
PDL for ordered trees

Loredana Afanasiev* — Patrick Blackburn** — Ioanna Dimitriou*
Bertrand Gaiffe** — Evan Goris* —Maarten Marx*
Maarten de Rijke*

* Informatics Institute
University of Amsterdam,
Kruislaan 403,
1098 SJ Amsterdam (The Netherlands)
{lafanasi,idimitri,egoris,marx,mdr}@science.uva.nl
** INRIA Lorraine
615, rue du Jardin Botanique,
54600 Villers les Nancy Cedex (France)
{patrick.blackburn,bertrand.gaiffe}@loria.fr

ABSTRACT. This paper is about a special version of PDL, proposed by Marcus Kracht, for rea-
soning about sibling ordered trees. It has four basic programs corresponding to the child,
parent, left- and right-sibling relations in such trees. The original motivation for this language
is rooted in the field of model-theoretic syntax. Motivated by recent developments in the area
of semi-structured data, and, especially, in the field of query languages for XML (eXtensible
Markup Language) documents, we revisit the language. This renewed interest comes with a
special focus on complexity and expressivity aspects of the language, aspects that have so far
largely been ignored. We survey and derive complexity results, and spend most of the paper
on the most important open question concerning the language: what is its expressive power?
We approach this question from two angles: Which first-order properties can be expressed?
And which second-order properties? While we are still some way from definitive answers to
these questions, we discuss two first-order fragments of the PDL language for ordered trees,
and show how the language can be used to express some typical (second-order) problems, like
the boolean circuit and the frontier problem.
KEYWORDS: pdl, ordered trees, definability, expresivity, complexity.

1. Introduction

The purpose of this paper is to revive interest in a version of PDL proposed by
Marcus Kracht [KRA 95, KRA 97]. This version, called PDLtree here, is specially
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116 JANCL – 15/2005. Dynamic logics

designed for models which are sibling ordered trees. Such models are of interest in at
least two research communities: linguistics, in particular the field of model-theoretic
syntax, and computer science, in particular for those working with the World Wide
Web, semi-structured data and XML (eXtensible Markup Language).

Model-theoretic syntax is an uncompromisingly declarative approach to natural
language syntax: grammatical theories are logical theories, and grammatical struc-
tures are their models. These models consists of parse trees, i.e., node labeled, sibling
ordered finite trees. Perhaps the best known work in this tradition is that of James
Rogers (for example [ROG 98]) in which grammatical theories are stated in monadic
second-order logic. However other authors (in particular [BLA 94, KRA 95, KRA 97,
PAL 99]) use various kinds of modal logic (in essence, variable free formalisms for
describing relational structures) to specify grammatical constraints. Palm [PAL 99]
contains some interesting linguistic examples and is a good introduction to (and moti-
vation for) this approach.

The World Wide Web is a freely evolving, ever-changing collection of data with
flexible structure. The Web’s nature escapes the conventional database scenario of
manipulating data: data on the Web simply do not comply with the strict schemas
used for conventional databases. Web data such as home pages, news sites, pages
on commercial sites, usually enjoy some amount of structure, but that is not strictly
enforced, and there are no uniformly adopted standards, not even for simple bits of
information such as addresses. Hence, data on the Web is essentially semi-structured
[ABI 00]. In search for suitable models for semi-structured data, the World Wide
Web Consortium proposed the eXtensible Markup Language (XML) [CON 04]. XML
is a standard for textual representation of semi-structured data and was designed to
describe any type of textual information. It looks like a flexible variant of HTML,
allowing for the mark-up of data with information about its content rather than its
presentation. The logical abstraction of an XML document (the so-called DOM) is a
finite, node labeled, ordered tree.

Motivated by the renewed need for clean, well-understood declarative tree descrip-
tion formalisms brought about by the developments in semi-structured data outlined
above, we want to revive interest in the special variant of PDL developed for sibling
ordered trees. We focus on complexity and expressivity aspects of the language. Sec-
tion 2 introduces the language. Section 3 discusses complexity, and in Section 4 and
Section 5 we address expressivity issues. Section 4 is devoted to the expressiveness
of the language in terms of first-order properties; we discuss the first-order fragment
of PDLtree, recall some known results, and show the language in action by expressing
the until modality over the document order relation.

It follows from the failure of Beth’s Theorem for deterministic PDL interpreted
on finite trees [KRA 99] that PDLtree is strictly less expressive than unary monadic
second-order logic (MSO). The most pressing issue thus is to determine the exact
expressive power of PDLtree in terms of a suitable fragment of unary MSO. This re-
mains an open problem, but to improve our understanding of PDLtree’s expressive
power, we adopt a well-known strategy by examining a number of ‘typical’ second-
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PDL for ordered trees 117

order problems and properties. Specifically, in Section 5 we show how we can express
the boolean circuit and the frontier problem, and we discuss infinity axioms. These
examples suggest that PDLtree is expressive enough to encode natural hard second-
order problems. Boolean circuits is one of the main problems used to show that a
logic is weaker than MSO. The frontier problem is a typical linguistic application. We
conclude in Section 6.

2. PDL for ordered trees

We recall the definition of PDLtree from [KRA 95, KRA 97]. PDLtree is a propo-
sitional modal language identical to Propositional Dynamic Logic (PDL) [HAR 00]
over four basic programs left, right, up and down, which explore the left-sister,
right-sister, mother-of, and daughter-of relations. Recall that PDL has two sorts of ex-
pressions: programs and propositions. We suppose we have fixed a non-empty, finite
or countably infinite, set of atomic symbols A whose elements are typically denoted
by p. PDLtree’s syntax is as follows, writing π for programs and φ for propositions:

π ::= left | right | up | down | π;π | π ∪ π | π∗ | φ?
φ ::= p | ⊤ | ¬φ | φ ∧ φ | ⟨π⟩φ.

