Towards Feature Interaction via Stable Models

Rafael Accorsi Carlos Areces Maarten de Rijke

ILLC, University of Amsterdam
Plantage Muidergracht 24
1018 TV Amsterdam. The Netherlands
E-mail: {accorsi,carlos,mdr}@wins.uva.nl

Abstract. In this paper we propose a new approach to the problem of detecting feature
interactions based on the stable models semantics for logical programs. Starting from a
formal definition of a model of the Basic Call System, we encode the allowed actions and
transitions by means of rules in the style of Reiter’s defaults. We can then use tools like
smodels to perform tasks like verification and testing.

1 Feature Interaction

In the telecommunication domain, a feature is characterized as the addition of new func-
tionalities over an already established telephone system. In [2], an extensive list of features
is cited, from which Call Waiting, Call Forwarding and Automatic Call-Back are some ex-
amples. More generally in a software system, a feature is an optional unit or an increment
of functionality over the base system.

Feature interaction arises when the behavior of one feature influences the behavior
of another, mostly in an undesirable or unpredicted way. One simple example is the
combination of Call Waiting and Call Forwarding on Busy: in giving priority to one, the
other is automatically disabled. The first attempts to approach the problem of detecting
feature interactions using a software engineering framework started in the early 1980’s [3],
and since then many other proposals have been made in order to tackle the problem. Due
to its general nature — almost anything can be considered a feature and the notion of
interaction is vague — there have been several approaches to detect and solve interactions.
Usually analytical methods based on formal verification techniques are used. The idea is
to build a formal model of both systems and features, and to use these formal descriptions
to detect interaction.

In [1] a full formal model of the Basic Call System (BCS) has been provided by means
of Description Logics (the language used was ALC with generic TBoxes [4]). Because ALC
is a decidable language with a sound and complete inference mechanism, properties of the
model can be established by automated deduction. The drawback of this method is its
complexity: ALC with generic TBoxes has an EXPTIME complete worst case satisfiability
problem. The very generality and expressivity of the ALC language is its own pitfall.

In this paper we explore an alternative. Once we have obtained the desired model and
perhaps checked some global constraints by means of description logics, we can actually
encode this model and attempt further checking by other means. In particular, we will
encode the BCS transition system using logic rules in the style of Reiter’s default rules [9].

In recent years, extremely efficient implementations of the stable model semantics for this
kind of rules have been devised, like for example the smodels compiler [8].

In Section 2 we briefly introduce the stable models semantics of logic programs, to-
gether with some notes on smodels. In Section 3 we present a dimensional view of the
BCS system and provide its encoding into smodels code. In Section 4 we test the ap-
proach by verifying basic properties of BCS. Section 5 introduces features into BCS, in
particular we provide the implementation of Terminating Call Screening and Call For-
ward Unconditional. Finally, in Section 6 we comment on future steps towards detecting
feature interactions via stable models.

2 Stable Models Semantics

The stable model semantics is one of the main flavors of declarative semantics for logic
programming. This approach radically differs from the standard logic programming used
in Prolog: while in the later the aim is to evaluate a single query following a goal directed
backward chaining strategy, the stable models semantics considers the rules as constraints
that the models should satisfy.

The intuition behind logic programming with stable model semantics is to merge
the advantages of logic programming knowledge base representation techniques with con-
straint programming. These techniques seem to be particularly useful in dynamic domains
and for combinatorial problems such as intractable problems in complexity theory.

We briefly introduce syntax and semantics of this approach to logic programming. A
solution set is a set of atoms and a logic programming rule of the form

A+ Al; .. .,An,’ﬂOt(Bl), e ,not(Bm)

is viewed as a constraint stating that if the atoms Ay, ..., A, are in the solution set and
none of By, ..., B, is, then A must be included in the set.
For a ground (variable-free) program P, the stable models are defined as follows. The
reduct of a program P with respect to a set of propositions S is the program obtained by:
1. Deleting each rule in P that has a not(z) in its body such that x € S;
2. Deleting all not atoms in the remaining clauses.
A set of ground atoms S is a stable model of P if and only if S is the unique minimal
model of the reduct of P with respect to S.

Example 2.1 Let P be the program
{p < r,not(q) q< not(p) 1< not(s) s< not(p)}.

