleretrieval result,our goal is to
assessthe in�uence of addingsemanticsto detectors.To that
end,our experimentsfocuson the evaluationof strategiesfor
selectionof a single conceptdetector, given an information
need. We �rst determine the best possible single concept
detectorfor an informationneed,or topic, givenan increasing
thesaurusof concept detectors.Then, we assessdifferent
algorithms for the three strategies describedin Section IV
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andselectthebestimplementationfor eachstrategy. We com-
parethe individual approaches;analyzingtheir strengthsand
weaknesses.Finally, we explore a combinationmethodthat
fusesindividual detectorresults.A schematicoverview of the
experimentsis depictedin Fig. 3. Wewill now detailthesearch
task,dataset,multimediathesaurus,andour experiments.

A. TRECVIDAutomaticVideo Search Task

The goal of the searchtask is to satisfya numberof video
informationneeds.Givensucha needasinput, a videosearch
engineshouldproducea ranked list of resultswithout human
intervention.The 2005 searchtask contains24 searchtopics
in total. For eachtopic we returna ranked list of up to 1,000
results.Thegroundtruth for all 24 topicsis madeavailableby
the TRECVID organizers,andto assessour retrieval methods
we use average precision (AP), following the standardin
TRECVID evaluations[9]. The averageprecisionis a single-
valuedmeasurethat is proportionalto the areaundera recall-
precision curve. This value is the averageof the precision
over all relevant judgedresults.Hence,it combinesprecision
and recall into one performancevalue. We report the mean
averageprecision(MAP) over all searchtopicsasan indicator
for overall searchsystemperformance.

B. Data Set& MultimediaThesaurusBuilding

The TRECVID 2005 video archive contains 169 hours
of video data, with 287 episodesfrom 13 broadcastnews
shows from US, Arabic, andChinesesources,recordedduring
November 2004. The test data collection contains approx-
imately 85 hours of video data. The video archives come
accompaniedby a commoncamerashotsegmentation,which
servesasthe unit for retrieval. We facethe taskof specifying
a set of semanticconceptdetectorsfor the TRECVID 2005
data set. We adopt the set of 101 conceptdetectorsmade
publicly available as part of the MediaMill Challenge[3].
Theseusetheimplementationsketchedin SectionIII-C. Using
the samemethod,we learn conceptdetectorsbasedon the
manualannotationsof LSCOM [4]. Conceptdetectorsin both
setsof annotationsarerelatedto programcategories,settings,
people,objects,activities, events,and graphics.Conceptsare
addedto thecombinedthesaurusonly whenat least30positive
instancesare identi�ed in the TRECVID 2005 training set.
When conceptsin the MediaMill and LSCOM thesaurilink
to thesameWordNetsynsetthey areconsideredto besimilar.
In thosecases,the performanceon validation set B is used
as selection criterion. This processresults in a combined
thesaurusof 363 conceptdetectors.

C. Experiments

We investigate the impactof addingsemanticsto detectors
by performingthe following 3 experiments.

� Experiment 1: What is the In�uence of IncreasingCon-
ceptDetectorThesaurusSizefor Video Search?

To assessthe in�uence of growing conceptdetectorthesauri
on video retrieval performancewe randomlyselecta bag of
10 conceptsfrom our thesaurusof 363 detectors.We evaluate

Fig. 3. Schematicoverview of our video retrieval experiments,using the
conventionsof Fig. 2. In experiment1 we assessthein�uence of anincreasing
thesaurussize on video retrieval performance.In experiment2 we evaluate
threeconceptdetectorselectionstrategies. Experiment3 exploresan oracle
fusion of individual detectorselectionmethods.

eachdetectorin the bag against all 24 searchtopics and de-
terminethe onethat maximizesAP for eachtopic. Hence,we
determinethe upperlimit in MAP scoreobtainablewith this
bag.In thenext iteration,weselecta randombagof 20concept
detectorsfrom thethesaurus,andoncemoretheoptimalMAP
is computed.This processis iterateduntil all conceptdetectors
have beenselected.To reducethe in�uence of randomeffects,
which maydisturbour judgementof increasingthesaurussize
on video searchperformancein both a positive and negative
manner, we repeatthe randomselectionprocess100 times.