We sometimes write PDLtree(A) to emphasize the dependence on A. We employ the
usual boolean abbreviations and use [[π]]φ for ¬⟨π⟩¬φ.

We interpret PDLtree(A) on finite ordered treeswhose nodes are labeled with sym-
bols drawn from A. We assume that the reader is familiar with finite trees and such
concepts as ‘daughter-of’, ‘mother-of’, ‘sister-of’, ‘root-node’, ‘terminal-node,’ and
so on. If a node has no sister to its immediate right we call it a last node, and if it has
no sister to its immediate left we call it a first node. The root node is both first and
last, and called root. A labeling of a finite tree associates a subset of A with each tree
node.

A sibling ordered tree is a structure isomorphic to (N,Rdown, Rright) where N is
a set of finite sequences of natural numbers closed under taking initial segments, and
for any sequence s, if s · k ∈ N , then either k = 0 or s · k − 1 ∈ N . For n, n′ ∈ N ,
nRdownn

′ holds if, and only if, n′ = n · k for k a natural number; nRrightan′ holds
if, and only if, n = s · k and n′ = s · k + 1. We present finite ordered trees (trees for
short) as tuplesT = (T,Rdown, Rright). Here T is the set of tree nodes andRright and
Rdown are the right-sister and daughter-of relations, respectively. A pairM = (T, V ),
where T is a finite tree and V : A −→ Pow(T ), is called a model, and we say that V
is a labeling function or a valuation. Given a model M, we simultaneously define a
set of relations on T × T and the interpretation of the language PDLtree(A) onM:

Rup = R−1
down Rπ∪π′ = Rπ ∪ Rπ′

Rleft = R−1
right Rπ;π′ = Rπ ◦ Rπ′

Rπ∗ = R∗
π Rφ? = {(t, t) | M, t |= φ}
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118 JANCL – 15/2005. Dynamic logics

M, t |= p if, and only if, t ∈ V (p), for all p ∈ A
M, t |= ⊤ if, and only if, t ∈ T

M, t |= ¬φ if, and only if, M, t ̸|= φ
M, t |= φ ∧ ψ if, and only if, M, t |= φ andM, t |= ψ
M, t |= ⟨π⟩φ if, and only if, ∃t′ (tRπt′ and M, t′ |= φ).

IfM, t |= φ, then we say φ is satisfied inM at t. For any formula φ, if there is a model
M such that M, root |= φ, then we say that φ is satisfiable. For Γ a set of formulas,
and φ a formula, we say that φ is a consequence of Γ (denoted by Γ |= φ) if for every
model in which Γ is satisfied at every node, φ is also satisfied at every node.

Note that we could have defined PDLtree by taking down and right as the sole
primitive programs and closing the set of programs under converses. As converse
commutes with all program operators, these two definitions are equally expressive.

Let us consider some examples: if universally true, (1) says that every a node has
a b and a c daughter, in that order, and no other daughters; and (2) says that every
a node has a b first daughter followed by some number of c daughters, and no other
daughters.

a → ⟨down⟩(¬⟨left⟩⊤ ∧ b ∧ ⟨right⟩(c ∧ ¬⟨right⟩⊤)) (1)

a → ⟨down⟩(¬⟨left⟩⊤ ∧ b ∧ ⟨(right; c?)∗⟩¬⟨right⟩⊤). (2)

Now consider (3). This projects a label p down to some leaf node:

⟨(p?; down)∗⟩(p ∧ ¬⟨down⟩⊤) (3)

That is, whenever this formula is satisfied in some model at some point t, there will be
a path from t to some leaf node l such that every node on the path is marked p. We end
the short examples with a list of useful abbreviations: root is short for ¬⟨up⟩⊤, leaf
is short for ¬⟨down⟩⊤, first is short for ¬⟨left⟩⊤, and last abbreviates ¬⟨right⟩⊤.

3. Complexity

There are two natural problems for which we want to know the complexity. First
the model checking problem: given a treeM, a node t, and a formula φ, how difficult
is it to decide whetherM, t |= φ?

THEOREM 1 ([ALE 00]). — M, t |= φ can be determined in time linear in the size
of M and of φ.

See [ALE 03] for a large number of related results.

Secondly, consider the complexity of the PDLtree consequence problem: how dif-
ficult is it to decide whether, on finite ordered trees, Γ |= χ, for finite Γ. Decidability
of this problem follows from the interpretation of PDLtree into L2

K,P [ROG 98] (see
the beginning of Section 5). (The decidability of the satisfiability problem for L2

K,P

follows, in turn, via an interpretation into Rabin’s SωS.) But although this reduction
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PDL for ordered trees 119

yields decidability, it only gives us a non-elementary decision procedure. So what is
the complexity of the consequence problem?

Let us first deal with the lower bound.

THEOREM 2 ([FIS 79, SPA 93]). — The consequence problem for the PDLtree

fragment with only down is EXPTIME-hard.

PROOF. — This is a corollary of the analysis of the lower bound result for PDL given
by [SPA 93], based on [FIS 79]. The following fragment of PDL is EXPTIME-hard:
formulas of the form ψ ∧ [a∗]θ (where ψ and θ contain only the atomic program a
and no embedded modalities) that are satisfiable at the root of a finite binary tree.
Identifying the program a with down, the result follows (because [[down∗]]θ ∧ ψ is
satisfiable at the root of a finite tree if, and only if, θ ̸|= root → ¬ψ). ■

For full PDL this bound is optimal. There is even a stronger result: every satisfiable
PDL formula φ can be satisfied on a model with size exponential in the length of φ.
However with tree-based models there is no hope for such a result for it is easy to
show that:

For every natural number n, there exists a satisfiable formula of size
O(n2) which can only be satisfied on at least binary branching trees of
depth at least 2n.