Then S; = {r, p} is a stable model because the reduct of P with respect to S1is {p < r, r «}
and S; is its unique model. But, S; = {p, s} is not a stable model of P, because its reduct is
p ¢ r and its unique minimal model is {}. However P does have another stable model {s, ¢}.
Hence, a program may posses multiple stable models, one or none at all.

The problem of deciding whether a ground program has stable models is NP-complete [7].
Indeed, to build a stable model it is enough to guess which atoms will appear non-negated,
and then verify uniqueness in polynomial time using the deductive closure of the reduct
of the program with respect to this set.

Smodels. smodels [5] is a C++ implementation of logic programming for stable model
semantics. The system includes two modules: (a) smodels which implements the stable
model semantics for ground programs and (b) 1parse which computes a grounded version
of so-called range-restricted programs.

The implementation is based upon a bottom-up backtrack search where one of the
underlying ideas is that stable models are characterized in terms of their full sets, i.e.,
their complements with respect to negative atoms in the program for which the positive
atoms are not included in the stable model. The search space is drastically pruned by
exploiting an approximation technique for stable models which is very similar to well-
founded semantics.

The advantage of this implementation is the linear space requirement. This makes it
possible to apply stable model semantics in problem areas where large numbers of stable
models are generated. Moreover, smodels has proved to be significantly more efficient
than other recent implementations of stable model semantics, see [8].

3 Modeling

In this section we provide a translation from the BCS defined in [1] into smodels code.
The specification of BCS obtained in [1] uses description logics to characterize the set
of states and actions that subscribers can take in the BCS model. Basically, the axioms
constitute a declarative way of defining a transition system. The declarative approach
is appealing because the full transition system corresponding to the BCS is enormous,
growing exponentially with the number of subscribers considered.

The main idea we will use when encoding this transition system into smodels is that
actually we don’t need to encode piece by piece the complete transition system. Instead,
we can consider each subscriber as an independent dimension of the n-dimensional tran-
sition system where n is the number of subscribers. But before going into an explanation,
we need to define the intended meaning of the different propositional symbols (or labels)
we will use.

The following labels express the possible (mutually exclusive) states of a subscriber
and the allowed actions.

idle_u the telephone of u has the receiver on hook and silent.

ready-u the receiver is off hook and emits a dial tone.

rejecting-u the telephone emits a busy tone which indicates a failed call
attempt or a disconnected line.

ringing-u the phone is ringing and its receiver is on hook.

calling_uv the telephone of v is ringing and u is waiting for

path_uv u and v can communicate.

Now we specify the labels representing the possible actions of subscribers.

offhook_u u lifts the receiver.
onhook_u u places the receiver back to the phone.
dial_uv u dials v’s number.

The description logic approach to BCS separates statements in four categories:

Interface statements. These axioms are expressions connecting the observable states
of a telephone with the ones representing network states (e.g., calling_uv C ringing_v
M ringback_v).

Assertional statements. They corresponds to initialization states. In particular, every
user is idle at the state sy (e.g., So : Myesupsidley).

Frame statements. These rules specify that certain events do not influence the state of
other parts of the system. (e.g., path_uv = Voffhook _z.path_uv).

Liveness statements. The liveness statements consist of a set of declarative transition
rules for the BCS. These statements are responsible for describing how to go through
the different phases of a call (e.g., idle_u C Joffhook _u.ready_u).

We refer to [1] for details. The liveness statements constitute the basic functionality of
the BCS scheme. They follow the standard description logic semantics, and we provide
below an intuitive reading.

1. idle_u C Foffhook _u.ready_u If u is idle, she can go off hook and get ready to dial;
2. ready_u M idle_v C Adial_uv.calling_uv If uis ready and v is idle, u can dial v's number and
establish a call;
3. ready_u C Jonhook _u.idle_u If u is ready, she can go on hook and return to idle;
4. ready_u M —idle_v C dial_uv.rejecting_u If u is ready and v is not idle, a dial leads to a busytone;
5. rejecting_u C Jonhook_u.idle_u If u is being rejected, she can be idle by going on hook;
6. calling_uv C Joffhook _v.path_uv If u is calling v and v goes off hook, u and v can talk;
7. calling_uv C Jonhook_u.(idle_u M idle_v) If u goes on hook while calling v, both return to idle;
8. path_uv C Jonhook_u.(idle_u M rejecting _v) If u goes on hook while talking to v, v
receives a busytone and u goes to idle.

