Features as Constraints

Rafael Accorsit Carlos Areces?> Wiet Bouma® Maarten de Rijke?

L Albert-Liidwigs-Universitit Freiburg, Freiburg, Germany
2 JLLC, University of Amsterdam, Amsterdam, The Netherlands
3 KPN Research, Leidschendam, The Netherlands

Abstract. We report on ongoing work on using a constraint-based ap-
proach towards feature interaction detection. Constraint programming
is introduced as a natural way of handling the inherent non-monotonic
aspects of feature integration. Starting from a logic specification of the
Basic Call Service (BCS), we obtain a labeled transition system rep-
resenting this service. This graphical interpretation is implemented in
smodels and tested for a variety of properties.

We have devised a stepwise methodology for integrating features.
According to our method, features act as constraints on models of the
original basic system. On the one hand they forbid some of the original
behavior of the system (thus pruning some models), and on the other
they give rise to new models, representing new behavior. Using this
methodology, we have so far implemented a small number of features on
top of the basic call service, and we report on some of the tests that we
have performed.

1 Introduction

An important approach towards software design that is advocated by modern software
engineering is to consider a complex system as a combination of a basic system, which
provides functions for stand-alone operation, and a set of modules of functionality,
called features, which are added on top of the basic system. Viewing a complex system
as a combination of a basic system and features is particularly useful for both system
developer and user. From a software engineering point of view, it allows the system
developer to release features as gradual upgrades to the basic system. These upgrades
can be evaluated and integrated as part of the basic system. Additionally, it allows
third parties to design and develop features. These two characteristics also affect the
user, who is free to add or remove features whenever it is necessary or desirable to do
so. Furthermore, it allows the consumer to decide which developer of features offers the
best services.

However, the feature-oriented approach towards software design also presents prob-
lems. In particular, the presence of a number of features on top of the same basic
system leads to feature interaction, i.e., to the situation where the behavior of one fea-
ture affects the behavior of another. If the interaction of features generates unexpected
behavior of the overall system, then feature interaction becomes a problem.

In this paper we consider the problem of detecting feature interaction in the setting
of telecommunication. In telephony systems, features are pieces of functionality that
are usually designed to provide a new facility to a subscriber; however, they can also be
developed to make the administration of the network easier. There are many features
today, and their number continues to grow; [6] contains descriptions of hundreds of
features.

There are various aspects that make the detection of feature interaction in telecom-
munications an attractive and challenging problem:

1. Everybody uses telephones and anyone can study this domain, even without access
to private intellectual property. Moreover, telecommunications is bound to be one
of the most important enterprises of the early 21st century, both economically,
politically, and technically [16].

2. Featured telephone systems present all the problems that any extended, long-
lived, distributed, high-performance and concurrent software system presents. In
particular, there is the highly combinatorial character of the interaction. The
freedom that each subscriber has to add features or not generates a large num-
ber of alternative scenarios. The search for interactions has to analyze all these
combinations, and the addition of a single feature creates exponentially many
new possibilities to be verified. This combinatorial explosion can quickly lead to
intractability.

3. Finally, an important reason that makes the problem an interesting one from a
modeling or knowledge representation point of view is the non-monotonic charac-
ter of the addition of features, see e.g., [15]. By definition, a feature modifies the
behavior of the basic system, altering its properties.

There have been several formal approaches to the feature interaction problem. Most
standard methodologies are based on model checking [12, 13], and some are based on
satisfiability checking [8, 5, 4]. Both methods address items 1 and 2 discussed above:
there exists freely available verification systems which can deal with reasonably complex
instances of the feature interaction problem. But the issue of non-monotonicity raised
in item 3 has always been neglected. We believe that the non-monotonic nature of
feature addition is one of the central themes in feature interaction.

The field of non-monotonic logics, which includes branches like default logic, auto-
epistemic logic, circumscription, etc., flourished during the late 1970s and 1980s, and
constitutes an example of a serious attempt to get to grips with non-monotonicity
and ways of building expressive knowledge representation formalisms. But one of the
clear outcomes of the work in this field, was the realization that accounting for non-
monotonicity was computationally expensive.

The important questions, then, is whether we can reconcile the fact that non-
monotonicity issues appears to be central to feature integration and feature interac-
tion detection, with the staggering computational costs that logical approaches to non-
monotonicity seem to imply.

In this paper, we use constraints as a natural way to model non-monotonic phenom-
ena: constraint programming is an effective algorithmic approach to many combinato-
rially complex problems [3]. Our methodology is as follows. We start by representing a
system by the set of its possible models defined by means of constraint rules. Feature
integration will constitute the addition of new constraints, perhaps over an extended
vocabulary. The new constraints corresponding to a given feature will let us both prune
old models and generate new ones, altering thereby the behavior of the system. As the
entire modeling effort takes place in a constraint programming framework, we can take
advantage of efficient heuristics for two tasks that are of crucial importance in finding
interactions: for model construction and querying.

