
Querying XML:
Benchmarks and Recursion

Loredana Afanasiev

Querying XML:
Benchmarks and Recursion

Academisch Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit van Amsterdam

op gezag van de Rector Magnificus
prof. dr. D. C. van den Boom

ten overstaan van een door het college voor
promoties ingestelde commissie, in het openbaar

te verdedigen in de Agnietenkapel
op vrijdag 18 december 2009, te 16.00 uur

door

Loredana Afanasiev

geboren te Drochia, Moldavië.

Promotor: Prof. dr. M. de Rijke
Co-promotor: Dr. M. J. Marx

Promotiecommissie: Prof. dr. M. L. Kersten
Prof. dr. T. Grust
Dr. I. Manolescu

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The investigations were supported by the Netherlands Organization for Scientific
Research (NWO) under project number 017.001.190.

SIKS Dissertation Series No. 2009–46
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

Copyright © 2009 by Loredana Afanasiev

Cover design by Loredana Afanasiev
Printed and bound by Ipskamp Drukkers

ISBN: 978–90–9024872–1

pentru părint,ii mei,

Ecaterina s, i Vladimir,

cărora le datorez tot ce ŝınt

Acknowledgments

I am most thankful to the Netherlands Organisation for Scientific Research (NWO)
for funding my PhD research through the Mozäıek program. I am thankful to
NWO and the School for Information and Knowledge Systems (SIKS) for orga-
nizing educational workshops and courses that contributed to the improvement
of my communication and research skills.

The development of this thesis was continuously guided and, at times, gently
pushed by my supervisor, Maarten Marx, and my promotor, Maarten de Rijke.

There are not enough words to describe how grateful I am to Maarten Marx
for the help and the effort he invested in me. Maarten played key roles in shaping
not only this thesis, but also my life in the last six years. To give a few examples,
Maarten led me to: my master thesis, my first scientific article, two jobs as
scientific programmer at University of Amsterdam, this thesis, my husband, my
internship at Google Inc., Maarten helped me stay in the Netherlands to
finish my master thesis and bought my first pair of glasses when I could not
afford them. His eagerness to help and impact are tremendous.

Though very different in character, Maarten de Rijke excels in generosity too.
I will always remember Maarten for his kindness, wisdom, and professionalism.
I am eternally grateful for his positive feedback when I most needed it. His
superhuman powers of speed proof-reading drafts and giving invaluable comments
at the nick of time were essential both for the writing of the NWO project that
funded this research and for finishing this thesis.

I am very thankful to Ioana Manolescu for leading me to most of the work
presented in the first part of the thesis, and to Torsten Grust, Jan Rittinger, and
Jens Teubner (the Pathfinder team) for their contribution to the work presented
in the second part of the thesis. I also thank Massimo Franceschet for his fruitful
ideas and guidance through the first stages of my PhD.

The research presented in this thesis is based on close collaboration with
the following outstanding researchers: Balder ten Cate, Massimo Franceschet,
Torsten Grust, Maarten Marx, Stefan Manegold, Ioana Manolescu, Philippe

v

Michiels, Maarten de Rijke, Jan Rittinger, Jens Teubner, and Enrico Zimuel.
I was very fortunate to work with and learn from them.

I remember with high regards Alon Halevy, Jayant Madhavan, and David
Ko (the Scuba team) for the exciting time during my internship, and the Mon-
etDB/XQuery team for their always timely support with the engine.

I am grateful to Torsten Grust, Ioana Manolescu, and Martin Kersten for
serving in my committee.

Big thanks to Balder, Katja Hofmann, Edgar Meij, and Wouter Weerkamp for
proof-reading parts of my thesis, and to Valentin Jijkoun and Katja for agreeing
to be my paranymphs.

The Information and Language Processing Systems (ILPS) group was my
adopted family for the last six years. Over the years the group welcomed new
members and parted with some, but it always retained its magical unity and
warmth.

Thanks to my colleagues and friends for my daily required portion of inter-
action and fun: David Ahn, Krisztian Balog, Wouter Bolsterlee, Marc Bron,
Simon Carter, Breyten Ernsting, Gaëlle Fontaine, Amélie Gheerbrant, Jiyin He,
Katja, Bouke Huurnink, Valentin, Sofiya Katrenko, Martha Larson, Edgar, Gilad
Mishne, Börkur Sigurbjörnsson, Erik Tjong Kim Sang, Manos Tsagias, Wouter,
Shimon Whiteson, and Victoria Yanulevskaya.

Special thanks to my dear friends: David, for tutoring me in English, for in-
fecting me with the joy of jogging, for factuality and eloquence, for his endless
energy; Katja, for most interesting discussions, for positivity and action-driven
personality, for inspiration; Valentin and Victoria, for their warmth, for sharing
the nostalgic moments of our cultural past; Govert van Drimmelen, for persis-
tence and encouragement; Valeriu Savcenco, for the good and bad times and for
remaining a truthful friend.

I am grateful to Olle and Ineke ten Cate, for their continuous and uncon-
ditional support. I am infinitely grateful to Ineke for her care and love. Ineke
nurtured me through the most difficult times of writing.

The ultimate support I got from my better half, my love and husband, Balder.
Balder inspired me to my best times and carried me through my worst times.

Îi mult,umesc din sufletul surorii mele, Angela, s, i familiei ei, Sergiu, Felicia, s, i
David, pentru toată veselia s, i căldura pe care mi-o aduc. Des, i suntem departe
una de alta, căldura ta mă ajută să trec prin momentele grele.

Tot binele pe care l-am făcut sau ı̂l voi face vreodată ı̂l dedic părint, ilor mei.
Dragii mei părint, i, dragostea s, i sust, inerea voastră stau la baza indrăznelei mele
de a merge at̂ıt de departe pe calea academică s, i a viet, ii. Vă mult,umesc din suflet
pentru viat,a frumoasă pe care mi-at, i dat-o.

October 26, 2009
Amsterdam

vi

Contents

Acknowledgments v

1 Introduction 1
1.1 Research questions . 3
1.2 Main contributions . 5
1.3 Organization of the thesis . 6
1.4 Publications underlying the thesis 7

2 Background 9
2.1 The Extensible Markup Language (XML) 9

2.1.1 The XML tree model . 11
2.1.2 XML data characteristics 12

2.2 XML query languages . 14
2.2.1 XPath . 14
2.2.2 XQuery . 15

2.3 XML query processing . 17
2.3.1 Approaches and implementations 18

2.4 Performance evaluation of XML query processors 19
2.4.1 Benchmarking . 19

I Benchmarks 23

3 Analysis of XQuery Benchmarks 25
3.1 Introduction . 26
3.2 Summary of existing XQuery benchmarks 29

3.2.1 Introducing the benchmarks 29
3.2.2 Characterizing and comparing the benchmarks 34
3.2.3 Conclusions . 38

vii

3.3 Benchmark query analysis . 38

3.3.1 Language feature coverage 39

3.3.2 Query language coverage 42

3.3.3 Conclusions . 44

3.4 Survey of benchmark usage . 45

3.5 Correcting and standardizing the benchmark queries 48

3.5.1 Detecting outdated syntax and errors 48

3.5.2 Correcting the queries . 50

3.5.3 Other issues . 54

3.5.4 Conclusion . 57

3.6 Running the benchmarks . 57

3.6.1 Failed measurements . 58

3.6.2 Comparing the performance of different engines 61

3.6.3 Performance on language features 62

3.6.4 Conclusions . 63

3.7 Micro-benchmarking with MBench 63

3.7.1 MBench join queries . 64

3.7.2 Evaluating Qizx/Open on the MBench join queries 66

3.7.3 Conclusions . 67

3.8 Conclusions . 68

3.8.1 Recommendations and next steps 70

4 Repeatability of Experimental Studies 71

4.1 Introduction . 71

4.2 SIGMOD repeatability review setup 73

4.3 Describing experimental studies 74

4.3.1 Assessing repeatability . 77

4.4 Results . 78

4.5 Authors survey . 81

4.6 Lessons learned and conclusions 83

5 XCheck: a Tool for Benchmarking XQuery Engines 85

5.1 Introduction . 85

5.2 XCheck . 87

5.2.1 Architecture and workflow 88

5.2.2 Collecting performance times 91

5.3 XCheck in action . 93

5.3.1 Running XMark . 93

5.3.2 XCheck’s coverage . 103

5.4 Related systems . 105

5.5 Summary and conclusion . 106

viii

6 A Repository of Micro-Benchmarks for XQuery 109
6.1 Introduction . 109
6.2 The MemBeR micro-benchmarking methodology 111

6.2.1 Micro-benchmark design principles 112
6.2.2 Micro-benchmark structure 114
6.2.3 Micro-benchmarking methodology 115
6.2.4 Preliminary classification of micro-benchmarks 116
6.2.5 Data sets for micro-benchmarking 117

6.3 The MemBeR repository . 118
6.3.1 An example of MemBeR micro-benchmark 119
6.3.2 Meeting the design principles 123

6.4 Conclusions . 124

7 A Micro-Benchmark for Value-Based Equi-Joins 125
7.1 Introduction . 125
7.2 A micro-benchmark for value-based equi-joins 127

7.2.1 Target . 127
7.2.2 Measure . 127
7.2.3 Parameters . 128
7.2.4 Documents . 130
7.2.5 Queries . 131
7.2.6 Running scenarios . 134
7.2.7 Analyzing benchmark results 135

7.3 The micro-benchmark in action 137
7.3.1 SaxonB . 139
7.3.2 Qizx/Open . 141
7.3.3 Galax . 143
7.3.4 MonetDB/XQuery . 146
7.3.5 Lining up the micro-benchmark results 147

7.4 Conclusions . 148

II Recursion 151

8 An Inflationary Fixed Point Operator for XQuery 153
8.1 Introduction . 153
8.2 Defining an Inflationary Fixed Point operator for XQuery 156

8.2.1 Using IFP to compute Transitive Closure 158
8.2.2 Comparison with IFP in SQL:1999 159

8.3 Algorithms for IFP . 160
8.3.1 Näıve . 160
8.3.2 Delta . 161

8.4 Distributivity for XQuery . 162

ix

8.4.1 Defining distributivity . 162
8.4.2 Trading Näıve for Delta 164
8.4.3 Translating TC into IFP 165
8.4.4 Undecidability of the distributivity property 167

8.5 A syntactic approximation of distributivity 167
8.5.1 The distributivity-safe fragment of XQuery 168
8.5.2 Distributivity-safety implies distributivity 171

8.6 An algebraic approximation of distributivity 177
8.6.1 An algebraic account of distributivity 179
8.6.2 Algebraic vs. syntactic approximation 181

8.7 Practical impact of distributivity and Delta 183
8.8 Related work . 187
8.9 Conclusions and discussions . 188

9 Core XPath with Inflationary Fixed Points 191
9.1 Introduction . 191
9.2 Preliminaries . 193

9.2.1 Core XPath 1.0 extended with IFP (CXP+IFP) 193
9.2.2 Propositional Modal Logic extended with IFP (ML+IFP) . 195

9.3 ML+IFP vs. CXP+IFP . 196
9.4 CXP+IFP and ML+IFP are undecidable on finite trees 199

9.4.1 2-Register machines . 199
9.4.2 The reduction . 201

9.5 Discussions and conclusions . 208
9.5.1 Remaining questions . 209

10 Conclusions 211
10.1 Answering the research questions 211
10.2 Outlook and further directions . 216

A LiXQuery: a Quick Syntax Reference 219

Summary 231

Samenvatting 233

x

Chapter 1

Introduction

The Extensible Markup Language (XML) [World Wide Web Consortium, 2008] is
a textual format for representing data. Since its introduction in 1998 as a World
Wide Web Consortium (W3C) recommendation, it has become a widely accepted
standard for storage and exchange of data. XML was specifically designed to
be able to handle semi-structured data: data that is not sufficiently structured,
or whose structure is not sufficiently stable, for convenient representation in a
traditional relational database.

The increasing amount of data available in the XML format raises a great de-
mand to store, process, and query XML data in an effective and efficient manner.
To address this demand, the W3C has developed various accompanying languages
that facilitate, e.g., typing, querying, and transformation of XML data.

A large part of this thesis is devoted to XQuery, the XML Query language
[World Wide Web Consortium, 2007]. XQuery has been developed since 2000
and has been published as a W3C recommendation in 2007. Some of the main
ingredients of the XQuery language are XML document navigation, data typ-
ing, filtering, joining, ordering, new XML document construction, and recursive
user-defined functions. The fragment of XQuery that is concerned with XML
document navigation is known as XPath. XPath is an important language that
was developed independently of XQuery by the W3C and proposed as a recom-
mendation in 1999 [World Wide Web Consortium, 1999a]. It lies at the heart of
XQuery as well as of other XML-related technologies such as Extensible Stylesheet
Language Transformations (XSLT) and XML Schema.

In this thesis, we are concerned with the query processing problem for XQuery:
given an XML document or collection of documents, and a query, to compute
the answer to the query.1 This is a difficult problem. A long line of research
addresses the problem of efficient query processing. One strategy is to employ
query optimization. Query optimization refers to deciding which query processing

1This problem is also known as query evaluation. In this thesis, though, we reserve the term
“evaluation” for the empirical evaluation of systems or techniques.

1

2 Chapter 1. Introduction

technique to use at run time, in order to gain efficiency.
Our research falls within two topics: (i) developing optimization techniques

for XQuery, and (ii) performance evaluation for XQuery processing. These topics
are tightly connected, since performance evaluation is aimed at measuring the
success of optimization techniques. More specifically, we pursue optimization
techniques for recursion in XQuery, on the one hand, and benchmarking as a
performance evaluation technique, on the other hand.

Recursion in XQuery

The backbone of the XML data model, namely ordered, unranked trees, is in-
herently recursive and it is natural to equip the associated query languages with
constructs that can query such recursive structures. XQuery provides two mech-
anisms for expressing recursive queries: recursive axes, such as descendant and
ancestor [World Wide Web Consortium, 1999a] and recursive user-defined func-
tions. The recursive axes of XPath provide a very restricted form of recursion,
while recursive user-defined functions in XQuery allow for arbitrary types of re-
cursion. Indeed, they are the key ingredient of the Turing completeness of the
language [Kepser, 2004]. Thus, in terms of expressive power, the designers of the
language took a giant leap from recursive axes to recursive user-defined functions.

Recursive user-defined functions are procedural in nature, they describe how to
get the answer rather than what the answer is. Language constructs that describe
the query answer are called declarative [Brundage, 2004]. Procedural constructs
put the burden of optimization on the user’s shoulders. Recursive user-defined
functions largely evade automatic optimization approaches beyond improvements
like tail-recursion elimination or unfolding [Park et al., 2002, Grinev and Lizorkin,
2004].

In this thesis, we investigate the possibility of adding a declarative recursion
operator to the XQuery language. While less expressive than recursive user-
defined functions, the declarative operation puts the query processor in control
of query optimizations.

Benchmarking

Performance is a key criterion in the design and use of XML processing systems.
Performance evaluation helps to determine how well a system performs (possibly
in comparison with alternative systems), whether any improvements need to be
made and, if so, to which (bottleneck) components of the system, what the opti-
mal values of the system’s parameters are, and how well the system will perform
in the future, etc. This makes performance evaluation a key tool to achieving
good performance.

Benchmarking is a performance measurement technique that has a well es-
tablished and acknowledged role in the development of DBMSs [Jain, 1991]. A

1.1. Research questions 3

benchmark refers to a set of performance measures defined on a workload consist-
ing of XML data and queries. The process of performance evaluation of a system
by measurements of a benchmark is called benchmarking.

In this thesis, we investigate existing XQuery benchmarks and develop new
ones. Our focus is on developing so-called micro-benchmarks and related method-
ology. Micro-benchmarks are narrowly-scoped benchmarks; they test the perfor-
mance of individual components of a system on particular system operations
or functionalities. We also develop software tools for facilitating the process of
benchmarking as well as test suites and are concerned with how to ensure the
repeatability of experimental evaluations.

1.1 Research questions

Our research has two main goals: one is to develop benchmarking methodology
and tools for performance evaluation of XML query engines, the other is to analyze
and develop optimization techniques for declarative recursion operators for XML
query languages. Correspondingly, the research questions that we address fall
into two groups.

Developing benchmarking methodology and tools

The general research question of the first part of the thesis is: How to evaluate the
performance of XML query processing? To answer this question, we first investi-
gate the tools previously proposed in the literature, namely five benchmarks for
performance evaluation of XQuery engines. The following questions are driving
our investigation:

Question 3.1: What do the benchmarks measure? or What conclusions can we
draw about the performance of an engine from its benchmark results?

Question 3.2: How are existing benchmarks used?

Question 3.3: What can we learn from using the five benchmarks?

As a result of our investigation, we learn that there is a need for performance
tools and methodology for precise and comprehensive experimental studies and
that there are no tools to meet this need. Hence, the question we address next is:

Question 6.1: What is a suitable methodology for precise and comprehensive
performance evaluations of XML query processing techniques and systems?

Our answer to this question involves micro-benchmarks and a methodology for
micro-benchmarking. To illustrate, and put to work, the methodology we propose,
we undertake a concrete performance evaluation task driven by the following
question:

4 Chapter 1. Introduction

Question 7.1: How to measure the performance of value-based joins expressed in
XQuery? What is a suitable measure and which parameters are important
to consider?

Besides building benchmarking tools and methodology, there are two other main
issues that need to be addressed when pursuing performance evaluation. The
following questions address these issues:

Question 4.1: How to ensure the repeatability of experimental studies of database
systems? This question incorporates two sub-questions: What is a proper
methodology for designing and reporting on experimental studies that facil-
itates their repeatability? and What is a proper mechanism for evaluating
the repeatability of experimental studies presented in scientific research?

Question 5.1: Is it possible to build a generic tool for automating the following
three tasks: (i) running a performance benchmark, (ii) documenting the
benchmark experiment, and (iii) analyzing the benchmark results? What
are the design choices that need to be made?

Inflationary fixed points in XQuery

Having focused on developing benchmarking methodology in the first part of the
thesis, we pursue the following general question in the second part of the thesis:
How to obtain declarative means of recursion in XQuery? This boils down to a
more concrete question:

Question 8.1: What is a suitable declarative recursive operator in XQuery that
is rich enough to cover interesting cases of recursion query needs and that
allows for (algebraic) automatic optimizations?

As an answer to this question we consider an inflationary fixed point (IFP) opera-
tor added to XQuery and investigate an efficient evaluation technique for it. The
next question addresses the theoretical properties of this operator in the setting
of XQuery.

Question 9.1: How feasible it is to do static analysis for recursive queries specified
by means of the fixed point operator? Specifically, are there substantial
fragments of XQuery with the fixed point operator for which static analysis
tasks such as satisfiability are decidable?

The connection between our two main concerns in this thesis—performance evalu-
ation and optimization—is established in Chapter 8 where we use the benchmark-
ing tools developed in Part I to evaluate the performance of the optimizations
proposed in Part II.

1.2. Main contributions 5

1.2 Main contributions

Following the research questions listed above, our contributions fall within the two
topics of the thesis. The main contributions of Part I relate to developing tools
for performance evaluation of XML query processors. The main contributions of
Part II relate to analyzing and developing optimization techniques for a declara-
tive recursion operator in XML query languages. A detailed list of contributions
follows.

Developing benchmarking methodology and tools

1. A survey of experimental evaluations of XML query engines published by
the database scientific community; a survey of XQuery benchmarks; an
analysis of XQuery benchmarks with the focus on the benchmark queries
and measures; a corrected and standardized list of benchmark queries.

2. A micro-benchmarking methodology for systematic, precise, and compre-
hensive performance analysis of XML query engines; a framework for collect-
ing and storing micro-benchmarks. Both the methodology and the frame-
work collectively go under the name of MemBeR.

3. A micro-benchmark for testing value-based joins expressed in XQuery; an
analysis of four XQuery engines on value-based joins based on this micro-
benchmark.

4. An attempt at defining a standard for reporting experimental studies with
the goal of assuring their repeatability; a report on the review of repeata-
bility of experimental studies conducted for the research articles submitted
to SIGMOD 2008.

5. A tool for automatic execution of benchmarks on several XML query en-
gines, called XCheck. XCheck includes statistical and visualization tools
that help the performance analysis.

Inflationary fixed points in XQuery

1. An analysis of an inflationary fixed point operator for expressing recursion
in XQuery; a distributivity property of IFP expressions that allows for effi-
cient query processing; implementation of the IFP operator into an XQuery
engine (MonetDB/XQuery); a performance evaluation of our approach.

2. An analysis of theoretical properties of the logical core of the XPath lan-
guage (Core XPath) enhanced with an inflationary fixed point operator; a
proof of the undecidability of this language; a proof of the fact that this
language is strictly more expressive than the language obtained by adding
a Transitive Closure operator to Core XPath.

6 Chapter 1. Introduction

1.3 Organization of the thesis

This thesis is organized in two parts, each focused on a different general research
question. Before these parts begin, in Chapter 2, we set the background and
introduce the terminology used throughout the thesis. After these two parts end,
we conclude the thesis in Chapter 10. Figure 1.1 suggests reading paths through
the thesis.

Introduction
(Ch 1)

Background
(Ch 2)

Benchmarks
(Part I)

Analysis of Benchmarks
(Ch 3)

Repeatability
(Ch 4)

XCheck
(Ch 5)

MemBeR
(Ch 6)

Join Micro-benchmark
(Ch 7)

Recursion
(Part II)

IFP in XQuery
(Ch 8)

IFP in Core XPath
(Ch 9)

Conclusions
(Ch 10)

LiXQuery
(App A)

Figure 1.1: Suggested reading paths.

Part I (Benchmarks) is composed of five chapters addressing the research ques-
tions dealing with performance evaluation of XML query processing. In Chapter
3, we analyze existing XQuery benchmarks and survey their usage. This chapter
serves as a detail discussion of related work for the whole part. In Chapter 4, we
discuss how to achieve the repeatability of experimental evaluations of computer
systems in the database domain. As part of setting up a methodology for re-
peatability, we perform a review of articles submitted to the research conference
SIGMOD 2008 and measure the repeatability of the presented experimental eval-
uations. In Chapter 5, we discuss the problems and challenges of automating the
execution of performance evaluation benchmarks on many XML query engines
and comparison of their performance. We present a software tool, XCheck, as a

1.4. Publications underlying the thesis 7

solution to these problems. In Chapter 6, we present a methodology for micro-
benchmarking XML query engines, which we refer to as MemBeR. MemBeR also
comprises a framework for collecting and storing micro-benchmarks. Finally, in
Chapter 7, we present a MemBeR-style micro-benchmark for testing performance
of value-based joins expressed in XQuery. We validate the micro-benchmark by
analyzing the performance of four XQuery engines.

Part II (Recursion) is composed of two chapters addressing the research ques-
tions referring to recursion in XQuery. In Chapter 8, we consider adding an
inflationary fixed point operator to XQuery. We develop an optimization tech-
nique for processing this operator. Further, we implement this technique on top
of MonetDB/XQuery, and evaluate its performance. In Chapter 9, we study
the theoretical properties, decidability and expressivity, of this inflationary fixed
point operator in the setting of Core XPath, the XML tree navigational core of
XPath and XQuery.

The work presented in Chapter 8 relies on a logical fragment of XQuery called
LiXQuery. For a quick reference to the language constructs, we present the defi-
nition of the syntax of LiXQuery in Appendix A.

1.4 Publications underlying the thesis

The material in this thesis builds on a number of previously published papers that
we list below. Full details of these publications can be found in the Bibliography.

Part I builds on work presented in:

1. “An analysis of XQuery benchmarks” [Afanasiev and Marx, 2006] and
[Afanasiev and Marx, 2008];

2. “The repeatability experiment of SIGMOD 2008” [Manolescu et al., 2008a];

3. “XCheck: a Platform for Benchmarking XQuery Engines” [Afanasiev et al.,
2006]; and

4. “MemBeR: a micro-benchmark repository for XQuery” [Afanasiev et al.,
2005a].

Part II builds on work presented in:

1. “On Core XPath with Inflationary Fixed Points” [Afanasiev and ten Cate,
2009]; a journal version of this article is currently in preparation;

2. “Recursion in XQuery: Put Your Distributivity Safety Belt On” [Afanasiev
et al., 2009];

3. “An Inflationary Fixed Point Operator in XQuery” [Afanasiev et al., 2008];

4. “Lekker bomen” [Afanasiev et al., 2007]; and

5. “PDL for Ordered Trees” [Afanasiev et al., 2005b].

Chapter 2

Background

In this chapter, we introduce the framework of this thesis and define the terminol-
ogy used throughout it. Readers familiar with XML, XML query languages, XML
query processing, and performance evaluation of XML query processors may pre-
fer to skip ahead and to return to this chapter only to look up a definition. A
thorough study of related work comes in later chapters: we dedicate Chapter 3
to analyzing related work for Part I of the thesis, while Chapters 8 and 9 of Part
II each contain discussions of relevant related work.

2.1 The Extensible Markup Language (XML)

In 1998, the W3 Consortium published its first XML Recommendation, which
evolved to its fifth edition by 2008 [World Wide Web Consortium, 2008]. Within
these 10 years the Extensible Markup Language (XML) has become a standard
means for data exchange, presentation, and storage across the Web. The XML
format has proven to be versatile enough to describe virtually any kind of infor-
mation, ranging from structured to unstructured, from a couple of bytes in Web
Service messages to gigabyte-sized data collections (e.g., [Georgetown Protein
Information Resource, 2001]) and to serve a rich spectrum of applications.

Similar to the Hypertext Markup Language (HTML), XML is based on nested
tags. But unlike the HTML tags, which are predefined and specifically designed
to describe the presentation of the data, the XML tags are defined by the user
and designed to describe the structure of the data. Figure 2.1 shows an example
of an XML document that contains university curriculum data. The hierarchy
formed by nested tags structures the content of the XML documents.

An XML document may have a schema associated to it. The most common
schema languages are the Document Type Definition (DTD) [World Wide Web
Consortium, 2008] and the XML Schema [World Wide Web Consortium, 2004b].
A schema defines the grammar for the XML tags used by the document and
specifies constraints on the document structure and data value types. A DTD is

9

10 Chapter 2. Background

<curriculum>
<course code="c1">
<title>Database Techniques</title>
<lecturer>
Martin Kersten

</lecturer>
<lecturer>
Stefan Manegold

</lecturer>
<description>
Basic principles of database
design and database management.
Understanding the implementation
techniques underlying a
relational database management
system.

</description>
</course>

<course code="c2">
<title>
Database-Supported XML Processors

</title>
<lecturer>Torsten Grust</lecturer>
<assistant>Jan Rittinger</assistant>
<description>
How can relational database
management systems (RDBMS) be
transformed into the most
efficient XML and XQuery
processors on the market.

</description>
<prerequisites>
<precourse ref="c1"/>

</prerequisites>
</course>
</curriculum>

Figure 2.1: Example of an XML document containing university curriculum data.

<!ELEMENT curriculum (course*)>
<!ELEMENT course (title,lecturer+,assistant*,description,prerequisites?)>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT lecturer (#PCDATA)>
<!ELEMENT assistant (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT prerequisites (precourse+)>
<!ELEMENT precourse EMPTY>
<!ATTLIST precourse ref IDREF #REQUIRED>

Figure 2.2: Example DTD describing university curriculum data.

a set of statements that specify: (i) the nesting of XML elements; (ii) the element
occurrence constraints; (iii) the containment of attributes in XML elements;
and (iv) attribute value types and default values. DTDs can specify a handful
of special attribute value types, for example ID, IDREF, ENTITY, NMTOKEN, etc.
However, they do not provide fine control over the format and data types of
element and attribute values.

XML Schema is a more powerful schema language. It can describe more
complex restrictions on element structure and number of occurrences, and it
provides a much richer set of data value types than DTDs. In addition to a
wide range of built-in simple types (such as string, integer, decimal, and
dateTime), the schema language provides a framework for declaring custom data
types, deriving new types from old types, and reusing types from other schema.

Figure 2.2 shows the DTD corresponding to the example XML document given
above. The XML model differs from the relational model in that it is hierarchical
as opposed to flat and it is more flexible. The XML elements can contain only
child elements and no character data (element content) or they can contain char-

2.1. The Extensible Markup Language (XML) 11

course

lecturer@code title

"c1"

"Database
Techniques"

curriculum

"Martin
Kersten"

lecturer

"Stefan
Manegold"

description

"Basic
principles ..."

course

lecturer@code title

"c2"
"Database-
Supported
XML
processors"

"Torsten
Grust"

assistant

"Jan
Rittinger"

description

"How can
relational
databases..."

prerequisites

precourse

@ref

"c1"

Figure 2.3: The node-labeled ordered tree corresponding to the university cur-
riculum document.

acter data optionally intersected with child elements (mixed content). Elements
of the same type might have different numbers and types of sub-elements. For
example, in Figure 2.1, the second course, but not the first one, has an assistant

sub-element; the first course has two author lecturers, but the second course only
one.

One special type of constraint that a schema (DTD or XML Schema) can
define is the ID/IDREF constraints: an attribute of type ID contains a unique
value within the whole document, while an attribute of type IDREF contains
a reference to the element with that unique ID attribute. In our example from
Figures 2.1 and 2.2, the attribute ref of type IDREF points to the course element
containing the attribute code of type ID with the same value.

2.1.1 The XML tree model

Various tree data models were proposed for XML. W3C alone recommends a few
different tree models for different purposes: the Document Object Model (DOM)
[World Wide Web Consortium, 1998], the XML Information Set (Infoset) [World
Wide Web Consortium, 2004a], Post-Schema-Validation Infoset (PSVI) [World
Wide Web Consortium, 2004b], XPath 1.0 [World Wide Web Consortium, 1999a],
and XPath 2.0/XQuery 1.0 Data Model (XDM) [World Wide Web Consortium,
2007a]. All of these models share XML’s basic idea of trees of elements, attributes,
and text, but have different ways of exposing that model and handling some of
the details.

The basic data model for XML is a node-labeled ordered tree. This model
is often used for research purposes [Gou and Chirkova, 2007]. Figure 2.3 shows
the tree of the XML document in Figure 2.1. The tree contains three types of
nodes: (i) element nodes, corresponding to tags in XML documents, for example,
course; (ii) attribute nodes, corresponding to attributes associated with tags in
the XML document, for example, @ref; and (iii) text nodes (or leaf nodes), corre-
sponding to the data values in XML documents, for example, "c1" or "Database

12 Chapter 2. Background

Techniques". Edges in the data tree represent structural relationships between
elements, attributes, and text. Note that in an XML data tree, element nodes
with the same name might be nested on the same path. These elements are called
recursive.

2.1.2 XML data characteristics

XML documents can be described by a list of characteristics that are important
when considering the functionality and performance of XML processing tools. Be-
low, we present a list characteristics that are often used as parameters in perfor-
mance evaluation tools [Schmidt et al., 2002, Runapongsa et al., 2002, Afanasiev
et al., 2005a].

Structural characteristics

Document size is the total size of the benchmark document or collection of
documents in bytes.

Elements-to-size ratio is the amount of mark-up vs the amount of data con-
tained in documents and it is measured in number of XML elements per KB.
Typically (but not necessarily), a text-centric document (e.g., a book) con-
tains significantly more text than mark-up, while a data-centric document
(e.g., a product catalog) has a rich structure and contains large amounts of
mark-up to describe it.

Tree depth The tree depth describes the number of levels in the XML tree. The
maximum number of elements on a root-leaf path, not counting the root, is
called tree depth. The average tree depth is the average length of root-leaf
paths, not counting the root.

Tree fan-out The tree fan-out describes the number of children in the XML
tree. An element’s fan-out is the number of its children. The maximum of
the element fan-outs in the tree is called tree fan-out. The average of the
element fan-outs of the non-leaf elements in the tree is called average tree
fan-out.

Recursive elements are elements that can be defined by a self reference. It is
not unusual that the tag name of an element is the same as its direct parent
or one of its ancestors, generating recursion. For example, a “section”
element may have a “section” sub-element. This type of data is notoriously
difficult to query.

Mixed-content elements are the elements that contain both children elements
and text content (character data). This type of elements also poses difficul-
ties to XML processors.

2.1. The Extensible Markup Language (XML) 13

Number of element types is the number of unique tag names in the docu-
ment. It characterizes the richness of the document structure.

Document structure type The high flexibility of XML leads to documents
with vastly different structures, from highly structured data-centric doc-
uments to semi-structured and unstructured text-centric documents. Two
key features of text-centric documents are the importance of the order of el-
ements, and the irregular element structure. Text-centric documents might
contain mixed-content elements. Typical instances of such documents are
Web pages. Data-centric documents have a regular structure and can be
compared with relational data; the element types contain only child ele-
ments or only text content, often representing typed information. Typical
instances of such documents are commerce catalogs and transactions.