A formula containing most of the requirements to force such a deep branch is given
in Proposition 6.51 of [BLA 01]. To this formula we only have to add the conjunct
[[down∗]](⟨down⟩p ∧ ⟨down⟩¬p) for some new variable p to enforce binary branching.
Note that the size of such a model is double exponential in the size of the formula.
This means that a decision algorithm which tries to construct a tree model must use at
least exponential space, as it will need to keep a whole branch in memory.

So we have to think more carefully about the upper bound. One way to proceed
is to take a clue from the completeness proof for a related language in [BLA 94]. In-
stead of constructing a model it is possible to design an algorithm which searches for
a “good” set of labellings of the nodes of a model. Label sets consist of subformulas
of the formula φ whose satisfiability is to be decided. From a good set of labels we
can construct a labeled tree model which satisfies φ. The number of labels is bound
by an exponential in the number of subformulas of φ, and the search for a good set of
labels among the possible ones can be implemented in time polynomial in the num-
ber of possible labels using the technique of elimination of Hintikka sets developed
in [PRA 79]. A direct proof using this technique was given in [BLA 03] for the lan-
guage Lcp (see Section 4). Unfortunately, the technique cannot be straightforwardly
applied to PDLtree. Here we show how an old result of Vardi and Wolper [VAR 86]
on deterministic PDL with converse yields the desired upper bound.

THEOREM 3. — The PDLtree consequence problem is in EXPTIME.

PROOF. — First note that γ1, . . . , γn |= χ if and only if |= root → ([[down∗]](γ1 ∧
. . . ∧ γn) → χ). Thus we need only decide satisfiability of PDLtree formulas at the
root of finite trees.
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120 JANCL – 15/2005. Dynamic logics

Consider the language L2, the modal language with the two programs {↓1, ↓2}
and their inverses {↑1, ↑2}. L2 is interpreted on finite at most binary-branching trees,
with ↓1 and ↓2 interpreted by the first and second daughter relation, respectively. We
will effectively reduce PDLtree satisfiability to L2 satisfiability. L2 is a fragment of
deterministic PDL with converse. [VAR 86] shows that the satisfiability problem for
this latter language is decidable in EXPTIME over the class of all models. This is done
by constructing for each formula φ a tree automaton Aφ which accepts exactly all tree
models in which φ is satisfied. Thus deciding satisfiability of φ reduces to checking
emptiness of Aφ. The last check can be done in time polynomial in the size of Aφ.
As the size of Aφ is exponential in the length of φ, this yields the exponential time
decision procedure.

But we want satisfiability on finite trees. This is easy to cope with in an automata-
theoretic framework: construct an automaton Afin_tree , which accepts only finite bi-
nary trees, and check emptiness of Aφ ∩ Afin_tree . The size of Afin_tree does not
depend on φ, so this problem is still in EXPTIME.

The reduction from PDLtree to L2 formulas is very simple: replace the PDLtree

programs down, up, right, left by the L2 programs

↓1; ↓
∗
2, ↑∗2; ↑1, ↓2, ↑2,

respectively. It is straightforward to prove that this reduction preserves satisfiability,
following the reduction from SωS to S2S as explained in [WEY 02]: a PDLtree model
(T,Rright, Rdown, V ) is turned into an L2 model (T,R1, R2, V ) by defining

R1 = {(x, y) | xRdowny and y is the first daughter of x}

and R2 = Rright. Turn an L2 model (T,R1, R2, V ) into a PDLtree model (T , Rright,
Rdown, V ) by defining Rright = R2 and Rdown = R1 ◦ R∗

2. ■

4. Expressivity 1: first-order logic

Let LFO denote the first-order language over the signature with binary predicates
{Rdown+ , Rright+} and countably many unary predicates. LFO is interpreted on or-
dered trees in the obvious way: Rdown+ is interpreted by the transitive closure of the
daughter-of relation, and Rright+ is interpreted by the transitive closure of the right-
sister relation. Note that the language is first order, even though we interpret the two
primitive relations as second order relations over a more primitive relations. This is
not strange, but just another perspective: we take descendant as primitive instead of
the immediate daughter relation. Of course the latter is first order definable from the
descendant relation.

Two other modal languages proposed in the model-theoretic syntax literature can
be considered as first-order fragments of PDLtree. That is, they can be considered as
versions of PDLtree with a more limited repertoire of programs. As first-order logic
is a natural point of reference for the expressivity of languages it is useful to consider

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
0:

34
 3

0 
M

ay
 2

01
5 



PDL for ordered trees 121

first-order fragments of PDLtree. We consider two, one predating and one postdating
the introduction of PDLtree.

The language proposed by Blackburn, Meyer-Viol and de Rijke [BLA 96], here
called LCore , contains only the core machinery for describing trees: the four basic
programs plus their transitive closures, denoted by a superscript (·)+. This language
is precisely as expressive1 as (i.e., can define the same sets of nodes as) the fragment
of PDLtree generated by the following programs:

π ::= left | right | up | down | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | φ? |
a∗, for a one of the four atomic programs.