� Experiment 2: How to Select the Most Appropriate
ConceptDetectorfor a Video Search Query?

For each of the three modalities identi�ed in Fig. 2, we
want to identify themostappropriateconceptdetector. Hence,
our secondexperimentconsistsof threesub-experiments,as
detailedbelow, anda fourth sub-experimentthatcomparesthe
threeindividual methods.

1) Experiment2a: What is the Most Appropriate Concept
Detector using Text Matching?: We assessthe in�uence of
text matchingon conceptdetectorselectionby indexing the
conceptdetectordescriptionsin theLucene[48] searchengine,
using the implementationdescribedin SectionIV-A. Within
text retrieval, collectionsare generallyquite large compared
to the 363 conceptdescriptionsthat we have available. We
hypothesizethat in this small collection, where there are
comparatively few text termsto match,recall is a biggerissue
thanin large collections.Effective waysto increaserecall are
stemming,wherewords are reducedto their root forms, and
charactern-gramming,wherewordsare iteratively broken up
into sequencesof n characters.We performthreeexperiments
for text matching — perfect match, stemmedmatch, and
charactern-gram match. For stemmingwe use the popular
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Porterstemmingalgorithm[53]. For charactern-gramswe use
sequencesof 4 charactersasthis approachhasbeenshown to
performwell for English [54].

2) Experiment2b: What is the Most Appropriate Concept
Detector using Ontology Querying?: As describedin Sec-
tion IV-B, we query the ontology for the conceptdetector
mostcloselyrelatedto the noun-synsetsin the query. Several
approachesexist for semanticdistancebetweensynsets(see
for example[55]). In this paper, we employ two approaches
that have shown promisingresultsin earlierstudies.The �rst
usesResniksimilarity, which is a measureof semanticsimilar-
ity in anis-ataxonomybasedon informationcontent[50] (see
SectionIV-B); in the caseof WordNet, the “is-a taxonomy”
translatesto the hyponym/hypernym hierarchy. The second
approachusessubsumptionrelations(hyponym/hypernym) as
well aspart-of relations.While the useof hyponym relations
is commonly accepted,a recentstudy [35] showed that the
inclusion of part-of and hypernym relationsfurther improves
retrieval results,especiallyfor visual data.A conceptdetector
directly matchingthequerysynsetis consideredclosest.After
that, a conceptdetectorthat has a hypernym relation to the
query synset is consideredclosest, followed by a concept
detectorthat hasa hyponym or part-of relation to the query
synset.Many queriesconsistof more than one noun synset.
Whenthis is thecase,we �rst seektheclosestconceptdetector
thatis relatedto the�rst querysynset.If thereareno matching
conceptdetectors,we proceedto the next query synset,until
a detectoris found or the last synsethas beenreached.In
addition,we testtwo methodsto breakties betweendetectors
that are equally close to a query synset:(1) the information
contentof theconceptdetectorand(2) thea priori chancethat
a conceptis presentin our dataset.

3) Experiment2c: What is the Most Appropriate Concept
DetectorusingSemanticVisual Querying?: Selectingconcept
detectorsusing semanticvisual querying may be a brittle
approachwhenconceptsarenot distributedequallyin thedata
set,asis oftenthecasein realisticvideoretrieval applications.
Ratherthanselectingtheconceptwith themaximumscore—
which is often the most robust but also the least informative
one,e.g.person, face, outdoor— wealsoassessaheuristicse-
lection mechanismthat takesconceptfrequency into account.
Similar to the vector spacemodel usedin SectionIV-A, we
discountfor frequentlyoccurringtermsandwe emphasizerare
ones.We take theposteriorprobabilityasa substitutefor term
frequency anddivide by the logarithm of the inverseconcept
frequency. By doing so, we prioritize lessfrequent,but more
discriminative, conceptswith reasonableposteriorprobability
scoresover frequent,but less discriminative, conceptswith
high posteriorprobability scores.