Content characteristics

The data values found in the text nodes and attribute values can be described by
the characteristics of the underlying value domains, such as range, distribution,
etc.

Characteristics in the presence of a schema

The presence of a schema (DTD, XML Schema, or other) enriches XML docu-
ments with more properties.

Elements with ID/IDREF attributes Attributes of type ID and IDREF de-
fine unique key and key-reference constraints. These attributes define a link
relation between their elements. This relation extends the tree structure of
the XML document into a graph structure.

Number of data value types Schema languages, such as XML Schema, pro-
vide a rich set of simple value types. The element and the attribute content
can be of type string, integer, float, date, etc. By default, the content of
XML documents is considered to be of type string. When a schema is not
provided, the value type can be determined by successful typecasting from
string data.

Data set characteristics

The XML specification gives an important place to the notion of document, which
can be seen as a logical and/or physical segment of an XML data set. XML
documents can be combined in collections of documents that share a common
schema and/or characteristics. An XML data set is a set of XML documents
or collections. The document characteristics discussed above can also be used

14 Chapter 2. Background

to describe data sets. Below, we present two characteristics that are data-set
specific.

Number of documents XML data sets can be single-document, i.e., consisting
of a single large document (e.g., e-commerce catalogs), or multi-document,
i.e., consisting of a collection of many smaller (and usually more shallow)
documents (e.g., a digital library).

Number of documents per schema The data set can be characterized by one
or more schemas. Each schema can cover one or more documents in the
data set.

Since data set characteristics have an impact on the functionality and perfor-
mance of XML processing tools, they are typically considered as parameters in
performance evaluation tools, such as benchmarks. We use them throughout this
thesis for the same purposes: in Chapter 3, we use the characteristics to describe
the data sets of five XML query benchmarks; in Chapter 5, we propose an au-
tomatic tool for the execution of benchmarks that also records the data set size;
in Chapter 6, we use the characteristics to organize a repository of XML query
benchmarks; in Chapter 7 and 8, we measure the performance of XML query
processors with respect to varying values of document parameters.

2.2 XML query languages

The amount of data available in XML format raises an increasing demand to
store, process, and query XML data in an effective and efficient manner. To
address this demand, the W3 Consortium has recommended today’s mainstream
query languages: XML Path Language (XPath), version 1.0 and 2.0 [World Wide
Web Consortium, 1999a, 2007], XML Query Language (XQuery), Version 1.0
[World Wide Web Consortium, 2007], and Extensible Stylesheet Language Trans-
formations (XSLT), version 1.0 and 2.0 [World Wide Web Consortium, 1999b,
2007c].

Each query language has different language features that make it suitable
for a particular query scenario. A language feature can be a functionality of
the language, a syntactic construct, a property of the language, etc. The main
functionalities of XPath are tree navigation. XQuery is particularly good at
operations such as joins and sorts. XSLT is meant for transformations of XML
trees into other XML trees, into text, or into other textual formats.

In this thesis, we will only address XPath and XQuery.

2.2.1 XPath

XPath is the basic XML query language, it selects nodes from existing XML
documents. It introduces a convenient syntax for describing paths from the root

2.2. XML query languages 15

or from a given context node in the document tree to the nodes to be selected.
The language draws its name from this property.

A simple XPath query is formulated as a sequence of path steps separated by
a slash sign, /, as in URLs. A simple path step is composed of an axis and a tag.
Two most commonly used axes are the child axis, where child::a selects all el-
ements labeled with a that are children of the context node, and the descendant

axis, where descendant::a selects all elements labeled with a that are descen-
dants of the context node. These two axes are often omitted creating the popular
short-hands / and //, where a/b denotes selecting all elements labeled with b that
are children of all elements labeled with a that are children of the context node,
and where a//b denotes selecting b-elements that are descendants of a-elements
that are children of the context node. The XPath query //course/lecturer se-
lects all lecturer-elements that are children of all course-elements descendants
of the root element in the curriculum document from Figure 2.1. In addition to
the child axis and the descendant axis, XPath defines 11 other axes to facilitate
the XML tree navigation [World Wide Web Consortium, 1999a].

An XPath query can specify more complex path patterns by using predicates.
One example is //course[@code="c1"]/lecturer, in which //course/lecturer

is the main path of the query, while the content between square brackets is a pred-
icate expressing an extra condition on the course elements on the path. This
query selects all lecturer children of the course element whose code is "c1".
Generally, an XPath query might involve multiple predicates composed of arbi-
trary path expressions.

XPath version 1.0 is a relatively simple language. For example, it does not
have variables or namespace bindings, it has a very simple type system, it cannot
select parts of an XML elements, or create new XML documents. To address
some of these issues, XPath version 2.0 was introduced. The main difference is
that the new version supports a new query model, shared with XQuery (XQuery
1.0 and XPath 2.0 Data Model (XDM) [World Wide Web Consortium, 2007a]),
and that it supports all the simple data value types built into XML Schema, such
as xs:date, xs:time, xs:decimal, xs:string, etc.

2.2.2 XQuery

XQuery is a strongly typed functional language built on top of XPath 2.0. The
core features of XQuery are (i) For-Let-Where-Order by-Return (FLWOR) clauses
(pronounced “flower”); (ii) XML node constructors; and (iii) (recursive) user-
defined functions. The latter functionality, full recursion at a user’s disposal,
turns XQuery into a Turing-complete language [Kepser, 2004].

FLWOR clauses, which can be freely nested and composed, are the main
building blocks of XQuery queries. Every FLWOR expression begins with one
or more For and/or Let clauses (in any order), followed by an optional Where
clause, an optional Order by clause, and finally one Return clause. The For and

16 Chapter 2. Background

for $lecturer in doc("curriculum.xml")//lecturer
let $courses := doc("curriculum.xml")

//course[lecturer = $lecturer]
where not(empty($courses))
order by $lecturer/text() ascending
return
<lecturer>
<name>{$lecturer/text()}</name>
<course>{$courses/title/text()}</course>

</lecturer>
(a) Query.

<lecturer>
<name>Martin Kersten</name>
<course>Database Techniques</course>

</lecturer>
<lecturer>

<name>Stefan Manegold</name>
<course>Database Techniques</course>

</lecturer>
<lecturer>

<name>Torsten Grust</name>
<course>Database-Supported XML Processors</course>

</lecturer>
(b) Result.

Figure 2.4: An XQuery query that groups the courses given by “curriculum.xml”
in Figure 2.1 by lecturer. The results the query produces on “curriculum.xml”.

Let clauses bind a variable to a sequence of items selected by an XPath/XQuery
expression—the For clause binds the variable to every item in the sequence in
turn, while the Let clause binds the variable to the whole sequence. The Where
clause specifies a selection or a join predicate over the bound variables. The
Order by clause specifies an order condition on the resulting bounded sequences.
Finally, the Return clause constructs the result based on an expression optionally
using the bounded variables. Often the expression in the Return clause formats
the results in XML format. Figure 2.4 shows an example: the query groups
the courses given in the curriculum example in Figure 2.1 by lecturer. Through
its FLWOR clauses, XQuery bares similarities to SQL, the well-known query
language for relational databases [Gulutzan and Pelzer, 1999].

Constructing XML is useful for several purposes, for example, for organizing
the data in a new structure (transformation) and representing temporary inter-
mediate data structures (composition). XQuery has expressions for constructing
every XML node kind. For every node kind, it supports two construction ex-
pressions: one with a syntax similar to XML and an alternative XQuery syntax
primarily used for nodes whose names or contents are computed from XQuery

2.3. XML query processing 17

declare namespace my=’my-functions’;
declare function my:descendants($n as node()*) as node()* {

if (empty($n))
then ()
else ($n/*, my:descendants($n/*))

};

Figure 2.5: Recursively computing the descendants of a sequence of nodes.

expressions. The query given in Figure 2.4 uses the XML based syntax.

Besides providing a library of built-in functions, XQuery allows for (recursive)
user-defined functions ((R)UDFs). Users can write custom functions containing
any number of typed parameters and any XQuery expression in the function
body, including recursive function calls. Function parameters can be of any type
allowed by the XQuery data model. They have distinct names and are in scope
for the entire function body.

Recursion is commonly used when processing XML, due to its tree-like struc-
ture. XQuery provides two recursive functionalities: (i) recursive axes, such as
descendant and ancestor; and (ii) recursive user-defined functions. RUDFs in
XQuery admit arbitrary types of recursion, which makes recursion in the language
procedural by nature. Figure 2.5 contains a recursive user-defined function that
computes the descendants of a given sequence of nodes. Note that UDFs need to
be defined in a custom namespace, using the namespace definition clause.

In Chapter 8, we argue for the usefulness of declarative recursive operators
as opposed to procedural recursion provided by RUDFs. We propose adding
to XQuery a declarative operator, namely an inflationary fixed point operator,
and present an efficient processing technique for it. In Chapter 9, we discuss
the theoretical properties of this operator when added to the core navigational
fragment of XPath.

2.3 XML query processing

The problem of querying XML is to find in an XML document or an XML collec-
tion all matches that satisfy a given query formulated in a query language (e.g.,
XPath, XQuery). We call this problem XML query processing.

XML query processing has different application scenarios. A common appli-
cation scenario is the basic scenario, namely retrieving parts of a fully specified
document or collection of documents that satisfy a query. This is also referred
to as the database scenario. Another application scenarios is selective dissemina-
tion of information (SDI) [Altinel and Franklin, 2000]. A core component of SDI
is a document filter that matches each incoming XML document from publish-
ers with a collection of queries from subscribers, to determine which subscribed
queries have at least one match in the document rather than finding all matches

18 Chapter 2. Background

of the subscribed queries, as required by the basic scenario. In most SDI applica-
tions, the data arrives in the form of data streams, i.e., in its original sequential
document format, and the queries are evaluated as the data arrives, often on
incomplete documents.

In this thesis, we are only concerned with the basic scenario for XML query
processing.

2.3.1 Approaches and implementations

Within the basic scenario for XML query processing, we distinguish two types of
implementations (aka engines), main-memory and persistent storage. The main-
memory implementations load the XML data from secondary memory into main
memory, process the data in an internal format (usually a tree), and then perform
the XML queries over this format. Among main-memory implementations are for
XPath 1.0, XMLTaskForce [Gottlob et al., 2005, Koch, 2004], Xalan [Xalan, 2002],
and for XQuery, Galax [Fernández et al., 2006], Saxon [Kay, 2009], Qizx/Open
[Axyana Software, 2009]. These implementations are convenient query tools for
lightweight application scenarios, such as XML editors.

When we are dealing with large amounts of XML data, however, the main-
memory approach becomes infeasible. Besides the problem of efficient query-
ing of data, other problems, such as data manipulation (updates), transaction
management, and security issues, have suggested the use of database technology
for processing XML data. Motivated by this, in recent years, significant effort
has been devoted to developing high-performance XML Database Management
Systems (XML DBMSs). Database systems use a persistent storage implemen-
tation to query processing that is characterized by the fact that the XML data
is pre-processed and diverse structural and value indices are built and stored in
secondary memory for the purpose of improving query processing performance.

Further, the persistent storage engines fall into two classes: the native ap-
proach and the relational approach. The native approach is characterized by the
fact that specialized storage and query processing systems tailored for XML data
are developed from scratch. Native XML DBMSs for XPath 1.0 include Natix
[Fiebig et al., 2002]; and for XQuery, Timber [Jagadish et al., 2002], eXist [Meier,
2006], X-Hive [X-Hive/DB, 2005], IBM DB2 Viper [Nicola and van der Linden,
2005], and Berkley XML DB [Berkeley XML DB, 2009].

The relational approach directly utilizes existing relational database systems
to store and query XML data. Among the relational-based XML DBMSs for
XQuery are: MonetDB/XQuery [Boncz et al., 2006a,b], IBM System RX [Beyer
et al., 2005], Microsoft SQL Server 2005 [Pal et al., 2005], Oracle DB [Murthy
et al., 2005].

A detailed survey of different approaches to XML query processing can be
found in [Krishnamurthy et al., 2003] and [Gou and Chirkova, 2007].

Throughout the thesis, we use a selection of the implementations presented

2.4. Performance evaluation of XML query processors 19

above to validate our research: in Chapters 3, 6, and 7 we use Galax, Saxon,
Qizx/Open, and MonetDB/XQuery to analyze a set of existing XQuery bench-
marks and validate performance benchmarks and methodology developed by us;
and in Chapter 5, we propose a tool that automates the execution of performance
benchmarks and that comes with adapters for a large set of implementations. In
Chapter 8, we briefly present MonetDB/XQuery and its approach to query pro-
cessing, as well as a new optimization technique for a particular type of recursive
queries implemented on top of it. Further, we evaluate the proposed technique in
comparison with Saxon. Our choice of engines is based on availability and ease
of use, and it covers both main-memory and persistent storage implementations.

2.4 Performance evaluation of XML query pro-

cessors

As pointed out in the introduction, performance is a key criterion in the de-
sign and use of XML query processing systems. Users, system administrators,
and developers of query processing techniques and engines are all interested in
performance evaluation since their goal is to obtain or provide the highest per-
formance in a given setting. Performance evaluation helps determine how well a
system is performing (possibly in comparison with alternative systems), whether
any improvements need to be made and to which (bottleneck) components of the
system, what the optimal values of the system’s parameters are, how well the
system will perform in the future, etc. This makes performance evaluation a key
tool to achieving good performance.

In [Jain, 1991], the author lists three general techniques for performance evalu-
ation: analytical modeling, simulation, and measurement. The main consideration
in selecting an evaluation technique is the life-cycle stage in which the system is.
Measurements are preferred when a system already exists and evaluation is done
for optimization purposes, while benchmarking is a measurement technique that
has a well established and acknowledged role in the development of DBMSs [Jain,
1991]. Part I of this thesis is dedicated to analyzing, facilitating the use of, and
developing benchmarks for performance evaluation of XML query processors.

2.4.1 Benchmarking

In performance studies, the term benchmark is used in many meanings. One
common use of the term is synonymous to workload. Another use of the term
refers to the performance measurements of a system against a standard workload,
often presented relative to other systems. In this thesis, a benchmark refers to
a set of performance measures defined on a workload. Often, benchmarks also
contain detailed rules on how to apply the measures and obtain the benchmark

20 Chapter 2. Background

measurements, and on how to interpret the results. The process of performance
evaluation of a system by measurements of a benchmark is called benchmarking.

The term test workload denotes any workload used in performance evaluation.
Usually, a workload is composed of a data set and a set of operations over it.
A test workload can be real or synthetic. A real workload is one observed on a
system being used in normal conditions. A synthetic workload is developed and
used for performance evaluation, it has characteristics similar to the ones of the
real workload under study, and it can be applied repeatedly and in a controlled
manner. The main reason for using a synthetic workload is that it models a
real workload when no real-world data is available. Other reasons are that the
workload can easily be modified in a controlled manner and that it might have
built-in performance measuring capabilities [Jain, 1991].

The workload is the crucial part of a benchmark. It is possible to reach
misleading conclusions if the workload is not properly selected. A workload should
be representative of the tested scenario. In most cases, the evaluation targets a
component of the system rather than entire system under test. In such cases,
the workload should be focused by exercising the component under study while
reducing the influence of other components or external factors. Another necessary
condition for workloads is reproducibility. The workloads should be such that the
results can be easily reproduced without too much variance.

The term System Under Test (SUT) refers to the complete set of components
that define the system whose performance we want to assess and improve. Some-
times there is one specific component in the SUT whose performance is being
considered. This component is called the Component Under Study (CUS). For
example, a researcher wants to understand the impact of a new storage index on
the performance of an XML DBMS system. In this case, the DBMS system is
the SUT and the new index is the CUS.

A performance measure is a function defined on (subsets of) a test workload.
The result of a performance measure on a particular input is called performance
measurement. For example, the CPU time and the elapsed time measured for
each operation in the workload are performance measures. The CPU time and
the elapsed time, in this case, are called units of measure.

With respect to their scope, benchmarks fall into two categories: application
benchmarks and micro-benchmarks. Application benchmarks focus on perfor-
mance assessment, while micro-benchmarks are tools for explaining performance.

Application benchmarks

Application benchmarks test the overall performance of a system in a real-life ap-
plication scenario, for example banking, airline reservations, etc. The workload
consists of a data set and operations over it that are representative of the applica-
tion under test. A typical workload contains a limited set of simple and complex
operations that mimic the operation load in a user scenario. The benchmark

2.4. Performance evaluation of XML query processors 21

measures target the end-to-end performance of a system.
Application benchmarks are useful tools both for system developers and users.

They are not suitable for testing different system components in isolation, since
the workload and the measures are designed to cover system functionalities as a
whole.

The Transaction Processing Performance Council (TPC) [TPC, 2009] has
a long history of developing and publishing benchmarks for testing relational
database systems. For example, the TPC has proposed benchmarks for Online
Transaction Processing applications (TPC-C and TPC-E), for Decision Support
applications (TPC-H), and for an Application Server setting (TPC-App).

In the domain of XML databases and query processing systems, five appli-
cation benchmarks have been proposed: XMach-1 [Böhme and Rahm, 2001],
XMark [Schmidt et al., 2002], X007 [Bressan et al., 2001b], XBench [Yao et al.,
2004], and TPoX [Nicola et al., 2007]. The first four benchmarks are developed
in academia. The last benchmark, TPoX (Transaction Processing over XML),
was developed jointly by IBM and Intel. It simulates a financial application in a
multi-user environment with concurrent access to the XML data. TPoX targets
the performance of a relational-based XML storage and processing system.

In Chapter 3, we discuss and analyze the first four XQuery benchmarks and
their properties in detail. TPoX is not included in this discussion and analysis,
since it was published after this work had been conducted.

Micro-benchmarks

Micro-benchmarks test the performance of individual components of a system on
particular system operations or functionalities. For example, a micro-benchmark
might target the performance of an optimization technique for recursive queries.
The workload and the measures are designed to allow for testing the targeted
system component and operation in isolation. Usually, the performance measures
are parametrized to allow for a systematic evaluation of the benchmark target
with respect to interesting parameters.

Unlike application benchmarks, micro-benchmarks do not directly help in de-
termining the best performing system in a particular application scenario. Rather,
they help assessing the performance of particular components of a system and are
most useful to system developers and researchers.

In the domain of databases, micro-benchmarks were first introduced for object-
oriented databases [Carey et al., 1993]. The first benchmark with micro-benchmark
features targeting XML databases is the Michigan benchmark (MBench) [Runa-
pongsa et al., 2002].

In Chapter 3, we analyze the MBench benchmark and its features. In Chapter
6, we propose and discuss a repository of micro-benchmarks for testing XML
query processing techniques and engines. And in Chapter 7, we propose a micro-
benchmark for testing processing techniques for value-based join expressed in

22 Chapter 2. Background

XQuery.
Having completed an outline of the core concepts and terminology used in the

thesis, we get to work on benchmarking methodology and tools next.

Part I

Benchmarks

23

24

In this part of the thesis, we address the research questions dealing with perfor-
mance evaluation of XML query processing. In Chapter 3, we analyze existing
XQuery benchmarks and survey their usage. This chapter serves as a detailed
discussion of related work for the whole part. In Chapter 4, we discuss how to
achieve the repeatability of experimental evaluations of computer systems in the
database domain. As part of setting up a methodology for repeatability, we per-
form a review of articles submitted to the SIGMOD 2008 research conference and
measure the repeatability of the presented experimental evaluations. In Chap-
ter 5, we discuss the problems and challenges of automating the execution of
performance evaluation benchmarks on many XML query engines and on com-
paring their performance. We present a software tool, XCheck, as a solution to
these problems. In Chapter 6, we present a methodology for micro-benchmarking
XML query engines, which we refer to as MemBeR. MemBeR also comprises a
framework for collecting and storing micro-benchmarks. Finally, in Chapter 7, we
present a MemBeR-style micro-benchmark for testing performance of value-based
joins expressed in XQuery. We validate the micro-benchmark by analyzing the
performance of four XQuery engines.

Chapter 3

Analysis of XQuery Benchmarks

In this chapter, we describe and analyze five XQuery benchmarks that had been
published by the database research community by 2006: XMach-1, X007, XMark,
MBench, and XBench. We start by characterizing the benchmarks’ targets, mea-
sures, and workload properties and by comparing the benchmarks based on these
characterizations (Section 3.2). This provides for a short summary of the bench-
marks and a quick look-up resource. In order to better understand what the
benchmarks measure, we conduct an analysis of the benchmark queries (Sec-
tion 3.3). Next, we conduct a benchmark usage survey, in order to learn whether
and how the benchmarks are used (Section 3.4). When trying to run the bench-
marks on XQuery engines, we discover that a large percentage of the benchmark
queries (29%) contain errors or use outdated XQuery dialects. We correct and
update the benchmark queries (Section 3.5). Once the benchmarks contain syn-
tactically correct queries, we run them on four open-source XQuery engines and
we look to draw conclusions about their performance based on the benchmark
results (Section 3.6). Based on the obtained benchmark results, we analyze the
micro-benchmarking properties of MBench (Section 3.7). Finally, we conclude
and give recommendations for future XML benchmarks based on the lessons
learned (Section 3.8).

The observations made in this chapter serve as motivation for the work pre-
sented in the rest of this thesis, especially in Chapter 5, 6, and 7. All the ex-
periments in this chapter are run with XCheck, a testing platform presented in
Chapter 5.

This chapter is based on work previously published in [Afanasiev and Marx,
2006, 2008]. The study was conducted in 2006. Between 2006 and the time of
writing this thesis (mid 2009), two more XQuery benchmarks have been proposed:
an application benchmark, called TPox [Nicola et al., 2007], and a repository of
micro-benchmarks, called MemBeR, which we present in Chapter 6. The complete
list of current XQuery benchmarks is given in Section 2.4.1.

25

26 Chapter 3. Analysis of XQuery Benchmarks

3.1 Introduction

Benchmarks are essential to the development of DBMSs and any software system,
for that matter [Jain, 1991]. As soon as XQuery became a W3C working draft
in 2001, benchmarks for testing XQuery processors were published. Neverthe-
less, using benchmarks for performance evaluation of XML query processors is
not (yet) common practice. At the time this work was conducted, in 2006, five
XQuery benchmarks had been proposed, but there was no survey of their targets,
properties, and usage. It was not clear what the benchmarks measure, how they
compare, and how to help a user (i.e., a developer, a researcher, or a customer)
choose between them. It was also not clear whether these benchmarks (each sep-
arately, or all together) provide a complete solution toolbox for the performance
analysis of XQuery engines.

In this chapter, we provide a survey and an analysis of the XQuery benchmarks
publicly available in 2006: XMach-1 [Böhme and Rahm, 2001], XMark [Schmidt
et al., 2002], X007 [Bressan et al., 2001b], the Michigan benchmark (MBench)
[Runapongsa et al., 2002], and XBench [Yao et al., 2004].1 The main goal is to
get an understanding of the benchmarks relative to each other and relative to the
XQuery community’s need for performance evaluation tools. We believe that this
analysis and survey are valuable for both the (prospective) users of the existing
benchmarks and the developers of new XQuery benchmarks. Henceforth, we refer
to the 5 benchmarks mentioned above as the benchmarks.

We approach our goal by addressing the three questions below.

3.1. Question. What do the benchmarks measure? or What conclusions can we
draw about the performance of an engine from its benchmark results?

Every benchmark contains a workload and a measure. The benchmark results
of an engine consist of the measurements obtained with the benchmark measure
on the benchmark workload. First of all, the results inform us about the en-
gine’s performance on that particular workload. Thus, the benchmark can be
considered a performance test case. Test cases are very useful in discovering en-
gines’ pitfalls. Most often, though, we want the benchmark results to indicate
more general characteristics of an engine’s performance. For example, we want
to predict an engine’s performance in application scenarios with similar workload
characteristics. Answering Question 3.1 means understanding how to interpret
the benchmark results in terms of the workload characteristics and what we can
infer about an engine’s performance in more general terms.

We start tackling Question 3.1 in Section 3.2 by summarizing each benchmark,
its target, workload, and performance measure. We characterize the benchmarks
by using a list of important parameters of the benchmark’s target, application

1Technically, X007 is not an XQuery benchmark, since its queries are expressed in a prede-
cessor of XQuery.

3.1. Introduction 27

scenario, performance measure, data and query workload, and we compare them
based on these parameters. The goal of this section is to provide a general
overview of the benchmarks and their parameters. This overview helps interpret-
ing the benchmarks’ results in terms of their parameters and it helps determining
what features of XQuery processing are not covered by the benchmarks.

Next, in Section 3.3, we analyze the benchmark queries to determine what
language features they target and how much of the XQuery language they cover.
Our goal is to understand the rationale behind the collection of queries making
up each benchmark.

The benchmark queries are built to test different XQuery language features;
each benchmark defines the language features it covers. In Section 3.3.1, we
gather these language features in an integrated list. Firstly, as a result, a set of
features that all the benchmarks designers find important and agree upon emerge.
Secondly, we use the integrated list to describe the benchmark queries and obtain
a map of feature coverage. In the process, we notice that the queries often use
more than one language feature while labeled by the benchmark as testing only
one of them. It is not always clear which of the features used influences the
performance times.

In Section 3.3.2, we measure how representative the benchmark queries are of
the XQuery language. The approach we take is to investigate how much of the
XQuery expressive power the queries require, by checking whether the queries
can be equivalently expressed in (fragments of) XPath. If we consider only the
retrieval capabilities of XQuery (no XML creation), 16 of the 163 benchmark
queries could not be expressed in XPath 2.0. This indicates that the benchmark
queries are biased toward testing XPath, while XQuery features, such as sorting,
recursive functions, etc. are less covered.

3.2. Question. How are the benchmarks used?

Answering this question helps understanding what the needs for performance
evaluation tools are.

We look at the usage of the benchmarks in the scientific community, as re-
ported in the 2004 and 2005 proceedings of the ICDE, SIGMOD and VLDB
conferences. Fewer than 1/3 of the papers on XML query processing that pro-
vide experimental results, use the benchmarks. Instead, the remaining papers use
ad-hoc experiments to evaluate their research results. Section 3.4 contains the
results of this literature survey.

One of the reasons for this limited use might be the current state of the
benchmarks: 29% of the queries in the benchmarks contain errors or use outdated
XQuery dialects. We have corrected these errors and rewritten all queries into
standard W3C XQuery syntax and made these updated queries publicly available.
Section 3.5 describes the kind of errors we encountered and the way we corrected
them. Having all queries in the same syntax made it possible to systematically
analyze them.

28 Chapter 3. Analysis of XQuery Benchmarks

Another reason why the benchmarks are not widely used might be that the
benchmarks do not provide suitable measures for the intended purpose of the sur-
veyed experiments. Most of the experiments apply micro-benchmarking to test
their research results. Remember from Section 2.4.1, that micro-benchmarks,
as opposed to application benchmarks, are benchmarks that focus on thoroughly
testing a particular aspect of the query evaluation process, such as the perfor-
mance of a query optimization technique on a particular language feature. Out
of the five benchmarks only the Michigan benchmark (MBench) was designed for
micro-benchmarking [Runapongsa et al., 2002]. The rest of the benchmarks are
application benchmarks. We investigate the micro-benchmarking properties of
the MBench queries in Section 3.7.

3.3. Question. What can we learn from running the benchmarks?

We gathered the five benchmarks, corrected their queries, brought them to a
standard format, and analyzed their properties together. This gives us an ex-
cellent opportunity to test engines against them and analyze the results across
benchmarks.

In Section 3.6, we run the benchmarks on four XQuery engines: Galax [Fer-
nández et al., 2006], SaxonB [Kay, 2009], Qizx/Open [Axyana Software, 2006],
and MonetDB/XQuery [Boncz et al., 2006b], and analyze their results. First,
we found that benchmarks are suitable for finding the limits of an engine. An
analysis of the errors raised by an engine—syntax, out-of-memory, out-of-time—
is useful in determining its performance. For example, all the engines except
SaxonB raised syntax errors, which indicates their non-compliance to the W3C
XQuery standard. Next, we found that the engines’ performance differs across
the benchmarks. For example, performance rankings based on the average query
processing times of an engine are different per benchmark. Finally, we observed
that the engines exhibit differences in performance across benchmarks on queries
that test the same language feature. This means that the performance of an
engine on a language feature obtained against a benchmark cannot be generalized
to the other benchmarks. This could be explained by the difference in benchmark
data characteristics or by poor query design.

In Section 3.7, we look at the performance of Qizx/Open on a set of MBench
queries that test the performance of joins on attribute values. The goal is to
investigate how adequate the MBench queries are for micro-benchmarking. The
engine exhibits abnormal behavior on a subset of the join queries, but the results
are not sufficient to precisely indicate what query parameter causes the problem.
This is because several query parameters are varied in parallel and it is not clear
which parameter influences the results. MBench did not manage to isolate the
influence of different parameters, which would be necessary for conclusive results.
We extend the set of queries and run a new experiment to determine which query
parameter is responsible for the bad performance.

3.2. Summary of existing XQuery benchmarks 29

With this, our analysis ends. We conclude and describe guidelines for future
work in Section 3.8.

3.2 Summary of existing XQuery benchmarks

In this section, we first introduce the benchmarks, then we compare their proper-
ties. The goal is to give a general overview of the benchmarks and provide a quick
look-up table of their details and properties. This overview helps interpreting the
benchmarks results and determining what features of the XQuery processing are
not covered by the benchmarks.

Throughout this section, we use notions and terms introduced in Chapter 2:
we refer to Section 2.4 for a description of existing types of benchmarks and their
properties and to Section 2.1.2 for a list of XML document characteristics that
we use to describe and compare the benchmarks. The first occurrence of a term
defined in Chapter 2 is indicated in italic.

3.2.1 Introducing the benchmarks

In this subsection, we introduce the benchmarks, one by one, in the order of their
respective publication years. We describe their target, workload and measure.
The target is described in terms of the targeted system under test (SUT) and
component under study (CUS).

XMach-1

XMach-1 was developed at the University of Leipzig in 2000 and published in
the beginning of 2001 [Böhme and Rahm, 2001]. It is the first published XML
database benchmark. Its objective is the evaluation of an entire DBMS in a
typical XML data management scenario, which the benchmark defines to be a
multi-user, multi-document, and multi-schema scenario. XMarch-1 is based on
a web application. The workload consists of a mix of XML queries and updates
expressed over a collection of text-centric XML documents. The performance
measure is the query throughput of the DBMS measured at the level of the end
user of the web application. Thus, the targeted SUT is the whole web application
and the CUS is the DBMS.

The workload The benchmark data consists of a collection of small text-centric
documents and one structured document describing the collection (the catalog).
The schemas are described by DTDs. A distinctive feature of XMach-1 is the
support of a large number of document schemas with approximately 20 documents
per schema. The benchmark scales by producing collections of increasing sizes:
100 documents (adding up to 2.3MB), 1000 (adding up to 23MB), 10.000 (adding

30 Chapter 3. Analysis of XQuery Benchmarks

up to 219MB), etc. The text-centric documents contain mixed-content elements, a
typical property of marked-up text. The data-centric document contains recursive
elements that add to the complexity of query processing.

The XMach-1 query set consists of 8 queries and 3 update operations. The
queries aim at covering a wide range of query language features, like navigational
queries, sorting, grouping operators, text search, etc., while remaining simple.
Update operations cover inserting and deleting of documents as well as changing
attribute values. The queries are expressed in natural language and XQuery; the
update operations are expressed in natural language only.

The benchmark defines a workload mix with firm ratios for each operation.
The mix emphasizes the retrieval of complete documents (30%) whereas update
operations only have a small share (2%). The workload simulates a real workload
in the user application scenario.

Performance measures XMach-1 measures query throughput in XML queries
per second (Xqps). The value is measured based only on one query that tests
simple document retrieval, while running the whole workload in a multi-user
scenario during at least an hour of user time.

XMark

This benchmark was developed at the National Research Institute for Mathe-
matics and Computer Science (CWI) in the Netherlands and made public in the
beginning of 2001 [Schmidt et al., 2001] and published at VLDB in the middle of
2002 [Schmidt et al., 2002]. The benchmark focuses on the evaluation of the query
processor (the CUS)—as is reflected by the large number of query operations—
of a DBMS (the SUT). The benchmark runs in a single-user, single-document
scenario. The benchmark data is modeled after an internet auction database.

The workload The XMark document consists of a number of facts having a
regular structure with data-centric aspects. Some text-centric features are in-
troduced by the inclusion of textual descriptions consisting of mixed-content ele-
ments. The benchmark document scales by varying a scaling factor in a continu-
ous range from 0 to 100, or bigger. The scaling factor 0.1 produces a document of
size 10MB and the factor 100 produces a document of size 10GB. The scalability
is addressed by changing the fan-out of the XML tree. The documents conform
to a given DTD.