The language proposed by Palm [PAL 99], here called Lcp (with cp abbreviating con-
ditional path), lies between LCore and PDLtree with respect to expressive power. It
can be thought of as the fragment of PDLtree generated by the following programs:

π ::= left | right | up | down | π;φ? | π∗,

or equivalently by

π ::= left | right | up | down | π;π | π ∪ π | φ? |
(a;φ?)∗, for a one of the four atomic programs.

Note that while the two definitions for Lcp give rise to equally expressive languages,
not every program of the second language is equivalent to a program of the first lan-
guage. For example, the programs (a;φ?)+ and (φ?; a)∗ can be expressed only in the
second language. In this paper we will consider Lcp to be the fragment of PDLtree

generated by the programs given in the second definition.

Both languages are easily seen to be fragments of LFO, the first order language
for sibling ordered trees. In fact we know exactly which fragments. A tree property
is a class of pairs (T,N) consisting of a tree T and a subset N of its domain. A tree
property P is definable in a language L if there is a formula φ ∈ L such that (T,N)
is in P if, and only if, the denotation of φ in T equalsN . For instance, the property of
having at least two children is definable by the formula ⟨down⟩⟨right⟩⊤.

THEOREM 4 ([PAL 97, MAR 04A]). — The following are equivalent on ordered
trees. For P a tree property:

– P is definable by an Lcp formula;
– P is definable by an LFO formula in one free variable.

1. At this point we are only interested in the expressiveness of the modal language, not of the
set of programs. So we measure the expressive power of a PDLtree fragment in terms of which
sets of nodes can be defined in it.
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122 JANCL – 15/2005. Dynamic logics

THEOREM 5 ([MAR 04B]). — The following are equivalent on ordered trees. For
P a tree property:

– P is definable by an LCore formula;
– P is definable by an LFO formula in one free variable which

1) contains at most two (free and bound) variables (possibly reused), and
2) which may use additional atomic relations corresponding to the daughter-of

and right-sister relation.

The first theorem can be seen as a generalization of Kamp’s Theorem [KAM 68] to
ordered trees. The theorem was announced in [PAL 97], but the proof is hard to fol-
low. [MAR 04a] contains a proof based on Gabbay’s notion of separation [GAB 84].
The second theorem is also a generalization of a result for temporal logic on linear
structures, this time due to Etessami, Vardi and Wilke [ETE 97].

We end this section by giving some insight into the expressive power of Lcp. First
note that the temporal until(φ,ψ) modality can be expressed, in all four directions.
For the downward direction, until(φ,ψ) is expressed as ⟨(ψ?; down)∗⟩φ. Indeed, this
formula is true at a node n if, and only if, φ is true at n or there exists a descendant n′

of n at which φ is true and at all nodes, starting with n and descending to n′ exclusive,
ψ is true.

So far, we have only considered expressivity with respect to sets of nodes. We will
now consider expressivity with respect to binary relations on the set of nodes: which
binary relations can be defined by means of a program of the language?

THEOREM 6 ([MAR 05]). — The following are equivalent on ordered trees. For P
a binary relation:

– P is definable by an Lcp program;
– P is definable by an LFO formula in two free variables.

We now give a representative example of a first-order formula and its equivalent Lcp

program. In the context of XML documents, the order in which the nodes are written
is an important relation, called document order. Figure 1 contains an example of an
XML file, its corresponding tree model and the numbers of the nodes correspond to
their document ordering. The document order relation≪ is defined as

≪ ≡ down+ ∪ up∗; right+; down∗.

On finite trees it makes sense to speak about the successor relation of the document
order. The simple definition is ≪ ∩ ≪ ◦ ≪. It can be defined also with the Lcp

programs as

down; first? ∪ leaf?; right ∪ (last?; up)+; right. (4)

Next we show how to define the relation

x ≪ y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x ≪ z ≪ y → φ(z)), (5)
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PDL for ordered trees 123

<AA1>
<BB2>

<CC3/>
<CC4/>

</BB2>
<DD5>

<EE6/>
<FF7/>

</DD5>
<GG8>

<HH9/>
<JJ10/>

</GG8>
</AA1>

AA1

BB2

CC3 CC4

DD5

EE6 FF7

GG8

HH9 JJ10

Figure 1. An XML document and its corresponding tree model

from the Lcp programs, and once we have this, the “until in document-order” modal-
ity: until≪(ψ,φ) holds at x if, and only if, ψ(x)∨∃y(5). Note that Theorem 4 ensures
that the set ψ(x)∨∃y (5) is Lcp definable, but not that the relation (5) is definable from
the Lcp programs.

We must use the definition of Lcp programs containing union and composition.
The definition is a case distinction based on the definition of x ≪ y:

1) x down+ y

2) x up+; right+; down+ y

3) x up+; right+ y

4) x right+; down+ y

5) x right+ y.

We only show the easiest (first) and the hardest (second) case. The others are varia-
tions of these. For the first case we want to express that

x down+y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x ≪ z ≪ y → φ(z)).

We explain our formulas by examples. Suppose x is node 1 and y is node 7 in Figure 1.
Then φ must hold at nodes 1–6 and ψ must hold at node 7. This holds just in case x
and y are related by

φ? ;

(down; (φ ∧ [[left+]][[down∗]]φ)?)∗ ; (6)

down; (ψ ∧ [[left+]][[down∗]]φ)?.

D
ow

nl
oa

de
d 

by
 [U

V
A

 U
ni

ve
rs

ite
its

bi
bl

io
th

ee
k 

SZ
] a

t 0
0:

34
 3

0 
M

ay
 2

01
5 



124 JANCL – 15/2005. Dynamic logics

The first line of (6) ensures that φ holds at the node 1. The second line is evaluated
at the node 5 and ensures that the nodes 2–5 make φ true. The third line says that ψ
holds at the node 7 and φ holds at the node 6.