4) Experiment2d: Whatare the Strengthsand Weaknesses
of the SelectionStrategies?: We comparethe three differ-
ent selectionstrategies quantitatively as well as qualitatively.
Basedon previous TRECVID searchresults [9], [16]–[21],
we anticipatethat the AP varieshighly per topic. Therefore,
we normalizethe AP scoresof the threemethodsby dividing
them by the AP score of the best possibledetector. These
percentagesgive a betterindicationof thedifferencesbetween
the methods than the raw AP data. This has the added

advantagethat unreliablestatisticalresultsdue to outliersare
avoided.

We examine if there are signi�cant differencesbetween
the three detectorselectionmethods.Since the data are not
normally distributed we perform a nonparametricKruskal-
Wallis test.Then,we performpairwiseWilcoxon signedrank
tests. We look for correlation betweenthe three selection
methodswith Spearman's rankcorrelationcoef�cient. Finally,
we qualitatively examinethe differencesby looking at which
detectorsareselectedby the threemethods.

� Experiment 3: What is the In�uence of Combining
DetectorSelectionStrategies?

Since the individual conceptdetectorselectionstrategies in
experiment3 work with differentmodalities,it is naturalto ask
to which extent they complementeachother. A combination
of someor all of them could further improve video retrieval
performance[56]. Various combinationmethodsexists; the
linear combinationof individual methodsis often evaluated
as one of the most effective combinationmethods,see for
example[57], [58]. We adopta linear combinationfunction,
similar to [21], [58], which usesa single combinationfactor
� 1 for pair-wisecombinationof two conceptdetectors,de�ned
as:

p�
2(! 1; ! 2j~x) = � 1 � p� (! 1j~x) + (1 � � 1) � p� (! 2j~x); (7)

where � 1 2 [0; 1]. To allow for three-way combinationof
selectedconceptdetectorswe extendeq.(7) with anadditional
combinationfactor � 2, de�ned as:

p�
3(! 1; ! 2; ! 3j~x) = � 1 � p� (! 1j~x) + � 2 � p� (! 2j~x)

+ (1 � (� 1 + � 2)) � p� (! 3j~x);
(8)

where� 2 2 [0; 1], and � 1 + � 2 � 1. To assessthe in�uence
of combiningdetectorselectionmechanisms,we perform an
experimentthatevaluatesall possiblelinearcombinationswith
stepsof 0:1 for both � 1 and � 2. We term this combination
“oracle fusion” as it uses the test set results to select the
optimal combinationon a per-query basis.It is included to
explore the upperlimits of performancethat arereachableby
combiningdetectorselectionstrategies.

We compare the oracle fusion experiments using a
Kruskal-Wallis test and pairwiseWilcoxon signedrank tests.
Wilcoxon's test is also usedto examinedifferencesbetween
the resultsof the fusion experimentsand the resultsof the
single-methodexperiments.

VI . RESULTS

A. Experiment1: Whatis the In�uence of IncreasingConcept
DetectorThesaurusSizefor Video Search?

We summarizethe in�uence of an increasingthesaurusof
conceptdetectorson video searchperformancein the box
plot in Fig. 4. There is a clear positive correlationbetween
the numberof conceptdetectorsin the thesaurusand video
retrieval performance.Theboxplot alsoshows thatthemedian
is shiftedtowardsthebottomof thebox for the�rst 30concept
detectors,even when the outliers are ignored.This indicates
that, on average,performanceis low for small thesauri,but
somedetectorsperform well for speci�c topics. However, it
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Influence of Thesaurus Size on V ideo Search Performance
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Fig. 4. Box plot showing the positive in�uence of an increasingthesaurus
size,in randombagsof 10 machinelearnedconceptdetectors,on MAP over
24 topicsfrom theTRECVID 2005videoretrieval benchmark.Extremevalues
after 100 repetitionsaremarked (+) asoutliers.