XMark’s query set is made up of 20 queries, no update operations are spec-
ified. The queries are designed to test different features of the query language
and are grouped into categories: (i) exact match; (ii) ordered access; (iii) type
casting; (iv) regular path expressions; (v) chasing references; (vi) construction
of complex results; (vii) joins on values; (viii) element reconstruction; (ix) full
text search; (x) path traversals; (xi) missing elements; (xii) function application;

3.2. Summary of existing XQuery benchmarks 31

(xiii) sorting; (xiv) aggregation. Some queries are functionally similar to test cer-
tain features of the query optimizer. The queries are expressed both in natural
language and in XQuery.

Performance measures The performance measure consists of the query exe-
cution time of each query in the workload, measured in seconds.

X007

This benchmark X007 was published shortly after XMark [Bressan et al., 2001b,a]
and it was developed at the National University of Singapore. It is derived from
the object oriented database benchmark OO7 [Carey et al., 1993] with small
changes in the data structure and additional operation types to better cover the
XML usage patterns. In contrast to XMach-1 or XMark, no specific application
domain is modeled by the data. It is based on a generic description of complex
objects using component-of relationships. The database is represented by a single
document. The benchmark targets the evaluation the query processor (the CUS)
of a DBMS (the SUT) in a single-user scenario.

Workload A X007 document has a regular and fixed structure with all values
stored in attributes and it exhibits a strong data-centric character. Similar to
XMark, some text-centric aspects are included using elements with mixed con-
tent. The benchmark provides 3 sets of 3 documents of varying sizes, small
(4.5MB, 8.7MB, 13MB), medium (44MB, 86MB, 130MB), and large (400MB,
800MB, 1GB), for testing data scalability. The document scalability is achieved
by changing the depth and the fan-out of the XML tree. The document contains
recursive elements and the depth is controlled by varying the nesting of recursive
elements. The width is controlled by varying the fan-out of some elements.

The workload contains 22 queries.2 The X007 queries are written in Kweelt
[Sahuguet et al., 2000]—an enriched and implemented variant of Quilt [Cham-
berlin et al., 2000]. Quilt is an XML query language that predates, and is the
basis of, XQuery. The rationale behind the query set is to cover the important
language features, which are to query both data-centric and text-centric XML
documents [Bressan et al., 2001b]. The queries fall into 3 groups: (i) traditional
database queries; (ii) navigational queries; and (iii) text-search queries.

Performance measures The benchmark deploys the following performance
measures: (i) the query execution time for each query and each group of queries

2Bressan et al. [2001b] present 18 queries, while the benchmark website http://www.comp.
nus.edu.sg/~ebh/XOO7.html presents 22 queries. The two sets of queries intersect but the
first is not included in the second. We consider the queries on the website as the normative
ones.

http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7.html

32 Chapter 3. Analysis of XQuery Benchmarks

in the workload, measured in seconds; (ii) the time it takes to load the data,
measured in seconds; and (iii) the space it requires to store the data, measured
in MB.

The Michigan benchmark, MBench

The Michigan benchmark (MBench) was developed at the University of Michigan
and published in 2002 [Runapongsa et al., 2002, Runapongsa et al., 2003]. In
contrast to its predecessors (XMach-1, X007, XMark, MBench, and XBench),
it is designed as a micro-benchmark aimed at evaluating the query processor
(the CUS) of a DBMS (the SUT) on individual language features. Therefore,
it abstracts away from any specific application approaches defining only well-
controlled data access patterns. The benchmark runs in a single-user and single-
document scenario.

The workload The MBench document has a synthetic structure created to
simulate different XML data characteristics and to enable operations with pre-
dictable costs. The data structure consists of only one element that is nested
with a carefully chosen fan-out at every level. With an element hierarchy of 16
and a fixed fan-out for each level most of the elements are placed at the deepest
level. A second element is used to add intra-document references. The first ele-
ment contains a number of numeric attributes which can be used to select a well
defined number of elements within the database. With only two element types
and the large number of attributes the data has clearly data-centric properties.
Text-centric features are also present since every element has mixed content and
the element sibling order is relevant.

The Michigan benchmark document scales in three discrete steps. The default
document of size 46MB is arranged in a tree of a depth of 16 and a fan-out of 2
for all levels except levels 5, 6, 7, and 8, which have fan-outs of 13, 13, 13, 1/13
respectively. The fan-out of 1/13 at level 8 means that every 13th node at this
level has a single child, and all other nodes are childless leaves. The document is
scaled by varying the fan-out of the nodes at levels 5–8. For the document of size
496MB the levels 5–7 have a fan-out of 39, whereas level 8 has a fan-out of 1/39.
For the document of size 4.8GB the levels 5–7 have a fan-out of 111, whereas level
8 has a fan-out of 1/111.

MBench defines 56 queries that are grouped into five categories: (i) selection
queries; (ii) value-based join queries; (iii) pointer-based join queries; (iv) aggre-
gate queries; and (v) updates. Within each group, often the queries differ only
with respect to a single query parameter such as query selectivity to measure
its influence on query performance. The queries are defined in natural language,
SQL, XQuery, and, partially, in XPath. The update queries are defined only in
natural language.

3.2. Summary of existing XQuery benchmarks 33

Performance measures The performance measure is the query execution time
for each query in the workload, measured in seconds.

XBench

XBench is a family of four benchmarks developed at the University of Water-
loo and published in [Yao et al., 2002], at the same time as MBench. XBench
characterizes database applications along the data types data-centric (DC) and
text-centric (TC), and data organizations in single-document (SD) or multiple-
document (MD). The result is four benchmarks that cover different application
scenarios: DC/SD simulates an e-commerce catalog, DC/MD simulates transac-
tional data, TC/SD simulates online dictionaries, and TC/MD simulates news
corpora and digital libraries. The benchmarks aim at measuring the performance
of the query processor (the CUS) of a DBMS (the SUT) in a single-user scenario.

The workload The benchmark data simulate existing XML and relational
data collections. The TC classes of documents use the GNU version of the
Collaborative International Dictionary of English,3 the Oxford English Dictio-
nary,4 the Reuters news corpus,5 and part of the Springer-Verlag digital library.6

The schema and the data statistics of these collections are combined into the
synthetic documents of the benchmarks. The DC classes of documents use the
schema of TPC-W7 that is a transactional web e-Commerce benchmark for rela-
tional DBMSs. For all document collections, both XML schemas and DTDs are
provided. All the collections are scaleable.

The common features of the TC/SD benchmark data are a big text-centric
document with repeated similar entries, deep nesting and possible references be-
tween entries. The generated XML document is a single big XML document (dic-
tionary.xml) with numerous word entries. The size of the database is controlled
by the number of entries with the default value of 7333 and the corresponding
document size about 100 MB.

The features of the documents in the TC/MD benchmark are many relatively
small text-centric XML documents with references between them, looseness of
schema and possibly recursive elements. The XML documents are articles with
sizes ranging from several kilobytes to several hundred kilobytes. The size of this
database is controlled by the number of articles with a default value of 266 and
the default data size of around 100MB.

XML documents belonging to the DC/SD benchmark are similar to TC/SD
in terms of structure but with less text content. However, the schema is more

3http:www.ibiblio.org/webster
4http://www.oed.com/
5http://about.reuters.com/researchandstandards/corpus/
6www.springerlink.com/
7http://www.tpc.org/tpcw/

http:www.ibiblio.org/webster
http://www.oed.com/
http://about.reuters.com/researchandstandards/corpus/
www.springerlink.com/
http://www.tpc.org/tpcw/

34 Chapter 3. Analysis of XQuery Benchmarks

strict in the sense that there is less irregularity in DC/SD than in TC/SD—most
of the XML documents in DC/SD are translated directly from the relations in
TPC-W.

The documents in the DC/MD benchmark are transactional and are primarily
used for data exchange. The elements contain little text content. Similar to the
DC/SD data, the structure is more restricted in terms of irregularity and depth.
The database scalability is achieved by controlling the number of documents with
a default value of 25, 920 and the default size of around 100MB.

The workload consists of a set of ca. 20 queries per benchmark. The set
of queries is meant to cover a substantial part of XQuery’s features and are
grouped by targeted functionality: (i) exact match; (ii) (aggregate) function
application; (iii) ordered access; (iv) quantifiers; (v) regular path expressions;
(vi) sorting; (vii) document construction; (viii) irregular data; (ix) retrieving
individual documents; (x) text search; (xi) references and joins; and (xii) data
type cast.

Performance measures The performance measure of XBench is the query
execution time for each query in the workload, measured in seconds.

3.2.2 Characterizing and comparing the benchmarks

In this section, we compare the benchmarks introduced above based on the their
key features such as evaluation targets, application scenarios, performance mea-
sures, and workload properties. This comparison is intended to give a general
but complete picture of the existing benchmarks. It can serve as a resource for
choosing among the benchmarks for a particular evaluation purpose or applica-
tion domain. It also helps spotting which features of the XQuery processing are
not covered by the benchmarks.

Lining up the benchmarks

Tables 3.1 and 3.2 summarize the main benchmark features that we discuss below.
For a precise definition of the data parameters listed in these tables, we refer to
Section 2.1.2.

A fundamental difference between the benchmarks lies in their evaluation
target. With its aim of evaluating a database system in a multi-user scenario
XMach-1 covers the user view on the system as a whole. All components of the
DBMS like document and query processing, handling updates, caching, locking,
etc. are included in the evaluation. The evaluation is done at the client level in a
client-server scenario. The other benchmarks restrict themselves to the evaluation
of the query processor in a single-user scenario.

Another fundamental difference is the benchmark type: XMach-1, XMark,
X007, and XBench are application benchmarks, while MBench is a micro-bench-

3.2. Summary of existing XQuery benchmarks 35

X
M

ac
h

-1
(2

00
1)

X
M

ar
k

(2
00

1)
X

00
7

(2
00

1)
M

B
en

ch
(2

00
2)

ta
rg

et
ed

S
U

T
a

w
eb

ap
pl

ic
at

io
n

D
B

M
S,

qu
er

y
pr

oc
es

so
r

D
B

M
S,

qu
er

y
pr

oc
es

so
r

D
B

M
S,

qu
er

y
pr

oc
es

so
r

ta
rg

et
ed

C
U

S
D

B
M

S
qu

er
y

pr
oc

es
so

r
qu

er
y

pr
oc

es
so

r
qu

er
y

pr
oc

es
so

r
b

en
ch

m
ar

k
ty

p
e

ap
pl

.
be

nc
hm

ar
k

ap
pl

.
be

nc
hm

ar
k

ap
pl

.
be

nc
hm

ar
k

m
ic

ro
-b

en
ch

m
ar

k
#

u
se

rs
m

ul
ti

-u
se

r
si

ng
le

-u
se

r
si

ng
le

-u
se

r
si

ng
le

-u
se

r
p

er
fo

rm
an

ce
m

ea
su

re
qu

er
y

th
ro

ug
hp

ut
(X

qp
s)

qu
er

y
ex

ec
ut

io
n

ti
m

e
(s

ec
)

qu
er

y
ex

ec
ut

io
n

ti
m

e
(s

ec
)

qu
er

y
ex

ec
ut

io
n

ti
m

e
(s

ec
)

#
q
u

er
ie

s
8

20
23

49
q
u

er
y

la
n
gu

ag
e

N
L

,
X

Q
ue

ry
N

L
,

K
w

ee
lt

N
L

,
X

Q
ue

ry
N

L
,

X
Q

ue
ry

,
X

P
at

h,
SQ

L
#

u
p

d
at

e
op

er
at

io
n

s
3

–
–

7
la

n
gu

ag
e

N
L

–
–

N
L

m
ai

n
d

at
a

ty
p

e
te

xt
-c

en
tr

ic
da

ta
-c

en
tr

ic
da

ta
-c

en
tr

ic
da

ta
-c

en
tr

ic
#

sc
h

em
as

ca
.

#
do

cs
/
20

D
T

D
s

1
D

T
D

1
D

T
D

1
X

M
L

Sc
he

m
a

#
el

em
en

t
ty

p
es

4∗
#

sc
he

m
as

+
7

76
9

2
#

re
cu

rs
iv

e
ty

p
es

2
–

1
1

#
m

ix
ed

-c
on

te
n
t

ty
p

es
1

4
1

1
#

ID
/I

D
R

E
F

ty
p

es
–

4
ID

,
9

ID
R

E
F

–
1

ID
,

1
ID

R
E

F
#

d
at

a
va

lu
e

ty
p

es
2

(s
tr

in
g,

da
te

ti
m

e)
4

(s
tr

in
g,

in
te

ge
r,

flo
at

,
da

te
)

4
(s

tr
in

g,
in

te
ge

r,
ye

ar
)

2
(x

s:
st

ri
ng

,
xs

:in
te

ge
r)

tr
ee

d
ep

th
11

,
11

,
14

11
8,

8,
10

16
av

g
d

ep
th

3.
8

4.
6

7.
9,

7.
9,

9.
9

14
.5

tr
ee

fa
n

-o
u

t
38

,
46

,
10

0
25

50
–2

55
00

00
61

,
60

1,
60

1
13

,
39

,
11

1
av

g
fa

n
-o

u
t

(n
o

le
av

es
)

3.
6

3.
7

3
2

#
d

o
cu

m
en

ts
10

0,
10

00
,

10
00

0,
et

c.
1

1
1

d
o
cu

m
en

t
si

ze
ca

.
16

K
B

11
M

B
–1

1G
B

4.
5M

B
–4

00
M

B
46

M
B

,
49

6M
B

,
4.

8G
B

to
ta

l
d

at
as

et
si

ze
2.

3M
B

,
23

M
B

,
21

9M
B

,
et

c.
(#

do
cs
∗1

6
K

B
)

11
M

B
–1

1G
B

4.
5M

B
–4

00
M

B
46

M
B

,
49

6M
B

,
4.

8G
B

#
el

em
en

ts
/K

B
10

ca
.

14
ca

.
9.

7
1.

4

T
ab

le
3.

1:
C

h
ar

ac
te

ri
st

ic
s

of
th

e
st

an
d
ar

d
X

M
L

b
en

ch
m

ar
k
s:

X
M

ac
h
-1

,
X

M
ar

k
,

X
00

7,
an

d
M

B
en

ch
.

H
er

e,
N

L
m

ea
n
s

n
at

u
ra

l
la

n
gu

ag
e.

F
or

th
e

d
efi

n
it

io
n

of
th

e
d
at

a
p
ar

am
et

er
s

se
e

S
ec

ti
on

2.
1.

2.

36 Chapter 3. Analysis of XQuery Benchmarks
X

B
en

ch
(2002)

T
C

/S
D

T
C

/M
D

D
C

/S
D

D
C

/M
D

targeted
S

U
T

D
B

M
S,

query
processor

targeted
C

U
S

query
processor

b
en

ch
m

ark
ty

p
e

application
benchm

ark
p

erform
an

ce
m

easu
re

query
execution

tim
e

(sec)
#

u
sers

single-user
#

q
u

eries
17

19
16

15
q
u

ery
lan

gu
age

N
L

,
X

Q
uery

#
u

p
d

ate
op

eration
s

–
lan

gu
age

–
m

ain
d

ata
ty

p
e

text-centric
text-centric

data-centric
data-centric

#
sch

em
as

1
X

M
L

Schem
a,

D
T

D
1

X
M

L
Schem

a,
D

T
D

1
X

M
L

Schem
a,

D
T

D
6

X
M

L
Schem

as
and

D
T

D
s

#
elem

en
t

ty
p

es
24

26
50

82
#

recu
rsive

ty
p

es
–

1
–

–
#

m
ix

ed
-con

ten
t

ty
p

es
2

–
1

–
#

ID
/ID

R
E

F
ty

p
es

1
ID

,
1

ID
R

E
F

–
1

ID
,

1
ID

R
E

F
–

#
d

ata
valu

e
ty

p
es

1
(xs:string)

3
(xs:string,

xs:byte,
xs:date)

5
(xs:string,

xs:byte,
xs:decim

al,
xs:short,

xs:date)

8
(xs:string,

xs:byte,
xs:decim

al,
xs:short,
xs:int,

xs:long,
xs:dateT

im
e,

xs:date)
tree

d
ep

th
7

6
7

3
av

g
d

ep
th

6
3.5,

3.9,
4.1

4.6
2

tree
fan

-ou
t

733,
7333,

73333,
733333

75,
264,

2665
250
∗

10
n
,n

=
1,2,3,4

576
∗

10
n
,n

=
1,2,3,4

av
g

fan
-ou

t
(n

o
leaves)

4.3
10.7,

11.3,
20.7

3.1
8

#
d

o
cu

m
en

ts
1

26–26666
1

2592–2592000
d

o
cu

m
en

t
size

10M
B

–10G
B

2K
B

–1500K
B

10M
B

–10G
B

1K
B

–3K
B

total
d

ataset
size

10M
B

,
100M

B
,

1G
B

,
10G

B
#

elem
en

ts/K
B

25.8
3.1,

3.5,
6

ca.
21

ca.
7.6

T
ab

le
3.2:

C
h
aracteristics

of
X

B
en

ch
,

a
fam

ily
of

fou
r

b
en

ch
m

ark
s.

A
s

b
efore,

N
L

m
ean

s
n
atu

ral
lan

gu
age.

3.2. Summary of existing XQuery benchmarks 37

mark. Application benchmarks test performance in particular application scenar-
ios simulated by their workloads. They differ in the performance measure used:
XMach-1 measures the query throughput on a workload of a small number of
simple and complex queries, while XBench, XMark, and X007 measure the query
execution time of twice as many, fairly complex queries stressing various features
of the query language. The benchmark results are valid only for the tested or
similar workloads.

MBench, on the other hand, targets the performance of a query engine on
core language features independent of the user application scenario. Its workload
consists of a large number of simple queries often differing only in one query
parameter. In this way, MBench performs a systematic evaluation and aims at
characterizing the performance of the tested language features in terms of the
tested query parameters.

Only two benchmarks, XMach-1 and MBench, consider update operations
although they can substantially impact DBMS performance.

The benchmarks aim to accommodate the characteristics of both data types:
data-centric and text-centric. XMach-1 and XBench TC/SD and TC/MD em-
phasize the text-centric aspect the most, while the other benchmarks focus on
data-centric properties. Nevertheless, all but the XBench TC/MD and DC/MD
benchmarks contain mixed-content elements. Note also that the elements-to-size
ratios show big differences of markup density from benchmark to benchmark,
and they do not correlate with the main type of data: e.g., XBench TC/SD has
text-centric documents with the biggest elements-to-size ratio, while MBench has
data-centric documents with the smallest elements-to-size ratio. Together, the
benchmarks have a good coverage of both types of data.

With respect to the number of different data value types, XBench DC/MD and
DC/SD are the richest with 8 and 5 types, respectively, defined by their XML
Schemas. XMach-1, XMark, and X007 rely on DTDs to describe their document
structure, thus they defined only character data. Nevertheless, the documents
contain string data that can be successfully typecast to other types, e.g., XMark
contains dates, integers, and floats besides strings.

Each of the benchmarks supports a parameterized scaling of the data set from
kilobytes to gigabytes. They all use synthetic data and provide a data generator
for compactness and scalability. XMach-1, XBench TC/MD, and DC/MD use
collections of many (100–100000) small documents (average 10KB each). This
allows easy scalability of the database and gives flexibility to the database system
for data allocation, locking, caching etc. The other benchmarks require the whole
database to be a single document. This might pose a significant challenge to XML
database systems that performe document-level locking etc., and would make it
difficult to use these benchmarks for multi-user processing.

Since one of the strengths of XML lies in flexible schema handling, an XML
database can be required to easily handle multiple schemas. This feature is
tested in XMach-1. The other benchmarks use a single or a small set of fixed

38 Chapter 3. Analysis of XQuery Benchmarks

schema. As a result, the number of element types remains unchanged for different
database sizes. Note that MBench has an unrealistically small number of element
types (2). This might lead to artificial storage patterns in the systems with
an element-determined database organization such as some XML to relational
mapping approaches.

3.2.3 Conclusions

Our benchmark summary and comparison shows that XMach-1 and MBench
have a clear focus and are distinct from the rest. XMach-1 tests the overall
performance of an XML DBMS in a real application scenario. MBench tests
an XML query processor on five language features on a document with artificial
schema and properties, but it allows for systematic control of the document and
query parameters. This way, MBench characterizes the performance of the query
processor in terms of the tested document and query parameters.

XMark, XOO7, and XBench are similar in many respects. The key differ-
ence of the latter are single-document vs multi-document scenarios and different
schema characteritics. While the documents for all three benchmarks are de-
signed to simulate real application scenarios, the rationale behind the query set
is to pose natural queries that cover important query language features. The
main performance measure is the execution time on each query.

Together, the benchmarks have a good coverage of testing the main properties
of the XML query processing. We refer to Tables 3.1 and 3.2 for an overview.

One of the properties that is not well covered is the data value types. Most
benchmark documents contain string data and integer data, but do not cover
the whole range of value types defined by XML Schema, for example. Another
missing feature is namespaces. Thus, the benchmarks do not cover more advanced
XML features.

3.3 Benchmark query analysis

In this section, we analyze the benchmark queries to determine what language
features they test and how much of the XQuery language they cover.

The benchmark queries are built to test different language features. Each
benchmark defines the language features it covers. In Section 3.3.1, we gather
these language features in a unified list and use it to describe the benchmark
queries.

In Section 3.3.2, we measure how representative the benchmark queries are
of the XQuery language. The approach we take is to investigate how much of
XQuery’s expressive power the queries require, by checking whether the queries
can be equivalently expressed in (fragments of) XPath.

3.3. Benchmark query analysis 39

3.3.1 Language feature coverage

The rationale behind the query set of each benchmark is to test important lan-
guage features. Recall from Section 2.2 that a language feature is a logical oper-
ation on the data that can be expressed in the considered query language, e.g.,
tree navigation, value filters, value joins, etc. The benchmarks cover language fea-
tures that are often used in the benchmark application scenario and/or that are
challenging for the query engines. The queries are categorized according to the
language features they test; each query is presented under one language feature.

There is no standard list of important XQuery language features; each bench-
mark defines the features it tests. Though the lists are different, there is quite a
bit of semantic overlap between the defined features.

The goal of this section is to determine what language features the benchmarks
test. For this purpose, we reconcile the features that are defined by more than
one benchmark and gather them in a duplicate-free list. Then, we categorize
the benchmark queries using this new list. This allows us to see what language
features the benchmarks target, in a unified way. Further, we observe that, with
the exception of the MBench queries, the benchmark queries contain usually more
than one language feature that might dominate the query processing times. It is
not clear why these queries are presented only under one category.

Below, we present the unified list of language features and their definitions.
For each feature, we indicate which benchmark defines it and the terms they use.
If no term is indicated, then the term used by the benchmark coincides with
the given name. The features are ordered by the number of occurrences in the
benchmarks.

Text search Expressing text search with the help of the fn:contains() func-
tion. (XMach-1, X007: text data handling, XMark: full text search, XBench,
MBench: element content selection, string distance selection)

Ordered access Expressing conditions on the position of elements in a sequence.
(X007: element ordering/order preservation, XMark, XBench, MBench: or-
der sensitive parent-child selection)

Regular path expressions Expressing paths with one or more element names
unknown, usually with the help of the descendant axis. (X007, XMark,
MBench: ancestor-descendant selection, ancestor-nesting in ancestor-de-
scendant selection, ancestor-descendant complex pattern selection)

Aggregates Expressing aggregation, such as count, sum, minimum, maximum,
and average. (X007: aggregate functions, XMark: aggregation, XBench:
function application, MBench: aggregation)

Element construction Expressing construction of new elements. (X007: re-
construct new structure, element transformation, XMark: element recon-

40 Chapter 3. Analysis of XQuery Benchmarks

struction, construction of complex results, XBench: document construction,
MBench: returned structure)

Value-based joins Expressing joins on the basis of attribute values or element
content. (XMach-1, X007: join, XMark: joins on values, MBench)

Pointer-based joins Expressing joins on the basis of attribute values of type
ID. (XMark: chasing references, XBench: references and joins, MBench)

Exact match Expressing simple string lookups with a fully specified path.
(XMach-1, XMark, XBench: exact match, retrieve individual documents)

Value filters Setting condition on attribute value or element content. (XMach-
1, X007: simple selection and number comparison, string comparison, value
filter range query, MBench: exact match attribute value selection)

Sorting Expressing sorting a sequence of items by their (string or non-string)
values. (X007, XMark, XBench)

Path traversal Expressing explicit paths (no wildcards). (XMark, MBench:
parent-child selection)

Missing elements Testing for empty sequences. (XMark, XBench: irregular
data)

Negation Expressing boolean negation. (X007, MBench: negated selection)

Type casting Casting string values to numeric or other type of values. (XMark,
XBench: datatype cast)

Twig patterns Expressing twig-like structural conditions. (MBench: parent-
child complex pattern selection, ancestor-descendant complex pattern se-
lection)

Quantifiers Expressing existential or universal conditions on elements of a se-
quence. (XBench)

User-defined functions Expressing user-defined functions. (XMach-1, XMark:
function application)

Updates Expressing updates. (XMach-1, MBench)

Note that these language features have different levels of abstraction, some fea-
tures are logically included in the others. For example, when executing a value
filter, often type casting is applied; queries that contain aggregate functions also
contain joins and group-by expressions; or, testing for missing elements can be
done with the help of the existential quantifier.

3.3. Benchmark query analysis 41

X
M

ac
h

-1
X

00
7

X
M

ar
k

X
B

en
ch

M
B

en
ch

T
ex

t
se

ar
ch

Q
2

Q
7

Q
14

Q
17

,
Q

18
Q

S1
1–

Q
S1

4
O

rd
er

ed
ac

ce
ss

–
Q

11
,

Q
12

,
Q

20
–Q

23
Q

2,
Q

3,
Q

4
Q

4,
Q

5
Q

S9
,

Q
S1

0,
Q

S1
5–

Q
S1

7
R

eg
u

la
r

p
at

h
ex

p
re

ss
io

n
s

–
Q

10
Q

6,
Q

7
Q

8,
Q

9
Q

S8
,

Q
S2

1–
Q

S2
7

A
gg

re
ga

te
s

–
Q

13
,

Q
17

Q
20

Q
3

Q
A

1-
Q

A
6

E
le

m
en

t
co

n
st

ru
ct

io
n

–
Q

9,
Q

16
,

Q
18

Q
10

,
Q

13
Q

12
,

Q
13

Q
R

1–
Q

R
4

V
al

u
e-

b
as

ed
jo

in
s

Q
7,

Q
8

Q
5

Q
11

,
Q

12
–

Q
J1

,
Q

J2
P

oi
n
te

r-
b

as
ed

jo
in

s
–

–
Q

8,
Q

9
Q

19
Q

J3
,

Q
J4

E
x
ac

t
m

at
ch

Q
1,

Q
4,

Q
5

–
Q

1
Q

1,
Q

2,
Q

16
–

V
al

u
e

fi
lt

er
s

Q
6

Q
1–

Q
4,

Q
6

–
–

Q
S1

–Q
S7

S
or

ti
n

g
–

Q
14

Q
19

Q
10

,
Q

11
–

P
at

h
tr

av
er

sa
l

–
–

Q
15

,
Q

16
–

Q
S1

8–
Q

S2
0

M
is

si
n

g
el

em
en

ts
–

–
Q

17
Q

14
,

Q
15

–
N

eg
at

io
n

–
Q

15
–

–
Q

S3
5

T
y
p

e
ca

st
in

g
–

–
Q

5
Q

20
–

T
w

ig
p

at
te

rn
s

–
–

–
–

Q
S2

8–
Q

S3
4

Q
u

an
ti

fi
er

s
–

–
–

Q
6,

Q
7

–
U

se
r-

d
efi

n
ed

fu
n

ct
io

n
s

Q
3

–
Q

18
–

–
U

p
d

at
es

M
1–

M
3

–
–

–
Q

U
1–

Q
U

7

T
ab

le
3.

3:
T

h
e

la
n
gu

ag
e

fe
at

u
re

s
u
n
d
er

w
h
ic

h
th

e
b

en
ch

m
ar

k
q
u
er

ie
s

ar
e

li
st

ed
.

42 Chapter 3. Analysis of XQuery Benchmarks

As a by-product of this study we obtain a list of important language features
that at least 3 benchmarks are covering: from text search to sorting.

In Table 3.3, we give the correspondence between the benchmark queries and
the unified feature list from above. This correspondence is the composition of the
old-feature-to-new-feature mapping from above and the correspondence of queries
to old features of each benchmark. Note that this table shows the way the queries
are listed by the benchmarks, not necessarily their coverage of these features. For
example, there is no query that does not contain path traversal expressions or
regular path expressions, nevertheless there are benchmarks that do not mention
these features in their categories.

3.3.1. Remark. The benchmark queries usually combine more than one lan-
guage feature. It is not always clear which feature has the biggest impact on the
performance times.

As an example, consider Q9 of X007 that is listed under the element construction
feature:

for $a in doc()/ComplexAssembly/ComplexAssembly/ComplexAssembly/
ComplexAssembly/BaseAssembly/CompositePart/
Connection/AtomicPart

return
<AtomicPart>

{$a/@*}
{$a/../..}

</AtomicPart>

The total performance time of this query depends on the performance time of
the long child path traversal, on the ancestor axis implementation, and on the
element construction operation. Which time has the biggest share of the total
time is not clear.

Next, we measure how much of the XQuery language the queries cover.

3.3.2 Query language coverage

XQuery queries can retrieve parts of the input document(s) and can create new
XML content on the basis of them. We focus on the first of these two tasks. We
investigate how much of the expressive power of XQuery is used by the benchmark
queries for retrieving parts of the input. This is the main functionality of a query
language and we have at hand a methodology for investigating it.

We classify the benchmark queries in terms of the XPath fragments in which
they can be expressed. In this way we can see how much expressive power each
query uses. Since XPath is a well studied language and a fragment of XQuery, it
forms a good point of reference for our investigations. We consider four flavors of
XPath:

3.3. Benchmark query analysis 43

XPath 2.0 [World Wide Web Consortium, 2007] This language is less expressive
than XQuery; for example, it does not contain sorting features and user-
defined functions. XPath 2.0 and XQuery share the same built-in functions.

Navigational XPath 2.0 [ten Cate and Marx, 2009] This fragment excludes
the use of position information, aggregation and built-in functions. Value
comparisons are allowed. Navigational XPath 2.0 is used for navigating in
the XML tree and testing value comparisons.

XPath 1.0 [World Wide Web Consortium, 1999a] This language is less expres-
sive than XPath 2.0, for example, it does not contain variables or iterations.
It also contains fewer built-in functions.

Core XPath [Gottlob and Koch, 2002] This fragment is the navigational frag-
ment of XPath 1.0. It excludes the use of position information, built-in
functions and comparison operators. Core XPath is used only for navigat-
ing in the tree.

The distribution of the benchmark queries over these fragments serves as an
indication of how much of the expressive power of XQuery is used, and by how
many queries. Analyzing the fragments that are not covered, we can determine
which XQuery features are not used by the queries.

Assumptions and query rewriting conventions Many benchmark queries
create new XML content based on the information retrieved from the input docu-
ments. For example, some queries use element construction to group the retrieved
results. Most of the queries use element construction only to change the tag names
of the retrieved elements. Since XPath queries cannot create new XML and since
we investigate just the “retrieval” part of a query, we ignore this operation when
analyzing the benchmark queries. We will give more details on this below. The
remainder of the query we rewrite, if possible, into one of the XPath fragments
described above. We try to express each query first in Core XPath. If we fail we
try to express it in XPath 1.0. If we fail again we take Navigational XPath 2.0
and in the end XPath 2.0. The queries that cannot be expressed in XPath 2.0
require the expressive power of XQuery.

Below, we explain the procedure that we follow for rewriting XQuery queries
into XPath queries. Often, XQuery queries use element construction to produce
new XML output, while XPath just retrieves parts of the input document(s). We
remove the element construction from the generation of the output and return
only the content of the retrieved elements. Note that the query semantics changes
in this case. The following example illustrates the process. Consider query QR2
from MBench:

44 Chapter 3. Analysis of XQuery Benchmarks

for $e in doc()//eNest[@aSixtyFour=2]
return

<eNest aUnique1="{$e/@aUnique1}">
{

for $c in $e/eNest return
<child aUnique1="{$c/@aUnique1}">
</child>

}
</eNest>

For each eNest element that satisfies the condition @aSixtyFour=2 and that is
given in the document order, this query creates a new eNest element containing
a new element child for each child, in document order, of the original eNest
element. If we strip away the element construction the query becomes:

for $e in doc()//eNest[@aSixtyFour=2]
return

($e/@aUnique1,
for $c in $e/eNest return $c/@aUnique1)

This query retrieves attribute nodes from the source document and outputs them
in the following order:

$e1/@aUnique1,
$e1/eNext[1]/@aUnique1, ..., $e1/eNext[last()]/@aUnique1,
$e2/@aUnique1,
...

where the $e1, $e2, etc., are eNest elements given in document order. Thus,
the order in which the information is presented is preserved, but the structure of
the output elements is changed. The difference between the two queries is that
the XPath query outputs a sequence of nodes retrieved from the input document,
while the original query uses these nodes to construct new XML elements. Thus
the structure and the type of the items in the result sequence changes.