These rules provide us exactly with a formal definition of a transition system. Further-
more, the rules define the behavior of the system locally, i.e., from the perspective of each
subscriber. This will enable us to construct a dimensional view of BCS which will lead
us directly to an implementation model in smodels.

3.1 The Dimensional View

The specification provided above suggests a graphical interpretation. Having such a graph-
ical view is particularly useful in reasoning about further extensions of the system, such
as features and updates to the basic service. Furthermore, it provides a concise and clear
understanding of the whole system.

The description logic approach provides a clear distinction between states and actions.
This separation is the first step towards a graphical interpretation. We define the labelled
transition system BCSp7s upon the following sets. Let IL be the union of A and S where,

S = {idle_u, ready_u, rejecting u, ringing_wv, calling_uv, path_uv}
A = {offhook_u, onhook _u, dial_uv}

According to the usual interpretation of a transition system, change of states are triggered
by actions. We provide the following set T of transition. These transitions are translated
directly from the set of liveness arioms provided in the description logic approach.

Let us explain the notation: states are represented by italics, e.g., idle_u; actions are
represented by sans serif font, e.g., offhook_u. The use of a down arrow () in front of
a state or action means that the next label represents information of a different sub-
scriber. For instance, the first line means “an ‘offhook’ action in the state ‘“idle’ moves
the subscriber ‘u’ to the ‘ready’ state.”

1. idle_u + offhook_u ~ ready_u

2. ready_u + lidle_v + dial_uv ~ calling_-uv (if u # v)
4. ready_u + |not idle_v + dial_uv ~> rejecting_u

5. rejecting_u + onhook_u ~ idle_u

6. calling_uv + |offhook_v ~> path_uv

7. calling_uv + onhook_u ~ tdle_u + Jidle_v

8. path_uv 4+ onhook_u ~> idle_u + rejecting_v

The use of variables for subscribers in the statements suggests the allocation of a transition
system to each subscriber. The advantage of such an approach lies in the size: a transition
system for the whole set of subscribers would be enormous, growing exponentially as
the number of subscribers increase. In our multi-dimensional approach, we view each
subscriber as an independent dimension of an n-dimensional transition system, where
n = |SUBS|. Figure 1 contains the transition system for a subscriber u.

onhookB_u

¥ onhookC_v path_uv
path_vu

onhookC u

Figure 1: Transition system for a subscriber

Each node corresponds to one of the mutually exclusive states of S. These nodes are
connected by arrows, which correspond to actions moving a subscriber to another state.
The same action may be used in different states. To differentiate them, we assign different
indexes to the actions, e.g., onhookA, onhookB.

This multi-dimensional view gives meaning to the | we use in actions and states. The
down arrow is supposed to convey the idea that action or states are defined in a different
dimension. We can now proceed with the translation into smodels.

3.2 The smodels Encoding

Before describing implementation issues, we provide an intuitive overview of the com-
putational process. We will implement the transition system in Figure 1 by encoding
transitions as smodels rules into a program P. Following these rules, the smodels tool-
box will compute the possible interactions between subscribers and the network.

Each stable model of P, i.e., each set of atoms which is coherent with the transitions of
T, will describe a complete set of interactions among subscribers, in one “run” or “possible
scenario.” Let’s make this precise.

Definition 3.1 (Cycles and Runs) A cycle is a sequence of labels from the transition
system corresponding to the BCS that represents a move of a subscriber u from the state
1dle_u back to idle_u. A run is a sequence of cycles.

On the one hand, encoding information about cycles allows us to differentiate among
actions executed in different cycles; and on the other it gives us a bound on the number
of possible interactions, thus ensuring termination. These concepts are depicted in the
following example:

Example 3.2 The set of labels below represent a run constructed from two cycles

{idle_u, offhookA_u, ready_u, onhookA_u, id le_u, offhookA_u, ready_u, dial_uv, rejecting_u, onhookD _u, idle_u}

First Cycle Second Cycle

Summing up, every state that a subscriber visits and every action she engages on is
recorded in a stable model together with the actions and states of the other users, i.e.,
stable models reflect the behavior of subscribers in the network. Eventually, a valid run
for each subscriber in SUBS constitutes a stable model.