is unlikely that a large variety of topics can be addressed
with a small thesaurus,which explainstheskew. With only 10
randomlyselectedconceptdetectorsthemedianMAP scoreis
0.008.Indeed,theusageof few conceptdetectorsis of limited
usefor videoretrieval. However, a steadyincreasein thesaurus
size hasa positive in�uence on searchperformance.For the
�rst 60 conceptdetectorsthis relationis evenlinear, increasing
MAP from 0.008to 0.047.When thesaurigrow, moresearch
topics can be addressedwith good performance.However,
the shift towards the high end of the box indicatesthat a
substantialnumberof conceptdetectorsin our thesaurusdonot
performaccurateenough,yet, to be decisive for performance.
As a result,whenmore than70 conceptdetectorsare added,
the increaseis lessstrong,but it keepsrising until the limit
of this thesaurusis reachedfor themaximumobtainableMAP
of 0.087.Note that this valueis competitive with the state-of-
the-artin video search[9].

B. Experiment2: Howto SelecttheMostAppropriateConcept
Detectorfor a Video Search Query?

Due to lack of spacewe are not able to provide detailed
breakdowns of scoresfor all our experiments.TableI lists the
AP scoresfor theselectedconceptdetectormethods(columns
3–5) and for the bestpossiblesingledetector(column2).

1) Experiment2a: What is the Most Appropriate Concept
DetectorusingText Matching?: Contraryto our expectations,
we found that usingexact text matchingprovided the bestre-
sultswith a MAP scoreof 0.0449,versus0.0161for stemmed
text, and 0.0290 for n-grammedtext. It appearsthat when
retrieving detectordescriptionsusing query text, it is more
important to get exact matchesto the original query terms
thanit is to aim for recallandincreasethenumberof detector
descriptionsretrieved.We expectthat this is dueto our choice
to selectonly a singlebestconceptdetectormatch.If we allow
multiple detectorsto bereturned,techniquessuchasstemming
andn-grammingmight have a bene�cial impact.

In the remainder we will use the exact text matching
approachfor conceptdetectorselectionusingtextual matches.

2) Experiment2b: What is the Most Appropriate Concept
Detector using Ontology Querying?: The approachusing

Resnik similarity (approach 1) was outperformed by the
approachusing subsumption/part-ofrelations (approach2)
regardingmeanaverageprecision(0.0218and0.0485respec-
tively), but the difference was not statistically signi�cant.
Examining the selecteddetectors,we see that approach1
performsbetteron personx queries,while approach2 bene�ts
from the useof hypernyms.

A comparisonbetweenthe use of information content to
theuseof a priori chancesfor distinguishingbetweenconcept
detectorsthat are equally close to the topic, shows that the
differencesare minimal. Only four topics get a different
detector, andthedifferencein MAP is only 0.0034.A possible
explanationis thatfor mosttopicswe �nd oneconceptdetector
that is closestto the topic synsets,which meansthat neither
information content,nor a priori chanceshave to be used.
In the remainingsections,we continuewith the resultsof the
subsumption/part-ofapproachusinginformationcontent,since
this givesus the highestAP scores.

Using this approach,a detector was found for all but
one of the queriesof TRECVID 2005 that is at most one
hypenym/hyponym/part-of relationaway from a topic synset.
This suggeststhatour largedetectorpool hasa goodcoverage
of the TRECVID queries.

3) Experiment2c: What is the Most Appropriate Concept
Detectorusing SemanticVisual Querying?: We observe that
selectionof conceptdetectorsfrom semanticvisual examples
pro�ts from a normalizationstep that takes a priori concept
occurrenceinto account. When we do not normalize the
posterior probability, selectionbasedon semanticexamples
picks in 23 out of 24 queries(data not shown) one of the
four mostfrequentconceptsappearingin this dataset,namely
people, face, overlayedtext, or outdoor ( [3, Table1]). While
this is often correct, the conceptis so generalthat it hardly
contributesto retrieval performance.Theonly exceptionis the
searchtopic for tennisplayers,wheretheselectedsportgames
detectorhasgoodAP.