Results Table 3.4 contains the distribution of the benchmark queries over the
language fragments defined above. Out of 163 queries, 47 (29%) are XPath 1.0
queries, 100 (61%) are XPath 2.0 queries, and only 16 (10%) queries cannot
be expressed in XPath. 13 of those use sorting and the other 3 use recursive
functions.

3.3.3 Conclusions

Based on the observations made in this section, we draw three conclusions:

3.4. Survey of benchmark usage 45

Benchmark # Queries Core XPath Nav. XPath sorting recursive
XPath 1.0 XPath 2.0 2.0 functions

XMach-1 8 0 3 1 2 1 1
XMark 20 3 3 5 8 1 0
X007 22 1 8 6 6 1 0
MBench 46 12 4 22 5 1 2
XBench TC/SD 17 1 3 5 6 2 0
XBench TC/MD 19 0 1 8 8 2 0
XBench DC/SD 16 0 4 5 5 2 0
XBench DC/MD 15 0 4 4 4 3 0
total 163 17 30 56 44 13 3

Table 3.4: Query language analysis of the benchmarks.

1. There are language features that are covered by all, or all but one, bench-
marks, i.e., there is agreement among the benchmark authors about which
logical operations a query engine should handle well. These features are at
the top of the list in Table 3.3.

2. The benchmark queries, with the exception of those of MBench, combine
many language features that might impact the query processing times. As
a result, the benchmark queries have an exploratory nature rather than a
diagnostic nature: if an engine performs badly on one language feature this
might reflect on the total performance time of all queries that cover it, while
if an engine performs badly on a query listed under a language feature it
does not necessarily mean that the engine performs badly on that language
feature.

3. The benchmark query sets are biased towards testing XPath features. This
is well argued, since XPath is a large and important fragment of XQuery.
Still, some important XQuery features, like sorting and recursion, are not
well covered. This can be attributed to the fact that the benchmarks are
old relative to the language standard.

3.4 Survey of benchmark usage

In this section, we present the results of a survey about the usage of the XQuery
benchmarks. The main goal of this survey is to find out whether the bench-
marks are used by the database research community for evaluating XML query
processors. If yes, how are they used? And if not, what does the community use?

For this survey, we consider the 2004 and 2005 conference proceedings of
ICDE, SIGMOD and VLDB. First, we select from the pool of the published
articles, those articles that are about XML processing, i.e., articles that are about

46 Chapter 3. Analysis of XQuery Benchmarks

Conference # of with standard
papers benchmarks

VLDB 22 7
SIGMOD 9 4
ICDE 10 2
total 41 13 (31%)

Benchmark # of with
papers derivation

XMark 11 5
XBench 2 0
XQTS (XMT) 2 0
total 13 5

Table 3.5: Benchmark usage survey statistics.

XQuery, XPath, XSLT or other closely related XML query languages, and about
query processing. There are 51 such articles. Then, we filter out those articles
that do not contain an experimental evaluation. We are left with a pool of 41
papers that are about XML processing and contain experimental evaluations.
Note that 80% (41 out of 51) of the articles on XML processing evaluate their
research experimentally. We examine the experimental results in these papers and
gather information about the data sets and the queries used in these experiments.

The detailed questions that we seek to answer are:

1. How many articles use standard benchmarks and which ones?

2. How many of these articles follow the benchmark methodology and how
many deviate from it?

3. What data sets and queries are used in experiments that do not use the
standard benchmarks? Characterize the queries in terms of the query lan-
guages used.

Detailed statistics including references to the papers we examined can be found
on the web: http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/
survey.html. Below, we briefly list the answers to our questions.

Questions 1 and 2. Table 3.5 contains statistics about the benchmarks usage.
Out of 41 papers on XML processing containing experiments, 13 use the standard
benchmarks: XMark, XBench, and the XMT test from the W3C XML Query
Test Suit (XQTS) [World Wide Web Consortium, 2006a]. XMark is the absolute
winner with 11 articles referring to it. Out of these, 5 contain experiments that
were run only on a few selected benchmark queries, those that contain language
features relevant to the research presented. Otherwise, the experiments were run
in compliance with the methodology of the respective benchmarks.

Question 3. Table 3.6 contains the statistics about data sets and query lan-
guages used. Out of 41 surveyed papers, 33 (80%) contain (instead of or besides
using the standard benchmarks) experiments on ad hoc data sets and/or queries.
These are conducted to facilitate a thorough analysis of the techniques presented.

http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/survey.html
http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/survey.html

3.4. Survey of benchmark usage 47

Real life and # of
synthetic data sets papers
XMark 22
DBLP 8
PennTreebank 6
XBench 5
SwissProt 4
NASA 3
Protein 3
IMDB 2
Shakespeare [Bosak, 1999] 2
XMach-1 1
others 9
total 33

Query language # of
papers

XPath 1.0 25
XQuery 3
modified version of XQuery 1
SQL 1
unspecified 3
total 33

Table 3.6: XML data sets and query languages used in scientific articles for
experimental evaluation of XML query processing engines and techniques.

In most cases, these experiments are based on existing (real life or synthetic)
data sets and specifically designed queries (often parametrized). Among the most
frequently used data sets are existing XML collections such as DBLP [Michael
Ley, 2006], PenntreeBank [Treebank, 2002], SwissProt [Swiss-Prot and TrEMBL,
1998], NASA [NASA, 2001], and Protein [Georgetown Protein Information Re-
source, 2001], and synthetically generated data from the XMark and XBench
benchmarks. For synthetically generated data conforming to an XML schema or
DTD, authors use the ToXGene generator [Barbosa et al., 2002] and the IBM
XML data generator [Diaz and Lovell, 1999].

Out of the 33 papers containing experiments on ad hoc data sets and/or
queries, 25 use XPath 1.0 queries, 3 use XQuery queries, one uses queries ex-
pressed in a modified version of XQuery, and one paper uses SQL queries. In the
remaining 3 papers, the language used to express the queries is unspecified. The
queries often express tree patterns and only use downwards axes.

Conclusions This survey of benchmark usage in the database scientific com-
munity leads to the following conclusions: (i) with the exception of XMark,
standard benchmarks are not systematically used for evaluating XML query pro-
cessors; (ii) instead, the authors design specific experiments to analyze in details
the proposed research; (iii) the majority of these experiments are based on frag-
ments of XPath 1.0 and on synthetic data provided by the benchmarks.

We see two possible reasons for the lack of popularity from which the bench-
marks suffer. One reason might be that the benchmarks are not easy to use. In
the next section, we present more evidence to support this hypothesis. Never-

48 Chapter 3. Analysis of XQuery Benchmarks

theless, based on the benchmark analysis presented in the previous sections, we
believe that the main reason might be the fact that the benchmarks’ workload
and measures are not suitable for the type of experimental analysis conducted in
the research papers. Note that the majority of articles use the benchmark data
but not the whole benchmark workload including the queries. To take XMark
as an example, 6 articles use the full benchmark workload, 5 articles use only
a subset of the query set, and 22 articles use only the XMark data set with a
custom-made set of queries.

3.5 Correcting and standardizing the benchmark

queries

In order to check how easy it is to run the benchmarks, we ran them on four open
source XQuery engines: Galax, SaxonB, Qizx/Open, and MonetDB/XQuery, and
discovered several issues with the benchmark queries. First, the queries of X007
and XMach-1 are written in an outdated syntax and could not be parsed by
the engines. Second, some queries of XBench and MBench contain mistakes and
raised errors or gave wrong results. And third, no benchmark but XMark is
designed to run on engines that implement static type checking, and thus their
queries raise errors on those engines. The only benchmark that we ran without
any problem is XMark. This could explain why XMark is the benchmark that is
most often used.

We corrected the benchmark queries and standardized the way the queries
specify the input documents. As a result, we could run the benchmarks on the
four engines. In Section 3.6, we will present the outcomes of these experiments. In
this section, we describe the problems that we found with the benchmark queries
and how we corrected them.

3.5.1 Detecting outdated syntax and errors

The benchmarks consist of a set of documents and a set of queries. Recall from
Tables 3.1 and 3.2 that the queries are given in a formal language (XQuery or
variants of it) together with natural language descriptions of the expected an-
swers. All queries are designed to return non-empty sequences of items. If during
the evaluation of a query on a (set of) document(s) an error is raised, then the
error must be due to a bug or limitation of the implementation.

A minimal requirement for the benchmarks is that the queries are correct,
which means that the formal representation of a query does not contain errors
and that the formal XQuery semantics [World Wide Web Consortium, 2007b] of
the query corresponds to the natural language description. There are two kinds
of incorrect queries. The first kind are queries that should raise XQuery errors
because of non-complience to the standard, including parsing errors; the queries

3.5. Correcting and standardizing the benchmark queries 49

are not designed to raise XQuery errors. We refer to such queries as error-raising
queries. The second kind are queries that return a (possibly empty) sequence of
items that does not correspond to the natural language description of the query
answer. We call such queries semantically incorrect.

There are three different types of XQuery error: static errors, type errors and
dynamic errors [World Wide Web Consortium, 2007b]. We classify the error-
raising queries by the type of error they produce. Static errors include parsing
errors. Type errors occur when an operator is applied to operands of wrong
types. There are two kinds of type errors: static type errors and dynamic type
errors. Static type errors are those that are detected during query parsing by
static type checking. Static type checking is an optional feature and not all the
engines implement it. Dynamic type errors are those that are detected during
query execution when static type checking is not used. Any dynamic type error
is also a static type error, while the opposite does not hold because of automatic
type casting. Finally, dynamic errors occur when an evaluation operation cannot
be completed, e.g., division by zero.

Since static type checking is an optional feature and it was not considered
when designing the benchmarks, it is fair not to consider static type errors that
are not also dynamic type errors as mistakes of the benchmarks. We will discuss
these errors in Section 3.5.3.

Checking the correctness of a given query on a given (set of) document(s)
is in general a non-computable problem (note that XQuery is Turing complete).
Moreover there is no XQuery reference implementation to assist us in checking
the correctness “by hand.” Nevertheless we can try to detect the incorrect queries
by running the benchmarks on several XQuery implementations. We might not
detect all the incorrect queries, and we run the risk of confusing implementation
dependent errors with XQuery errors, but this is the best we can realistically do.

Parsing errors (included in static errors) were detected by using the XQuery
parser available at the W3C XQuery Grammar Test Page (http://www.w3.org/
2005/qt-applets/xqueryApplet.html). The rest of the errors were detected by
running the benchmarks queries on the smallest (set of) document(s) of the cor-
responding benchmarks on four XQuery engines: Galax, SaxonB, Qizx/Open
and MonetDB/XQuery. Note that MonetDB/XQuery implements static type
checking. Thus we ignore the type errors produced by MonetDB/XQuery while
checking correctness. We detect semantically incorrect queries by comparing the
result of a query obtained on the smallest benchmark document with the natural
language description of that query. Our methodology is based on the assumption
that the majority of XQuery implementations (conforming to the XQuery stan-
dard) cope with the evaluation of all benchmark queries on the smallest (set of)
documents of the benchmarks.

In Table 3.7, we present the number of incorrect queries that we found. The
results are grouped by benchmark and by the type of error they raise. Some
queries contain multiple mistakes that should raise errors of different types. We

http://www.w3.org/2005/qt-applets/xqueryApplet.html
http://www.w3.org/2005/qt-applets/xqueryApplet.html

50 Chapter 3. Analysis of XQuery Benchmarks

Benchmark static dyn. type semantically incorrect/
error error incorrect total

XMach-1 8 0 0 8/8 (100%)
X007 22 0 0 22/22 (100%)
XMark 0 0 0 0/20 (0%)
Michigan 5 0 2 7/46 (15%)
XBench TC/SD 0 1 0 1/17 (6%)
XBench DC/SD 0 1 0 1/16 (6%)
XBench TC/MD 0 3 0 3/19 (16%)
XBench DC/MD 0 6 0 6/15 (40%)
total 35 11 2 48/163 (29%)

Table 3.7: Number of incorrect queries grouped per benchmark and type of error.

count only one error per query, namely the first one in the following order: static
error, type error, dynamic error. The incorrect queries that do not raise XQuery
errors are semantically incorrect.

Out of a total of 163 benchmark queries, 48 are incorrect. XMach-1 and X007
are old benchmarks and their queries were written in older versions of XQuery.
These queries raised static errors. Expressing the queries in an outdated for-
malism is not an error of the benchmarks; it rather indicates that they are not
properly maintained. Nevertheless, the queries of XMach-1 and X007 are un-
usable. XBench and MBench contain queries that raise static errors, dynamic
type errors and/or that are semantically incorrect. We did not find any dynamic
errors in any of the benchmarks. On top of the statistics presented in Table 3.7,
there are 14 queries that raise type errors on MonetDB/XQuery. We will discuss
these errors and how we correct them in Section 3.5.3. XMark is the only bench-
mark without incorrect queries (possibly the reason why XMark is the most used
benchmark).

To summarize, 29% of the total number of queries were unusable for testing
Galax, SaxonB, and Qizx/Open due to diverse errors. If we also consider Mon-
etDB/XQuery (which implements static type checking), then even more queries
could not be used to test at least one of the four engines.

3.5.2 Correcting the queries

When correcting the benchmarks we adhered to the following general guidelines:

1. avoid changing the semantics of the query,

2. keep the changes to the syntactical constructs in the queries to a minimum
(an XQuery query can be written in many different ways and the syntactic
constructs used might influence the query performance, cf. [Afanasiev et al.,
2005a] and Section 3.7 below), and

3.5. Correcting and standardizing the benchmark queries 51

3. avoid using features that are not widely supported by the current XQuery
engines (for example, the collection feature). This guideline is meant to
ensure that the benchmarks can be run on as many of the current imple-
mentations as possible.

For checking the correctness of our changes we rely on the parser available at
the W3C XQuery Grammar Test Page and on SaxonB. We picked SaxonB as
our reference implementation because it has a 100% score on the XML Query
Test Suite (XQTS) [World Wide Web Consortium, 2006b]. Though XQTS is not
officially meant to test for an engine’s compliance to the XQuery standard, it
is the best compliance test available. It consists of 14, 637 test cases covering
the whole functionality of the language. An engine gets a 100% score if all the
test cases run successfully on that engine and produce results conforming to the
reference results provided in the test cases.

All the corrected queries run without raising any errors on SaxonB. On other
engines errors are still raised, but they are due to engine implementation problems
(see Section 3.6). Below we discuss the changes we made to the benchmark
queries. The resulting syntactically correct benchmarks can be found on the
web,8 together with a detailed description of our changes.

Correcting static errors

XMach-1, X007, and MBench contain queries that raise static errors. These
errors are due to: (i) non-compliance to the current XQuery specifications, or
(ii) typographical errors. The XMach-1 and MBench queries are written in an
older version of XQuery. They contain incorrect function definitions and incorrect
FLWOR expressions and use built-in functions that were renamed or do not exist
anymore. The X007 queries are written in Kweelt [Sahuguet et al., 2000]—an
enriched and implemented variant of Quilt [Chamberlin et al., 2000]. Quilt is an
XML query language that predates, and is the basis of, XQuery.

Correcting these errors is straightforward. Below we show an example of a
query written in an old syntax. Consider query Q14 of X007:

FUNCTION year() { "2002" }
FOR $c IN document("small31.xml")

/ComplexAssembly/ComplexAssembly
/ComplexAssembly/ComplexAssembly
/BaseAssembly/CompositePart

Where $c/@buildDate .>=. (year()-1)
RETURN

<result>
$c

</result>

8http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/queries.html

http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/queries.html

52 Chapter 3. Analysis of XQuery Benchmarks

sortby (buildDate DESCENDING)

We rewrote it to XQuery as follows:

declare namespace my=’my-functions’;
declare function my:year() as xs:integer
{
2002
};

for $c in doc("small31.xml")
/ComplexAssembly/ComplexAssembly
/ComplexAssembly/ComplexAssembly
/BaseAssembly/CompositePart

where $c/@buildDate >= my:year()-1
order by $c/@buildDate descending
return

<result>
{$c}

</result>

Correcting dynamic type errors

X007, XBench, and MBench contain type errors generated by: (i) applying the
child step to items of atomic type, or (ii) value comparisons between operands
with incomparable types. These seem to be programming mistakes.

As an example of the first kind of error, consider query Q3 of XBench TC/MD:

for $a in distinct-values(
input()/article/prolog/dateline/date)

let $b := input()/article/prolog/
dateline[date=$a]

return
<Output>

<Date>{$a/text()}</Date>
<NumberOfArticles>
{count($b)}
</NumberOfArticles>

</Output>

The output of the built-in function fn:distinct-values() is of atomic type,
thus $a is of type xdt:anyAtomicType. The location step text() in the path
expression $a/text() cannot be used when the context item is an atomic value.
We corrected this by removing the location step text() from the path expression
in question.

As an example of the second kind of error, consider query Q6 of XBench
DC/MD:

3.5. Correcting and standardizing the benchmark queries 53

for $ord in input()/order
where some $item in $ord/order_lines/order_line

satisfies $item/discount_rate gt 0.02
return

$ord

When applying the value comparison gt, the left operand is first atomized,
then the untyped atomic operand is cast to xs:string. Since xs:string and
xs:decimal (the type of the right operand) are incomparable types a type er-
ror is raised. To solve this problem, we could explicitly cast the left operand to
xs:decimal or we could use the general comparison operator > that assures the
conversion of the untyped operand to the numeric type of the other operand. We
take the latter option.

Correcting semantically incorrect queries

We found two semantically incorrect queries, namely QS6 and QA2 of MBench.
QS6 produced an empty sequence instead of the expected result due to a typo.
QA2 contains two different programming mistakes that lead to incorrect results.
We discuss this query in detail below.

The natural language description of QA2 says:

“Compute the average value of the aSixtyFour attribute of all nodes
at each level. The return structure is a tree, with a dummy root and a
child for each group. Each leaf (child) node has one attribute for the
level and one attribute for the average value. The number of returned
trees is 16.” [Runapongsa et al., 2002]

The corresponding XQuery query is:

declare namespace my=’my-functions’;
declare function my:one_level($e as element()*)
{
<average avgaSixtyFour="{

avg(for $a in $e return $a/@aSixtyFour)
}"
aLevel="{$e[1]/@aLevel}">
{my:one_level($e/eNest)}
</average>
};
my:one_level(doc()/eNest/eNest)

First of all, note that the function my:one_level() gets into an infinite recursion
when it receives as input an empty sequence. Now, for each tree level of the input
document the function is recursively called on the sequence of elements of the next

54 Chapter 3. Analysis of XQuery Benchmarks

level. For the last level of the tree the function is called on an empty sequence
and it ends up in an infinite recursion. Thus, this query does not produce an
answer at all; instead an engine error occurs. This can be fixed by adding to the
body of the function an if-condition:

if(empty($e)) then ()
else
<average avgaSixtyFour="{

avg(for $a in $e return $a/@aSixtyFour)
}"
aLevel="{$e[1]/@aLevel}">
{my:one_level($e/eNest)}
</average>

The second error is a mismatch between structure of the resulting elements and
the description of the result. When the first error is fixed, then the query yields
a deep tree with one more level than there are levels in the input document.
This is due to the fact that the recursive function call is nested in the result
element construction. This does not conform with the query description, which
talks about a shallow tree with a dummy root and as many children as levels in
the input documents. This can be corrected in two ways: changing the syntax
of the query to fit the description, or changing the description to fit the formal
semantics of the query. The Michigan benchmark authors explicitly say that the
natural language description is the normative query definition. We thus picked
the first option. The corrected query is below.

declare namespace my=’my-functions’;
declare function my:one_level($e as element()*)
{
if(empty($e)) then ()
else (
<average avgaSixtyFour="{
avg(for $a in $e return $a/@aSixtyFour)
}"
aLevel="{$e[1]/@aLevel}"/>,
my:one_level($e/eNest)
)
};
<dummy>
{my:one_level(doc()/eNest/eNest)}
</dummy>

3.5.3 Other issues

There are two more issues that make the benchmarks difficult to use. One is
that the benchmarks specify the input for their queries in different ways and not

3.5. Correcting and standardizing the benchmark queries 55

always formally correctly. The other issue has to do with static type checking.
The benchmark queries were not designed with this feature in mind and many
queries raise static type errors when static type checking is used. We address
these issues in this section and describe how we resolve them.

Specifying the input of a query

The benchmarks have different ways of indicating the input data. X007 and
XMark queries use the fn:doc() function with a document URI (usually an
absolute file name) as argument. MBench queries invoke the fn:collection()

function on collection name "mbench", even though they are designed to query
one document. XMach-1 queries do not contain input information and all the
XPath paths are absolute. Finally, the XBench benchmark refers to the input
by using a new function input() that is not formally defined. We changed the
benchmarks so that all queries specify their input in the same way.

X007, XMark, MBench and XBench TC/SD and DC/SD are single-document
scenario benchmarks, which means that their queries are evaluated against one
document at a time. In a single-document scenario the input document should
be specified, according to the XQuery standard, by using the fn:doc() func-
tion. XMach-1 and XBench TC/MD and DC/MD are multi-document scenario
benchmarks, i.e., their queries are evaluated against an (unbounded) collection
of documents at once without explicitly invoking each document in the query via
the fn:doc() function. XQuery has a special built-in function fn:collection()

to deal with this scenario.
We changed the queries of X007, XMark, MBench and XBench (TC/SD and

DC/SD) to access their input data by invoking the fn:doc() function. The
document URI is left out to be filled in at query execution. Most benchmarks
test data scalability, so they run the same queries on different documents. Thus
the input document(s) of a query is a parameter which should be filled in by the
testing platform.

For the queries of XMach-1 and XBench TC/MD and DC/MD we should use
the fn:collection() function. Unfortunately, this function is not yet supported
by all the engines. In order to run this scenario in a uniform way on all the
current engines, we create an XML document collection.xml that contains the
list of documents in the collection and their absolute URIs:

<collection>
<doc>/path/doc1.xml</doc>
<doc>/path/doc2.xml</doc>
...
<doc>/path/docn.xml</doc>
</collection>

We then query this document to obtain the sequence of document nodes in the
collection. We added the computation of this sequence as a preamble to each

56 Chapter 3. Analysis of XQuery Benchmarks

query. The result is stored in a variable that is further used instead of the
fn:collection() function call. So the query:

for $a in fn:collection()//tagname
return $a

becomes:

let $collection :=
for $docURI in doc("collection.xml")

//doc/text()
return doc($docURI)

for $a in $collection//tagname
return $a

Correcting static type errors

Some engines, e.g., MonetDB/XQuery, implement the static type checking fea-
ture of XQuery. This feature requires implementations to detect and report
static type errors during the static analysis phase of the query processing model
[World Wide Web Consortium, 2007]. During static type checking the engine
tries to assign a static type to the query and it raises a type error if it fails. In
order to run the benchmarks on the engines that implement static type checking,
we ensure that the benchmark queries do not raise static type errors.

All the benchmarks except XMark contain queries that raise static type errors
on MonetDB/XQuery. All these errors were caused by applying operators and
functions on sequences that could have multiple items while only a singleton or
empty sequence is allowed. For example, Q6 of XBench TC/SD,

for $word in doc()/dictionary/e
where some $item in $word/ss/s/qp/q

satisfies $item/qd eq "1900"
return

$word

applies the value comparison eq on a XPath expression that might yield a se-
quence of elements with size larger than one. We added the fn:zero-or-one
function invocation that tests for cardinality of the left operand of the value
comparison:

zero-or-one($item/qd) eq "1900"

The adjusted query passes the static type checker of MonetDB/XQuery.

3.6. Running the benchmarks 57

3.5.4 Conclusion

The main conclusion we draw in this section is that the benchmarks, with the
exception of XMark, are not maintained and have become outdated very quickly
and thereby unusable. The benchmarks were published in 2001 and 2002, while
XQuery became a W3C recommendation only in 2007. The changes that were
made to the language in the meantime are not accounted for in the benchmarks.
Besides this, we found queries that were incorrect but we could not attribute the
reason to outdated syntax, thus we consider them as simply errors. The fact
that these errors were not corrected by now is again an indication that these
benchmarks are not maintained or used.

Since XQuery became a W3C recommendation in 2007, we expect our correc-
tions to the benchmark queries to last as long as the benchmarks are relevant.

3.6 Running the benchmarks

In the previous sections, we introduced and analyzed the benchmarks themselves;
in this section, we discuss what we can learn from using them. We report on
results obtained by running the benchmarks on the following four XQuery engines:

• Galax version 0.5.0

• SaxonB version 8.6.1

• Qizx/Open version 1.0

• MonetDB/XQuery version 0.10, 32 bit compilation.

MonetDB/XQuery is an XML/XQuery database system, while the other engines
are stand-alone query processors.

We used an Intel(R) Pentium(R) 4 CPU 3.00GHz, with 2026MB of RAM,
running Linux version 2.6.12. For the Java applications (SaxonB and Qizx/Open)
1024MB memory size was allocated. We ran each query 4 times and we took the
average of the last 3 runs. The times reported are CPU times measuring the
complete execution of a query including loading and processing the document
and serializing the output. All the engines were executed in a command line
fashion.

The results reported below are obtained by running all the engines on bench-
mark data of different sizes:

58 Chapter 3. Analysis of XQuery Benchmarks

data 1 data 2
XMach-1 19MB 179MB
X007 13MB 130MB
XMark 14MB 113MB
MBench 46MB –
XBench TC/SD 10MB 105MB
XBench TC/MD 9.5MB 94MB
XBench DC/SD 11MB 104MB
XBench DC/MD 16MB 160MB

The last two columns indicate the sizes of the benchmark data, whether it is
a document or a collection of documents. We picked the largest data sizes so
that three out of four engines would manage to process the data and produce
an answer on our machine, i.e., the benchmark queries would be doable for the
majority of the engines. For MBench, only the data of size 46MB satisfied this
condition, hence we consider only one data size for MBench.

Figures 3.1 and 3.2 contain the results of running the benchmarks on these
two data sizes on the four engines. The individual benchmark queries are given
on the x-axis and the total execution times on the y-axis. For more detailed
results, see http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/

results.html.
This experiment was first published in [Afanasiev and Marx, 2006]. Indepen-

dently, a similar experiment that covers more engines and benchmark data sizes
was conducted in [Manegold, 2008]. Manegold’s findings are in line with ours.

In the following sections, we briefly go through the lessons we learned based
on these results.

3.6.1 Failed measurements

Galax Qizx/Open MonetDB/XQuery
XMach-1 0 0 1
X007 0 1 2
XMark 0 4 0
MBench 0 0 1
XBench TC/SD 1 0 2
XBench DC/SD 1 2 0
XBench TC/MD 0 0 0
XBench DC/MD 0 2 1

Table 3.8: Number of syntax errors raised by the engines.

The first piece of information the benchmark results provide us with is the failed
measurements. They occur due to syntax errors and engine crash errors. The

http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/results.html
http://ilps.science.uva.nl/Resources/MemBeR/other-benchmarks/results.html

3.6. Running the benchmarks 59

1 2 3 4 5 6 7 8

101

102

103

104
Total execution time (sec), XMach−1, doc 16MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8
101

102

103

104

105
Total execution time (sec), XMach−1, doc 180MB

Query

Galax
SaxonB
Qizx/Open

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0

5

10

15

20

25

30

35

40

45
Total execution time (sec), X007, doc 13MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

100

101

102

103

104
Total execution time (sec), X007, doc 130MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
100

101

102

103
Total execution time (sec), XMark, doc 14MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

101

102

103

104

Total execution time (sec), XMark, doc 113MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

R1 ... 4 S1 ... 5 10111215 20 25 30 35 J1 ... 4 A1 2 4 5 6
10−1

100

101

102

103

104
Total execution time (sec), MBench, doc 45MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

Figure 3.1: XMach-1, X007, XMark, and XBench on Galax, SaxonB, Qizx/Open,
and MonetDB/XQuery.

60 Chapter 3. Analysis of XQuery Benchmarks

1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19
0

5

10

15

20

25

30
Total execution time (sec), XBench TC/SD, doc 10MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 17 18 19

101

102

103

104
Total execution time (sec), XBench TC/SD, doc 104MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 14 17 19 20
0

1

2

3

4

5

6

7

8
Total execution time (sec), XBench DC/SD, doc 10MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 14 17 19 20

101

102

103
Total execution time (sec), XBench DC/SD, doc 100MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.5

1

1.5

2

2.5

3
Total execution time (sec), XBench TC/MD, doc 8MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

5

10

15

20

25

30
Total execution time (sec), XBench TC/MD, doc 112MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 3 4 5 6 7 8 9 10 11 12 14 16 17 19

101

102

103

Total execution time (sec), XBench DC/MD, doc 16MB

Query

Galax
SaxonB
Qizx/Open
MonetDB/XQuery

1 3 4 5 6 7 8 9 10 11 12 14 16 17 19

101

102

103

104
Total execution time (sec), XBench DC/MD, doc 160MB

Query

Galax
SaxonB
Qizx/Open

Figure 3.2: XBench TC/SD, DC/SD, TC/MD, and DC/MD on Galax, SaxonB,
Qizx/Open, and MonetDB/XQuery.

3.6. Running the benchmarks 61

latter can have several different causes: out of memory, out of Java heap space,
materialization out of bounds, segmentation fault, etc. Table 3.8 lists the number
of syntax errors raised by the engines: for Qizx/Open all the errors are related to
the fn:zero-or-one() function; the two errors of Galax are caused by the fact
that it does not implement the preceding axis; the MonetDB/XQuery errors
are diverse, for details see the results web page. SaxonB did not raise syntax
errors. Table 3.9 lists the engine crash errors obtained: for Galax, the errors
are “materialization out of bounds”; for MonetDB/XQuery, the errors are caused
by the large intermediate results that do not fit in main-memory nor in virtual
memory. SaxonB and Qizx/Open did not produce crash errors.

Galax MonetDB/XQuery
XMach-1 – all queries on data 2
X007 Q18 on data 2 Q5
XMark Q11, Q12 on data 2 –
MBench – QJ1, QJ2, QJ3 QA4
XBench DC/SD – Q6
XBench DC/MD – all queries on data 2

Table 3.9: Engine crash errors produced by the engines.

3.6.2 Comparing the performance of different engines

It is useful to analyze the benchmark results of an engine in comparison with
the results of the other engines. The comparison can be on absolute times, but
also on the shape of the graphs. For instance, the shapes of the graphs obtained
on XMach-1 (Figure 3.1) indicate that Galax has difficulties with Q2 while the
other engines do not. Another example is comparing the constant and robust
behavior of MonetDB/XQuery on X007 and XMark (Figure 3.1) with the often
faster, but unstable performance of Saxon and Qizx/Open. Thus, by comparing
the performance of several engines, it is easier to spot problems and bottlenecks.

Often, the goal of running a benchmark is to select the best performing engine
among two or more candidates. Thus, the benchmark results are used for ranking
the engines. For example, Boncz et al. [2006a] rank 16 engines based on the results
obtained on XMark. We want to perform a similar tournament between the four
engines using all five benchmarks.

Ranking the engines based on all benchmark results shown in Figures 3.1
and 3.2 is difficult. There are many parameters, such as database size and bench-
mark type, that influence the engines’ performance and that make it hard to
create an informative general ranking of engines. For example, let us consider a
ranking based on the average query processing time. It is easy to see from Fig-
ure 3.2 that on XBench TC/MD, the engine rankings computed on different data

62 Chapter 3. Analysis of XQuery Benchmarks

sizes are almost reversed. The rankings differ also per benchmark: as noticed
also by [Boncz et al., 2006a], MonetDB/XQuery outperforms all other engines on
XMark, but it has great difficulties with XMach-1 and XBench DC/MD. For a
ranking based on average performance times to be informative there should be a
small standard deviation of the performance times across all the measurements
for a particular engine. Thus, a ranking based on this measure and all benchmark
results is not informative.

3.6.3 Performance on language features

In Section 3.3.1, we categorized the benchmark queries according to the language
feature they test. Then we observed that most of the queries, with the exception
of those of MBench, express more than one language features at once. Since the
benchmark authors do not explicitly argue why the query is considered to test
one language feature and not the others that it contains, we concluded that one
has to be careful when interpreting the benchmark results and not necessarily
attribute the results to the feature that the query is said to test. We are now
going to see how robust an engine’s performance is on the queries from the same
language feature category among different benchmarks.

As expected, there are engines that exhibit different performance patterns on
queries that target the same language feature but are from different benchmarks.
Below, we provide three examples based on Figures 3.1 and 3.2. In parenthesis we
show the queries that were mapped into the respective language feature category
(see Table 3.3).