The main methodological point of this paper, then, is to our attempt to verify intu-
itions that a constraint oriented approach to non-monotonicity in the feature interac-
tion problem is feasible. To test these intuitions we set up an experimental environment
based on the stable model semantics for logic programming. This approach offers the
expressivity of a non-monotonic environment, the flexibility of the logic programming
paradigm and the strength of constraint programming. Even thought at this early
stage we will only model very simple cases of interaction, we will attempt a realistic
verification of these by exhaustive testing.

We propose a stepwise methodology for feature integration and analysis which relies
naturally on the capability of stable model semantics to handle non-monotonicity. We
use the smodels tool box — one of the most efficient implementations of stable models
semantics currently available — for modeling and exploring the addition of features in
the setting of telecommunications; smodels is particularly interesting because it offers a
query-based search facility, which allows us to use it as a verification tool. Furthermore,
it is freely available; see [2].

The remainder of the paper is organized as follows. In Section 2 we provide some
background on stable models semantics and on feature interaction in telephony systems.
In Section 3 we model the Basic Call Service; we report on tests carried out with the
BCS in Section 4. In Section 5 we show how to model feature interaction. Finally, in
Section 6 we evaluate the results obtained so far, and we conclude in Section 7.

2 Modelling the Basic Call Service

Stable Model Semantics. Stable models constitute a declarative semantics for logic
programming. This approach is radically different from the standard semantics used
in Prolog: while in the later the aim is to evaluate a single query following a goal
directed backward chaining strategy, stable models semantics considers program rules
as constraints that the models should satisfy.

The intuition behind logic programming with stable model semantics is to merge
the advantages of logic programming knowledge base representation techniques with
constraint programming. These techniques seem to be particularly useful in dynamic
domains and for combinatorial problems such as the one we aim to model in this paper.

Let us briefly recall the syntax and semantics of stable model semantics. The vocab-
ulary is required to be purely relational, i.e., there are no function symbols; moreover,
we do have the negation symbol not in the language. A solution set is a set of atoms.
A program is a set of rules of the form

A+ Ay, ..., A, not(B,),...,not(By).

Here, A is called the head of the rule, and the part to the right-hand side of the arrow
the body. Such rules are viewed as constraints stating that if the atoms A, ..., A, are
in a solution set and none of By, ..., B,, is, then A must be included in the set. The
stable models of a ground (variable-free) program P, are defined as follows. The reduct
of a program P with respect to a set of atoms S is the program obtained by:

1. Deleting each rule in P that has a not(z) in its body such that x € S;

2. Deleting all negative literals not(B) in the remaining clauses.

A set of ground atoms S is a stable model of P if S is the unique minimal model of the
reduct of P with respect to S.

Example 2.1 Let P be the program {p « r,not(q) ¢ + not(p) r < not(s) s«
not(p)}. Then S; = {r, p} is a stable model because the reduct of P with respect to S;
is {p <~ r r «} and S is its unique model. But, Sy = {p, s} is not a stable model
of P, because its reduct is p < r and its unique minimal model is {}. However, P
does have another stable model, namely {s, ¢}. Hence, a program may possess multiple
stable models, one, or none at all.

The problem of deciding whether a ground program has stable models is NP-complete
[9]. Indeed, to build a stable model it is enough to guess which atoms will appear
non-negated, and then verify uniqueness in polynomial time using the deductive closure
of the reduct of the program with respect to this set.

Smodels. smodels is a C++ implementation of logic programming with stable model
semantics [11]. The system includes two modules: (a) smodels which implements the
stable model semantics for ground programs and (b) 1parse which computes a grounded
version of so-called range-restricted programs.

The implementation is based upon a bottom-up backtrack search where one of the
underlying ideas is that stable models are characterized in terms of their full sets, i.e.,
their complements with respect to negative atoms in the program for which the positive
atoms are not included in the stable model. The search space is drastically pruned by
exploiting an approximation technique for stable models which is very similar to well-
founded semantics.

The advantage of this implementation is the linear space requirement. This makes
it possible to apply stable model semantics in problem areas where large stable models
are generated. Moreover, smodels has proved to be significantly more efficient than
other recent implementations of stable model semantics, see [10].

Basic Call Service. The specification of BCS obtained in [4] uses a description logic
to characterize the sets of states and actions available to subscribers in the BCS model.
Basically, the axioms constitute a declarative way of defining a transition system. The
declarative approach is appealing because the full transition system corresponding to
the BCS is enormous, growing exponentially with the number of subscribers considered.

The main idea we will use when encoding this transition system into smodels is that
we don’t actually need to encode the complete transition system piece by piece. Instead,
we can consider each subscriber as an independent dimension of a many-dimensional
transition system. But before going into an explanation, we need to define the intended
meaning of the different atoms we will use.

Table 1 lists the atoms that express the possible (mutually exclusive) states of a
subscriber and the allowed actions.
In [4], a set of rules providing a formal definition of a transition system for BCS is
specified. Furthermore, the rules define the behavior of the system locally, i.e., from the
perspective of each subscriber. This enables us to construct the dimensional view of
BCS shown in Figure 1. Each node corresponds to one of the mutually exclusive states
of the system. These nodes are connected by arrows, which correspond to actions mov-
ing a subscriber from state to state. Because the same action may be taken in different
states we use subindexes to differentiate them, e.g., onhookA, onhookB. This is done to
avoid the need to explicitly encode source and target states in the implementation.