When we take a priori concept frequency into account,
searchresultsimprove. Resultsof this experimentaresumma-
rized in the last column of Table I. We observe that selected
detectorssometimesaccuratelyre�ect the semanticsof the
searchtopics,e.g.,Iyad Allawi, GraphicalMap, TennisGame,
Helicopter Hovering, Cigar Boats, Basketball Game, and
Grass. This is not alwaysthe casehowever, andquestionable
detectorsareselectedfor somesearchtopics.This especially
hurts the personx queries;for the topic �nd shotsof George
Bushenteringor leaving a vehicle, for example,the optimal
detectoris rocket propelledgrenades. However, a detectorthat
matcheswell in termsof semanticsis no guaranteefor good
searchperformance.In casessuchas �nd shotsof graphical
mapswith Baghdadmarked or �nd shotsof ships, theselected
detectors�t the topic, but perform only moderatelywell. In
the �rst casethedetectoris not speci�c enough,in thesecond
caseits performanceis not goodenough.Theseresultssuggest
that a measureis neededindicating when incorrect optimal
detectorsshouldbepreferredover correctoneswith badvideo
searchresults.

4) Experiment2d: Whatare the Strengthsand Weaknesses
of the SelectionStrategies?: We found no signi�cant differ-
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TABLE I

COMPARISON OF THREE DETECTOR SELECTION STRATEGIES FOR VIDEO RETRIEVAL . SEARCH RESULTS ARE COMPARED AGAINST THE BEST POSSIBLE

CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE PERCENTAGES OF AVERAGE PRECISION (AP%). THE BEST RESULT IS GIVEN IN BOLD.

Detector SelectionStrategies

Best Possible 2a: Text Matching 2b: Ontology Querying 2c: Semantic Visual Querying

Search Topic BestDetector AP SelectedDetector AP% SelectedDetector AP% SelectedDetector AP%

Two visible tennisplayerson the court Athlete 0.6501 TennisGame 89.7% Athlete 100.0% TennisGame 89.7%

A goal beingmadein a soccermatch Stadium 0.3429 SoccerGame 31.7% SoccerGame 31.7% Grass 51.0%

Basketball playerson the court Indoor SportsVenue 0.2801 Court 0.0% Athlete 30.4% Basketball Game 81.5%

A meetingwith a large tableandpeople Furniture 0.1045 ConferenceRoom 73.6% Meeting 24.8% Flag 1.0%

Peoplewith bannersor signs PeopleMarching 0.1013 Demonstration or Protest 73.7% Group 5.3% Desert 0.4%

Oneor moremilitary vehicles ArmoredVehicles 0.0892 Tanks 38.1% Tanks 38.1% Charts 0.0%

Helicopterin �ight Helicopters 0.0791 HelicopterHovering 53.1% Helicopters 100.0% HelicopterHovering 53.1%

A roadwith oneor morecars Car 0.0728 Car Crash 7.9% Road 65.9% Helicopters 4.4%

An airplanetaking off Classroom 0.0526 Airplane Flying 10.8% Airplane Flying 10.8% Helicopters 87.3%

A tall building Of�ce Building 0.0469 Tower 89.8% Building 98.8% Grass 0.2%

A ship or boat Cloud 0.0427 Boat or Ship 46.5% Boat or Ship 46.5% Cigar Boats 39.5%

George Bushenteringor leaving vehicle Rocket PropelledGrenades 0.0365 George Bush jr 6.6% George Bush jr 6.6% HelicopterHovering 0.0%

OmarKarami Chair 0.0277 Ariel Sharon 0.8% Ariel Sharon 0.8% YasserArafat 3.5%

Graphicmapof Iraq, Baghdadmarked GraphicalMap 0.0269 Graphical Map 100.0% Graphical Map 100.0% Graphical Map 100.0%