• Galax on text search (Q2 of XMach-1, Q7 of X007, Q14 of XMark, Q17, Q18
of XBench, and QS11, QS12 of MBench): the graphs show that the engine
has difficulties with the text search queries on XMach-1, XMark, XBench
TC/SD, TC/MD, and DC/SD, but not on X007, XBench DC/MD, and
MBench.

• Qizx/Open on join (Q7, Q8 of XMach-1, Q5 of X007, Q11, Q12 of XMark,
and QJ1, QJ2 of MBench): the engine has difficulties on the join queries of
XMach-1 and XMark, but not on X007 and MBench.

• Qizx/Open on pointer-based join (Q8, Q9 of XMark, Q19 of all four XBench,
and QJ3, QJ4 of MBench): the engine has difficulties on the joins of
MBench, but not on the rest of the benchmarks.

The performance variance can be attributed to the difference in benchmark data
properties or to poor query design. There are many parameters that can influence
the performance of an engine and there is a need for further investigation to
determine the cause of the differences in the engines’ behavior.

3.7. Micro-benchmarking with MBench 63

3.6.4 Conclusions

In this section, we made three observations:

• The five benchmarks are useful for finding the limits of the tested engines.

• Comparing the performance of several engines allows for a quick discovery
of performance problems. Ranking engines based on their performance on
all the benchmarks is not informative due to large variance in performance
along different benchmarks and data sizes.

• The engines’ performance on one language feature on one benchmark cannot
be generalized to the rest of the benchmarks that test the same feature. We
believe the reason lies not only in the difference in the data properties among
the benchmarks, but in the query design. In Section 3.7, we present further
arguments to support this claim.

All three observations indicate that the benchmarks are a powerful tool for ex-
ploratory performance evaluation. The succinct query sets and the availability
of data generators that can vary data size and other data parameters present an
important advantage over the W3C XML Query Test Suit (XQTS) [World Wide
Web Consortium, 2006a], for example. They also allow for easy expansion of the
benchmark design for further investigations of the performance of engines.

3.7 Micro-benchmarking with MBench

In this section, we investigate the micro-benchmarking properties of MBench. Our
main goal is to check whether the benchmark queries allow for precise conclusions
regarding an engine’s performance on the tested language features.

MBench targets several language features (see Section 3.2). In Section 3.6.3,
we observed that one of the engines, namely Qizx/Open, has difficulties on the
pointer-based join queries of MBench and not on the queries of other benchmarks
testing the same language feature. Following our curiosity about the reason for
this behavior, we chose the join queries of MBench for our investigation. We hope
this investigation will give us some insights into MBench and micro-benchmarking
in general.

First, we describe the join queries of MBench in Section 3.7.1. Then, we
analyze Qizx/Open’s query processing times on these queries obtained in previous
section and discover that it is difficult to interpret the results. The reason is that
the queries vary several parameters at the same time and it is not clear which
parameter influences the query execution time. We extend the benchmark query
set in order to find out the answer. We present our experiment with Qizx/Open
in Section 3.7.2. We conclude in Section 3.7.3.

64 Chapter 3. Analysis of XQuery Benchmarks

3.7.1 MBench join queries

In this section, we describe the MBench data and the join queries in detail.

Most (99%) of the elements of the MBench data are of the same type and
are called eNest. Each eNest element has numeric attributes with precise value
distributions. For example, the attribute aUnique2 of type ID contains a unique
integer generated randomly; the attribute aSixtyFour contains an integer equal
to the value of its aUnique2 attribute modulo 64. The remainder (1%) of the
elements are called eOccasional and contain only one attribute, aRef, of type
IDREF.

Each query in the MBench query set has two variants, one selecting a small
number of elements of the input document and the other selecting a large number
of elements. Query selectivity is the percentage of elements of the queried doc-
ument retrieved (selected) by the query. The selectivity of a query is controlled
by filtering the eNest elements with a particular attribute value. For example,
the query //eNest[@aSixtyFour=0] returns approximately 1/64th (1.6%) of all
eNest elements. By varying the selectivity of a query one can test the influence
of the result size on the query processing times.

The join query set is designed to test how a query processor deals with joins
on attribute values. The performance of engines is measured in two dimensions:
join type and query selectivity. There are two types of joins: joins on simple
attributes (value-based) and id/idref (pointer-based) joins. The distinction was
made in order to test possible performance advantages of the id/idref joins in
the presence of an id-based index. Between the queries of the same join type the
query selectivity is varied, in order to test for the influence of the query result
size on the join evaluation algorithms. The four join queries of the Michigan
benchmark, QJ1–QJ4, are created by varying these two parameters.

Queries QJ1 and QJ2 are joins on simple attributes; QJ3 and QJ4 are id/idref
joins. QJ2 returns roughly 4 times more elements than QJ1, and QJ4 returns
around 20 times more elements than QJ3. The actual queries are given below.

The query QJ1 is:

for $e1 in doc()//eNest[@aSixtyFour=2],
$e2 in doc()//eNest[@aSixtyFour=2]

where $e2/@aUnique1=$e1/@aUnique1
return

<eNest1 aUnique1="{$e1/@aUnique1}"
aSixtyFour="{$e1/@aSixtyFour}"
aLevel="{$e1/@aLevel}">

<eNest2 aUnique1="{$e2/@aUnique1}"
aSixtyFour="{$e2/@aSixtyFour}"
aLevel="{$e2/@aLevel}"/>

</eNest1>

3.7. Micro-benchmarking with MBench 65

Varying query parameters Expected results
QJ1 ⇒ QJ2
query selectivity: 1.6% ⇒ 6.3%

query processing time grows

QJ3 ⇒ QJ4
query selectivity: 0.02% ⇒ 0.4%

query processing time grows

QJ1,QJ2 ⇒ QJ3,QJ4
average query selectivity: 3.95% ⇒ 0.21%
join type: value-based ⇒ id/idref
syntactic form: where form ⇒ if form

average query processing time
decreases

Table 3.10: Varying the query parameters of the four join queries of the Michigan
benchmark and the expected results.

QJ2 is obtained from QJ1 by replacing all occurrences of the attribute name
aSixtyFour with aSixteen. Thus we expect that QJ2 returns 4 (=64/16) times
more elements. The query selectivity of QJ1 and QJ2 is approximately 1.6% and
6.3%, respectively.

The query QJ3 is:

for $e1 in doc()//eOccasional,
$e2 in doc()//eNest[@aSixtyFour=3]

return
if ($e2/@aUnique1=$e1/@aRef) then

<eOccasional aRef="{$e1/@aRef}">
<eNest aUnique1="{$e2/@aUnique1}"

aSixtyFour="{$e2/@aSixtyFour}"/>
</eOccasional>

else()

QJ4 is obtained from QJ3 by replacing all the occurrences of the attribute name
aSixtyFour with aFour. The query selectivity of QJ3 and QJ4 is approximately
0.4% and 0.02%.9

Remark Besides the two parameters described above, namely join type and
query selectivity, the queries vary in another parameter, the syntactic form used
to express the joins. QJ1-QJ2 use the where clause to express the join, while
queries QJ3-QJ4 use the if then else construct. Clearly, these two patterns
are equivalent. Moreover, both variants have the same normal form in XQuery

9Note that even though the selectivity of the subexpression //eNest[@aFour=3] is 16 times
larger than the selectivity of the subexpression //eNest[@aSixtyFour=3], the selectivity of
QJ4 is 20 times larger than the selectivity of QJ3. The difference is due to the influence of
the eOccasional elements on the join outcome. For more information about the eOccasional
elements and their attribute values, see [Runapongsa et al., 2002].

66 Chapter 3. Analysis of XQuery Benchmarks

Query (selectivity) Query execution time (sec)

original where if
query variant variant

QJ1 (1.6%) 3.6 3.6 330.4
QJ2 (6.3%) 3.8 3.8 1405.6
QJ3 (.02%) 338.8 3.3 338.8
QJ4 (.4%) 396.1 3.5 396.1
avg(QJ1,QJ2) 3.7 3.7 868
avg(QJ3,QJ4) 367.45 3.4 367.45

Table 3.11: Qizx/Open on the original and modified join queries of MBench.

Core [World Wide Web Consortium, 2007b], which is a complete fragment of
XQuery that is used to specify the formal semantics. The benchmark authors do
not explain why this parameter is varied and how it influences the target of the
micro-benchmark.

Measure In [Runapongsa et al., 2002] the join queries are evaluated on a doc-
ument of fixed size and the results consist of four query processing time measure-
ments. When analyzing the results, the authors look at the effect of the query
selectivity on the performance for each join type. If a simple, unoptimized nested
loop join algorithm is implemented to evaluate the joins, the query complexity is
O(n2) and the selectivity factor has a large impact on the performance times. On
the other hand, optimized algorithms should scale better with respect to query
selectivity. The authors expect that the id/idref joins scale up better than the
simple joins, when, for example, an id-based index is used. And finally, the ex-
pectation is that the average query processing time of the id/idref joins is smaller
than the average query processing time of the simple joins, due to the optimiza-
tion opportunities of the id/idref joins and also due to the fact that the query
selectivity of the former queries is smaller than the query selectivity of the latter
queries. The influence of the varying syntactic form is not taken into account in
the benchmark measure. In Table 3.10, we list the parameters that vary between
the four queries, their values and the expected influence on the results.

In the next section, we analyze Qizx/Open’s results on these queries.

3.7.2 Evaluating Qizx/Open on the MBench join queries

In Section 3.6, we ran Qizx/Open on the MBench data of size 46MB (728K nodes).
The engine’s execution times on the four join queries, QJ1–QJ4, are presented
in the second column of Table 3.11. As expected, the query processing times
for QJ2 and QJ4 are larger than those for QJ1 and QJ3, respectively. But the
average query processing time for QJ3-QJ4 is 2 orders of magnitude larger than

3.7. Micro-benchmarking with MBench 67

the average time for QJ1–QJ2, while we expected the query processing time to
decrease.

Does this indicate an abnormality with the Qizx/Open implementation of
id/idref joins? Or is the difference in the query processing times maybe due to
the variance in the syntactic form? The latter hypothesis sounds more plausible.

We extended the query set with the where and if variants for all four queries
and ran the engine on the new queries. The execution times presented in the third
and the fourth column of Table 3.11 show that our hypothesis was right. Note
that if we fix the syntactic form (i.e., consider one column of Table 3.11), then the
results correspond to our initial expectations: the query processing times increase
within a join type when the query selectivity increases, and the average query
processing time of id/idref joins is smaller than the average query processing
time of value-based joins. But the processing times for the if variant are much
larger than the performance times for the where variant. Note that the algorithm
that Qizx/Open applies for the joins expressed in the where form is efficient—it
seems to scale sub-linearly with respect to the query selectivity—but it shows
no difference between the two types of joins. The algorithm applied to the joins
expressed in the if form is less efficient—it seems to scale super-linearly with
respect to query selectivity for the simple joins—but scales better for the id/idref
joins.

Since in XQuery joins can be expressed syntactically in many different ways,
the join processing problem is two-fold: first a join has to be recognized and
then the efficient algorithm can be applied. Our extended experiment indicates
a problem with the join detection mechanism of Qizx/Open. By separating the
influence of the query’s syntactic form from the influence of other parameters,
we could interpret the results and learn more about the engine’s join evaluation
strategies.

The extended join query set only tests the influence of 3 parameters. Joins
are complex operations and there are more parameters that might influence the
performance of a join processing technique, for example the number of join condi-
tions. As follow-up work, we further extend this micro-benchmark to thoroughly
test the join detection mechanisms on more query parameters. We present this
micro-benchmark and experiments on four query processors in Chapter 7.

3.7.3 Conclusions

The application benchmarks, XMach-1, X007, XMark, and XBench, are not suit-
able for a thorough analysis of a query processing technique. MBench, on the
other hand, is a micro-benchmark and it is meant for such an analysis. We inves-
tigated the MBench queries that test for value-based and pointer-based joins and
found that they fail to isolate the impact of two parameters, namely the join type
and the syntactic form, on the performance evaluation and lead to inconclusive
results. Not surprisingly, there is an engine for which the benchmark does not

68 Chapter 3. Analysis of XQuery Benchmarks

behave as expected and for this engine the results cannot be interpreted.

3.8 Conclusions

In this chapter, we described and studied five standard XQuery benchmarks pub-
licly available in 2006: XMach-1, XMark, X007, MBench, and XBench. The
questions we pursued are: Question 3.1 “What do the benchmarks measure?”,
Question 3.2 “How are the benchmarks used?”, and Question 3.3 “What can we
learn from using them?”. The main conclusion we draw is that the benchmarks
are very useful for exploratory performance studies, but not adequate for rigor-
ous performance evaluations of XML query processors. Below, we summarize our
answers to each question.

Answering Question 3.1 The benchmark summaries and comparison given
in Section 3.2 show that XMach-1 and MBench have a distinct and clear focus,
while X007, XMark, and XBench, have a more diffuse focus and are similar in
many respects. The key difference between XMach-1, MBench and the rest is
the target and performance measure. XMach-1 is an application benchmark that
tests the overall performance of an XML DBMS in a real application scenario; the
benchmark measure is the query throughput. MBench a micro-benchmark that
tests the performance of an XML query processor on five language features on an
artificial document; the benchmark measure is the query processing time. X007,
XMark, and XBench are application benchmark that test the performance of an
XML query processor on a (small) set of (complex) queries. The key difference
between them is the document scenario they test: X007, XMark, and XBench
TC/SD and DC/SD test single-document scenario, while XBench TC/MD and
DC/MD test multi-codument scenario. Tables 3.1 and 3.2 contain a detailed de-
scription of benchmark parameters and their values for reference and comparison.

The queries of each benchmark were designed to test important language
features. Each query is labeled with one language feature. Table 3.3 contains a
mapping of the benchmark queries into the language features they are designed
to test. In Section 3.3, we observe that a query usually contains more than one
language feature and an engine’s performance on that query should not necessarily
be attributed to the language feature with which it is labeled. Thus, the queries
have an exploratory nature rather than a diagnostic nature.

Further, also in Section 3.3, we show that 90% of all queries can be expressed
in XPath 1.0 or 2.0, if we consider only the element retrieval functionality and
ignore the XML construction functionality of XQuery. The remaining 10% of the
queries test two XQuery properties: sorting and user-defined recursive functions.
Thus the benchmarks measure mainly the performance of XPath features.

When considered together, as a family, the benchmarks have a good coverage
of the main characteristics of XML documents and of the important XQuery
language features. Nevertheless, they do not cover the whole space of XML query

3.8. Conclusions 69

processing scenarios and parameters. For example, more advanced XML/XQuery
features, such as typed data, namespaces, recursion, etc., are poorly covered.

Answering Question 3.2 In Section 3.4, we conducted a survey of scientific
articles reported in the 2004 and 2005 proceedings of the ICDE, SIGMOD and
VLDB conferences. The survey shows that fewer than 1/3 of the articles on XML
query processing that provide experimental results use benchmarks (11 papers use
XMark and 2 papers use XBench). The remaining articles use ad-hoc experiments
to evaluate their research results. The majority of these (73%) use benchmark
data sets or real data and ad-hoc query sets. Thus, with the exception of XMark
and XBench, the benchmarks are not used.

One reason for the limited usage of the benchmarks might be that their data
and query set are outdated. For example, the benchmark queries (with the ex-
ception of XMark) do not comply with the W3C XQuery standard that was
finalized five years after the benchmarks were developed. We found that 29% of
the benchmark queries cannot be run on current XQuery engines due to diverse
errors, including syntax errors. We fixed these errors and rewrote the queries in
a uniform format for all the benchmarks.

A second reason for the limited usage of the benchmarks might be that many
of the papers contain an in-depth analysis of a particular XPath/XQuery process-
ing technique and the benchmarks are not suitable for this kind of analysis. In
such cases, specialized micro-benchmarks are more appropriate [Afanasiev et al.,
2005a]. Since MBench was designed for micro-benchmarking, we will comment
on its properties below.

Answering Question 3.3 In Section 3.6, we ran the benchmarks on four
XQuery engines: Galax, SaxonB, Qizx/Open, and MonetDB/XQuery and com-
pared their performance. A first observation we make is that the engines produce
errors and suffer from crashes, which makes the comparison difficult. Next, no
engine can be crowned as a winner. The relative performance of the engines
varies on different benchmarks, which indicates that the engines are tuned for a
particular user or data scenario. The last observation we made is that the en-
gines’ performance on queries testing a specific language feature might differ per
benchmark. This again might be the reason for the difference between data and
user scenario or it might be an indication of poorly designed queries. Thus, it
is important to check an engine on several benchmarks, instead of only one, in
order to get a more complete picture of its performance.

In Section 3.7, we tested whether MBench is suitable for a rigorous analy-
sis of a language feature it targets, namely attribute-value joins. Based on the
benchmark results obtained on an XQuery engine we conclude that the set of four
queries designed for micro-benchmarking joins is insufficient for drawing sound
conclusions about its performance. We conclude that MBench, even though it
provides a good starting point for micro-benchmarking, is incomplete, which leads
to inconclusive results. In Chapter 7, we extend the set of MBench join queries to
a micro-benchmark testing the impact of seven query and document parameters

70 Chapter 3. Analysis of XQuery Benchmarks

on join processing techniques.
To summarize, the benchmarks have an exploratory nature and are a good

starting point for analyzing an XQuery engine. They can give a general view of its
performance and quickly spot bottlenecks. Our experiments show that they are
useful for checking the maturity of an engine. Nevertheless, they are not suitable
for a detailed analysis of query processing techniques.

3.8.1 Recommendations and next steps

Based on the study presented in this chapter, we make the following recommen-
dations for future XML benchmarking:

• The XQuery community will benefit from new benchmarks—both appli-
cation benchmarks and micro-benchmarks—that have a good coverage of
XQuery features. A serious investment should be made for maintaining
these benchmarks at the same pace as the development of the XQuery en-
gines themselves.

At the time of writing this thesis, another XQuery application benchmark
has been proposed, TPox [Nicola et al., 2007], while we present a repository
of micro-benchmarks, MemBeR, in Chapter 6 and a join-detection micro-
benchmark in Chapter 7.

• Application benchmarks could be extensions of XMark and thus benefit
from its good properties. Among the good properties of XMark, we note
especially the ease of running it on documents of increasing size and the
fact that it is (relatively) often used in the scientific papers and thus serves
as a reference for comparison.

• Micro-benchmarks should consist of clear, well-described categories of queries,
in the spirit of MBench and as advocated in [Afanasiev et al., 2005a]. When
testing for a particular language feature, the use of other language features
should be avoided. It is also desirable to test different ways of expressing
the query functionality using different (every possible) syntactic constructs
of XQuery.

We follow this recommendation when organizing the micro-benchmarks in
MemBeR (the repository of micro-benchmarks presented in Chapter 6) and
designing the join-detection micro-benchmark (presented in Chapter 7).

• The use of standardized benchmarks (or standardized parts of them) is
strongly encouraged. Experiments must be well documented and repro-
ducible. A testing platform can help in running standardized benchmarks
and making experiments comparable.

In Chapter 5, we make an effort in this direction by presenting a platform
for running standardized benchmarks, XCheck.

Chapter 4

Repeatability of Experimental Studies

One important aspect of experimental studies is their repeatability. The aim of
this chapter is to determine and improve the repeatability of the experimental
studies in the database field. We report on a repeatability review that was con-
ducted for the research articles submitted to the conference of the Special Interest
Group On Management of Data (SIGMOD) of the Association For Computing
Machinery (ACM) in 2008 [ACM, 2008].

From the repeatability review, we learn a number of lessons about how to de-
scribe experimental studies in order to ensure their repeatability; these lessons are
implemented in XCheck, a software tool for executing XML query benchmarks.
We present XCheck in Chapter 5.

This chapter is based on work previously published in [Manolescu et al.,
2008a].

4.1 Introduction

Repeatability is a property that allows experimental studies to be repeated and
their results reproduced. This property is at the basis of the experimental sci-
ences and it has two functions: (i) it guarantees the consistency of experimental
results and thus, the soundness of the observations and conclusions drawn; and
(ii) it makes experimental results available for comparison with other research,
which facilitates scientific proliferation. A more precise definition of repeatability
follows. For experimental studies conducted in computer science repeatability is
equally important [Jain, 1991].

Performance of database management systems (DBMSs) is a key research
topic in the database community, while experimental studies are the main per-
formance evaluation method. Nevertheless, in the last decade or more, the field
has suffered from a lack of standard methodology for conducting and reporting
experimental studies [Manolescu and Manegold, 2007, 2008]. In particular, the

71

72 Chapter 4. Repeatability of Experimental Studies

repeatability of experimental studies is not ensured. We believe that this affects
the quality and progress of database research.

This leads us to the following question:

4.1. Question. How to ensure the repeatability of experimental studies of data-
base systems? This question incorporates two sub-questions: (i) what is a proper
methodology for designing and reporting on experimental studies that facilitates
their repeatability? (ii) what is a proper mechanism for evaluating the repeatabil-
ity of experimental studies presented in scientific research?

Before we present our attempt to answer these questions, we specify what re-
peatability means exactly. In database research, many experimental studies use
measures that are dependent on the experimental environment. For example, per-
formance evaluation measures, such as the execution time of a database system,
are hardware dependent. Therefore, when we talk about repeatable experiments
we cannot compare directly the performance measurements obtained in simi-
lar, but not identical, experimental environments. We define repeatability as the
property of an experimental study that allows it to be repeated in a similar envi-
ronment and ensures that the experimental results lead to the same observations
and, ultimately, to the same conclusions. This definition implies that, depending
on the given experimental study, assessing its repeatability might require human
judgement and thus can not always be automated.

In order to achieve repeatability, obviously, the components of the experimen-
tal studies, such as the test data and the system under test, should be available
or reproducible. There should also be a detailed description of the experimental
setup and results. Further, reporting the environmental parameters that influence
the experimental results completes the requirements for achieving repeatability.
Assembling a standard list of such parameters might help to establish a common
practice of reporting their values and impact. With respect to a quality con-
trol mechanism, we expect that it can be achieved via a peer-reviewing system,
in the same style as the one used to ensure the quality of research papers. As
mentioned earlier, requiring human judgment might be unavoidable in an unre-
stricted domain of experimental studies. The experimental data can be archived
in internet-based repositories associated with scientific publication venues.

In this chapter, we report on an attempt at achieving and measuring the re-
peatability of experimental studies along the lines described above. The key aim
of this study is understanding the challenges we face in achieving and promot-
ing the property in database research. Towards this goal, a repeatability review
process of the research papers of SIGMOD 2008 [ACM, 2008] was conducted.
SIGMOD is an important conference in the database community and many of
the submitted articles contain experimental results. The authors were asked to
submit, together with the articles, a package containing information about the
conducted experimental studies. A committee then assessed the experimental

4.2. SIGMOD repeatability review setup 73

repeatability. The participation in the repeatability review was optional. Nev-
ertheless, 2/3 of all paper submissions attempted a repeatability review. This
was the first attempt to measure the repeatability of experimental studies in the
database community. We present the results of this experiment and discuss the
lessons it teaches us. We enumerate problems that need to be addressed in order
to make this a common practice.

The structure of this chapter is as follows. In Section 4.2, we present the
setup of the SIGMOD 2008 repeatability review, including the schema used for
describing the experiments and the evaluation protocol. In Section 4.4, we present
the results of the reviewing process and the problems the repeatability committee
encountered. In Section 4.5, we present an author survey targeted at getting
insights about the usefulness of the reviewing process. Finally, in Section 4.6, we
discuss the positive and negative sides of this approach and conclude.

4.2 SIGMOD repeatability review setup

For the first time in the history of the conference—SIGMOD has been running
since 1975—SIGMOD 2008 introduced an experimental repeatability reviewing
process. The goal was to evaluate whether the experiments presented in the sub-
mitted articles are repeatable by fellow researchers. A longer term goal was to
develop a standard for reporting repeatable experimental studies. The authors
of submitted articles were asked to assemble and submit a package containing
information about the experimental studies, including the experimental data, a
description of the experimental studies and environment. Based on that infor-
mation and the results presented in the article, a committee formed of volunteer
researchers assessed the repeatability.

Participation in the repeatability reviewing process was optional, that is, the
submission and the results of the repeatability reviewing process did not have
any influence on the paper acceptance to SIGMOD 2008. Nevertheless, if the
authors decided not to participate in the repeatability review, they were required
to submit a note stating the reasons for not participating. Some papers, espe-
cially those submitted to the industrial track of the conference, present research
involving Proprietary Data (PD) and/or Intellectual Property (IP), not available
for distribution. Therefore, they can not participate in the repeatability review.
We consider these reasons as valid reasons for not participating.

The repeatability was evaluated per experiment presented in the paper. If
the experiment was successfully executed following a description provided by the
authors and if the obtained results led to the same conclusions as presented in the
paper, then the experiment was considered repeatable. In Section 4.3 we present
the protocol that was used for reporting the experiments and in Section 4.3.1 we
present the protocol that was used for assessing the repeatability.

Participation was encouraged by allowing the articles with successfully eval-

74 Chapter 4. Repeatability of Experimental Studies

uated experiments to include a note that acknowledged the repeatability of their
experiments. If only a subset of the experiments could be verified, then the ac-
knowledgement included references to those experiments. If the verified code
and data was available for free distribution, the repeatability acknowledgment
note contained an URI pointing to where they were stored. More importantly,
all the papers that submitted their experiments for repeatability review, got de-
tailed feedback on any problems that arose during the review. The official call for
participation in the review can be found at http://www.sigmod08.org/sigmod_
research.shtml.

The repeatability program committee consisted of 8 volunteers from the data-
base research community, chaired by Ioana Manolescu and including the author
of this thesis. In order to assure independence of the regular review from the
repeatability review, the committee did not participate in the regular reviewing
process of SIGMOD 2008. The reviewing process was double blind, i.e., the
committee members did not know the identity of the paper authors and the
authors did not know the identity of the reviewers evaluating the repeatability of
their experiments.

4.3 Describing experimental studies

In this section, we present the protocol for describing experimental studies used
in the SIGMOD 2008 repeatability reviewing process.

The authors were asked to provide a package containing the following infor-
mation: (i) the PDF file containing the anonymized article, (ii) the software
and data needed to run each experiment subject to the repeatability review, and
(iii) experiment descriptions that contain all the details necessary for repeat-
ing the experiments, e.g., required hardware, software, instructions to install the
software, to run experiments.

To achieve the repeatability of experimental studies, the authors need to de-
scribe how to set up and execute the experiments. It is also important to deter-
mine and list all the environment parameters that influence the results. Though
each experiment has different requirements for repeatability, there are generic
steps and parameters that the authors need to describe. These include:

• the machines used for the experiments, their hardware and software speci-
fications;

• various third-party software (other than the software being tested) required
for running the experiments;

• a detailed description on how to set up the experiments;

• a detailed description on how to execute the experiments; and

http://www.sigmod08.org/sigmod_research.shtml
http://www.sigmod08.org/sigmod_research.shtml

4.3. Describing experimental studies 75

<!ELEMENT experiments_description (paper, machine*,software*,network*,
experiment*, nonrepexperiment*, comment?)>

<!ELEMENT paper (#PCDATA)>

<!ELEMENT machine (hardware, os)>
<!ATTLIST machine id ID #REQUIRED>
<!ELEMENT hardware (proc, disk, memory, comment?)>
<!ELEMENT proc (make, model, bit, GHz)>
<!ELEMENT make (#PCDATA)>
<!ELEMENT model (#PCDATA)>
<!ELEMENT bit (#PCDATA)>
<!ELEMENT GHz (#PCDATA)>
<!ELEMENT disk EMPTY>
<!ATTLIST disk gigabytes CDATA #REQUIRED>
<!ELEMENT memory EMPTY>
<!ATTLIST memory megabytes CDATA #REQUIRED>
<!ELEMENT os (windows | linux | mac | otheros)>
<!ATTLIST os softwares IDREFS #IMPLIED>
<!ELEMENT windows (version, comment?)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT linux (distribname, distribno, kernel, comment?)>
<!ELEMENT distribname (#PCDATA)>
<!ELEMENT distribno (#PCDATA)>
<!ELEMENT kernel (#PCDATA)>
<!ELEMENT mac (version, kernel, comment?)>
<!ELEMENT otheros (name, version, comment?)>

<!ELEMENT software (name, function, version?, downloadURL?, comment?)>
<!ATTLIST software id ID #REQUIRED>
<!ELEMENT name (#PCDATA)>
<!ELEMENT function (#PCDATA)>
<!ELEMENT downloadURL (#PCDATA)>

<!ELEMENT network (machineset+, comment?)>
<!ATTLIST network id ID #REQUIRED>
<!ELEMENT machineset EMPTY>
<!ATTLIST machineset mkey IDREF #REQUIRED howmany CDATA #REQUIRED>

<!ELEMENT experiment (dataset*, install, howto)>
<!ATTLIST experiment id1 CDATA #REQUIRED id2 CDATA #IMPLIED hardwkey
IDREF #REQUIRED>

<!ELEMENT dataset (#PCDATA)>
<!ELEMENT install (#PCDATA)>
<!ELEMENT howto (#PCDATA)>

<!ELEMENT nonrepexperiment (#PCDATA)>
<!ATTLIST nonrepexperiment id1 CDATA #REQUIRED id2 CDATA #IMPLIED>
<!ELEMENT comment (#PCDATA)>

Figure 4.1: The DTD containing a schema for describing the experiments pre-
sented in a paper for the purpose of repeatability. This schema was used for the
repeatability review of SIGMOD 2008.

76 Chapter 4. Repeatability of Experimental Studies

• any comment regarding the repeatability of the experiments, including a
list of all the parameters that might influence the results.

The repeatability committee designed a schema for describing experimental stud-
ies. The schema is meant as a guideline for presenting experiments and the
submissions are meant to be read by humans and are not for automatic process-
ing or execution of the experiments. It is a first step towards standardizing the
description of experimental studies for the purpose of repeatability.

The authors were required to submit their descriptions in XML format con-
forming to the DTD presented in Figure 4.1. Below, we describe a subset of the
elements defined by this DTD. We omit the self-explanatory elements.

• The paper element contains an identifier of the paper being tested within
the submitted packadge.

• The machine element describes an individual computer used in the experi-
ments. It consists of hardware and operating system specifications.

• The hardware element describes the machine’s hardware. It is important
to describe the resources actually used for the experiments. For instance,
the experimental machine can have 2GB of RAM but if the software under
test used only 1GB, then 1GB should be indicated here.

• The os element describes the operating system and references to any aux-
iliary software (e.g., compilers, libraries, database systems). If the experi-
ment under test uses a virtual machine, it describes the characteristics of
that virtual machine.

• The windows, linux, and mac elements describe the most common operating
systems. The otheros element can be used to describe other operating
systems.

• The software element describes any software (other than the code under
test) needed in order to run or compile the code under test, for example,
compilers used to compile the code, libraries, simulators, software for an-
alyzing the data and producing graphs. If the experiment under test was
run using a virtualization platform, then one software element can describe
the virtual image player, and another software element can describe the
virtual image used.

• The function element describes the functionality of the software in the
experimental setting. This allows for the replacement of the software by
another one with similar functionalities, in case needed.

• The downloadURL element specifies an URL where a free or trial version of
the software can be found.

4.3. Describing experimental studies 77

• The elements network and machineset can be used for experiments to be
run on several machines. The machineset element specifies a set of identical
machines: @mkey is a foreign key pointing to an existing machine element;
@howmany specifies how many machines of this kind are part of the machine
set.

• The network specifies a set of machines used in an experiment. The network
may include homogeneous subsets of identical machines, each such subset
being described by a machineset element. If all machines are different,
1-sized machine sets can be used.

• The experiment describes an experiment that can be repeated: the @id1

attribute contains the unique id of the experiment (typically “Figure X” or
“Table Y”); the optional attribute @id2 is a secondary id (typically “left”
or “top”), if any; and, @hardwkey is a reference to either a machine, or a
network, depending on the hardware used for this experiment.

• The dataset element specifies the dataset(s) used in the experiment under
test. It can contain: a path leading to the data file(s) within the submission
package, a download URL, or the information necessary to produce it using
a data generator.

• The install element contains the installation instructions for the software
needed to repeat the experiment, mainly the software under test.

• The howto element contains the sequence of steps to be performed in order
to run the experiment. It may include: any necessary pre-processing steps;
the commands for performing the experiment; the number of runs, if any;
the operations needed to gather and analyse the results; the production of
graphs corresponding to those of the paper. The ideal description of a given
step is the command line needed to run it.

• The nonrepexperiment describes an experiment that cannot be repeated
due to IP rights or other issues. It contains a primary and possibly sec-
ondary key as for repeatable experiments.