3.2.1 Some Changes

The method in which stable models are computed forces a number of changes in Figure 1.
This subsection aims at describing them and at justifying the changes leading to Figure 2.

onhookC_caller_u

onhookB_u

: . calling_uv
_u @ dlal_uvﬂ not noidle v

-
¥ not othernoidiebyrang_uv

v noidlebyrang_uv

rejecting_u

Figure 2: Transition system for the encoding on BCS

The idle state. According to the description logic approach, the network is initialised
with every subscriber in the idle state. Moreover, the subscribers return to the idle state
after each run. Therefore, atoms representing these idle states are included in the stable
model. But the transition from the state ready to rejecting checks for the presence or
absence of the idle state of a subscriber v to decide its outcome.

To represent the information that a subscriber u has abandoned her idle state we add
new labels. Each subscriber has two distinct ways of being active in the network:

e Going off hook and moving to ready;

e Having her number dialed by a subscriber and being taken to ringing.

To represent the first case we add the noidle label, for the second we use noidlebyrung.
See Figure 2.

The dial action. Encoding the behavior of the dial action is complex. For simplicity
the action is split into two phases.

The first phase introduces the intermediate state dialing, which is reached when the
subscriber is in the ready state and wants to establish a call with a party. This transition
adds two new labels: an action label dial_somebody and the state label dialing.

The second phase determines the outcome of the dial action. Starting from the dialing,
the dial action takes a subscriber to either a rejecting state or a calling, depending on
an external checking of the state of the party. To decide the outcome of the dial action,
smodels uses the information about the noidle and noidlebyrung states as we described
above.

Constraints on the dial action. The dial action should generates all the possible
calls for a given caller. Implementing this “random choice” in smodels is tricky, especially
because synchronization with the party is involved. Our approach is the following: on
one hand we generate all possible calls, while on the other we impose constraints on the
“coherent” calls. Some examples of the constraints are as follows:

e A subscriber cannot establish two calls in the same cycle.

e If a subscriber attemps to dial her number, she should synchronize with herself in
the same cycle.

e If two dial actions between users u and v are established, first they should occur
in different cycles of u and furthermore cycle counters should be consistent (both
increasing).

Split of the path state. Figure 1 shows a single path state in which there is no
distinction between caller and callee. The identification of caller and callee is relevant to
determine which subscriber is taken to the rejecting state and which is taken to the udle
state. Thus, the path state is split and the calling action is used to derive information
about caller and callee. The separation on the path state forces the separation of the
onhookC' action. onhookC_caller represents an on hook action from the caller and the
onhookC_party represents the same action when taken by the party.

3.2.2 Encoding into smodels

It is now fairly straightforward to encode Figure 2 in smodels. The full code is available
on-line at http://www.wins.uva.nl/"accorsi/thesis. We comment here only on the
encoding of the ready_u state as an example.

% State READY.

1. false :- onhookA(ME,T), dial_somebody(ME,T), ready(ME,T), subs(ME), st(T).
2. onhookA(ME,T) :- not dial_somebody(ME,T), ready(ME,T), subs(ME), st(T).
3. dial_somebody(ME,T) :- not onhookA(ME,T), ready(ME,T), subs(ME), st(T).

4. idle(ME,plus(T,1)) :- onhookA(ME,T), ready(ME,T), subs(ME), st(T).

5. dialing(ME,T) :- dial_somebody(ME,T), ready(ME,T), subs(ME), st(T).

The first line encodes the fact that the onhook and the dial_somebody actions are mutu-
ally exclusive. The second and third lines say that if one of the two actions is not taken
then the other is. Line 4 reflects the effect of taking the onhook action, i.e., it moves the
subscriber back to the idle state. Action dial_somebody moves the user to the dialing
state, in which the dialed number will be generated.