A quick word about our notation: states are represented by italics (e.g., idle_u) and
actions are represented by sans serif font (e.g., offhook_u). The use of a down arrow

idle_u the telephone of u has the receiver on hook and silent.
ready_u the receiver is off hook and emits a dial tone.
rejecting-u the telephone emits a busy tone.

ringing-u the phone is ringing and its receiver is on hook.
calling-uv the telephone of v is ringing and u is waiting for
path_uv u and v can communicate.

offhook_u u lifts the receiver.

onhook_u u places the receiver back to the phone.

dial_uv u dials v's number.

Table 1: Atoms used in the modeling

() in front of a state or action means that the next label represents information of
a different subscriber. For instance, the annotated arrow from ready_u to calling_uv
represents a transition between these two states, triggered by the dial_uv action under
the condition ¢dle_v which should the checked for the user v.

onhookB_u

calling_uv

v onhookC_v

onhookC u

Figure 1: Transition system for a subscriber

The full transition system is obtained by the composition of the transition systems for
each single subscriber. Clearly this notation helps us to succinctly represent a transition
system which would otherwise be enormous.

3 Encoding the Basic Call System

Before describing implementation issues, we provide an intuitive overview of the com-
putational process. We will implement the transition system in Figure 1 by encoding
transitions as a set P of smodels constraint rules. Using these rules, the smodels tool-
box will compute the possible interactions between subscribers and the network. Each
stable model of P, will describe a complete set of interactions among subscribers, in one
“run” or “possible scenario.” Let us make this precise.

First, a cycle in the transition system in Figure 1 is a sequence of states and actions
representing a move of a subscriber u from the state idle_u back to idle_u. A run is a
sequence of cycles. As an example, the set of atoms below represents a run constructed
from two cycles:

{idle_u, offhookA_u, ready_u, onhookA_u, idle_u, offhookA_u, ready_u, dial _uv, rejecting_u, onhookD _u, idle_u}

First Cycle Second Cycle

On the one hand, encoding information about cycles allows us to differentiate among
actions executed in different cycles; on the other hand, it gives us a bound on the
number of possible interactions, thus ensuring termination.

It is now fairly straightforward to encode Figure 1 in smodels. Table 2 illustrates
the main intuition; it gives the encoding for a situation where we are in state S, with
actions A; and A, available, leading to states S; and Ss, respectively.

false :- A1, Az, S | avoids both actions being taken simultaneously
A1 :- not As, S forces the Ay action whenever As is not taken

Ay :- not Ay, S idem for As

S1 - A1, S codes the transition to S after action A; is taken
52 bl A2, S idem for AQ.

Table 2: A simple encoding

The full code is available on-line at our web site [1]. By way of example, we spell
out the encoding of the calling state; see Figure 2. The atoms subs and cycle are
used to parametrize the rules for each subscriber and for each cycle. Line 1 makes
the actions onhookB(ME,T) and offhookB(SHE,U) mutually exclusive, notice that the
second action corresponds to a different subscriber. Lines 2 and 3 encode the effects of
taking the onhookB(ME,T) action. Finally, line 4 encodes the effect of the party taking
the action offhookB(SHE,U); notice that we don’t need to encode the effect that this
action causes in the party.

% The CALLING State.

1. false :- onhookB(ME,T), offhookB(SHE,U), calling(ME,T,SHE,U),
subs(ME), subs(SHE), cycle(T), cycle(U).
2. onhookB(ME,T) :- not offhookB(SHE,U), calling(ME,T,SHE,U),

subs(ME), subs(SHE), cycle(T), cycle(U).
onhookB(ME,T), calling(ME,T,SHE,U),

subs (ME), subs(SHE), cycle(T), cycle(U).
offhookB(SHE,U), calling(ME,T,SHE,U),
subs (ME), subs(SHE), cycle(T), cycle(U).

3. idle(ME,plus(T,1))

4. path(ME,T,SHE,U)

Figure 2: Encoding the calling state

Summing up, every state that a subscriber visits and every action she engages on is
recorded in a stable model together with the actions and states of the other users to
the extent that this is necessary, i.e., stable models reflect the behavior of subscribers
in the network. Eventually, a valid run for each subscriber constitutes a stable model.

3.1 Some Changes

The method used to compute stable models forces a number of changes in Figure 1. This
subsection aims at describing them and at justifying the changes leading to Figure 3.