For the second case we want to express that

x up+; right+; down+y ∧ φ(x) ∧ ψ(y) ∧ ∀z(x ≪ z ≪ y → φ(z)). (7)

This holds exactly when x and y are related by

[[down∗]]φ? ; (8)

([[right+]][[down∗]]φ?; up)+ ; (9)

(right; [[down∗]]φ?)∗ ; (10)

right;φ? ; (11)

(down; (φ ∧ [[left+]][[down∗]]φ)?)∗ ; (12)

down; (ψ ∧ [[left+]][[down∗]]φ)?. (13)

This formula is best explained using a more elaborate tree, as in Figure 2. Suppose
nodes C and R stand in the relation (7). Then (8) ensures that {A,B,C} makes φ
true; the test [[right+]][[down∗]]φ in (9) will be evaluated at nodes C and G, thereby
ensuring that φ holds in {F,D,E} and {J,H, I}, respectively. The test [[down∗]]φ in
(10) will be evaluated at all nodes strictly in between K and U , so here taking care
that φ holds at {N,L,M}. (11) ensures that φ is true at U . Now (12) and (13) are just
the subprograms of (6) from the first case, ensuring that φ holds at {Q,O,P, T} and
ψ holds at {R}.

V

K

G

C

A B

F

D E

J

H I

N

L M

U

Q

O P

T

R S

Figure 2. Example tree for the second case
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PDL for ordered trees 125

5. Expressivity 2: second-order properties

In this section we look at three concrete examples of non-trivial second-order prop-
erties of trees that are expressible in PDLtree; first though, some background. The lan-
guage PDLtree can express properties beyond the reach of LFO. For example, PDLtree

can express the property of having an odd number of daughters:

⟨down⟩(first ∧ ⟨(right; right)∗⟩last). (14)

Note that the second conjunct ⟨(right; right)∗⟩last says that by chaining together a
succession of double right steps we can reach the rightmost daughter node — which
means that there must be an odd number of daughter nodes. This is a property that no
LFO formula can express.

On the other hand, PDLtree is contained in L2
K,P , Rogers monadic second-order

logic of variably branching trees [ROG 98]. L2
K,P just extends LFO by quantification

over unary predicates. The translation of PDLtree formulas into L2
K,P is straightfor-

ward. Note, in particular, that we can use second-order quantification to define the
transitive closure of a relation: for R any binary relation, xR∗y holds iff

x = y ∨ ∀X(X(x) ∧ ∀z, z′(X(z) ∧ zRz′ → X(z′)) → X(y)).

Thus PDLtree can be seen as a fragment of unary L2
K,P . Kracht showed that the

inclusion is strict:

THEOREM 7 ([KRA 99]). — Unary L2
K,P is strictly more expressive than PDLtree.

This brings us to the most important open problem concerning PDLtree:

OPEN PROBLEM. — Characterize the expressive power of PDLtree interpreted on
finite ordered trees in terms of a suitable fragment of monadic second-order logic. ✷

Within the context of query languages for XML documents a number of proposals for
second-order languages have been made. The goal, then, is to express unary MSO,
MSO formulas denoting a set of nodes. We mention monadic datalog of [GOT 02]
and the efficient tree logic of [NEV 00a], which are both as expressive as unary MSO.

Neven and Schwentick [NEV 00a] argue that unary MSO rather than LFO is the
gold standard for a language designed for specifying nodes in finite ordered trees.
Their most convincing example is a variant of the boolean circuit problem. In order to
obtain a better understanding of the second order expressivity of PDLtree, we encode
a number of second-order properties in PDLtree. In addition to the boolean circuit
problem just mentioned, we encode the frontier problem and we show that finiteness of
ordered trees can be expressed in PDLtree. The frontier problem is a typical linguistic
problem. Expressing finiteness within a large class of tree-like structures shows the
robustness of the language. We look at the upshot of these examples at the end of this
section. We start with the frontier problem.
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126 JANCL – 15/2005. Dynamic logics

5.1. The frontier problem

The frontier of a tree is the set of leaves ordered from left to right. In a parse tree of
a natural language sentence, the frontier is exactly that sentence. Usually the frontier
is where the actual data contained in a tree is located.

Given a condition φ on the frontier, we want to write an PDLtree expression which
is true at the root of a tree if, and only if, the frontier of the tree satisfies φ. For instance,
φ could be a regular expression over atomic symbols, like (p; q)∗. The most natural
application is when we know that each leaf node makes exactly one atomic symbol
true. Then a tree satisfies φ if and only if the frontier is a word in (p; q)∗. But nothing
forbids us to use arbitrary complex PDLtree formulas in place of p and q. E.g., ⟨up∗⟩np
states that the current word of the parsed sentence is part of a noun-phrase (“an np”).
Thus we do not view the frontier as a unique string, but as an infinite collection of
strings, made up from formulas which are true at the respective nodes. Now let r be
a regular expression in which arbitrary PDLtree formulas are the letters. We say that a
tree’s frontier l1 . . . , ln satisfies r if, and only if, there are PDLtree formulas φi such
that for all i, li |= φi and the string φ1, . . . ,φn is a word in r.

What we need for expressing frontier conditions is the successor relation between
frontier nodes. This is naturally defined using the document order relation from the
previous section. A frontier node y is the successor of a frontier node x if and only if
x ≪ y and there is no leaf node in between x and y in the document order. An intuitive
definition of the next_frontier_node relation between leaves can now be given as:

leaf?; [(¬last)? ∪ (last?; up)+]; right; (down; first?)∗; leaf?. (15)

Because we evaluate the PDLtree formula at the root, we should add to (15) the step
from the root to the first leaf. So define the next_frontier_node relation as

root?; (down; first?)∗; leaf? ∪ (15).