CondoleezaRice US NationalFlag 0.0237 - 0.0% - 0.0% Capitol 0.4%

Oneor morepalm trees Weapons 0.0225 Tropical Setting 1.6% Trees 23.4% Fir e Weapon 44.3%

Somethingon �re with �ames andsmoke Violence 0.0151 Smoke 95.1% Vehicle 41.4% SoccerGame 18.9%

MahmoudAbbas ConferenceRoom 0.0134 Ariel Sharon 0.5% Ariel Sharon 0.5% YasserArafat 2.3%

Hu Jintao Iyad Allawi 0.0123 Hu Jintao 4.3% George Bushsr 2.4% Non-US National Flags 55.0%

Peopleshakinghands Beards 0.0110 Handshaking 14.6% Group 10.2% YasserArafat 18.0%

Of�ce setting Computers 0.0095 Computers 100.0% Of�ce 90.4% Emile Lahoud 1.9%

Iyad Allawi Iyad Allawi 0.0095 Iyad Allawi 100.0% Ariel Sharon 46.6% Iyad Allawi 100.0%

Tony Blair ElectionCampaignAddress 0.0067 Tony Blair 0.0% Tony Blair 0.0% George Bush jr 29.6%

Peopleenteringor leaving a building Muslims 0.0044 USA GovernmentBuilding 6.4% Group 27.0% Reporters 8.5%

Mean 0.0867 50.8% 56.0% 55.6%

Numberof highestscores . 9 9 12

encesbetweenthe results of the three individual selection
experiments.Experiments2a-2b,2a-2cand 2b-2c also failed
to show differences.We found a positive correlationbetween
experiments2a-2b, which was lacking between2a-2c and
2b-2c. This suggeststhat the text-basedand WordNet-based
conceptdetectorselectionmethodsperformwell on the same
set of topics (and perform badly on the sameset of topics)
while the visual methodscoreswell on other topics. This is
supportedby the fact that the text-basedand WordNet-based
methodsselectthesamedetectorfor 10 topics,while thevisual
methodagreedon a detectoronly four times with the text-
basedmethodandonly oncewith theWordNetbasedmethod.

C. Experiment3: Whatis theIn�uenceof CombiningDetector
SelectionStrategies?

We summarizethe resultsof our combinationexperiments
in Table II. The increasein MAP for all fusion experiments
indicates that combining detector selection strategies pays
off in general.Pair-wise combinationis especiallyeffective
when two different concept detectorsobtain good average
precision in isolation. For searchtopics such as �nd shots
with tall buildings and �nd shots of an of�ce setting the
pair-wise combinationof detectorsselectedby text matching
and ontology queryingeven improves substantiallyupon the
best possiblesingle detector. A combinationof selectionby
ontologyqueryingandselectionusingsemanticvisual exam-
ples yields the most effective pair-wise combinationstrategy
in terms of overall performance.However, no signi�cant
differenceswere found betweenthe three typesof pair-wise

combinationresults.Sincea largeoverlapin selecteddetectors
exists betweenthe three different selectionstrategies, three-
way combinationoften boils down to pair-wise combination.
For thosesearchtopics where threedifferent conceptdetec-
tors are selected,e.g., �nd shots of palm trees, three-way
combinationyields a further, but modest,increaseover the
best pair-wise combination.Again, no signi�cant difference
was found between pair-wise and three-way combination.
However, using a Wilcoxons signed rank test, we did �nd
signi�cant differencesbetweenthe resultsof the combination
experimentsandthe resultsof thesingle-methodexperiments.
The fusion experimentswere consistentlybetter at the 0.01
� -level.

VI I . DISCUSSION & CONCLUSION

We view this paper as a �rst step in a novel multi-
disciplinaryapproachto tacklethe toughproblemof semantic
video retrieval. The resultsarecertainlynot conclusive in the
sensethat they provide a solid basisfor preferringa particular
approachover others.