The idle State. The network is initialized with every subscriber in the idle state.
Moreover, the subscribers return to the idle state after each run. Therefore, atoms
representing these idle states are included in the stable model. But the transition from
the state ready to rejecting checks for the presence or absence of the idle state of a

onhookC_caller_u

onhookB_u

I_u /\ dial_uvﬂ not noidle v calling_uv
dialing_u

"
¥ not othernoidiebyrang_uv

v noidlebyrang_uv

¢ (othernoi dlebyrangjv v noidle_v)

calling_uv
path_vu

rejecting_u

Figure 3: Transition system for the encoding of BCS

subscriber v to decide its outcome. To represent the information that a subscriber u
has abandoned her idle state we add new atoms. Each subscriber has two distinct ways
of being active in the network:

e Going off hook and moving to ready;

e Having her number dialed by a subscriber and being taken to ringing.

To represent the first case we add the noidle label, for the second we use noidlebyrung.
See Figure 3.

The dial Action. Encoding the behavior of the dial action is complex. For simplicity
the action is split into two phases. The first phase introduces the intermediate state
dialing, which is reached when the subscriber is in the ready state and wants to establish
a call with a party. This transition adds two new atoms: an action label dial_somebody
and the state label dialing.

The second phase determines the outcome of the dial action. Starting from the dial-
ing, the dial action takes a subscriber to either a rejecting state or a calling, depending
on an external checking of the state of the party. To decide the outcome of the dial
action, smodels uses the information about the noidle and noidlebyrung states as we
described above.

Constraints on the dial Action. The dial action should generate all the possible calls
for a given caller. Implementing this “random choice” in smodels is tricky, especially
because synchronization is involved. Our approach is the following: we first generate all
possible calls, and we then impose constraints to eliminate those which cannot occur.
Some examples of the constraints are as follows:

e A subscriber cannot establish two calls in the same cycle.

e [f a subscriber attempts to dial her own number, she should synchronize with
herself in the same cycle.

e If two dial actions between users u and v are established, they should occur in
different cycles of u and the cycle counters should be consistent (both increasing).

Splitting of the path State. Figure 1 shows a single path state in which there is no dis-
tinction between caller and callee. But the identification of caller and callee is needed to
determine which subscriber is taken to the rejecting state and which is taken to the idle
state. Thus, the path state is split and the calling action is used to derive information
about caller and callee. The separation of the path state forces the separation of the
onhookC' action; onhookC_caller represents an on hook action from the caller and the
onhookC_party represents the same action when taken by the other party.

Starting from Figure 3, and following the guidelines we have explained above we obtain
the full encoding of the BCS as smodels constraint rules. Given this code as input, the
smodels interpreter can compute all possible stable models satisfying the constraints
we imposed, i.e. the valid runs. The number of models generated will be a function of
the number of subscribers and the number of cycles allowed to each of them.

Interestingly, we can take advantage of smodels’ compute statement to query the
properties of our model. The compute statement acts as a filter over the stable models
that are calculated, by indicating which atoms should (or should not) be in the model
and the maximum number of models that are going to be computed. For example,
running smodels with the compute O {not false} statement will search for all models
of the program not containing the false atom, which we used in the encoding to forbid
certain configurations. We investigate this issue further in the next section.

4 Testing the BCS Implementation

We are now ready to evaluate the model, and we do so by performing a number of tests.
The first set of tests is meant to check the parameters (number of subscribers, number
of cycles). Tests were performed on a Sun ULTRA II (300MHz) with 1Gb of RAM,

under Solaris 5.2.5, with smodels version 2.9.

Ezxhaustive search. We aim at computing every valid network configuration that a
finite set of subscribers can generate in a finite number of cycles. This kind of test
is particularly useful for determining the behavior of the problem. By varying the
number of subscribers and cycles we obtain different results. Thus we see how the
number of models (and the time for computing them) is affected by changes on the
network configuration. Additionally, we are able to test characteristics of the tool that
we use for computing the models. The statement compute 0 {not false} is used to
search for every valid configuration of our model of the BCS. Table 3 shows some of
the results obtained.

#Subs. \ #Cycles 1 2 3
2 0:00.18 / 15 0:00.42 / 375 0:08.08 / 11173
3 0:00.22 / 136 0:45.36 / 82268 | 14:42:45.23 / 18262292
41 0:02.38 / 1633 | 4:25:37.11 / 14774656 > 100:00:00.00

Table 3: Computing all models

For each configuration pair of (# of subscribers, # of cycles), the time and the number of
generated models is shown. Note how hard it is to explore all the network configurations.
For instance, the test with the 4 subscribers/3 cycles setting was aborted after more
than 100 hours of computation. Furthermore, the number of models was enormous (over

60 million). However the linear space complexity of the smodels algorithms ensures
that all models will be computed given enough time.

In conclusion, exhaustive generation of models is extremely expensive — a fact that
is to be expected given the combinatorial nature of the problem. But the characteristics
of our modeling and the tools we have chosen offer a much more interesting possibility:
the generation of models with certain specific properties.

Checking properties in the model. We want to explore certain branches of the search
tree, i.e., given a property, we are looking for specific models where this property is
valid. In Table 4 we provide some examples of specific queries concerning BCS. In
each case we first describe the property to check, and then provide the compute scheme
that will check the property over a specific configuration. The time shown corresponds
to the verification of one instance of the scheme. To permit a comparison, all tests have
been run on the 4 subscribers/3 cycles configuration.