Let last_frontier_node be an abbreviation of leaf∧⟨(last?; up)∗⟩root, which indeed is
true exactly at the last frontier node (or simply at the root, if the root is the only node
in the model).

Now let r be a regular expression over a set of PDLtree formulas. Then for any tree
T , T ’s frontier satisfies r if and only if the root of T satisfies ⟨r◦⟩last_frontier_node,
where r◦ is r with ; placed between all PDLtree formulas which act as letters in r
and any such formula φ is replaced by next_frontier_node;φ?. For instance, the
frontier is in (ab)∗, where a and b are atomic symbols if, and only if, the root satisfies

⟨(next_frontier_node; a?; next_frontier_node; b?)∗⟩last_frontier_node.

Note that the formula is true on a tree containing only the root; thus it correctly rec-
ognizes the empty string.
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PDL for ordered trees 127

5.2. The boolean circuit problem

We show how the boolean circuit problem can be expressed in PDLtree. Our
PDLtree formula is based on the same idea as in [NEV 00b]: use a depth first traversal
of the tree. We start with defining the boolean circuit problem.

DEFINITION 8 (BOOLEAN CIRCUITS). — Boolean circuits are finite {1, 0,C,D}-
labeled ordered binary trees such that

1) each leaf is labeled with exactly one of {1, 0}, and
2) each non-leaf is labeled with exactly one of {C,D}.

If B is a boolean circuit and b ∈ B then with Bb we denote the subtree of B rooted at
b. With Bb we denote the tree which we obtain by removing everything below b. So
in particular we have that b is a leaf of Bb.

The intended meaning of the labels is as one might expect: 1 means ‘true’, 0
means ‘false’, C means conjunction and D means disjunction. For any boolean circuit
B, define the boolean function eval from the domain of B to {‘true’, ‘false’} in the
expected way. For instance, as the Datalog program:

eval(x) :- 1(x).
eval(x) :- D(x), Rdown(x,y), eval(y).
eval(x) :- C(x), Rdown(x,y), Rright(y,z), eval(y), eval(z).

Also for any b ∈ B let height(b) denote the length of the longest path starting at, but
not including, b to a leaf. So if b is a leaf, then height(b) = 0.

GENERAL IDEA. — To check if a boolean circuit evaluates to true we look for sub-
structures that can be constructed as follows. We start at the root and move down. At
disjunctive nodes we select one child. At conjunctive nodes we take both children.
When we reach a leaf, it should be labeled with 1. We check if such a substructure ex-
ists in a depth first fashion. So, we walk down the tree, where at conjunctive nodes we
always take the left route and make sure (by selecting the correct child at disjunctive
nodes) we end up in a leaf labeled 1. We let the relation R0 denote such a path. That
is, for all x and y we have xR0y if, and only if, the following three cases apply.

1) ∃ k ≥ 1 t1, . . . , tk s.t. x = t1downt2down · · · downtk = y

2) For all 1 ≤ i < k if ti ! C, then ti+1 ! first

3) tk ! 1

Next we walk up again until we are at a left child of a conjunctive node. We move
right, to node br say, and repeat the procedure. When we return at node br we realize
that we are about to enter a conjunctive node from the right and move further up until
the next conjunctive node. With R1 we denote this relation. So for all x and y we
have xR1y if, and only if, the following two cases apply.

1) ∃k ≥ 1 t1, . . . , tk s.t. x = t1upt2up · · · uptk = y
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128 JANCL – 15/2005. Dynamic logics

2) For all 1 ≤ i < k, ti ! ⟨up⟩C→ last

When we reach the root of the boolean circuit the procedure stops. We can express
both relations R0 and R1 as PDLtree programs π0 and π1 as follows. Let π0 be the
program, which corresponds to R0. That is

π0 = ((D?; down) ∪ (C?; down; first?))∗; 1?.

Let π1 be the program corresponding to R1. That is

π1 = ((⟨up⟩C→ last)?; up)∗.

Finally define
β = ⟨π0;π1; (right;π0;π1)

∗⟩root.

Before we move on let us make a remark. On first sight one might think that we need
in the definition of R1 a third clause. Namely

3) tk ! ⟨up⟩C ∧ ¬last or tk ! root.

And, consequently, instead of π1 we should have

π1; (⟨up⟩C ∧ ¬last ∨ root)?.

This is not necessary. With the current definition of R1 we allow for a check (but do
not consider it necessary) that the second child of a disjunctive node is true when we
already know that the first child is. This is just as harmless as it is useless. Neverthe-
less, the proof below (in particular Lemma 13) does not work without this omission.

✷

THEOREM 9. — β is forced at the root r of a boolean circuit iff eval(r) is true.

The proof follows below, but first several lemmas.

LEMMA 10. — Let B be a boolean circuit. For all nodes b ∈ B we have the follow-
ing.

1) b ! β ∧ C→ [[down]]β

2) b ! β ∧ D→ ⟨down⟩β

PROOF. — First we show 1. Suppose b ! β ∧ C. Let bl be the left child of b and br

be the right child of b. It is easy to see that bl ! β. To show that br ! β we need a
lemma.

LEMMA 11. — For any x for which not x(up)∗bl (e.g. x ̸∈ Bbl
) we have that if

bl(π0;π1; (right;π0;π1)∗)x then bl(right;π0;π1)∗x.