Given the code as input, smodels can compute all possible stable models satisfying the
constraints we imposed. The number of models generated will be a function of the number
of subscribers and the number of cycles allowed to each of them. However, an interesting
characteristic is that we are able to ask for explicit network properties by using the
compute statement. The compute statement acts as a filter over the stable models that
are calculated. This enables us to check for the existence of specific configurations, by
indicating which atoms should (or should not) be in the model. We can also define the
maximum number of models that are going to be computed. A typical example used in
our encoding is compute 0 {not false}, which means compute all models that do not
include the false atom which was used in the encoding to forbid certain configurations.

4 Tests

We are now ready to evaluate the model. The first set of tests is meant to check the

parameters (number of subscribers, number of cycles). Tests were performed on a Sun
ULTRA II (300MHz) with 1Gb of RAM, under Solaris 5.2.5.

Exhaustive search. The statement compute 0 {not false} is used to search for every
valid configuration of BCS. The following table shows some of the results obtained.

Subs. \ Cycles 1 2 3
2 0:00.18 / 15 0:00.42 / 375 0:08.08 / 11173
3| 0:00.22 / 136 0:45.36 / 82268 | 14:42:45.23 / 18262292
4 | 0:02.38 / 1633 | 4:25:37.11 / 14774656 > 36:00:00.00

For each configuration pair of (# of subscribers, # of cycles), the time and the number
of models is shown. The configuration (4,3) was aborted after 36 hrs. of runtime.

Notice that exhaustive generation of models is extremely expensive, as the combina-
torial nature of the problem would hint at. But exhaustive search is meaningless from a
model checking perspective. What we are really interested in, instead, is the generation
of models with certain specific properties.

Checking properties in the model. In Table 1 we provide some examples of specific
queries concerning BCS. In each case we first describe the property to check, and then
provide the compute scheme that will check the property of a specific configuration. The
time shown corresponds to the verifiation of one instance of the scheme. To permit a
comparison, all tests have been run on the 4 subscribers, 3 cycles configuration.

Taking stock, we can take advantage of smodels’s compute statement to apply con-
straints over specific atoms and generate only models that satisfy the constraint being
issued. This way, checking system’s properties turns into a very efficient task as the ex-
amples in Table 1 show. At the moment we are generating further test on more subscribers
and cycles, and investigating more complex properties of BCS.

5 Features

We now describe the process of feature integration, i.e., how to add features on top of
the BCS implementation. Here we take full advantage of the non-monotonic behavior of

Existence of models: The smodels implementation of BCS has a model.

compute 1 {not false} ‘ Elapsed time 0:19.60

Self dialing: In no model a subscriber can dial her number and avoid the rejecting state.

compute 1 {dial(sl,t¢,sl,t), not rejecting(sl,t)} ‘ Elapsed time 0:05.00

Parallel calls: Parallel calls among different subscribers are possible.

compute 1 {path(sl,tl,s2,t1), path(s3,tl1,s4,t1)} ‘ Elapsed time 0:14.9

Multiple callings: A user can establish three different calls in three cycles.

compute 1 {path(sl,1,_,.),path(sl,2,_,.), path(sl,3,_,.)} ‘ Elapsed time 0:11.10

Table 1: Examples

smodels. Figure 2 is the starting point to reason about feature integration. To begin
with, we should identify which part of the transition system is modified by the feature.
The next step is to determine how the behavior of BCS is changed by the feature. Note
that this step requires a precise specification of the behavior of the feature. The last step
is to activate the feature, i.e., assign features to subscribers.

As an example, we describe implementations of TCS and CFU.

Terminate Call Screening (TCS) inhibits calls to the subscriber’s phone from any
number on her screening list. Any dial from a screened subscriber takes the caller to the
rejecting state. The following implements the TCS feature.

% Feature TCS - Terminating Call Screening.
1. rejecting(ME,U) :- dial(SHE,U,ME,T), tcs(ME,SHE), st(U), st(T).
2. false :- calling(SHE,U,ME,T), tcs(ME,SHE), st(U), st(T).

In line 1 the behavior of the dial action is changed: whenever a screened caller dials a
subscriber with the TCS feature she is unconditionally taken to the rejecting state.
Models where the invalid call is established are pruned in line 2. A domain predicate
tcs(x,v) is used to add v to the screening list of x.

As we did in Section 4, we can query BCS extended by TCS.