Q1. Existence of a model: The smodels implementation of BCS has a model.

compute 1 {not false} | Elapsed time 0:19.60
Q2. Self dialling: In no model a subscriber can dial her number and avoid the rejecting state.
compute 1 {dial(sl,t,sl,t), not rejecting(sl,t)} | Elapsed time 0:05.00
Q3. Parallel calls: Parallel calls among different subscribers are possible.

compute 1 {path(sl,tl,s2,t1), path(s3,tl,s4,t1) } | Elapsed time 0:14.90
Q4. Multiple callings: A user can establish three different calls in three cycles.

compute 1 {path(sl,1,_,.),path(sl,2,_,.), path(sl,3,_,.)} | Elapsed time 0:11.10

Q5. Call chain: “cyclic” pairing of calls cannot occur.

compute 1 {not false, calling(sl, t1, s2, t1), calling(s2, tl1, s3, t1),
calling(s3, t1, s4, t1), calling(s4, tl1, sl, t1),} Elapsed time 0:9.36

Q6. Dial Target: Checking a specific configuration.

compute 1 {not false, not noidle(sl, ¢1), dial(s4, t1, sl, t1), dial(s2, ¢1,
sl, t1), dial(s3,t1,s1,t1), rejecting(s2, t1), rejecting(s3, ¢1)} Elapsed time 0:13.52

Table 4: Checking specific properties

We use the compute statement to query the implementation for specific properties.
However, because of smodels’ syntactic limitations, we are not allowed to query the
system using variables, i.e., the compute statement must be grounded in a specific
scenario. From this scenario we check whether there are stable models where this
property holds.

In Q1. Existence of a model we check that our implementation of BCS does have a
model. The expected outcome is that there is indeed a valid model. By using compute
1 {not false} as our query, we obtain the expected answer in 19.60 seconds. Table 5
represents the times needed to find a stable model in each setting of N subscribers, 3
cycles. Note the increase in time.

In Q2. Self dialing we check that there is no model in which a subscriber can dial
her own number and avoid the rejecting state. We obtain the expected answer (no
such model exists) in 5.00 seconds. In Q3. Parallel calls we verify that parallel calls
among different subscribers are possible. The expected (positive) outcome is computed
in 14.90 seconds. Q4. Multiple callings concerns a technical issue, namely that every
user should be able to establish three different calls in three cycles. Feeding smodels
with a query of the form compute 1 {not false, path(sl, 1, _, _), path(sl, 2,

Subscribers 1 2 3 4 5
Time — 0:00.41 0:04.66 0:19.60 00:54.76

Subscribers 6 7 8 9 10
Time | 2:14.68 | 19:21.97 | 3:25:44.75 | 29:17:34.88 | > 72 hours

Table 5: Computing compute 1 {not false}

~,), path(sl,3,_,)} shows that this is indeed the case by producing a model in
11.10 seconds. Next, we want to confirm that it cannot be the case that there is a
chain of subscribers, one calling the other, producing a cycle. Query Q5. Call chain
obtains the expected answer in 9.36 seconds. Finally, in Q6. Dial target, we check for
the possibility of a particular configuration in the network. If all the subscribers dial
the same party and the party is idle, two callers must be rejected (recall that we’re
assuming the presence of 4 subscribers). The expected outcome is a model where two
callers are rejected. The code that we can use to formulate this query is compute 1
{not false, not noidle(sl, t1), dial(s4, t1, sl, t1), dial(s2, 1, sl, tl),
dial(s3,tl,s1,t1), rejecting(s2, t1), rejecting(s3, t1)}. We get our answer in
13.52 seconds.

Taking stock, we can take advantage of smodels’ compute statement to apply con-
straints over specific atoms and generate only models that satisfy the constraint being
issued. This way, checking a system’s properties turns into a very efficient task as the
examples in Table 4 show. We are currently generating further tests on more subscribers
and cycles, and investigating more complex properties of BCS.

Our next step is to tackle the integration of features on top of the BCS implemen-
tation.

5 Integrating Features

As we commented in the introduction, we take full advantage of the non-monotonic
behavior of the stable models framework when introducing features as constraints that
prune and enlarge the set of models of the BCS. We first list a number of points
that guide the design and implementation of features. Then we turn to the concrete
specification and implementation of three features (Terminated Call Screening, Origi-
nating Call Screening and Call Forwarding Unconditional) on top of the model for BCS
described in the previous sections.

Clearly, the first step towards the design and implementation of a feature is to define
its behavior. In other words, we have to understand the expected behavior of the system
after the activation of the feature. Note that this step is independent of any particular
implementation.

In the particular case of features, there are at least two tasks that we have to
carry out when we try to pin down the properties of a new feature. On the one hand,
we should define the enhanced functionality provided by the new feature, and on the
other hand, we should also specify in which ways the new feature explicitly modifies
the previous behavior of the basic system. Even though we could say that modifying
the previous behavior of the system is part of the new functionality provided by the
feature, it pays off to differentiate between these two. In our approach, we carefully
list the parts of the system that are affected by the feature, i.e., the atoms (states and

actions) upon which the feature will act. In addition, there might be new states and
actions which are characteristic of the new feature. For example, at least one atom has
to be added — the activation predicate — signaling that the feature is activated for a
given subscriber.