All the experiments submitted for the repeatability review at SIGMOD 2008 were
described using this schema.

4.3.1 Assessing repeatability

For assessing repeatability the committee members adhered to the following steps:

1. Checking whether the repeatability submission package conforms to the
requirements given in the previous section;

78 Chapter 4. Repeatability of Experimental Studies

2. Matching the hardware and software requirements with available machines;

3. Installing the necessary software, setting up the experiments, estimating
the total time needed to execute them;

4. Running the experiments. If the execution takes considerably longer than
the estimated time, it is considered failed; and

5. Comparing the obtained results with the results presented in the paper. For
this step the following procedure is used:

• If the performance measure deployed in the experiment is deterministic
(e.g., measuring the size of data storage in a DBMS) then the commit-
tee member compares the absolute values of the obtained results and
the results presented in the article.

• If the measure deployed in the experiment is non-deterministic (e.g.,
measuring the query execution times) and the obtained results cannot
be compared directly with the results presented in the article, then the
committee member judges, case by case, whether the results support
the observations and the conclusions made in the article. For example,
a statement such as “Engine 1 performs twice as fast as Engine 2” can
be confirmed or refuted even if the absolute measurements are different.

An experiment is considered repeatable if all these steps were successfully com-
pleted. Otherwise, a report is submitted to the authors indicating at what step
the assessment failed and how it failed.

Note that the assessment made during the second part of Step 5 might be
subjective. To improve the evaluation accuracy, it would have been preferable if
two or more reviewers would discuss and agree upon the final assessment. Due to
lack of time and (non) availability of suitable experimental environments, it was
not possible for each paper to be reviewed by multiple reviewers. Instead, each
paper was assessed only by one reviewer, who discussed the assessment with the
rest of the committee only when in doubt about its correctness.

4.4 Results

In this section, we present the results of the SIGMOD repeatability review. First,
we describe the timeline of the repeatability reviewing process and we give the
submission statistics. Then we present the repeatability assessments.

Participation

Nov 16, 2007: SIGMOD’s paper submission deadline. There were 436 paper
submissions.

4.4. Results 79

Submitted Submitted No submission or
experimental descriptions valid excuses invalid excuses

Accepted papers (78) 68% (53) 31% (24) 1% (1)
Rejected papers (358) 66% (236) 23% (82) 11% (40)
All papers (436) 66% (289) 24% (106) 9% (41)

Table 4.1: Participation in the SIGMOD 2008 repeatability reviewing process.
The rows contain the statistics for the accepted papers, for the rejected papers,
and for all submitted papers. The parentheses contain the absolute numbers.

Dec 16, 2007: The repeatability review submission deadline. For 289 papers an
experimental description was submitted; for 106 papers valid reasons (de-
ploying PD or code under IP rights) for not participating were submitted;
the authors of the remaining 41 papers submitted reasons that the commit-
tee considers invalid (e.g., losing the experimental code and data) or did
not submit any reason at all.

Jan 2, 2008: The regular program committee disclosed to the repeatability pro-
gram committee a list of 82 papers with high chance of acceptance (2–3
positive reviews). Due to time constraints, the repeatability committee did
not verify all of the papers that were submitted for repeatability review.
The priority was given to papers with high chance of publication.

Feb 22, 2008: The SIGMOD program committee announced the list of 78 ac-
cepted papers. Then, the repeatability committee focused on these papers.

Mar 20, 2008: Camera ready submission deadline. By this date, 64 papers
covering the accepted papers that participated in the repeatability review,
were reviewed and the results were communicated to the authors.

Table 4.1 shows the distribution of participation in the repeatability reviewing
process for all submitted papers, for the accepted papers, and for the rejected
papers. Note that in the accepted papers category only 1% of the papers did
not participate at all in the repeatability reviewing process, while in the rejected
papers category 10%. This is easily explainable by the usual percentage of un-
finished or invalid papers submitted to a conference. The rest of the percentages
are quite similar for the accepted and rejected categories. Considering that this
repeatability review experiment was conducted for the first time in the database
community and on a voluntary basis, we find 66% participation rate a strong
indication of the importance and usefulness of testing repeatability.

The most common invalid reasons the authors presented for not participating
in the repeatability reviewing process, are the loss of the experimental data and
third party software used in the experiments. Below we include a few quotes from
the reasons provided.

80 Chapter 4. Repeatability of Experimental Studies

All repeated Some repeated None repeated
Accepted papers (53) 55% (29) 26% (14) 19% (10)
Rejected papers (11) 36% (4) 55% (6) 9% (1)
All assessed papers (64) 52% (33) 31% (20) 17% (11)

Table 4.2: Repeatability assessment results. The first two rows contain the statis-
tics for the assessed papers split between the papers that were accepted for the
conference and those that were rejected. The last row contains the aggregate
statistics for all assessed papers. The parentheses contain the absolute numbers.

“We cannot distribute code and data because the authors have moved,
making the retrieval of code and data infeasible at this point.”

“We lost some old code. Due to the short notice, we could not repro-
duce our lost code for these parts.”

“The subsets were chosen randomly from a large dataset, and un-
fortunately no trace about the identity of the used documents has
been kept. The experiments were performed long months ago, and
it wasn’t expected to send results to SIGMOD, that’s why we didn’t
pay attention about keeping a trace.”

These quotes indicate that the experiments were not conducted with repeatabil-
ity in mind, which we consider bad practice. Some comments hinted at some
misunderstandings of the purpose of the repeatability assessment:

“My experimentation is fully deterministic: if it is wrong, running
again my own program would not detect it.”

These quotes underscore how useful assessing repeatability could be for the in-
tegrity of our field.

Assessment results Due to lack of time, only some articles were assessed by
two committee members, namely those that required a second opinion for the
final assessment.

Table 4.2 contains the results of the repeatability reviewing process. The first
two lines present the statistics for the papers that were accepted for publication
and for those that were rejected. The last line presents the total. Out of the 64
repeatability assessed papers, 53 papers were accepted to the conference and 11
papers were rejected. Out of the total of assessed papers, for 33 papers (52%)
all experiments were repeated, for 20 papers (31%) some of the experiments were
repeated, and for 11 papers (17%) none of the experiments were repeated. The
percentage of papers of which all experiments were repeatable is slightly higher
for the accepted papers than for the rejected papers.

Among the 11 papers with no repeated experiments, 3 required hardware
unavailable to the repeatability committee, 2 required unavailable software, the

4.5. Authors survey 81

installation of the necessary software failed for 1 paper, and 5 papers had various
runtime failures that prevented the completion of the experiment.

Assessments costs One committee member, the author of this thesis, recorded
how much time it took her to verify the repeatability of 8 articles. The total
amount of time needed for the whole assessment procedure, i.e., steps 1–5 pre-
sented in Section 4.3.1, varied from 7 hours to 180 hours. This time includes
the running time of the experiments (step 4), which is experiment dependent.
Without counting the running time of the experiments, the average amount of
time that the reviewer spent on the evaluation of an article is 5 hours. Note that
these are not continuous work hours, but rather aggregations of different work
sessions. Usually, half of this time was spent on setting up the experiments and
the other half on understanding and interpreting the results.

On average, each committee member assessed 8 articles. Supposing that every
committee member needs the same amount of time for assessing a paper, then
the total amount of time spent on the assessment is 40 hours per person and 320
man-hours in total.

Since the repeatability review has been organized for the first time, a large
amount of time was spent on the setup. In the future, this time can be reduced by
building an automated system for collecting and distributing the articles among
the reviewers.

4.5 Authors survey

After the repeatability evaluation was completed, the authors of the papers were
asked to participate in a short survey. The purpose was to get insights into
whether the SIGMOD repeatability reviewing process was useful, whether it
should be continued, and in what format. In this section, we present the re-
sults of this survey.

The survey participation request is given in Figure 4.2. The survey contained
four questions. We discuss only the first three, the fourth question is outside the
scope of this chapter. The first question recorded the authors’ participation to
the assessment (did not participate; participated and all experiments repeated;
participated and some experiments repeated; or, participated and none of the
experiments repeated). The second question asked the authors if they found the
process useful, and elicited suggestion on how to improve it. The third question
asked the authors whether they would participate in a repeatability reviewing
process in the future SIGMOD conferences, assuming it would remain optional.
The results of the survey were anonymized to encourage the authors to speak
their mind.

Most answers were clear Yes/No answers. Less than 20% of the answers were
ambiguous, in the style of “Yes and no; on one hand. . . but on the other hand. . . ”

82 Chapter 4. Repeatability of Experimental Studies

This is meant to be a sub-5 minute survey about experimental repeatability. In the
case of multi-author papers, only one of you needs to answer (though we are happy
to receive comments from more than one). We will strip your email headers from
your responses programmatically, so please speak your mind.

1. Did your paper succeed on all/some/none of the repeatability tests? Or did
you not submit for intellectual property reason?

2. If you submitted, was the repeatability experience helpful? If so, how? If not,
how could it be improved?

3. Would you attempt repeatability in the future if it remained voluntary (i.e. had
no effect on acceptance decision but you would be allowed to mention success
in your paper) and you had no intellectual property constraints?

4. Do you think it would be useful to have a Wiki page for each paper so the
community could comment on it, you could post code etc.?

Warm Regards, Ioana (repeatability chair) and Dennis (program committee chair)

Figure 4.2: The request for participation in the authors’ survey.

For such answers, half a point was counted.
Table 4.3 presents the number of positive answers to the second and third

questions about the usefulness of the repeatability review. The results are grouped
according to the answer to the first question about the authors’ participation to
the repeatability assessment and their results. Most of the participants to the
review (80%) found the repeatability process useful, though the participants with
all experiments repeated were more positive (85%) than the ones with none of
the experiments repeated (56%). Even more participants (84%) reported that
they would participate in the repeatability reviewing process at future SIGMOD
conferences. This indicates that the authors believe that such a repeatability
review is useful.

Below we present a list of representative quotes extracted from the authors’
answers about the usefulness of the process.

“Yes, it was helpful to organize the source code properly for future
use.” (All experiments repeated.)

“It was helpful. It forced me to write documentation which I would
otherwise have postponed indefinitely.” (Some experiments repeated.)

“It was helpful. It required us to further clean up my code and scripts
and prepare documentation.” (Some experiments repeated.)

“Helpful? Greatly yes. Some scripts written for this test could be used
to append additional experimental results immediately. To package
experiments in a script form, at first, seemed bothersome, but we

4.6. Lessons learned and conclusions 83

Number of Found it Would do it
participants useful again

Did not participate 16 – 12 (75%)
All experiments repeated 24 20.5 (85%) 21.5 (90%)
Some experiments repeated 12 10 (83%) 11 (91%)
None of the experiments repeated 8 4.5 (56%) 6 (75%)
Total 60 35 (80%) 50.5 (84%)

Table 4.3: Authors survey on the usefulness of the repeatability review at SIG-
MOD 2008. The survey participants are split in 4 categories depending on their
participation and their results in the repeatability review. The last two columns
contain the counts of positive answers to the respective questions. A half point
(0.5) was given to the answers of the form “Yes, and No.”

found out that it is good for ourselves, and improves our productivity.”
(All experiments repeated.)

“It is a great thing for the community that this service is available,
and I hope that it will have a very positive effect on both the trust-
worthiness of SIGMOD results and the quality of publicly-available
research tools.” (All experiments repeated.)

“It’s only helpful in the sense that it provides some extra credibil-
ity to the paper. It was not helpful to myself in any way.” (Some
experiments repeated.)

“We are happy to see that our algorithms show consistent results
through machines with different hardware/software configuration.”
(All experiments repeated.)

In the next section, we list the lessons learned and conclude.

4.6 Lessons learned and conclusions

In this chapter, we pursued Question 4.1: “How to ensure the repeatability of
experimental studies of database systems?” The SIGMOD 2008 repeatability
reviewing process provides a solution and shows that repeatability is possible to
achieve and measure.

Referring to Question 4.1 (i), the methodology used for describing and re-
porting experiments that the repeatability committee developed was enough to
cover the 289 papers that were submitted for the repeatability review. Out of 64
papers that were assessed by the repeatability committee, 33 (52%) achieved the
repeatability of all presented experiments and 20 (31%) achieved repeatability of
some of the experiments. Considering that we strive for all experiments to be

84 Chapter 4. Repeatability of Experimental Studies

repeatable, 52% is a low fraction. Nevertheless, we consider these results to be
a good start towards achieving the repeatability of experimental studies in the
database research field.

Referring to Question 4.1 (ii), the high percentage of participation in the
optional review, 66% of the total submissions to the conference (289 out of 436),
hints at the usefulness of a peer reviewing process. The positive feedback from the
authors of the papers recorded by the survey also indicates that such a review is
useful for the community: 80% of the surveyed authors found the process useful,
while 84% would participate in such a process in the future.

Lessons learned Our experience with the SIGMOD experiment showed that
there are a few problems that need to be addressed, if ensuring repeatability of
experimental studies is to become a common practice in the database community.

The first problem is the effort the authors need to undertake to ensure the
repeatability of their experiments. Currently, due to a lack of common practice,
achieving repeatability is tedious and time consuming. A software tool can be
very useful for automating (parts of) this task. In Chapter 5, we present a tool for
automating benchmark tasks in the context of XQuery, including the automated
recording of the testing environment specifications for the purpose of repeatability.
More such tools are needed.

The second problem is the tremendous amount of handwork that the reviewing
committee had to do in order to set up and verify the repeatability. We estimated
that it took 320 (40× 8) human hours for the assessment process alone. It is not
realistic to pursue such a review in the future without a proper framework that
would facilitate the task. We also expect that the assessment will become easier
as the practice of presenting experiments in a way that facilitates repeatability
will increase.

A third problem is reducing the number of papers that claim non-repeatability
of their experiments due to legal reasons. At SIGMOD 2008, 24% of the paper
submissions could not attempt the repeatability review because they deploy PD
and/or use software under IP rights that does not allow free distribution. This
number can be reduced by designing and using openly available benchmarks. In
Chapter 3, we show that the standard benchmarks are rarely used for experi-
mental studies, while it is possible and advisable to design synthetic data and
workloads that emulate the properties of real data [Jain, 1991].

Future work One aspect of repeatability that we did not discuss in this chap-
ter is what is a proper archiving mechanism for ensuring the accessibility of
experimental data and results. Long-term preservation and even experimental
results curation is another key factor of scientific proliferation. This question
is actively being addressed in other database related fields, such as Information
Retrieval [Agosti et al., 2007]. We leave this as future work.

Chapter 5

XCheck: a Tool for Benchmarking
XQuery Engines

In Chapters 3 and 4, we identified the need for a software tool that helps executing
benchmarks and reporting performance results. In this chapter, we address the
question whether it is possible to automate the execution of performance bench-
marks on many XML query engines and the comparison of their performance?
As a solution, we present XCheck, a tool for running performance benchmarks
that measure execution times on sets of XML documents and sets of queries,
formulated in an XML query language, such as XPath and XQuery. Given a
benchmark and a set of engines, XCheck runs the benchmark on these engines,
collects performance times, query results, and the testing environment configura-
tion. Version 0.2.0 of XCheck runs the XPath and XQuery benchmarks that were
openly available in 2007 on 9 different XPath and XQuery engines. XCheck’s
design makes it easy to include new engines and new benchmarks.

Part of this work was published in [Afanasiev et al., 2006].

5.1 Introduction

The task of running a performance benchmark (T1) is notoriously tedious and
time consuming [Jain, 1991]. This task becomes even more problematic, when
benchmarking engines in a relatively new research field, like XML querying, where
the engines are still immature and require a lot of tuning and error-handling
(see Section 3.6 of Chapter 3). The difficulties grow when evaluating the relative
performance of several engines. In Section 3.6, we have seen that such evaluations
are very useful, but tedious to implement—one has to keep track of the execution
of many engines, handling their output and performance times.

As we argue in Chapter 4, one important aspect of performance evaluation is
its repeatability. In order to make an evaluation repeatable, one needs to rigor-
ously document all performance critical parameters of the engines and the testing

85

86 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

environment; evaluations that do not take in consideration this information can
lead to misleading conclusions [Jain, 1991]. We call this task documenting the
benchmark experiment (T2). This is yet another tedious task that many perfor-
mance evaluators fail to complete (see Chapter 4).

After running the benchmark and gathering the measurements comes the most
difficult task: analyzing the benchmark results (T3). This requires mostly intellec-
tual work, though analyzing large numbers of measurements is impossible without
statistical tools and data visualization.

To a large degree, the three tasks described above—running a performance
benchmark (T1), documenting the benchmark experiment (T2), and analyzing
benchmark results (T3)—can be automated. A software tool is needed to help
execute these tasks under a single roof, from running the experiments to aggre-
gating the results and presenting them in an easily-readable format. Such a tool
is valuable to

• developers and researchers, for evaluating the performance of their engine
or research prototype, also in comparison with other implementations; and

• users, for comparing and choosing a query engine that performs well on
their data.

We are aware of only two open source tools, BumbleBee [BumbleBee, 2006] and
XSLTMark [XSLTMark, 2006], that target the automatic execution of bench-
marks in the area of XML querying. BumbleBee is a test harness aimed at
testing the correctness of XQuery engines, rather than performance. XSLTMark
is a performance benchmark and testing platform for XSLT engines only. The
goals of both tools are too narrow for covering the tasks described above. More-
over, as of September 2008, both testing platforms are no longer available. We
discuss these tools in more detail in Section 5.4. Further, there are no generic
testing platforms that aim at automating tasks T1–T3 and at accommodating
any XML query engine and any benchmark.

In this chapter we address the following question:

5.1. Question. Is it possible to build a generic tool for automating the tasks
T1–T3 and what are the design choices that need to be made?

We answer these questions by developing XCheck. XCheck is a testing plat-
form for running performance benchmarks measuring performance times. It runs
benchmarks whose atomic measure is the performance time of processing one
query possibly against a document/collection in a single-user scenario. The plat-
form can test any XML query engine, stand-alone or DBMS, that has a command
line interface. It allows one to test several query engines in one experiment and
helps analyzing their relative performance; new benchmarks and engines can eas-
ily be added.

5.2. XCheck 87

XCheck is delivered under the GNU General Public License and it is freely
available at http://ilps.science.uva.nl/Resources/XCheck/.

This chapter is organized as follows. In Section 5.2, we describe XCheck’s
functionalities and architecture. In Section 5.3, we give an example of XCheck’s
usage and describe XCheck’s coverage. In Section 5.4, we describe the two related
tools mentioned above, BumbleBee and XSLTMark. We conclude in Section 5.5.

5.2 XCheck

In this section, we describe XCheck’s goals, functionalities, and architecture. We
give a general overview of XCheck; for a complete description of the platform and
its options, see XCheck’s webpage: http://ilps.science.uva.nl/Resources/

XCheck/.

XCheck’s goal is to automate tasks T1–T3 described in the introduction while
satisfying the following requirements: (i) it should have a good coverage of exist-
ing XML query engines and performance benchmarks; (ii) it should be easy to
integrate new engines and benchmarks; (iii) it should have a flexible interaction
with the engines, e.g., it can selectively collect the data that the engine outputs;
(iv) it should allow for the comparison of performance of several engines; (v) it
should have an output that is easily readable for humans, but also allows for
further automatic processing; and (vi) it should be easy to run.

As a result, XCheck is a testing platform that takes as input a performance
benchmark workload consisting of a set of XML documents and a set of queries,
and runs it on a given set of XML query engines. The platform targets bench-
marks whose atomic measure is the performance times of processing one query,
possibly against a document/collection. It can test stand-alone or DBMS XML
query engines that have a command line interface. It communicates with the
engines via an engine adapter that allows the users to specify all the relevant
information about the engine, including running instructions and output format.
It has an easy-to-run command line interface, and a workflow oriented towards
minimizing the total time the user spends on execution and analysis of the bench-
mark. It stores the experimental data in XML for further automatic processing.
It also aggregates the results, builds plots and presents the information in HTML
format for a quick overview and human interpretation.

XCheck has the following functionalities:

1. Running performance benchmarks, collecting performance times, errors,
and optionally, query results. These functionalities address tasks T1 and
T2 presented in the introduction;

2. Documenting engine configuration and the configuration of the testing en-
vironment. These functionalities address task T2;

http://ilps.science.uva.nl/Resources/XCheck/
http://ilps.science.uva.nl/Resources/XCheck/
http://ilps.science.uva.nl/Resources/XCheck/

88 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

kernel

engine 1 engine n...

 adapter adapter

engine handler

E
X

P
E

R
IM

E
N

T
S

P
E

C
IF

IC
AT

IO
N

experiment handler
execute
engine i on
document j and
query k

 error/
crash?

compute mean
and standard
deviation

store results/errors, times

times plotter

 gnuplot

data aggregator

TIMES,
RESULTS/
ERRORS

PLOTS

INTEGRATED OUTPUT

yes

no

run

results

Legend:
Execution flow Optional step Executing external system

iteration > N+1no yes

Figure 5.1: XCheck architecture and workflow.

3. Facilitating the analysis of performance measurements, by computing statis-
tics and generating plots of the results. These functionalities address task
T3.

In the following subsection, we present XCheck’s architecture and workflow in
more detail.

5.2.1 Architecture and workflow

XCheck works in two steps. During the first step, XCheck runs a given experiment
specification describing which XML query engines to run on which documents and
on which queries and it gathers the engines’ outputs and processing times. During
the second step, XCheck aggregates the data obtained during the running step,
and documents the configuration of the engines and of the testing environment.
The output of the running step is raw performance time measurements and results
presented in a machine-readable format, while the output of the augmenting step
is a collection of raw and aggregate data presented in an integrated human-
readable format.

The general workflow of XCheck is shown in Figure 5.1. The EXPERIMENT
SPECIFICATION label denotes XCheck’s input. The TIMES, RESULTS, and ER-
RORS labels denote raw performance time measurements, query processing re-
sults, and errors, respectively. The PLOTS label denotes different plots created

5.2. XCheck 89

for visualization of the raw performance times. The INTEGRATED OUTPUT
label denotes an easy-to-read output that integrates all the raw measurements
and aggregate data collected by the platform. A detailed description of XCheck
components and workflow follows below.

Input XCheck takes as input an experiment specification. An experiment spec-
ification consists of: (i) a non-empty list of XML query engines; (ii) a possibly
empty list of documents/collections, or the commands to generate the documents
whenever a document generator is provided; (iii) a non-empty list of queries, or
the commands to generate the queries whenever a query generator is provided.
The list of documents can be empty since, for example, XQuery queries do not
necessarily need an input document, a query can construct a document. This de-
sign is sufficient to represent all XQuery benchmarks presented in Chapter 3. The
input is represented in XML. Since XML is both human and machine readable,
it is a natural choice for this purpose.

Engine adapters XCheck communicates with the XML query engines via en-
gine adapters. The platform requires that the XML query engine has a command
line interface for the execution of query processing operations: document pro-
cessing, query compilation and processing. Then XCheck executes the engine via
a system call on a particular input and stores the engine’s output. The engine
adapter contains: (i) the engine’s command line execution instructions, (ii) a
formal description of the engine’s output format, and (iii) natural language doc-
umentation of the engine.

The execution instructions are specified as a template with the running pa-
rameters, like specific query and/or document, to be filled in by XCheck at the
running step. The output is described with the help of regular expressions that
allow XCheck to extract pieces of relevant information from the engine’s output.
The documentation of the engine contains the description of the performance crit-
ical engine parameters, like the software version, software compilation options,
engine execution options, etc. The adapters are represented in XML, again cho-
sen because it is both human and machine readable. The engine handler shown
in Figure 5.1 is responsible for the validation and interpretation of the engine
adapters.

Kernel The role of the kernel of XCheck consists of executing one atomic per-
formance measurement: running one engine on one given query and possibly on
a document/collection and measuring the query processing times. If the engine
crashes or outputs an error at the first execution, the kernel stores this informa-
tion. Examples of errors that an engine outputs are: document parsing errors,
static and dynamic query processing errors [World Wide Web Consortium, 2007b].
Otherwise, the kernel re-executes the same measurement another N times (N + 1

90 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

times in total) and stores the mean and the standard deviation of different pro-
cessing times obtained during these last N executions. The times obtained during
the first execution are ignored. This is done to increase the accuracy of the time
measurement (see Section 5.2.2). Optionally, XCheck can store the query results
output by the engine. In Figure 5.1, the kernel is indicated with a dotted line.

The general running strategy of XCheck is to iterate through each engine,
each document/collection, and each query in the order given by the experiment
specification, and to execute the kernel for each triplet (engine, document, query)
or pair (engine, query), in case the document list is empty. This is the job of the
experiment handler from Figure 5.1.

Data aggregator The data aggregator does the following: (i) it aggregates the
raw performance times and presents them in a easily-readable format like tables
and plots; and (ii) it documents the configuration of the engines and testing
environment. It also performs a “pseudo-correctness” test of the query results.
This test is meant to signal possibly wrong query results that might invalidate
the performance studies.

When the experiment has finished executing, the data aggregator collects
the raw performance times and computes simple descriptive statistics over them:
the sum and the average processing times per engine, per engine and document,
and per engine and query. Also, it keeps track of the total running time. The
performance times and statistics are presented in tables. Optionally, the data
aggregator calls the times plotter (Figure 5.1) to generate several types of plots.
XCheck plots the times for: (i) each engine, (ii) each document, (iii) each query,
(iv) each engine and document, and (v) each engine and query. The plots are
generated with Gnuplot [Williams et al., 2008]. To make it easy for the user to
edit the plots, XCheck stores the Gnuplot code used to generate them. Examples
of plots produced by XCheck are given in Section 5.3.

Further, the data aggregator collects and documents the configuration of the
engines and of the testing environment. The environment information such as
computer details: CPU frequency, cache memory size, available hard disk size,
and the operating system, are obtained automatically. The engine configuration—
performance critical parameters such as version, compilation options, and execu-
tion parameters—are retrieved from the engine adapters.

XCheck’s main goal is to automate the execution of performance benchmarks
as opposed to correctness tests. A considerable effort is done by the W3C XML
Query Testing Task Force to develop and maintain the XML Query Test Suit
(XQTS) [World Wide Web Consortium, 2006a] that provides query results and
guidelines for assessing the correctness of an XQuery implementation. Execut-
ing such correctness tests is out of the scope of XCheck—when evaluating the
performance of an engine, the correctness of its results is assumed. However, in
practice, implementations are often incomplete or erroneous, therefore the data

5.2. XCheck 91

aggregator also performs a test meant to signal the user when an engine outputs
possibly wrong results. This test is done by comparing the size of the output of
the different engines. A warning is produced if the size of a result output by an
engine significantly differs from the average size of the results output by the other
engines participating in the experiment. This test is not accurate and it can be
applied only when there is more than one engine in the experiment, nevertheless,
it proved to be a useful tool for the benchmark analysis presented in Chapter 3.

Output The default output consists of an XML document containing the query
processing times and the error messages of the failed queries, grouped by engines,
documents and queries. It also contains the total experiment running time, engine
and testing environment configuration. Optionally, XCheck saves the answers
to the queries. Another optional output is a large set of plots displaying the
performance times. The Gnuplot code for generating these plots is also provided,
so that the user can easily edit and modify them. We chose the XML format
to store this information in order to facilitate future automatic processing. The
user can compute any aggregate measure or statistics that are not implemented
by XCheck by using an XML query engine.

A more readable HTML format containing all the information collected or
computed by XCheck is also provided and browsable from a single HTML web-
page. The HTML webpage lists the following information: a natural language
description (provided by the user) of the experiment; the total time it took to
execute the experiment; a link to the XML file containing the input experiment
specification; the list of engines, their description and configuration; the list of
documents, their description, and links to the actual files; the list of queries, their
description, and links to the files containing the queries; the configuration of the
testing environment; a link to the XML file containing the output; a list of ta-
bles, one per engine, containing the performance times or errors per document
(the rows) per query (the columns); a list of plots containing the average process-
ing times for each engine, the average times for each document and engine, the
average times for each query and engine; 5 links to HTML galleries of plots, one
per each type of plot that XCheck outputs; and finally, a table containing the
results of the pseudo-correctness tests—one row per document, one column per
query, each cell contains the result sizes obtained with each engine. The HTML
presentation greatly improves the readability of the performance results produced
by the experiment. An example of XCheck’s output is given in Figures 5.2–5.10
in Section 5.3.

5.2.2 Collecting performance times

XCheck measures the total time it takes to run an engine on one query and zero
or one document/collection, i.e., one run of the kernel. The platform measures
the CPU time with the Unix command time. The unit of measure is seconds.

92 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

XCheck also keeps track of the wall-clock time elapsed from the beginning of the
experiment until its end. This time is reported to the user as an indication of the
total amount of time it takes to run the experiment. This time is not used for
comparisons.

To avoid unreliable results, XCheck runs the same experiment N + 1 times
and takes the average and the standard deviation of the last N evaluation times.
The first measurement is ignored because it usually contains the warm-up time
of the operating system, i.e., the time spent on loading the application in the
system’s cache. For Java applications, the Java virtual machine imposes another
level of software between the application and the operating system that may
alter the runtimes of the applications under evaluation. Taking the average over
the last N evaluation times improves the accuracy of the measurement. In our
experiments of executing the standard XQuery benchmarks on 4 different engines
(see Chapter 3), we took N = 3 and obtained standard deviations within 2% of
the mean time. Based on this observation we set the default value of N to 3. The
user can change this with a command line option of XCheck.

It is often desirable to measure the times taken by individual processing steps,
such as document processing time, query compilation time, query execution time,
and result serialization time [Manolescu et al., 2008b]. Measuring these times is
difficult or impossible, unless the engine provides this information. In the latter
case, XCheck captures these times. XCheck defines and collects, if available, the
following types of query processing times:

• document processing time is the time that an engine takes to parse the input
XML documents and create the internal document representation (in main
memory or disk).

• query compile time is the time an engine takes to parse the query and
translate it in an internal formalism of the engine. This time includes query
normalization and rewriting, if implemented by the engine.

• query execution time is the time the engine takes to execute the query.
This time includes only the time it takes to locate and/or construct the
query results without outputting them. Usually, this is the most interesting
elaboration time for comparing different query processing techniques and
implementations.

• serialization/output time is the time it takes an engine to serialize and
output the query result.

• total time is the total time an engine takes to process a query, starting with
the engine invocation until the engine outputs results.

Out of all these times, the total time is measured by XCheck, while the rest
can be provided by the engines. It is not always possible to separate the query

5.3. XCheck in action 93

processing steps, and it is not always the case that an engine outputs detailed
times, but whenever it does, XCheck can record them. Note that XCheck is not
responsible for the accuracy of these times, nor can it determine what unit of
measure they use, CPU or wall clock time. It is important to remember this fact
when comparing the detailed performance times of different engines, since the
measurements might not always be comparable.

5.3 XCheck in action

In this section we give an example of XCheck’s usage by running the most pop-
ular XQuery benchmark, XMark [Schmidt et al., 2002], on 4 XQuery engines:
Saxon [Kay, 2009], Galax [Fernández et al., 2006], Qizx/Open [Axyana Software,
2006], and MonetDB/XQuery [Boncz et al., 2006b]. Further, we show XCheck’s
coverage in terms of the engines and benchmarks it already accommodates.

5.3.1 Running XMark

As an example of XCheck usage and output, we run the XMark benchmark
on the following XQuery engines: SaxonB 8.7, Galax 0.5.0, Qizx/Open 1.0 and
MonetDB/XQuery 0.10.3. The input query set consists of the 20 XMark queries
and the document set consists of 7 documents corresponding to the scaling factors1

0.016 to 1.024 of size 1.80 MB to 113.99 MB, respectively. The times reported
are the mean of the last three (N = 3) executions. The experiment was run on
a machine with the following specifications: Intel(R) Xeon(TM) CPU 3.40GHz,
with 2 GB of RAM, running Debian Gnu/Linux version 2.6.16.

Figures 5.2–5.10 give a first impression of the HTML webpage output by
XCheck. The full output of this example is accessible at http://ilps.science.

uva.nl/Resources/XCheck/results/Lisa/xmark/output/outcome.html.
Figures 5.11, 5.12, and 5.13 give a closer look at 3 plots output by XCheck.