Experiment1 gives indicationsabout the numberof the-
saurusconcepts(= thesaurussize)neededfor maximumvideo
retrieval performance.In Fig. 4 wecanseethata thesaurussize
of 100–200alreadycomesclose to maximum performance.
However, our experimentsconsideronly 24 topics. A wider
rangeof topics will likely require a larger thesaurussize to
reachthis sameperformancelevel.

In the detectorselectionexperiment,experiment2 we see
thatboth in termsof MAP andin termsof thehighestnumber
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TABLE II

COMPARISON OF PAIR-WISE (EQ. 7) AND THREE-WAY (EQ. 8) ORACLE FUSION OF THE DETECTOR SELECTION STRATEGIES FROM TABLE I . SEARCH

RESULTS ARE COMPARED, WITH VARYING � 1 AND � 2 , AGAINST THE BEST POSSIBLE CONCEPT DETECTOR SCORE FOR EACH TOPIC IN RELATIVE

PERCENTAGES OF AVERAGE PRECISION (AP%). FUSION RESULTS THAT RELY ON ONE DETECTOR ONLY ARE INDICATED WITH —. THE BEST RESULT IS

GIVEN IN BOLD.

Oracle Fusion of Detector SelectionStrategies

Best Possible 2a + 2b 2a + 2c 2b + 2c 2a + 2b + 2c

Search Topic BestDetector AP � 1 AP% � 1 AP% � 1 AP% � 1 � 2 AP%

Two visible tennisplayerson the court Athlete 0.6501 0.7 105.4% — 89.7% 0.3 105.4% 0.0 0.3 105.4%

A goal beingmadein a soccermatch Stadium 0.3429 — 31.7% 0.3 76.5% 0.3 76.5% 0.0 0.3 76.5%

Basketball playerson the court Indoor SportsVenue 0.2801 0.9 30.4% 0.2 81.6% 0.2 86.1% 0.0 0.2 86.1%

A meetingwith a large tableandpeople Furniture 0.1045 — 73.6% — 73.6% 0.9 25.0% — — 73.6%

Peoplewith bannersor signs PeopleMarching 0.1013 — 73.7% — 73.7% 0.6 5.3% — — 73.7%

Oneor moremilitary vehicles ArmoredVehicles 0.0892 — 38.1% — 38.1% — 38.1% — — 38.1%

Helicopterin �ight Helicopters 0.0791 — 100.0% — 53.1% — 100.0% — — 100.0%

A roadwith oneor morecars Car 0.0728 0.9 66.9% — 7.9% 0.5 66.6% 0.9 0.1 66.9%

An airplanetaking off Classroom 0.0526 — 10.8% — 87.3% — 87.3% — — 87.3%

A tall building Of�ce Building 0.0469 0.8 141.2% — 89.8% 0.9 98.8% 0.8 0.2 141.2%

A ship or boat Cloud 0.0427 — 46.5% 0.1 55.8% 0.1 55.8% 0.0 0.1 55.8%

George Bushenteringor leaving vehicle Rocket PropelledGrenades 0.0365 — 6.6% 0.6 6.6% 0.6 6.6% 0.0 0.6 6.6%

OmarKarami Chair 0.0277 — 0.8% 0.9 4.0% 0.9 4.0% 0.0 0.9 4.0%

Graphicmapof Iraq, Baghdadmarked GraphicalMap 0.0269 — 100.0% — 100.0% — 100.0% — — 100.0%

CondoleezaRice US NationalFlag 0.0237 — 0.4% — 0.4% — — 0.4%

Oneor morepalm trees Weapons 0.0225 0.1 23.4% 0.9 48.7% 0.8 49.7% 0.5 0.4 53.2%

Somethingon �re with �ames andsmoke Violence 0.0151 0.9 100.7% 0.9 102.6% 0.7 38.4% 0.8 0.1 103.0%