Call blocking: If subscribers are pairwise screened there are no callings.

tecs(s1,s2) Vsl,s2 € SUBS, s1 # s2 Elapsed time 0:5.1
compute 1 {not false, calling(sl, t1, s2, t2)}

Call Forward Unconditional (CFU) diverts calls addressed to a given subscriber’s
phone to another phone. The CFU feature is implemented as follows.

% Feature CFU - Call Forwarding Unconditional

1. dial_forward(SHE,U,ALTER) :- not notdial(SHE,U,ME,T), cfu(ME,ALTER), subs(SHE), st(U),
st(T).

2. dial(SHE,U,ALTER,T) :- not notdialf(SHE,U,ALTER,T), dialing(SHE,U), cfu(ME,ALTER),
subs(SHE), st(U), st(T).

3. nodialf (SHE,U,ALTER,T) :- not dial(SHE,U,ALTER,T), cfu(ME,ALTER), subs(SHE), st(U), st(T).
4. false :- dial_forward(SHE,U,ALTER), notdialf(SHE,U,ALTER,1), notdialf (SHE,U,ALTER,2),
notdialf (SHE,U,ALTER,3), cfu(ME,ALTER), subs(SHE), st(U).

5. false :- dial(SHE,U,ME,T), cfu(ME,ALTER), subs(SHE), st(U), st(T).

Line 1 exchanges the dial action by a request of forwarding. Lines 2, 3 and 4 implement
the non-deterministic synchronization with the cycle of the forwarding subscriber. Finally,
line 5 prunes the models where dials to the original phone exists.

Call looping: If two subscribers forward their phones to each other, no dial to either of
them can be performed.

tes(sl,s2), tes(s2,s1) sl,s2 € SUBS,s1 #s2 | Elapsed time 0:5.1
compute 1 {not false, dial(s3, t1, sl, t2)}

6 Conclusions and Future Work

In this work we have investigated an approach to feature interaction which differs in many
aspects from the one studied in [1]. A complete but computationally expensive inference
method (based on Description Logics) is traded for a fast, model checking methodology
(based on stable models). Still, the two methods are similar enough to actually be able
to work in collaboration. Model checking of particular instances on the model produces
interesting general properties which can be fully tested by the inferential approach. On the
other hand, whenever an inference turns too difficult for the deductive method, it is still
possible to attempt to model check all its instances. Even though the number of instances
can be exponential, the careful pruning algorithm used in smodels can significantly reduce
the search space and turn it into a feasible method. The full extent of the interaction
between the two approaches remains to be explored.

It is stricking how well the non-monotonic behavior of smodels lends itself to feature
integration. By definition, features alter the behavior of the basic system, by modifying
its functionality. In smodels, this translates into a set of rules which prunes the models
where the old behavior shows, and replaces them with those modified by the feature.

References

[1] C. Areces, W. Bouma, and M. de Rijke. Description logics and feature interaction. In
Proceedings of DL’99. Linkdping, Sweden, 1999.

[2] Bellcore. LATA switching systems generic requirements (Issgr). Technical Report Tech.
Reference TR-TSY-000064, Bellcore, Piscataway, N.J., 1992.

[3] L. Bouma and H. Velthuijsen, editors. Feature Interactions in Telecommunication Systems,
Amsterdam, Oxford, Washington DC, Tokyo, 1994. IOS Press.

[4] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reasoning in ter-
minological knowledge representation systems. J. Artificial Intelligence Res., 1:109-138,
1993/94.

[5] Niemeld I. and P. Simons. Implementation of the well-founded and stable model semantics.
In Proc. Joint Int. Conf. and Symp. on Logic Programming, Bonn, Germany, September
1996.

[6] V. Lifschitz. On the declarative semantics of logic programs with negation. In J. Minker, edi-
tor, Found. Deductive Databases and Logic Programming, pages 177-192. Morgan Kaufmann
Publishers, Los Altos, 1988.

[7] W. Marek and M. Truszczynski. Autoepistemic logic. J. Assoc. Comput. Mach., 38(3):588—
619, 1991.

[8] I. Niemeld. Logic programs with stable model semantics as a constraint programming
paradigm. In Workshop on Computational Aspects of Nonmonotonic Reasoning, Trento,
Italy, May , June 1998.

[9] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