PROOF. — Choose x as stated. We show with induction on n that

if bl(π0;π1; (right;π0;π1)n)x then bl(right;π0;π1)∗x.
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PDL for ordered trees 129

If n = 0 then for some t, blπ0tπ1x. Clearly t(up)∗bl and t(up)∗x. So, by choice of x,
bl(up)+x. But this is clearly in contradiction with the definition of π1.

Now suppose bl(π0;π1; (right;π0;π1)n+1)x. Choose t such that

bl(π0;π1; (right;π0;π1)n)t and t(right;π0;π1)x.

We can assume that t(up)∗bl (otherwise we are done by (IH)). We also can assume
that t ̸= bl and thus t(up)+bl. Fix some t′ for which t(right;π0)t′π1x. By the above
we obtain t′(up)+bl. Similar as in the case n = 0 this leads us to a contradiction. ■

Nowwe continue with showing that br ! β. Since bl ! β we can find some x1, x2, . . .
such that

bl = x1(π0;π1)x2(right;π0;π1)x3 · · · (right;π0;π1)r,

where r is the root of B. Let i be that smallest number such that not xi(up)∗bl. Note
that i > 2. So, by the above lemma and by choice of i, we have bl(right;π0;π1)xi.
So, br(π0;π1)xi and thus br ! β. We have shown 1.

Item 2 is rather trivial. For if we suppose that b ! β ∧ D then it is easy to verify,
using the definition of π0, that b ! ⟨down⟩β. ■

COROLLARY 12. — Let B be a boolean circuit. For all nodes b ∈ B we have that if
b ! β then eval(b) is true.

PROOF. — Induction on height(b). If height(b) = 0 then the claim is clear by the
definition of π0. So suppose height(b) > 0. There are two cases to consider.

Case: b ! C. By Lemma 10 we have b ! [[down]]β. So, by (IH), we have that for
all children b′ of b that eval(b′) is true and thus eval(b) is true.

Case: b ! D. By Lemma 10 we have b ! ⟨down⟩β. So, by (IH), for some child b′

of b we have eval(b′) is true and thus eval(b) is true. ■

LEMMA 13. — Let B be a boolean circuit. For all b ∈ B for which eval(b) is true
we have that b(π0;π1; (right;π0;π1)∗)b.

PROOF. — Induction on height(b). If height(b) = 0 then this is clear. So suppose
height(b) > 0. There are two cases to consider.

Case: b ! C. Then for b’s children bl and br we have that eval(bl) and eval(br) are
true. By (IH), bl(π0;π1; (right;π0;π1)∗)bl and br(π0;π1; (right;π0;π1)∗)br. So,
the pair (b, b) is contained in the following relation:

C?; down; first?;π0;π1; (right;π0;π1)
∗; right;π0;π1; (right;π0;π1)

∗; last?; up.

Thus, as one can easily verify, we have

b(π0;π1; (right;π0;π1)
∗)b.
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130 JANCL – 15/2005. Dynamic logics

Case: b ! D. Then for at least one child bi of b we have eval(bi) is true. So by (IH)
we obtain bi(π0;π1; (right;π0;π1)∗)bi. Thus

b(D?; down; (π0;π1; (right;π0;π1)
∗); (¬⟨up⟩C)?; up)b.

Which implies b(π0;π1; (right;π0;π1)∗)b. ■

Now we are ready to prove Theorem 9.

PROOF (OF THEOREM 9). — (⇒) Immediate from Corollary 12. (⇐) Suppose
eval(r) is true. By Lemma 13 we have r(π0;π1; (right;π0;π1)∗)r. So in particular
r ! ⟨π0;π1; (right;π0;π1)∗⟩root, i.e., r ! β. ■

5.3. Expressing finiteness

We let go of the restriction to finite trees. Normally one would define arbitrary trees
as partially ordered sets (W,<) with a unique root and such that for each w ∈ W the
set {v | v < w} is well-ordered By <. The height of a node w is then defined as the
order-type of {v | v < w} and we say that a tree is of height ω when the height of
each node is finite. We can do a little bit better. Below we define first-order definable
structures such that the part that PDLtree can see is a tree of height ω.

First, for a binary relationR we say that y is a direct successor of x when xRy and
for no z we have xRzRy. We define direct predecessor in a similar way. We say that
R is discrete when for any xRy such that y is not a direct successor of x, there exists
some direct successor z of x with xRzRy. Notice that discrete relations are always
irreflexive. We say that a structure ⟨T,Rdown+ , Rright+⟩ (note that, in this context,
Rdown+ and Rright+ are primitive relation symbols themselves) is tree-like when

1) Rdown+ is a discrete and partial order on T with a unique root,
2) each t ∈ T has at most one direct Rdown+ -predecessor,
3) Rright+ is discrete and linearly orders the direct successors of any t ∈ T , in

particular if xRright+y then x and y have the same direct Rdown+ -predecessor.

Clearly, this class of structures is first-order definable within the class of Kripke
frames with two accessibility relations and any tree is a tree-like structure. We de-
fine the relations Rdown, Rright and all the other relations Rπ that may occur within
PDLtree-modalities as above in Section 2. But note that although we do have R+

down ⊆
Rdown+ , R+

right ⊆ Rright+ , in general these inclusions will be proper. If T =
⟨T,Rdown+ , Rright+⟩ is a tree-like structure with root r, then we write Tr for the struc-
ture ⟨r⟩⟨T,Rdown,Rright⟩, the substructure of ⟨T,R+

down, R
+
right⟩ generated by r using the

defined relations Rdown and Rright, in the usual modal logic sense. Of course for
any PDLtree formula φ we have that T , r ! φ iff Tr, r ! φ. So without danger of
confusion we can write r ! φ.