As we will see in the examples below, implementing a feature boils down to first
eliminating a subset of the previous models of the system by providing new rules leading
to the false atom. In addition, the newly introduced atoms that are characteristic for
the feature create a “new space” in the set of all possible models. From this space the
proper models are obtained by providing further rules governing the behavior of the
feature.

Let us turn to the implementations now. The full description of each feature is
provided together with an interpretation of the implementation.

Terminating call screening. The TCS feature inhibits calls to the subscriber’s phone
from any number on her screening list. Any dial from a screened subscriber takes the
caller to the rejecting state. The atoms affected by the feature are the dial action
and the states rejecting and calling. The activation predicate is tcs (ME, SHE) whose
intended meaning is that ME is screening the subscriber SHE. Finally, the affected behav-
ior in the original system is that given tcs(ME,SHE), the atom calling(SHE,U,ME,T)
cannot appear in a model. The TCS is implemented as follows:

% Feature TCS - Terminating Call Screening.
1. false :- calling(SHE,U,ME,T), tcs(ME,SHE), cycle(U), cycle(T).
2. rejecting(SHE,U) :- dial(SHE,U,ME,T), tcs(ME,SHE), cycle(U), cycle(T).

Line 1 prunes the models which are invalidated by the activation of the feature, i.e.,
models where the calling action from SHE to ME is considered. In line 2 we represent the
change of behavior. The rule stipulates that whenever SHE is dialing a party ME and
ME has SHE on her screening list, SHE is taken to the rejecting state. Note that both
rules 1 and 2 are only activated when the activation predicate is included in the model.
In other words, the featured system allows for subscribers with and without the feature
activated. We do not need to modify the code of the basic system.

Originating call screening. OCS is dual to TCS: it forbids calls from ME’s phone to
any number SHE from a given list. Any attempt of ME to ring such a number takes her
to the rejecting state. The code for TCS is similar to the one for TCS.

% Feature 0CS - Originating Call Screening.
1. false :- calling(ME,T,SHE,U), ocs(ME,SHE), cycle(U), cycle(T).
2. rejecting(ME,U) :- dial(ME,T,SHE,U), ocs(ME,SHE), cycle(U), cycle(T).

Call forwarding unconditional. In the CFU feature every call addressed to a subscriber
ME is unconditionally forwarded to the subscriber ALTER. The affected atom is the dial
action and the activation predicate is the atom cfu(ME,ALTER), meaning that ME is
forwarding her calls to ALTER. The invalidated action in presence of cfu(ME,ALTER), is
that ME can never be called. The implementation of CFU is more involved than the
previous two, and we will address the reasons for this below.

% Feature CFU - Call Forward Unconditional.

1. false :- calling(SHE,U,ME,T), cfu(ME,ALTER), subs(SHE), cycle(U), cycle(T).

2. idle2(ME) :- cfu(ME,ALTER), calling(SHE,U,ME,T),

subs(ME), subs(SHE), cycle(U), cycle(T).

. offhookA2(ME,T) :- idle2(ME), subs(ME), cycle(T).

ready(ME,T) :- offhookA2(ME,T), subs(ME), cycle(T).

5. dial_forward(SHE,U,ALTER) :- not notdial(SHE,U,ME,T),
cfu(ME,ALTER) , subs(SHE), cycle(U), cycle(T).

6. nodialf (SHE,U,ALTER) :- not dial_forward(SHE,U,ALTER),
cfu(ME,ALTER), subs(SHE), cycle(U).

7. false :- dial_forward(SHE,U,ALTER),
nodialf (SHE,U,1), nodialf (SHE,U,2), nodialf(SHE,U,3),
cfu(ME,ALTER), subs(SHE), cycle(U).

S~ w

8. false :- 2{dial forward(SHE,1,1), dial_forward(SHE,2,2), dial forward(SHE,3,1),
dial_forward(SHE,1,2), dial_forward(SHE,2,2), dial_forward(SHE,3,2),
dial forward(SHE,1,3), dial forward(SHE,2,3), dial_forward(SHE,3,3)},
subs (SHE) .
9. dial(SHE,U,ALTER,T) :- not nodialf (SHE,U,ALTER),
cfu(ME,ALTER), subs(SHE), cycle(U), cycle(T).

To encode CFU it is necessary to completely re-implement some of the runs in the
transition system. A naive implementation leads to a situation where too many models
are pruned (all runs of the subscriber forwarding its phone are eliminated). We need
to do some work to solve this problem.