Figure 5.11 shows the relative performance of the four engines, by showing the
total execution times for each query on one specific document of size 57MB (doc-
ument scaling parameter f=0.512). This time is measured by XCheck, and it is
the CPU time of one kernel run measured in seconds. Note that there are a few
missing values in the plot: Galax crashes on queries Q11 and Q12, which contain
nested for-loops and data value joins; Qizx/open outputs static type checking er-
rors on Q3, Q11, Q12, and Q18, which contain the op:numeric-multiply(A,B)

operation on arguments with static type xs:anySimpleType. The plot gives a
quick overview of the relative performance when the engines are treated as off-
the-shelf (no special tuning) and on-the-fly (no document pre-processing) XQuery

1As detailed in Chapter 3, XMark provides a document generator that produces documents
whose sizes are proportional to a unique parameter called the scaling factor. A scaling factor
of 1 produces a document of about 100 MB.

http://ilps.science.uva.nl/Resources/XCheck/results/Lisa/xmark/output/outcome.html
http://ilps.science.uva.nl/Resources/XCheck/results/Lisa/xmark/output/outcome.html

94 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

F
igu

re
5.2:

X
C

h
eck

’s
H

T
M

L
ou

tp
u
t

listin
g:

th
e

n
am

e
of

th
e

ex
p

erim
en

t;
a

sh
ort

d
escrip

tion
of

th
e

ex
p

erim
en

t;
th

e
total

tim
e

it
to

ok
to

ru
n

th
e

ex
p

erim
en

t;
a

list
of

en
gin

es
th

at
w

ere
tested

,
th

eir
d
escrip

tion
an

d
sp

ecifi
cation

s;
a

list
of

d
o
cu

m
en

ts,
th

eir
n
am

es,
sizes,

an
d

d
escrip

tion
.

5.3. XCheck in action 95

F
ig

u
re

5.
3:

X
C

h
ec

k
’s

H
T

M
L

ou
tp

u
t

li
st

in
g:

h
ow

th
e

ti
m

e
m

ea
su

re
m

en
ts

w
er

e
co

m
p
u
te

d
;

th
e

h
ar

d
w

ar
e

an
d

so
ft

w
ar

e
sp

ec
ifi

ca
ti

on
s

of
th

e
m

ac
h
in

e
on

w
h
ic

h
th

e
ex

p
er

im
en

t
w

as
ru

n
;

d
et

ai
le

d
d
o
cu

m
en

t
p
ro

ce
ss

in
g

ti
m

es
fo

r
M

on
et

D
B

/X
Q

u
er

y.

96 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

F
igu

re
5.4:

X
C

h
eck

’s
H

T
M

L
ou

tp
u
t

listin
g

d
etailed

q
u
ery

ex
ecu

tion
tim

es
for

Q
izx

/op
en

.
T

h
e

tab
le

cells
w

ith
a

red
b
ack

grou
n
d

in
d
icate

an
error

ob
tain

ed
d
u
rin

g
th

e
ex

ecu
tion

of
a

q
u
ery

(given
b
y

th
e

colu
m

n
n
am

e)
on

a
d
o
cu

m
en

t
(given

b
y

th
e

row
n
am

e).
T

h
e

lin
k
s

given
in

th
ese

cells
lead

to
th

e
error

m
essages

ou
tp

u
t

b
y

X
C

h
eck

or
b
y

th
e

en
gin

e.

5.3. XCheck in action 97

F
ig

u
re

5.
5:

X
C

h
ec

k
’s

H
T

M
L

ou
tp

u
t

co
n
ta

in
in

g:
th

re
e

b
ar

-p
lo

ts
sh

ow
in

g
th

e
av

er
ag

e
q
u
er

y
ex

ec
u
ti

on
ti

m
es

p
er

en
gi

n
e,

p
er

d
o
cu

m
en

t
an

d
en

gi
n
e,

p
er

q
u
er

y
an

d
en

gi
n
e;

li
n
k
s

to
p
lo

ts
,

on
e

fo
r

ea
ch

ty
p

es
of

p
lo

ts
.

98 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

F
igu

re
5.6:

X
C

h
eck

’s
H

T
M

L
ou

tp
u
t

con
tain

in
g

th
e

sizes
(in

K
B

)
of

th
e

q
u
ery

resu
lts.

E
ach

cells
lists

th
e

sizes
of

th
e

resu
lts

ob
tain

ed
b
y

th
e

fou
r

en
gin

es,
on

th
e

resp
ective

q
u
ery

an
d

d
o
cu

m
en

t.
T

h
e

tab
le

cells
w

ith
red

b
ack

grou
n
d

in
d
icate

large
d
ev

iation
s

of
th

e
resu

lt
size

ou
tp

u
t

b
y

an
en

gin
e

from
th

e
average

q
u
ery

resu
lt

sizes
ou

tp
u
t

b
y

th
e

oth
er

en
gin

es.
In

th
is

w
ay,

an
in

correct
q
u
ery

resu
lt

is
sign

aled
.

5.3. XCheck in action 99

F
ig

u
re

5.
7:

X
C

h
ec

k
’s

H
T

M
L

ou
tp

u
t

co
n
ta

in
in

g
a

ga
ll
er

y
of

b
ar

an
d

li
n
e

p
lo

ts
sh

ow
in

g
th

e
p

er
fo

rm
an

ce
ti

m
es

fo
r

ea
ch

q
u
er

y
in

th
e

ex
p

er
im

en
t

p
er

d
o
cu

m
en

t
an

d
en

gi
n
e.

F
or

ea
ch

q
u
er

y
an

d
fo

r
ea

ch
ti

m
e

m
ea

su
re

u
se

d
th

er
e

ar
e

tw
o

p
lo

ts
p
re

se
n
te

d
,

a
b
ar

an
d

a
li
n
e

p
lo

t.
U

n
d
er

ea
ch

p
lo

t
th

er
e

ar
e

li
n
k
s

to
th

e
ra

w
d
at

a
an

d
to

th
e

G
n
u
P

lo
t

so
u
rc

e
co

d
e

th
at

ge
n
er

at
ed

th
e

p
lo

t.
N

ot
e

th
at

th
e

p
lo

ts
v
is

ib
le

in
th

is
sc

re
en

sh
ot

sh
ow

th
e

d
o
cu

m
en

t
p
ro

ce
ss

in
g

ti
m

es
on

ly
fo

r
M

on
et

D
B

/X
Q

u
er

y
an

d
S
ax

on
B

.
T

h
e

ot
h
er

tw
o

en
gi

n
es

,
G

al
ax

an
d

Q
iz

x
/o

p
en

,
d
o

n
ot

re
p

or
t

th
es

e
ti

m
es

.

100 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

F
igu

re
5.8:

X
C

h
eck

’s
H

T
M

L
ou

tp
u
t

con
tain

in
g

a
gallery

of
b
ar

an
d

lin
e

p
lots

sh
ow

in
g

th
e

p
erform

an
ce

tim
es

for
each

d
o
cu

m
en

t
in

th
e

ex
p

erim
en

t
p

er
q
u
ery

an
d

en
gin

e.
F

or
each

d
o
cu

m
en

t
an

d
for

each
tim

e
m

easu
re

u
sed

th
ere

are
tw

o
p
lots

p
resen

ted
.

U
n
d
er

each
p
lot

th
ere

are
lin

k
s

to
th

e
raw

d
ata

an
d

to
th

e
G

n
u
P

lot
sou

rce
co

d
e

th
at

gen
erated

th
e

p
lot.

N
ote

th
at

th
e

p
lots

v
isib

le
in

th
is

screen
sh

ot
sh

ow
th

e
d
o
cu

m
en

t
p
ro

cessin
g

tim
es

on
ly

for
M

on
etD

B
/X

Q
u
ery

an
d

S
ax

on
B

.
T

h
e

oth
er

tw
o

en
gin

es,
G

alax
an

d
Q

izx
/op

en
,

d
o

n
ot

rep
ort

on
th

ese
tim

es.

5.3. XCheck in action 101

F
ig

u
re

5.
9:

X
C

h
ec

k
’s

H
T

M
L

ou
tp

u
t

co
n
ta

in
in

g
a

ga
ll
er

y
of

b
ar

an
d

li
n
e

p
lo

ts
sh

ow
in

g
th

e
p

er
fo

rm
an

ce
ti

m
es

fo
r

ea
ch

en
gi

n
e

in
th

e
ex

p
er

im
en

t
p

er
q
u
er

y
an

d
ti

m
e

m
ea

su
re

u
se

d
.

F
or

ea
ch

en
gi

n
e

an
d

d
o
cu

m
en

t
in

th
e

ex
p

er
im

en
t

th
er

e
ar

e
tw

o
p
lo

ts
p
re

se
n
te

d
.

U
n
d
er

ea
ch

p
lo

t
th

er
e

ar
e

li
n
k
s

to
th

e
ra

w
d
at

a
an

d
to

th
e

G
n
u
P

lo
t

so
u
rc

e
co

d
e

th
at

ge
n
er

at
ed

th
e

p
lo

t.

102 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

F
igu

re
5.10:

X
C

h
eck

’s
H

T
M

L
ou

tp
u
t

con
tain

in
g

a
gallery

of
b
ar

an
d

lin
e

p
lots

sh
ow

in
g

th
e

p
erform

an
ce

tim
es

for
each

en
gin

e
in

th
e

ex
p

erim
en

t
p

er
d
o
cu

m
en

t
an

d
tim

e
m

easu
re

u
sed

.
F

or
each

en
gin

e
an

d
q
u
ery

in
th

e
ex

p
erim

en
t

th
ere

are
tw

o
p
lots

p
resen

ted
.

U
n
d
er

each
p
lot

th
ere

are
lin

k
s

to
th

e
raw

d
ata

an
d

to
th

e
G

n
u
P

lot
sou

rce
co

d
e

th
at

gen
erated

th
e

p
lot.

N
ote

h
ow

th
e

q
u
ery

ex
ecu

tion
tim

e
for

“q
1”

grad
u
ally

grow
s

as
th

e
d
o
cu

m
en

t
size

in
creases,

an
d

h
ow

th
e

total
ex

ecu
tion

tim
e

is
m

ostly
in

fl
u
en

ced
b
y

th
e

d
o
cu

m
en

t
p
ro

cessin
g

tim
e.

5.3. XCheck in action 103

engines. It also shows that Q8-Q12 are challenging queries.
Figure 5.12 shows how the query execution times scale with respect to doc-

ument size on query Q8. The times are those reported by the engines: Mon-
etDB/XQuery reports CPU time; Saxon and Qizx/open report wall-clock time.
The times for Galax are not plotted, since version 0.5.0 of the engine reports
incorrect query execution times and we configured the engine adapter for Galax
not to store these times. Note that these times cannot be compared directly; in
this plot only the slopes of the lines can be compared.

Q8, given below, contains a nested for-loop and a data value join.

let $auction := doc("name") return

for $p in $auction/site/people/person

let $a :=

for $t in $auction/site/closed_auctions/closed_auction

where $t/buyer/@person = $p/@id

return $t

return <item person="{$p/name/text()}">{count($a)}</item>

The number of person and closed_auction elements grows linearly with the
size of the document. Thus, we can expect the performance of this query to be
bound from above by a quadratic function in the size of the document. The lines
in Figure 5.12 show a super-linear growth, with SaxonB having the steepest line.

Figure 5.13 shows the detailed performance times (document processing time,
query compilation time, query execution time, and total execution time) output
by Saxon on all XMark queries and on the document of size 114MB (f=1.024).
Note that the document processing time and the query compilation time are
constant over all queries; the document processing time dominates the query
execution time for all queries but the queries Q8-Q12, thus the total execution
time is mostly determined by the document processing time. For the difficult
queries, most of the the total time is spent on the query execution, which is 1–2
orders of magnitude larger than the document processing time. This plot also
shows that the total time can be an inadequate measure for evaluating query
execution techniques, when the total time is dominated by the performance of
another engine component.

5.3.2 XCheck’s coverage

The current version of XCheck, version 0.2.0, includes adapters for 9 XML query
engines listed in Table 5.1: the first column contains the engine’s name and
reference, the second column contains the engine’s version, the third column
contains the query language that the engine implements, and the last column
contains the detailed execution times that the engine outputs.

XCheck powers the execution of all the performance studies presented in
this thesis, including the execution and analysis of 5 XQuery benchmarks on

104 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

 10

 100

 1000

 10000

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10q11q12q13q14q15q16q17q18q19q20

Lo
g

To
ta

l e
xe

cu
tio

n
tim

e
(s

ec
)

Query

XCheck output (running phase), Benchmark: XMark, Document: d0.512 (56.73 MB)

MonetDB
SaxonB

Galax
Qizx

Figure 5.11: Total execution time for XMark queries on a document of size 57MB
(f=0.512). The plot presents the CPU time measured in seconds. Missing values:
Galax crashes on Q11 and Q12; Qizx/open outputs static type checking errors
on Q3, Q11, Q12, and Q18.

 0.1

 1

 10

 100

 1000

d0.016 d0.032 d0.064 d0.128 d0.256 d0.512 d1.024

Lo
g

Q
ue

ry
 e

xe
cu

tio
n

tim
e

(s
ec

)

Document

XCheck output (running phase), Benchmark: XMark, Query: q8

MonetDB
SaxonB

Qizx

Figure 5.12: Query execution time of XMark query Q8 on documents scaling from
1MB (f=0.016) to 114MB (f=1.024) (note that the document size doubles from
one document to the next). The plot shows the times measured by the engines:
MonetDB/XQuery reports CPU time; Saxon and Qizx/open report wall-clock
time.

5.4. Related systems 105

 0.1

 1

 10

 100

 1000

 10000

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10q11q12q13q14q15q16q17q18q19q20

Lo
g

Ti
m

e
(s

ec
)

Query

XCheck output (running phase), Benchmark: XMark, Engine: SaxonB,
Document: d1.024 (113.99 MB)

doc_processing_time
query_compile_time

query_exec_time
total_time

Figure 5.13: Different performance times for SaxonB on a XMark document of
size 114MB (f=1.024). The document processing time, query compilation time,
and query execution time are output by the engine and measured in wall-clock
time, while the total execution time is measured by XCheck in CPU time.

4 XQuery engines discussed in Chapter 3. Another detailed performance analysis
of 6 XQuery engines on these 5 benchmarks using XCheck is presented in [Mane-
gold, 2008]. This experiment consisting of running 6 engines on 5 benchmarks,
with a total of 3720 measurements (running one engine on one query and one
document), takes approximatively 2 weeks to run on a commodity PC. Such
large scale experiments are only possible with the help of an automated tool like
XCheck.2

5.4 Related systems

At the time of development of XCheck, there were two other open source auto-
mated testing platforms for evaluating XML query engines, BumbleBee [Bumble-
Bee, 2006] and XSLTMark [XSLTMark, 2006].3 BumbleBee is a test harness for
evaluating XQuery engines and for validating queries expressed in the XQuery
language. Although it measures the total execution times its main goal is to test
an engine’s compliance with the XQuery language specification. The application
can execute user defined tests containing reference answers for the correctness
check. XSLTMark is a similar application for XSLT processor performance and

2As of September 2009, a Google Scholar search shows 9 citations for [Afanasiev et al., 2006],
the paper presenting XCheck.

3As of September 2008, both testing platforms are no longer available.

106 Chapter 5. XCheck: a Tool for Benchmarking XQuery Engines

Engines Version Query language Times
SaxonB [Kay, 2009] 8.7 XQuery D, QC, QE, T
Galax [Fernández et al., 2006] 0.5.0 XQuery T
MonetDB/XQuery [Boncz et al., 2006b] 0.10.3 XQuery D, QC, QE, S, T
Qizx/open [Axyana Software, 2006] 1.0 XQuery QE, S, T
eXist [Meier, 2006] 1.0 XQuery T
Qexo [Qexo, 2006] 1.8.1 alpha XQuery T
Blixem [University of Antwerp, 2006] 16 Jun 2005 LiXQuery T
XmlTaskForce [Koch, 2004] 30 Sep 2004 XPath 1.0 T
Arb [Koch, 2006] unknown CoreXPath D, QE, T

where D=document processing time, QC=query compile time, QE=query execution
time, S=serialization/output time and T=total time.

Table 5.1: The list of engines for which XCheck provides adapters.

compliance benchmarking. It comes with a collection of default test cases that
are performance oriented. XSLTMark outputs more information about the exe-
cution, such as (document) preprocessing time, total execution time, the size of
engine input/output, the engine’s throughput in size per second, and the correct-
ness check. Neither Bumblebee nor XSLTMark processes an engine’s output for
extracting detailed times or error messages.

In comparison with BumbleBee, XCheck targets the execution of user defined
performance tests rather than correctness tests. Although XCheck does not per-
form a proper correctness test, it implements a pseudo test by comparing the
size of the query results of several engines relative to each other. In compar-
ison with XSLTMark, XCheck is a generic testing platform that targets XML
query engines, rather than XSLT engines. On top of this, XCheck is based on a
more flexible input/output adapter design than either of the two platforms. This
adapter design allows users to customize what information output by the engines
the platform is documented. Moreover, XCheck performs a statistical analysis of
the data and outputs graphs, facilitating interpretation of the results.

5.5 Summary and conclusion

The question we pursued in this chapter (Question 5.1) is whether a generic
(engine and benchmark independent) tool for running performance benchmarks
is feasible and what design choices need to be made in order to build it. The
realization and success of XCheck is a clear answer to this question.

During the development of XCheck we had to address several issues. First,
we had to decide how XCheck should communicate with the tested engines.
The command line adapter design that XCheck implements is elegant and easily
implementable—many of the XML query engines have a command line interface.
Second, we had to decide what atomic measure XCheck should implement. Cur-

5.5. Summary and conclusion 107

rent XQuery benchmarks measure performance times of a set of queries on a
set of documents/collections, where the atomic measure is the performance time
of processing one query on a document/collection. If the engines provide more
detailed performance times, e.g., document processing, query compilation, etc.,
XCheck also collects these times. Third, we had to decide on how to obtain accu-
rate performance measures. XCheck computes the atomic measure N + 1 times
and takes the mean and the standard deviation of the last N runs. Finally, we
had to decide how to store and present the performance results. XCheck uses
XML to store the raw measurement data, and it uses HTML and plots to present
it to the user in an easily readable format.

We use XCheck to execute all experimental studies presented in this thesis. In
Chapter 3, we use XCheck to execute existing XQuery benchmarks; in Chapters 6
and 7, we use XCheck to execute two micro-benchmarks; and in Chapter 8, we
use XCheck to evaluate the performance of a proposed optimization technique for
recursion in XQuery. All experiments are conducted on multiple XQuery engines.

Chapter 6

A Repository of Micro-Benchmarks for
XQuery

In Chapter 3, we identified a need for precise and comprehensive tools for exper-
imental evaluation, as well as a need for general methodology for experimental
evaluation. In this chapter, we propose a micro-benchmarking methodology, as
well as a repository of micro-benchmarks for XQuery, called MemBeR. First, we
refresh our findings from Chapter 3 that motivate our work (Section 6.1). Then,
we describe the micro-benchmarking methodology associated with MemBeR (Sec-
tion 6.2). Further, we describe the MemBeR repository of micro-benchmarks
(Section 6.3). To illustrate the MemBeR methodology, we also give an example
micro-benchmark (Section 6.3.1). Finally, we discuss the benefits and weaknesses
of our approach and conclude (Section 6.4).

This chapter is based on work previously published in [Afanasiev et al., 2005a].

6.1 Introduction

The existence of suitable performance evaluation tools is imperative for the de-
velopment of the XML processing engines. Performance benchmarks have proven
to be a successful catalyst for the development of relational databases [Jain,
1991]. Since the introduction of XML and its query languages, many XML bench-
marks have been proposed. In Chapter 3, we surveyed and analyzed five XQuery
benchmarks publicly available in 2006: the Michigan benchmark (MBench) is a
micro-benchmark suite, while XMach-1, XMark, X007, and XBench are applica-
tion benchmarks. Among other questions, we investigated how the benchmarks
are used in the database research community and whether they can be used for
in-depth analysis of XML query processing techniques.

As a result of surveying scientific articles on XML query processing, we ob-
served that the benchmarks are rarely used for performance evaluations of pre-
sented research (in less than 1/3 of the surveyed articles). Instead, ad-hoc exper-

109

110 Chapter 6. A Repository of Micro-Benchmarks for XQuery

imental evaluations are used. While the empirical evaluations used in scientific
articles are focused on a particular language feature or query processing tech-
nique, the application benchmarks aim at the evaluation of a whole system in
a particular application scenario. Our analysis showed that application bench-
marks are not suitable for detailed and systematic evaluations of query processing
techniques. The micro-benchmark suite MBench targets evaluation of XQuery
language features in isolation and it is a good starting point for detailed analysis;
however, it provides a query workload that is insufficient for a systematic and
conclusive evaluation with respect to the tested language feature. Based on this,
we concluded that the development of XML query engines is being held back by
a lack of systematic tools and methodology for evaluating performance of query
processing and optimization techniques.

The first problem we are facing is the lack of performance assessment tools
allowing system developers and researchers to obtain precise and comprehensive
evaluations of XML query processing techniques and systems. An evaluation is
precise if it explains the performance of a processing technique or a system com-
ponent on one language feature in isolation. In other words, it allows us to obtain
an understanding of which parameters impact the performance of the target com-
ponent on the target feature without “noise” in the experimental results due the
performance of other components or other features. An evaluation is compre-
hensive if it considers all parameters that may impact the performance of the
evaluation target and it explains the impact of every important parameter-value
pair in a systematic way.

Second, a standard methodology is needed, explaining how to choose or develop
appropriate performance evaluation tools for a given target, how to choose the
parameters that are likely to be important, how to choose the value combinations
for these parameters, and how to analyze the results. A standard methodology
brings many benefits. It eases the task of performance evaluation. It also reduces
the effort spent on experimental design, on dissemination of experimental results
and comparison.

The research question that we address in this chapter is:

6.1. Question. What is a suitable methodology for precise and comprehensive
performance evaluation of XML query processing techniques and systems?

As an answer to this question, we are proposing MemBeR, a structured repository
of micro-benchmarks and related methodology. The micro-benchmarks target
XML query processors on XML query language features in isolation (the main
focus is on XQuery and its fragments). We find that micro-benchmarks are the
most fitting tools for a precise and comprehensive performance evaluations. We
also endow the repository with a micro-benchmarking methodology for facilitat-
ing the correct usage and creation of suitable micro-benchmarks. MemBeR is
intended mainly for system developers and researchers, to help them analyze and
optimize their techniques and systems.

6.2. The MemBeR micro-benchmarking methodology 111

Given the wide range of interesting XQuery features, ongoing development of
XML processing engines, and ongoing developments of language extensions, such
as full text search [World Wide Web Consortium, 2009a] and XML updates [World
Wide Web Consortium, 2009b]), a fixed set of micro-benchmarks devised today
is unlikely to be sufficient and/or relevant in the future. Thus, we develop the
repository as an open-ended community effort:

• repository users can contribute by creating new micro-benchmarks or by
enhancing existing ones,

• quality control is guaranteed by a peer-review process, verifying that the pro-
posed addition or change adheres to the micro-benchmarking methodology
and it is not yet covered by the repository content.

MemBeR allows for continuous addition and improvement of micro-benchmarks,
also targeting new performance challenges coming from applications and archi-
tectures perhaps not yet available today. In this manner, we hope that MemBeR
will grow to provide a complete coverage of XQuery language features.

With MemBeR we aim to consolidate the experience of individual researchers
that spend time and effort in designing micro-benchmarks for performance evalu-
ation of their query optimization and processing techiniques. We hope MemBeR
will provide the necessary performance evaluation tools and methodology and will
be widely used in the XML data management community.

MemBeR has a web-based interface and it is freely accessible at http://

ilps.science.uva.nl/Resources/MemBeR/. Currently, MemBeR consists of 8
registered users, 5 contributors, and it contains 34 micro-benchmarks targeting
different XQuery language features.

In the next section, we describe the MemBeR micro-benchmarking method-
ology.

6.2 The MemBeR micro-benchmarking method-

ology

Our goal is to build a repository of micro-benchmarks for studying the perfor-
mance of XQuery processing techniques and engines. We identify four aspects of
performance:

Efficiency: how well does a system perform, e.g., in terms of completion time or
query throughput? The primary advantage of a data management system,
when compared with an ad-hoc solution, should be its efficiency.

Resource consumption: a system’s efficiency should be naturally evaluated against
its resource needs, such as the size of a disk-resident XML store, with

http://ilps.science.uva.nl/Resources/MemBeR/
http://ilps.science.uva.nl/Resources/MemBeR/

112 Chapter 6. A Repository of Micro-Benchmarks for XQuery

or without associated indexes; the maximum memory size required by a
streaming system, etc.

Correctness: does the output of the system comply with the query language
specifications? For a complex query language such as XQuery, and even its
fragments, correctness is also a valid target for benchmarking.

Completeness: are all relevant language features supported by the system? Some
aspects of XQuery, such as its type system, or its functional character, have
been perceived as complex. Correspondingly, many sub-dialects have been
carved out [Hidders et al., 2004, Miklau and Suciu, 2002, Paparizos et al.,
2004]. Implementations aiming at completeness could use a yardstick to
compare against.

In this chapter, our focus is mainly on benchmarks for testing efficiency and
resource consumption. Nevertheless, we stress the importance of the other mea-
sures for a correct interpretation of performance. For devising correctness and
completeness benchmarks, one can build on top of the XML Query Test Suite
(XQTS) [World Wide Web Consortium, 2006b]. Alhough XQTS is not officially
meant to test for an engine’s compliance to the XQuery standard, it is the best
compliance test available today.

6.2.1 Micro-benchmark design principles

A well designed micro-benchmark is one for which the analysis of results is
straightforward and the impact of each benchmark parameter is clear. In the
following, we list the design principles for micro-benchmark creation that we
adopt for MemBeR.

In some sense, these principles can be seen as refining our view on what micro-
benchmarks are. Recall that [Runapongsa et al., 2002] were the first to propose
micro-benchmarking in the context of XQuery. Two of the principles below, P1
and P3, were already implicit in [Runapongsa et al., 2002], and played a role in
the design of MBench. The fourth principle, P4, was inspired by our analysis
of MBench in Chapter 3, where we showed that the queries of MBench that are
intended to test join processing are not sufficient for a detailed analysis since they
vary several parameters simultaneously. All other principles are introduced here
and we have not been able to trace them back to earlier literature on XML bench-
marking. Note that P6 is not a design principle for individual micro-benchmarks,
but rather concerns the structure of the entire micro-benchmark repository.

P1: A micro-benchmark should reduce to a minimum the influence of all but
the tested system functionality and language feature. This can be achieved by
designing a focused workload. For example, the presence of an XML Schema for
the input document enables a large number of optimizations, at the level of an
XML store and indices, at the level of XQuery rewriting and optimization, etc.

6.2. The MemBeR micro-benchmarking methodology 113

For any micro-benchmark whose target is not on schema-driven optimizations, one
should use documents without a schema. Otherwise, schema-driven optimizations
might effect the system’s performance in a non-transparent manner and make
results uninterpretable. If the purpose is to test path expressions navigating
downward, the queries should not use sibling navigation, and vice versa.

P2: A micro-benchmark should (also) measure individual query processing
steps. To get an accurate evaluation of a system component or functionality, it
is often required to measure individual processing steps, such as query normal-
ization, query rewriting, query optimization, data access, output construction,
etc. For instance, XPath micro-benchmarks may measure the time to locate the
elements that must be returned (this often means finding their IDs). Measuring
such processing steps might require hooks into the tested engine. Even if the
workload is carefully designed to trigger one system component and reduce the
influence of the others, the total query execution times may still reflect the impact
of too many factors.

P3: A micro-benchmark should strive to explicitly list and provide value ranges
for all document, query, and other system or environment parameters that may
impact the performance results. This is important in order for the benchmark
results to be interpretable, reproducible, and comprehensive. In this way, a micro-
benchmark provides well-documented measures.

At the time of creating a micro-benchmark, the creator most likely has a
particular testing scenario in mind. Typically, the effort needed to invest in
covering other testing scenarios as well is considerable, which makes P3 difficult
to adhere to in practice. Nevertheless, we stress the importance of the principle.

P4: Whenever possible, micro-benchmark measures should vary one bench-
mark parameter at a time. This allows for analyzing the impact of each param-
eter on the performance measure. A micro-benchmark should aim at explaining
the target’s performance in terms of the impact of the benchmark parameters. In
this way, a micro-benchmark provides systematic measures.

The above implies that for any micro-benchmark measure and any data pa-
rameter likely to impact the measure’s result, at least one data set can be con-
structed by controlling the value of that parameter in its interesting range. This
has an impact on the choice of data sets (see Section 6.2.5).

P5: A micro-benchmark should be extensible. A micro-benchmark should aim
to remain useful even when systems undergo substantial development and achieve
higher performance. The benchmark parameters should therefore allow for a wide
enough range of values. The micro-benchmarks should also be regularly updated
to reflect new performance standards.

P6: The number of micro-benchmarks for any given language feature in the
repository should be kept to a minimum. This principle is meant to keep the
repository focused. Instead of having two micro-benchmarks targeting two differ-
ent aspects of the same language feature, the difference could be captured by a
parameter in a single unified micro-benchmark. Still, there should be a balance

114 Chapter 6. A Repository of Micro-Benchmarks for XQuery

Micro-benchmark

Target Measure

Data Set

Parameters

Query Set

Parameters

Parameters

Running Scenarios

Figure 6.1: MemBeR micro-benchmark high-level hierarchical structure.

between P6 on the one hand and simplicity and ease of interpretation on the
other hand.

6.2.2 Micro-benchmark structure

Following the design principles stated above, we propose a more detailed specifi-
cation of MemBeR micro-benchmarks.

A MemBeR micro-benchmark is an experimental tool for the performance
evaluation (efficiency, consumption, correctness, or completeness) of a given com-
ponent or functionality of an XML query processing system on a query language
feature in isolation. The feature that the micro-benchmark studies (e.g., the sys-
tem functionality, such as the query optimizer, on a language feature, such as
structural joins) it is called the target of the micro-benchmark. The target also
specifies the system type(s) and scenario(s) for which the micro-benchmark is
proposed, for example a persistent database scenario or streaming scenario, etc.

The micro-benchmark includes a measure, which is a function of a parametrized
workload and of other input parameters (e.g, parameters of the targeted system,
or of the experimental set-up).

The workload consists of parametrized an XML data set and queries. The
XML data set is parametrized by XML data characteristics that might impact
performance results, such as document size, tree-depth, element fan-out, etc.
(For a comprehensive list of XML data characteristics see Section 2.1.2.) The
value ranges for these parameters (and other relevant information, such as value
distribution, value units, etc.) are provided. The data set can be empty, since
XML fragments are legal XQuery expressions and thus an XML query may carry
“its own data.” It might have an associated schema (e.g., DTD, XML Schema)
or not.

The query set is characterized by its query language (e.g., XPath 1.0, XQuery
1.0). They can also be parametrized by query characteristics that might impact
performance results, such as number of steps in a path expression query, num-
bers of query nesting levels, selectivity of a value selection predicate, etc. The

6.2. The MemBeR micro-benchmarking methodology 115

value ranges for these parameters (and other relevant information, such as value
distribution, value units, etc.) are provided. The query set can also be empty,
e.g., a benchmark that targets document pre-processing in the persistent database
scenario does not contain queries.

Finally, a micro-benchmark is endowed with running scenarios that are guide-
lines on how to execute the benchmark and interpret the results. A running
scenario specifies how to vary the values of one benchmark parameter in order
to determine its impact on performance. Intuitively, it yields a family of curves
where the varying parameter values are on the x axis and the measurements are
on the y axis. A curve corresponds to a parameter-value configuration of the
background parameters. The number of running scenarios in a micro-benchmark
depends on the number of benchmark parameters.

Note that this micro-benchmark structure differs slightly from the structure
presented in [Afanasiev et al., 2005a]. The differences concern only the presen-
tation and are not conceptual. Specifically, we use a hierarchical model while in
[Afanasiev et al., 2005a], an Entity Relationship model was used.

6.2.3 Micro-benchmarking methodology

In order to facilitate micro-benchmark execution and interpretation of results,
we provide a list of general guidelines that comprises MemBeR benchmarking
methodology.

When executing a micro-benchmark and analyzing results, the benchmark pa-
rameters should vary one at a time, while keeping the other parameters constant.
This typically yields a family of curves where the varying parameter values are
on the x axis, and the measured results on the y axis.

A micro-benchmark can have many parameters and the space of all parameter-
value pairs, and thus measurements, can be huge (e.g., a measure involving 7 pa-
rameters with at least 3 values each that generates minimum 37 = 2187 measure-
ments). Performing and analyzing all the measurements might be not feasible. In
such cases, at least the measurements for all end-of-range parameter values should
be provided. Trying the measure with these values may give the system developer
early feedback, by exposing possible system shortcomings. More measurements
can be added to the analysis in a pay-as-you-go fashion further clarifying the
initial results.