MahmoudAbbas ConferenceRoom 0.0134 — 0.5% 0.9 2.4% 0.9 2.4% 0.0 0.9 2.4%

Hu Jintao Iyad Allawi 0.0123 0.9 5.5% 0.9 55.5% 0.8 55.5% 0.4 0.4 56.2%

Peopleshakinghands Beards 0.0110 — 14.6% 0.9 19.6% 0.1 29.7% 0.0 0.1 29.7%

Of�ce setting Computers 0.0095 0.1 154.9% — 100.0% — 90.4% 0.1 0.9 154.9%

Iyad Allawi Iyad Allawi 0.0095 0.1 121.1% — 100.0% 0.9 121.1% 0.0 0.9 121.1%

Tony Blair ElectionCampaignAddress 0.0067 — 0.0% 0.9 29.7% 0.9 29.7% 0.0 0.9 29.7%

Peopleenteringor leaving a building Muslims 0.0044 0.9 28.2% 0.4 9.2% 0.6 28.3% 0.8 0.1 29.3%

Mean 0.0867 65.5% 72.4% 75.9% 83.4%

Numberof highestscores . 10 12 15 24

of “bestdetectorselections”thethreeselectionstrategiesshow
comparableresults. For text matching (2a) we found that
exactmatchingworksbest,but this is probablya consequence
of the fact that we select only a single detector. For on-
tology querying (2b) it is interestingto note the distinction
betweenthe hyponym/part-of and the Resnik method; the
former performing best on “general concept” queries, the
latter on “personx” queries.This suggeststhe useof a more
re�ned concept-detectorselectionmechanism.Semanticvisual
querying (2c) was shown to correlatebetterwith a different
set of topics than both text matchingand ontology querying.
For this selectionmethodwe notethe importanceof avoiding
frequentlyoccurringbut non-discriminative conceptdetectors,
suchas for peopleandoutdoor.

The fusion experiments(3) clearly show that we can gain
by combining selection methods.It indicates that we can
come close to achieving optimal concept-detectorselection
scoresif we understandthe situationsin which it is useful to
combineselectionmechanisms.We shouldconsiderincluding
a “selector-of-selector”stepbasedon the query topic, which
would proposea (combinationof) selectionmethod(s)that is
likely to beoptimal.At themoment,thesetof topicsincluded
in this study provides insuf�cient information as a basisfor

sucha meta-selection.More experimentationwill be needed
to clarify in which cases(e.g.,for which classesof topics)two
or moreselectionmethodsbene�t from combination.Thegoal
shouldbe to identify, for example,whethertopics involving
namedpeoplerequirea differentselectionmethodthana topic
involving a generalconceptsuchasroad. Studyingthe nature
of querytopicsmight alsoreveal whetherwe aremissingout
importantothercategoriesof topics.

One limitation of our approachis that we have only con-
sideredsituationsin which the threeindividual methodsselect
preciselyonedetector. This is likely to have beentoo strong.It
is easyto imaginesituationsin which the selectionstrategies
producea set of multiple detectors.In principle, this would
make it possibleto get a higheraverageprecisionscorethan
that of a singledetector(which is the maximumscorewe can
achieve in this study).However, a major increasein detection
performanceis neededbeforeconceptdetectorcombinationis
really successful.We are planningexperimentsin which we
lift this limitation.

Taking a broaderlook, we alsoneedto considerthe effect
of thedomainwe areworking in. News videois a domainwith
specialcharacteristics.The stylizedshots,the highly domain-
speci�c concepts(femaleanchor) andother factorsare likely
to make it dif�cult to predicthow our methodswould behave
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in othervideo retrieval domains,suchasdocumentaries.
Finally, coming back to the researchquestionwe started

with: have we shown that semantically-enricheddetectors
enhanceresultsin semanticretrieval tasks?Our resultsdo not
yet permit us to respondwith a �rm “yes” to this question,
but the resultsareencouraging.We have scratchedthesurface
of a semanticvideo retrieval approachwhich combinesdif-
ferent techniques.The resultssuggestpromisingnew lines of
research.
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