As a corollary to the proof of the definability of boolean circuits we will show that
PDLtree can define finiteness of tree-like structures.
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PDL for ordered trees 131

THEOREM 14. — There exists a PDLtree-formula Fin such that for any tree-like
structure T with root r we have T , r ! Fin if, and only if, T is finite.

PROOF. — Let δ and γ be as defined in (16) and (17) below and let Fin be δ ∧ γ.
The proof proceeds in stages. In Lemma 15 we show that it is sufficient to show that
Tr, r ! Fin if, and only if, Tr is finite. This latter is shown in Lemmas 16, 17 and 18.

■

LEMMA 15. — For any tree-like structure T with root r, Tr is an ordered2 tree of
height ω, and Tr is finite if, and only if, T is finite.

PROOF. — The first assertion is a direct consequence of the definition of tree-like
structures. The second assertion follows from the fact that if x is a leaf in Tr then by
discreteness there does not exist any Rdown+ descendant of x in T . ■

As a first approximation for finiteness put

δ = [[down∗]](⟨left∗⟩first ∧ ⟨right∗⟩last). (16)

LEMMA 16. — For any tree-like structure T with root r we have that Tr, r ! δ if,
and only if, Tr is finitely branching.

PROOF. — The left to right direction holds since if t ∈ Tr has infinitely many chil-
dren then by discreteness we can find an infinite, to the left or to the right, Rright-
chain. The converse is obvious. ■

So in order to define the class of finite tree-like structures it is enough to define the
class of finite trees as a subclass from the class of ordered trees of height ω which are
finitely branching. To this end put

π0 = (down; first?)∗; leaf?,

π1 = (last?; up)∗

and
γ = ⟨π0;π1; (right;π0;π1)

∗⟩root. (17)

Before we move on let us introduce some terminology. A branch b in a finitely branch-
ing tree T of height ω is a sequence

r = x1(down)x2(down) · · · (down)xn(down) · · ·

where r is the root of T and either b is infinite and in this case is (down) closed, or
its last element is a leaf. If b and b′ are branches then we say that b is to the left of b′

whenever if i is the smallest i such that bi ̸= b′i then bi(right)+b′i. Clearly, since T
is finitely branching, this gives us a linear ordering on the branches of some fixed tree.

2. In case the tree is infinitely branching the sibling order Rright might be non-total, but this
does not matter, see Lemma 16.
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132 JANCL – 15/2005. Dynamic logics

For t ∈ T and b a branch of T we write t < b if t ̸∈ b and t occurs on some branch to
the left of b. t ≤ b means t < b or t ∈ b. Similar definitions hold for b < t, b ≤ t.

LEMMA 17. — Suppose T is finitely branching tree of height ω and t ∈ T . If Tt is
finite then t(π0;π1; (right;π0;π1)∗)t.

PROOF. — Induction on height(t). Similar to the proof of Lemma 13. ■

LEMMA 18. — Suppose T is finitely branching tree of height ω with root r. If T is
infinite then not r(π0;π1; (right;π0;π1)∗)r.

PROOF. — Since T is infinite, finitely branching and of height ω, T must contain
an infinite branch. Let b be the leftmost infinite branch of T . Such a branch can
easily be constructed by starting from r and in each successive step select the leftmost
child of the previously selected node which roots an infinite subtree. The following is
obvious.

1) x ≤ b and x(π0)y imply y < b

2) x < b and x(π1)y imply y < b

3) x < b and x(right)y imply y ≤ b

1 is clear, since π0 only walks to leftmost children. 2 is clear, since π1 only walks
from rightmost children. 3 is clear, by definition of the ordering on branches.

Now let us assume that r(π0;π1; (right;π0;π1)∗)r. Then there exists some se-
quence

r = a0(π0)a1(π1)a2(right)a3(π0)a4 · · · ak−2(π1)ak−1 = r.

By the above three points it follows, with induction on i, that

for all i < k, ai ≤ b. (18)

Since ak−3(π0)ak−2 we have that ak−2 must be a leaf, and since ak−2(π1)r we also
have that the branch in T ending in ak−2 only contains rightmost nodes. But this
implies that b, as the leftmost infinite branch of T , must be on the left of the branch
ending in ak−2. So in particular b ≤ ak−2. But since ak−2 is a leaf we even have
b < ak−2, in contradiction with (18). ■

5.4. The upshot

What is the upshot of these examples? First and foremost, they were intended to
show the language in action, to show that semantic reasoning is naturally captured in
PDLtree formulas, even when it comes to hard problems. Even though we provided
rigorous correctness proofs, we feel that once the semantic argument is understood,
correctness of the PDLtree formalization is almost self-evident.

Although boolean circuits looks like a canonical MSO problem it has certain pe-
culiarities which we could exploit, in particular that one depth-first traversal of the
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PDL for ordered trees 133

tree is sufficient to determine the truth of the formula. The problem suggest a possible
strengthening of the language: intersection of programs with ⊤?. With this we can
specify the set of all points t at which eval(t) is true, and not just the root.

6. Conclusions

We hope that we convinced the reader that PDL is a natural formalism for rea-
soning about ordered trees. We showed that it has good complexity measures, both
in terms of model checking and in terms of satisfiability and consequence problems.
PDLtree has natural subfragments which are expressively complete with respect to first
order logic. The most pressing open problems are to determine the exact expressive
power of PDLtree and to understand whether the extra expressivity given by unary
MSO is useful in specific applications as linguistics or the XML-world.
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