Line 1 prunes models where the forwarding party is being called. Line 2 is activated
whenever the forwarding happens. Given our implementation of the BCS, a call from
SHE to ME will move ME to a non idle state. The new idle2 and offhookA2 are dummy
states, introduced to move ME back to the ready state. This is done by lines 3 and 4,
from ready the subscriber will be able to continue her cycle. Thus, the models which
were lost are now recovered. The remaining code is mostly a re-encoding of the dial
action, which is now called dial_forward, where a dial (SHE,U,ME,T) is interpreted
as a dial from SHE to ALTER

Now that we have provided implementations of the three features (TCS, OCS, and
CFU) we are able to ask for specific properties of the model.

5.1 Checking Properties on the Featured BCS.

Implementing features on top of BCS changes the original characteristics of the basic
system. Thus, one may want to re-run the tests that we performed in Section 3 to
make sure that the featured system still satisfies desirable basic properties. We are not
including the results of those tests here. Instead, we will use the compute statement
to ask for specific properties of the featured BCS. Below we provide a number of tests
involving the features implemented above.

We first ask for properties of the BCS together with a single feature.

TCS and Call Blocking. If the subscribers are pairwise screened, there can be no
callings. The following table provides the query scheme together with the time required
for checking one instance of this property.

tcs(sl,s2) Vsl,s2 € SUBS, sl # s2 Elapsed time 0:2.80
compute 1 {not false, calling(s2, ¢2, sl, t1)}

As we expect, the implementation returns no model satisfying this property.

OCS and Call Blocking. We run a similar test for the OCS feature: if the OCS feature
is pairwise activated for every subscriber, there can be no calls. The query below returns
no model, as we expected.

ocs(sl,s2) Vsl,s2 € SUBS, s1 # s2 Elapsed time 0:2.80
compute 1 {not false, calling(sl, ¢1, s2, t2)}

CFU and Call Looping. If two subscribers forward their phones to each other, no
dial to either of them can be performed. The query below produces no model, as we
expected.

cfu(sl,s2) A cfu(s2,sl) sl,s2,s3 € SUBS, sl # s2 | Elapsed time 0:4.50
compute 1 {not false, calling(s3, t¢1, sl, t2)}

More interestingly, though, the possibility of dial has also been eliminated: the query

cfu(sl,s2) A cfu(s2,s1) sl,s2,s3 € SUBS, sl # s2 | Elapsed time 0:4.50
compute 1 {not false, dial(s3, t¢1, sl, t2)}

returns no models. This shows a real interaction of CFU with itself.
Of course, feature interaction can occur also when two or more features are switched
on at the same time. Below we exemplify some of these situations.

Interaction between TCS and CFU. If a subscriber OTHER screens SHE and every call
directed to ME is forwarded to OTHER then SHE always obtains a busy tone when calling
ME.

tcs(s83,52) A cfu(sl,sld) Vsl,s2,s3 € SUBS, sl # 52,51 # 3,52 # s3 Elapsed time 0:3.30
compute 1 {not false, dial(s2, t2, sl, t1), not rejecting(s2,t2)}

As we expect, no model satisfying this property can be found.

Interaction between TCS and OCS. 1If a subscriber ME activates both TCS and 0CS
for the same subscriber SHE, then there is no model with a call between ME and SHE.

tes(sl,s2) A ocs(sl,s2) Vsl,s2 € SUBS, sl # s2 Elapsed time 0:2.40
compute 1 {not false, calling(sl, 2, s2, t1)}

There are no models satisfying this configuration.

Although we have only reported on a small number of queries involving features on top
of the basic call service here, we hope that it has provided ample illustration of our
methodology.

6 Evaluation

As we have seen in our testing examples, in smodels it is necessary to specify a query
and then check whether it holds. In terms of detection of feature interaction, this
means that we have to detect a “harmful” [16] combination of features and query for
its existence. This contrasts with the model checking approach where one provides
the formal specification to a model checker, which then verifies the whole input for
consistency. Thus, on the one hand we provide precision and efficiency of the query-
based search to check for one particular kind of interaction. On the other hand, the
model checking tool provides a robust, but costly, method to search for all possible
interactions.

Exploiting the non-monotonic behavior of a feature is a natural way of viewing the
process of feature integration. The methodology that we developed in this paper relies
on this idea. The advantages of the approach are clear. In the design phase we are able
to understand the feature without taking into account the basic system. This complies
with the generality of feature descriptions, advocated by [12].

The tool that we use, the smodels tool box, has both good points and some draw-
backs. The linear space algorithm implemented by smodels permits the computation
of really big problems, but it offers nearly no support for developers. For instance, it is
not possible to declare the atoms in the logic program. Thus, any typo is interpreted
as a new atom. Also, some syntactic constructions do not work properly at present.
This has forced us to hard-code some parts of the BCS.

7 Conclusion

In this paper we have reported on our ongoing work on using a constraint-based ap-
proach towards feature interaction detection. Starting from a logic specification of the
BCS, we drew a labeled transition system encoding its behavior. This graphical inter-
pretation was implemented in smodels and tested for consistency. The testing phase
not only showed the complexity of the problem but also the efficiency of the tool in
checking specific properties of the implementation. We also described a method for
encoding features as changes to the system’s behavior. Finally, we integrated features
on top of the BCS implementation. We first checked the consistency of each feature
individually; we then verified feature interaction by integrating multiple features on top
of the system.

The smodels tool box has previously been used as a model checking tool (see [10]),
but in the present paper we focus instead on smodels (and more generally on con-
straints) as a means to model non-monotonicity. Even though it is too early to make
useful extrapolations from the results we have obtained thus far, the behavior we have
observed is encouraging. The methodology seems to be able to obtain answers to spe-
cific queries in a matter of seconds, offering useful information on models witnessing
the query, if such a model exists.

Of course, for the approach advocated here not to be classified as Yet Another
Formal Approach to feature interaction, further features should be modelled and more
testing should carried out. An obvious next step would be to apply our approach
to the features described in the feature interaction contest accompanying the FIW’00
workshop.

A particularly attractive aspect of the approach we advocate is that it brings the
field of Computational Logic with all its machinery to the Feature Interaction problem,

and allows standard approaches in Knowledge Engineering to be applied. We can take
advantage of standard techniques from Knowledge Engineering to, for example, easily
quantify the complexity of the approach and capture its exact expressive power.

To finish, we discuss some further questions about the general framework. First,
it may be worthwhile to migrate to other implementations of stable model semantics.
Even though we have opted for smodels in our first investigations, there is a number of
alternatives such as XSB [14] and DeReS [7]. Encoding the BCS and features in those
systems would permit a better understanding of the idea of “features as constraints,”
independently of the specific characteristics of a particular implementation of stable
semantics. Second, as we already mentioned, our approach is close to model checking
but the two differ in many aspects. It would be rewarding to compare both approaches
in detail, in terms of, among others, generality, flexibility, and performance.

Acknowledgement. Maarten de Rijke was supported by the Spinoza project ‘Logic in
Action.’

References

[1] The feature interaction project. URL: http://www.illc.uva.nl/"mdr/Projects/FI/.
Accessed November 22, 1999.

[2] Smodels home page. URL: http://www.tcs.hut.fi/Software/smodels/. Accessed
November 22, 1999.

[3] K.R. Apt. Programming with Constraints, 2000. Manuscript; available from http:
//www.cwi.nl/"apt/krzysztof.html.

[4] C. Areces, W. Bouma, and M. de Rijke. Description logics and feature interaction.
In P. Lambrix, A. Borgida, M. Lenzerini, R. Moller, and P. Patel-Schneider, editors,
Proceedings of the International Workshop on Description Logics (DL’99), pages 28-32,
1999.

[5] C. Areces, W. Bouma, and M. de Rijke. Feature interaction as a satisfiability problem.
In Proceedings of MASCOTS’99, October 1999.

[6] Bellcore. LATA switching systems generic requirements (LSSGR). Tech. Reference TR-
TSY-000064, Bellcore, Piscataway, N.J., 1992.

[7] P. Cholewinsky, V. Marek, and M. Truszczyniski. Default reasoning system DeReS. In
Proceedings of the 5" Internatinal Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 518-528, Cambridge, MA, USA, November 1996. Morgan
Kaufmann.

[8] A. Gammelgaard and J. Kristensen. Interaction detection, a logical approach. In
L. Bouma and H. Velthuijsen, editors, Feature Interactions in Telecommunication Sys-
tems, pages 178-196, Amsterdam, Oxford, Washington DC, Tokyo, 1994. IOS Press.

[9] V. Marek and M. Truszczynski. Autoepistemic logic. Journal of the Association for
Computing Machinery, 38(3):588-619, 1991.

[10] I. Niemeld. Logic programs with stable model semantics as a constraint programming
paradigm. In Workshop on Computational Aspects of Nonmonotonic Reasoning, Trento,
Italy, June 1998.

[11] I. Niemeld and P. Simons. Implementation of the well-founded and stable model se-
mantics. In Proceedings of the Joint International Conference and Symposium on Logic
Programming, Bonn, Germany, September 1996.

[12] M. Plath and M. Ryan. Plug and play featues. In 5 International Workshop in Feature
Interactions in Telecommunications and Software Systems, 1998.

[13] M. Plath and M. Ryan. SFI: a feature integration tool. In R. Berghammer and
Y. Lakhnech, editors, Tool Support for System Specification, Development and Verifi-
cation, Advances in Computing Science, pages 201-216. Springer-Verlag, 1999.

[14]

[15]

[16]

K. Sagonas, T. Swift, and D. Warren. XSB as an efficient deductive database engine. In
Proceedings of SIGMOD 1994 Conference. ACM, 1994.

H. Velthuijsen. Issues of non-monotonicity in feature-interaction detection. In K. Cheng

and T. Ohta, editors, Feature Interactions in Telecommunication Networks, IV, pages
31-42, Amsterdam Oxford Washington Tokyo, 1994. TOS Press.

P. Zave. ‘Calls considered harmful’ and other observations: a tutorial on telephony. In
T. Margaria, editor, Services and Visualization: Towards user-friendly design, volume
1385 of Lecture Notes in Computer Science, pages 8-27. Springer-Verlag, 1998.