Micro-benchmark executions that vary less parameters than specified by the
micro-benchmark require proper motivation. Neglecting parameters without fur-
ther explanation compromises the correct interpretation of benchmark results and
the comprehensiveness of the evaluation. Changes or restrictions of the parameter
value-ranges should also be motivated, while testing extra values for a parameter
is encouraged. In the case that the measurements obtained on the extended
value-range reveal a significant difference in performance results in comparison
with the measurements obtained on the original value-range, a revision of the

116 Chapter 6. A Repository of Micro-Benchmarks for XQuery

micro-benchmark should be considered.
Determine and declare all hidden parameters that may impact the benchmark

results. Besides the parameters that the micro-benchmark explicitly varies, there
might be hidden parameters that impact the benchmark results. For example,
many efficient query processing techniques are conditioned by some underlying
language simplifications, such as: unordered semantics, simplified atomic types
set, unsupported navigation axes, unsupported typing mechanism, etc. Such
simplifications can be considered as hidden parameters and their values should
be made clear when interpreting benchmark results. When reporting results,
declare the language and/or dialect supported by the system, even for features not
used by the micro-benchmark.

6.2.4 Preliminary classification of micro-benchmarks

The micro-benchmarks can be organized in the repository conform their tar-
get and measure. In this section, we outline a general classification of micro-
benchmarks. This classification guides a user looking for a specific micro-bench-
mark and serves as a road map for our ongoing micro-benchmark design work.

A first micro-benchmark classification criterion distinguishes between effi-
ciency, consumption, correctness, or completeness. Further, we can classify micro-
benchmarks according to the following criteria:

• The metric used by the benchmark measure, for example execution time,
query normalization or optimization time, query throughput, memory occu-
pancy, disk occupancy, etc. It may also be a simple boolean value, in the
case of correctness measures.

• Benchmarks may test data scalability (fixed query on increasingly larger
documents) and/or query scalability (increasing-size queries on fixed docu-
ments).

• Whether or not a micro-benchmark uses an XMLSchema; the particular
schema used.

• The type of the targeted engine, such as: persistent database (store the
document once, query it many times), streaming (process the query in a
single pass over the document), and main-memory (the document is parsed
and queried entirely in main-memory).

• The targeted query language and perhaps dialect which must be supported
in order to run the micro-benchmark.

• The targeted language feature in a micro-benchmark is a precise classifica-
tion criteria. We strive to provide exactly one micro-benchmark for each
interesting feature.

6.2. The MemBeR micro-benchmarking methodology 117

There might be other classification criteria as the repository grows. Similarly to
micro-benchmark principle P5, the repository should be easily extensible and its
organization should also be regularly updated to provide the best classification
of micro-benchmarks.

6.2.5 Data sets for micro-benchmarking

In order to satisfy micro-benchmark principles (P1, P3, P4, and P5), micro-
benchmarks must provide parametrized data sets that allow for systematic vary-
ing of its parameters. This can be achieved only with synthetic data sets. Syn-
thetic data generators are suitable for obtaining easily customizing test data.
Nevertheless, coming up with one unified data set, even a synthetic one, on which
all important characteristics can be varied at will, is hardly feasible. Notice that
some parameters, such as size, depth, and fan-out are inter-related and thus can-
not be independently controlled.

In this section, we consider two broad classes of synthetic documents for the
MemBeR repository. Documents in the first class are schema-less and allow full
control over the basic XML document characteristics. We propose a syntactic
document generator for this class. Documents in the second class are schema-
driven. We propose using existing declarative document generators for obtaining
data sets in this class. These classes of documents and their generators are easy-
to-use solutions for obtaining data sets for micro-benchmarking and we believe
that they cover the basic needs for data sets for MemBeR. Nevertheless, other
data sets can always be added to the repository.

Below, we briefly describe the two classes of documents.

Schema-less parametric data generator

For the class of schema-less documents, we propose a synthetic data generator that
allows controlling: (i) the maximum node fanout, (ii) maximum depth, (iii) total
tree size (number of elements), (iv) document size (disk occupancy), (v) the
number of distinct element names in the document, and (vi) the distribution of
tags inside the document. Out of these, the following parameters are required:
(i) either tree size or document size; and (ii) either depth or fan-out.

The number of distinct element names is 1 by default; elements are named
a1, a2 etc. The distribution of element tags within a document can be controlled
in two ways. Global control allows tuning the overall frequency of element named
a1, a2, ..., an. Labels may nest arbitrarily. Uniform and normal distributions
are available. Per-tag control allows specifying, for every element name ai, the
minimum and maximum level at which ai can appear may be set; furthermore,
the relative frequency of ai elements at that level can be specified as a number
between 0.0 and 1.0.1 Global distributions allow generating trees where any ai

1The generator checks the frequencies of several element tags at a given level for consistency.

118 Chapter 6. A Repository of Micro-Benchmarks for XQuery

may appear at any level. Close to this situation, for instance, is the Treebank
data set,2 containing annotated natural language; tags represent parts of speech
and can nest quite freely. Per-tag distributions produce more strictly structured
documents, whereas, e.g., some names only appear at level 3, such as article

and inproceedings in the DBLP data set,3 other elements appear only below
level 7, such as keywords in XMark etc.

Fan-out, depth, and tag distribution have impact on different aspects of XML
query processing. For example, they have an impact on the disk occupancy of
many XML storage and structural indexing schemes, on the complexity and pre-
cision of XML statistical synopses, on the size of in-memory structures needed by
an XML stream processor, and on the performance of path expression evaluation
for many evaluation strategies. Thus, we will rely on this data set for varying
these parameters and for assessing such aspects.

The number and size of text values follow uniform or normal distributions.
Values can be either filled with random characters, or taken from the Wikipedia
text corpus (72 MB of natural language text, in several languages). The latter is
essential in order to run full-text queries.

Schema-derived data sets

For the class of schema-derived data sets, we propose using ToXGene [Barbosa
et al., 2002], a declarative data generator that produces synthetic data according
to schema specifications of the desired test data. ToXGene relies on XML Schema
specifications. It allows for the specification of skewed probability distributions
for elements, attributes, and textual nodes. Being based on XML Schema, the
tool supports different data types, as well as id/idref constraints. It also offers
a simple declarative query language that allows one to model relatively complex
dependencies among elements and attributes involving arithmetic and string ma-
nipulation operations. For instance, it allows one to model that the total price
of an invoice should be the sum of the individual prices of the items in that in-
voice multiplied by the appropriate tax rates. Finally, ToXgene offers support for
generating recursive XML documents.

6.3 The MemBeR repository

In this section, we discuss the current version of the MemBeR repository and
give an example of a MemBeR micro-benchmark. We then discuss how well the
example meets the micro-benchmarking principles P1–P6.

A web-based interface to the MemBeR repository is located at http://ilps.
science.uva.nl/Resources/MemBeR/. The current version of MemBeR has the

2Available at http://www.cs.washington.edu/research/xml/datasets.
3Available at http://dblp.uni-trier.de/xml.

http://ilps.science.uva.nl/Resources/MemBeR/
http://ilps.science.uva.nl/Resources/MemBeR/
http://www.cs.washington.edu/research/xml/datasets
http://dblp.uni-trier.de/xml

6.3. The MemBeR repository 119

following components:

• Micro-benchmarks organized in categories based on the preliminary micro-
benchmark classification presented in Section 6.2.4;

• Micro-benchmark results corresponding to the respective micro-benchmark
and contributed by the repository users;

• The synthetic XML data generator presented in Section 6.2.5;

• Repository users that contribute micro-benchmarks and micro-benchmark
results; and

• A list of XQuery benchmarking resources, such as links to the five XQuery
benchmarks discussed in Chapter 3; the corrected and standardized queries
of the five benchmarks; a list of open-source XQuery engines; link to XCheck,
the tool for automatizing the process of running a benchmark and analyzing
the results presented in Chapter 5, etc.

Currently, MemBeR contains 34 micro-benchmarks, contributed by 5 out of 8
registered users. It also contains micro-benchmark results corresponding to 14
micro-benchmarks.

6.3.1 An example of MemBeR micro-benchmark

In this section, we give an example of a MemBeR micro-benchmark created and
published by Manolescu, Miachon, and Michiels. The benchmark can be found at:
http://ilps.science.uva.nl/Resources/MemBeR/CHILD-ATTRIB.html. This
micro-benchmark is part of a family of seven MemBeR micro-benchmarks tar-
geting the performance XPath child navigation.4 We choose this example for its
simplicity and in order to illustrate the micro-benchmarking design principles at
work. In the next section, we discuss the extent to which the benchmark meets
the MemBeR design principles.

In the next chapter, Chapter 7, we present a more comprehensive micro-
benchmark (with respect to the number of tested parameters) for evaluating
value-based joins processing techniques. For even more examples of MemBeR
micro-benchmarks we refer to the MemBeR website and related publications
[Afanasiev et al., 2005a, Manolescu et al., 2008b].

Target

The performance of child axis navigation of any type of XML query engine.

4In compliance with the design principle P6, these micro-benchmarks should be combined
in one if possible.

http://ilps.science.uva.nl/Resources/MemBeR/CHILD-ATTRIB.html

120 Chapter 6. A Repository of Micro-Benchmarks for XQuery

Measure

The benchmark measure is the query processing time as a function of the bench-
mark parameters. The benchmark varies two parameters: the number of child
steps in a path expression and the child step selectivity. The number of child steps
varies from 1 to 19 and it is controlled by a query set of 19 queries, one for each
path depth. The child step selectivity varies from 1 to 218 items in an exponential
manner and it is controlled by setting the fan-out of one of the benchmarks XML
documents to 2. Note that the child step selectivity is also responsible for the
size of the context sequence of any intermediate child step.

The measure can be seen as query scalability with respect to the number of
child steps in a path expression and with respect to query intermediate and end
result size. Controlling both the path depth and the query selectivity at each
depth is important, since these parameters have important independent impacts
on the performance of child-navigation queries.

The unit of measurement is CPU seconds.

Data set

The data set consists of two documents, “layered.xml” and “exponential2.xml”,
constructed with the MemBeR synthetic data generator. The first document is
of size 12.33 MB. The root of the document is labeled “t1”, and it has 32, 768
children labeled “t2”. At every level i comprised between 3 and 19, there are
32, 768 nodes labeled “ti”. Each element labeled “ti”, with 3 ≤ i ≤ 18, has
exactly one child labeled “t(i+ 1)”. Elements labeled “t19” are leaves.

The second document is a binary tree of size 11.39 MB. At level i (where
the root is considered level 1), the document has 2(i−1) elements labeled “ti”.
Elements labeled “t19” are leaves. Every element of both documents have a
unique attribute “@id”.

The two documents have the same tree depth, size, element-name distribution
over the tree layers, etc. They differ only in the average tree fan-out—the first
document has an average tree fan-out 1.06, while the second document has tree
fan-out 2.

Note that the tree shapes of “layered.xml” and “exponential2.xml” are ex-
tremely regular; real-life documents are likely to be somewhere in between them
in terms of average tree fan-out.

Query set

The query set consists of nineteen queries of the form

doc(name)/t1/t2/. . . /tn/data(@id) ,

where n varies from 1 to 19 and name is “layered.xml” or “exponential2.xml”.
The queries retrieve the IDs of nodes at increasing depths of the document. Note

6.3. The MemBeR repository 121

that all the queries have non-empty results. Query selectivity depends on the
document against which the query is evaluated and on the number of child steps.
When evaluated on “layered.xml” the query selectivity is constant for all the
queries; when evaluated on “exponential2.xml” the query selectivity is exponen-
tial in the number of child steps.

The attribute step at the end of the child path is made in order to reduce the
result serialization time. In this manner, the query processing time gets closer to
the actual time it takes the query engine to locate the nodes.

This query is designed to test the ability of the query processor to deal with
increasing lengths of child-path expressions and with increasing intermediate and
end result size. For instance, materialization of intermediate path results has an
increasing performance impact for longer queries.

Running scenario

The benchmark has one running scenario varying the number of child steps while
fixing the child step selectivity by fixing the document on which the queries run.
The results are represented by two curves, one for each document in the data set.

For assessing the query selectivity with respect to the number of child steps,
the benchmark measures the query processing time of the query set on “lay-
ered.xml”. Since the number of returned nodes is constant (216) for all queries on
this document, the performance time might be influenced only by the number of
child steps. The number of nodes visited by a naive XPath evaluation strategy is
in O(n), thus the processing times of a query engine should behave, in the worst
case, as a linear function of the number of child steps.

For assessing the query selectivity with respect to the intermediate and end
result size, the benchmark measures the query processing time on “exponen-
tial2.xml”. The number of returned items is exponential in the number of child
steps. The number of nodes visited by a naive XPath evaluation strategy is also
in O(2n), thus the processing times of a query engine should be behave, in the
worst case, as a exponential function of the number of child steps.

Benchmark results

To illustrate the benchmark in action, we execute it on four open-source XQuery
engines: SaxonB v9.1 [Kay, 2009], Qizx/Open v3.0 [Axyana Software, 2009],
Galax v0.5.0 [Fernández et al., 2006], and MonetDB/XQuery v0.30.0 [Boncz et al.,
2006b].

The experiments are conducted on a Fedora 8 machine, with a 64 bit compi-
lation, with 8 CPUs, Quad-Core AMD Opteron(tm) of 2.3GHz, and 20GB RAM.
When running the Java implementations, SaxonB and Qizx/Open, we set the
Java Virtual Machine maximum heap size value to 10GB. The experiments are
run with XCheck, the testing platform presented in Chapter 5. The time mea-

122 Chapter 6. A Repository of Micro-Benchmarks for XQuery

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.2

0.4

0.6

0.8
Query processing time (sec), SaxonB

Query

layered.xml
exponential2.xml

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2

2.5

3

3.5

4
Query processing time (sec), Qizx/Open

Query

layered.xml
exponential2.xml

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
10

12

14

16

18

20

22

24
Total execution time (sec), Galax

Query

layered.xml
exponential2.xml

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0

0.1

0.2

0.3

0.4

0.5
Query processing time (sec), MonetDB/XQuery

Query

layered.xml
exponential2.xml

Figure 6.2: Micro-benchmark results on four XQuery engines.

surements are computed by running each query 4 times and taking the average
performance time(s) of the last 3 runs. SaxonB, Qizx/Open, and MonetDB report
on detailed processing times, including the query processing time. Thus, conform
the benchmark specification, we record the query processing time reported by
the engines. Galax does not report on detailed times, thus we measure the total
query execution time.

Figure 6.2 contains the micro-benchmark results for the four engines. On “lay-
ered.xml”, MonetDB/XQuery shows a linear increase in performance times with
respect to the number of child steps. The other engines, though their correspond-
ing curves are more irregular, do not show a steady linear increase of performance
times. On “exponential2.xml”, SaxonB, Galax, and MonetDB/XQuery show a
super-linear increase in the performance time with respect to the number of child
steps of the query and a linear increase with respect to the child step selectivity.
All three curves grow slowly or are almost constant on the first dozen queries and
grow steeply on the rest. Qizx/Open shows a linear behavior on this document,
with a drastic increase of the curve slope at the query of path depth 12.

Further analysis is needed to check whether the curves for testing the impact
of child step selectivity are indeed linear or sub-linear. For example, we know that
MonetDB/XQuery implements staircase join with pruning for evaluating XPath
axes, thus it does one scan of both the context sequence and the document (with
skipping) for every child step of the path expression. [Grust et al., 2003]

6.3. The MemBeR repository 123

6.3.2 Meeting the design principles

In this section, we discuss how well the example micro-benchmark conforms to
the design principles stated in Section 6.2.1.

Conform P1, the micro-benchmark isolates the impact on the performance of
the tested language feature and of the two parameters (the number of child steps,
and the child-step selectivity). The data set and query set are simple and they do
not vary other features than the tested ones. By measuring the query processing
time rather than the total query execution time, the benchmark conforms to
design principle P2. As a result, the benchmark measures the performance of the
dynamic evaluation phase of the XQuery processing model in isolation from the
other phases.

The benchmark running scenario varies the number of child steps, while fixing
the document on which the queries run. On “layered.xml”, only the number
of child steps varies. On “exponential2.xml”, the child step selectivity varies
together with the number of child steps. Conform P4 (and conform our micro-
benchmarking methodology), a second running scenario is needed that varies
only the child step selectivity while keeping the number of child steps constant.
This can be achieved by executing the same query on different documents and
comparing the results. Though the impact of the second parameter can be already
seen on the results of the first running scenario, one needs to be aware that these
results are dependent also on the number of child steps, thus the impact of the
second parameter is not measured in isolation.

The benchmark tests for two parameters only. Arguably, there are many other
parameters and parameter values that might impact the performance of child nav-
igation. But whether they all need to be included in this micro-benchmark or sep-
arate benchmarks need to be created might be a subjective matter. The authors
of this micro-benchmark developed six other micro-benchmarks testing the per-
formance of child navigation (i) in the presence of position predicates, (ii) where
the navigation is included in a predicate expression or not, and (iii) where the
result nodes are retrieved or only located [Manolescu et al., 2008b]. Whether
to assemble these micro-benchmarks together or not is subject to argumentation
and might be a matter of opinion. Thus design principles P3 and P6 allow for
different interpretations and debates.

Since these principles are difficult to fully adhere to when creating a micro-
benchmark, we propose a pay-as-you-go strategy: allowing MemBeR users to
submit and use micro-benchmarks that do not fully conform to P3 and P6 yet,
and allow for updates to the benchmarks with new parameters or merge micro-
benchmarks as the need arizes.

Note that due to its simplicity, the above example benchmark can easily be
extended with new parameters or, conform P5, with new values for the two pa-
rameters.

124 Chapter 6. A Repository of Micro-Benchmarks for XQuery

6.4 Conclusions

In this chapter, we tackled the problem of performance evaluation of XML query
processors and the lack of suitable tools for precise and comprehensive perfor-
mance evaluations. As a solution to this problem, we proposed MemBeR, an
open-ended, community driven, repository of micro-benchmarks. We endowed
the repository with micro-benchmarking design principles and methodology, with
a fixed micro-benchmark structure, with suggestions for potentially interesting
parameters, and tools for generating parametrized data sets.

MemBeR is freely accessible on the web and serves as a proof of concept of
the MemBeR vision, its use, and potential.

In the next chapter, Chapter 7, we present a micro-benchmark for evaluating
value-based joins processing techniques that follows the MemBeR methodology.

Chapter 7

A Micro-Benchmark for Value-Based
Equi-Joins

In Section 3.7, we investigated the part of the Michican benchmark that was
designed to test value-based joins expressed in XQuery and we found that its
query set is not sufficient for a satisfactory performance analysis of this query
operation. In this chapter, we provide an accurate and more comprehensive
micro-benchmark inspired by the join queries of MBench.

We present a micro-benchmark for evaluating the performance of query pro-
cessing techniques for value-based joins expressed in XQuery (Section 7.2). The
benchmark allows for a detailed analysis of engine performance with respect to
seven query and data parameters. Using this micro-benchmark, we conduct an ex-
tensive analysis of performance of four open-source XQuery engines (Section 7.3).
Our analysis indicates that the join-processing techniques deployed by the engines
have room for improvement and that the micro-benchmark we propose provides
an accurate and comprehensive tool for testing value-based joins (Section 7.4).

The micro-benchmark we present here is an extended version of the micro-
benchmark previously published in [Afanasiev and Marx, 2008]. We extended
the benchmark with more parameters and with a more systematic way of varying
their values and analyzing their impact on the performance results.

7.1 Introduction

In relational databases, the join operation is one of the fundamental query op-
erations. It combines information from two different relations based on their
Cartesian product. It is inherently one of the most difficult operations to imple-
ment efficiently, as no predefined links between relations are required to exist.
Since it is executed frequently and it is expensive, for more than 30 years now,
a lot of research effort has been invested in the optimization of join processing
[Mishra and Eich, 1992].

125

126 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

In the settings of XML databases and XQuery, we distinguish two types of
joins: value-based joins and structural joins. Just as in the relational case, the
value-based join combines information from two sequences of items based on
their Cartesian product and the join condition is expressed on the atomic val-
ues of the items (e.g., attribute values, the string value of the item, etc.). The
structural join, on the other hand, expresses conditions on the structural rela-
tionships between the pair of nodes in the XML tree. The where clause of the
FLWOR expression in XQuery is especially designed to express joins. Neverthe-
less, XQuery allows for other equivalent ways of expressing joins (we count four
different syntactic patterns), which adds to the complexity of the join-processing
task.

Early on, much of the research effort on XML databases, focused on optimizing
structural joins as it is a new and essential challenge to querying them [Gou and
Chirkova, 2007]. The consolidation of the language standard and the need for
improving performance of XQuery engines, draws more attention to improving
the handling of data values, including optimizing the value-based join. Recall
from Chapter 3, where we evaluated the performance of four XQuery engines on
five XQuery benchmarks, that the most challenging benchmark queries involved
value-based joins. In this chapter, we focus on value-based joins.

As performance evaluation is essential for the development of query processing
techniques, a benchmark is needed for testing the performance of value-based
joins. The MBench micro-benchmark [Runapongsa et al., 2002] makes a first
attempt to address the performance of value-based joins by dedicating four queries
to testing them. However, as we argue in Section 3.7, the four queries are not
sufficient to get a satisfactory view of the performance of an engine on value-
based joins. The previously proposed application benchmarks for XQuery are
of no help either: although they contain value-based joins in their queries, as
we discuss extensively in Chapter 3, their queries and measures do not focus on
a particular language operation and thus, they are not suitable for a detailed
analysis of value-based joins in particular. A benchmark that targets an accurate
and comprehensive evaluation of this operation is needed.

Our goal in this chapter is to design a micro-benchmark targeting the per-
formance of processing techniques for value-based joins. The micro-benchmark
should provide a comprehensive view on the performance of an engine on these
joins, taking into account performance-critical query and data parameters. The
micro-benchmark should allow developers to accurately evaluate their join-pro-
cessing techniques and it should allow users to analyze the performance of an
engine with respect to external parameters they can control.

The research question we address in this chapter is:

7.1. Question. How to measure the performance of value-based joins expressed
in XQuery? What is a suitable measure and which parameters are important to
consider?

7.2. A micro-benchmark for value-based equi-joins 127

Our approach to developing the micro-benchmark is to follow the general Mem-
BeR micro-benchmarking methodology as a design guideline. We draw inspiration
from the literature on optimizing joins and construct a list of parameters that
are important for the performance of joins in relational databases. Further, we
consider a new, XQuery-specific parameter, namely the syntactic pattern used
for expressing the join. We observed in Section 3.7, that this parameter has a
significant impact on the performance of at least one XQuery engine. Finally, we
measure the impact of each parameter on the query processing time(s).

We evaluate our micro-benchmark by analyzing the performance of four open-
source XQuery engines: SaxonB, Qizx/Open, Galax, and MonetDB/XQuery. As
a result, we obtain the most comprehensive analysis of these engines with respect
to value-based joins to date (September 2009). For this analysis, we assume the
role of a user that treats the engine as a black box and we explain the performance
of the engines entirely in terms of the impact of the micro-benchmark parameters.

7.2 A micro-benchmark for value-based equi-

joins

In this section, we describe our micro-benchmark in accordance with the MemBeR
methodology.

7.2.1 Target

We present a micro-benchmark that targets the performance of the join-processing
mechanism (the component under study) of an XQuery engine (the system under
test). The targeted language feature is value-based equi-joins, i.e., joins that
express equality on data values. We consider equi-joins on numeric data values
stored in XML attributes.

7.2.2 Measure

Following the MemBeR methodology (see Chapter 6), the general measure of the
micro-benchmark is the performance time as a function of its parameters. We
consider six query parameters and one data parameter: syntactic pattern, num-
ber of join conditions, Boolean connectives, join-type, join-value data type, join
selectivity, and document size. We define these parameters in the next section.

For two of the parameters, the measure can be described in a different way.
Measuring the impact of the syntactic pattern used to express the join on perfor-
mance, can be seen as measuring the robustness of the engine against syntactic
variations. The idea behind this measure is to compare the performance of queries
expressed in different syntactic variants. The difference between the performance
times of each variant indicates the robustness of the engine.

128 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

Where:
for $a in A, $b in B
where $a/@att1 = $b/@att2
return
($a/@att1, $b/@att2)

If:
for $a in A, $b in B
return
if($a/@att1 = $b/@att2)
then ($a/@att1, $b/@att2)
else ()

Predicate:
for $a in A,

$b in B[$a/@att1 = ./@att2]
return
($a/@att1, $b/@att2)

Filter:
for $a in A, $b in B
return
($a/@att1, $b/@att2)
[$a/@att1 = $b/@att2]

A, B: path expressions; att1, att2: attribute names

Figure 7.1: Four logically equivalent ways of expressing an equi-join.

The impact of the document size on performance measures the scalability of
join-processing techniques.

The benchmark targets mainly the total query processing time, which is the
time the engine spends to process the query, from when it was fired to the mo-
ment of returning the results. However, it is also interesting to measure the
query compilation time and the query execution time apart. Query compilation
time is the time the engine spends in the static analysis phase of the XQuery
processing model [World Wide Web Consortium, 2007]. This time includes static
optimizations. Query execution time is the time the engine spends on the dynamic
evaluation phase of the XQuery processing model [World Wide Web Consortium,
2007]. This time includes dynamic optimizations. The performance metric is
CPU time.

7.2.3 Parameters

Following the MemBeR methodology, we design the micro-benchmark to analyze
the performance of value-based joins by measuring the impact of different param-
eters on performance. We vary parameters that are known to have an impact
on join processing techniques in relational databases [Mishra and Eich, 1992, Lei
and Ross, 1998]:

p1. syntactic pattern – the syntactic construction used to express the join;

p2. number of join conditions – the number of join conditions used in one join;

p3. Boolean connectives – the Boolean connectives used to combine multiple
join conditions within a join;

7.2. A micro-benchmark for value-based equi-joins 129

p4. join type – whether the path-expressions A and B (Figure 7.1) are the same
or not;

p5. join-value data type – the data type of the attributes on which the join is
expressed;

p6. join selectivity – the number of pairs of items returned by the join; and

p7. join input size – the sizes of the two sequences participating in the join,
i.e., the sequences selected by the path-expressions A and B in Figure 7.1.
We control this parameter by varying the document size—the size of the
document on which the join is expressed.

Below we explain each parameter in detail.

p1. Syntactic patterns We consider four equivalent syntactic variants for
expressing value-based joins: where, if, pred, and filter shown in Figure 7.1, where
A and B are path expressions and att1 and att2 are attribute names.

A common way of expressing joins in XQuery is by using the where clause
of a FLWOR expression. For example, all five XQuery benchmarks discussed in
Chapter 3 contain joins expressed in this way. In accordance with the XQuery
semantics [World Wide Web Consortium, 2007b], the where clause is normalized
to an if expression in XQuery Core, the complete fragment of XQuery that is
used to specify the formal semantics. Thus, the where and the if join patterns
have the same normal form in XQuery Core. Engines that use this normalization
are guaranteed to treat these two syntactic patterns equivalently.

In the predicate pattern, the join is expressed in a predicate. Two out of
the five benchmarks we studied in Chapter 3 (XMach-1, XBench) contain joins
expressed with this pattern. In the filter pattern, the same predicate condition
appears in the return clause as a filter to the sequence construction.

p2. Number of join conditions and p3. Boolean connectives We con-
sider joins with one, two, or three different join conditions combined with con-
junction or disjunction between them. For example, the following join pattern
contains two join conditions combined with conjunction:

for $a in A, $b in B
where
$a/@att1 = $b/@att2 and $a/@att3 = $b/@att4
return ($a,$b)

where att3 and att4 are attribute names.

130 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

p4. Join type We consider two different types of joins, self-joins and general
joins. If the path-expressions A and B of a join (Figure 7.1) are the same, then
the join is called a self join, otherwise it is a general join. Thus the self-join is a
special case of the general join, where the input sequence is joined with itself.

p5. Join-value data type We consider joins on attributes of data value types
integer and id/idref. In the presence of a DTD, the integer attributes are de-
clared as CDATA and the id/idref attributes are of type ID and IDREF. In the
presence of XML Schema, the integer attributes are declared as xs:integer and
the id/idref attributes are of type xs:ID and xs:IDREF. The micro-benchmark
data set contains both a DTD and an XML Schema to describe the documents.

p6. Join selectivity The number of pairs of items returned by the join, or
in other words the join result size, we measure as a percentage of the number of
pairs of the underlying Cartesian product of the join. We vary the selectivity in
four discrete steps: tiny (XS, 0.002%), small (S, 0.2%), medium (M, 14%), and
large (L, 62%).

p7. Join input size and Document size By fixing the selectivity of
path-expressions A and B to a percentage of the number of nodes in the queried
document, we tie the join input size directly to the document size. Then we
consider documents ranging from 1MB to 46MB (approximately 1, 500 to 67, 000
nodes). The result size of A and B is 1/64×N (1.6%), where N is the number of
nodes in the document.

7.2.4 Documents

We use the documents and schema of MBench [Runapongsa et al., 2002] for our
micro-benchmark. In Section 3.7 of Chapter 3, we have seen that these documents
have data value distributions that allow us to easily control the selectivity of the
benchmark queries and are the key to the micro-benchmark’s ability to vary
parameters in isolation. Below, we briefly recall their structure and properties.

MBench documents have two types of elements, eNest and eOccasional.
Most (99%) of the elements of the MBench data are of type eNest. The eNest

element has six numeric attributes with precise value distributions:

• aUnique1: A unique integer indicating the element’s position in the data
tree in breadth-first order; it serves as the element identifier (type ID);

• aUnique2: A unique integer generated randomly;

• aLevel: An integer whose value equals the length of the path from the node
to the root;

7.2. A micro-benchmark for value-based equi-joins 131

• aFour: An integer set to aUnique2 mod 4;

• aSixteen: An integer set to aUnique1 + aUnique2 mod 16; and

• aSixtyFour: An integer set to aUnique2 mod 64.

The remainder (1%) of the elements in the data set are of type eOccasional. An
eOccasional element is added as a child to an eNest element if its aSixtyFour

attribute is 0. The eOccasional element contains only one attribute aRef of type
IDREF. The value of aRef is set to the aUnique1 attribute of the parent minus 11
(aUnique1−11), i.e., aRef refers to an eNest element that precedes the parent of
eOccasional with 11 positions in the breadth-first order (if it exists, otherwise
it refers to the root).

MBench contains three documents of varying sizes. In Section 3.6, we have
seen that the smallest document of 46MB is already large enough to seriously
challenge the tested engines on join queries. Therefore, for our micro-benchmark
we scale the document size by cutting off the 46MB MBench document at different
depths starting with depth 9. The original document is of depth 16. As a result
we obtain the following data set:

Depth Size # of eNest
elements (×103)

d1 9 1.1 MB 1.6
d2 10 1.4 MB 2.1
d3 11 2 MB 3.2
d4 12 3.3 MB 5.2
d5 13 5.9 MB 9.3
d6 14 12 MB 17.5
d7 15 22 MB 33.9
d8 16 46 MB 66.7

The document set can be extended in the same manner and granularity by taking
as bases the MBench documents of medium (496MB) and large (4.8GB) sizes.

The MBench documents are accompanied by a DTD and an XML Schema.

7.2.5 Queries

It is difficult to design a set of queries that covers all valid value combinations
of the parameters we consider. Even if possible, the set might be to too big to
be manageable. With p1 having 4 values, p2 and p3 together having 6 value
combinations, p4 having 2 values, p5 having 2 values, and p6 having 4 values,
there are 384 possible queries. We choose a set of value combinations in which
the values of p1, the values one and two of p2, and the values of p3 are combined
in all possible ways, while the value combinations for p2 (the value three), p4, p5,
and p6 respect the following rule: for every two values of each of these parameters

132 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

ÃaS ÃbM B̃aS
AaS Aa&S AavS AbM Ab&M AbvM Ab&&M Ab&vM BaS Ba&S BavS

p2 1 2 2 1 2 2 3 3 1 2 2
p3 – and or – and or and,and and,or – and or
p4 self self self self self self self self gen. gen. gen.
p5 int int int int int int int int int int int
p6 S S S M M M M M S S S

B̃aL B̃bXS ˜BbRefXS
BaL Ba&L BavL BbXS Bb&XS BbvXS BbRefXS Bb&RefXS BbRefXS

p2 1 2 2 1 2 2 1 2 2
p3 – and or – and or – and or
p4 gen. gen. gen. gen. gen. gen. gen. gen. gen.
p5 int int int int int int id/idref id/idref id/idref
p6 L L L XS XS XS XS XS XS

Table 7.1: Micro-benchmark queries and their corresponding parameter values.

there are two queries in the set that differ only by these values. In this way, the
difference in performance times of these queries can be safely attributed to the
influence of the parameter that is varied and to particular values being chosen.
This leads to 80 different queries.

ÃaS

ÃbM

B̃aS

B̃aL

B̃bXS ˜BbRefXS

p6

XS

S

M

L

p4 self general general

p5 int int id/idref

Figure 7.2: The six classes of
document-equivalent joins and their
parameter dependencies.

The query set is divided into six
classes. Within each class p1 is fully
varied creating a set of logically equiv-
alent queries, and p2 (values one and
two) and p3 are varied together to ob-
tain valid value combinations in such a
way that it creates a set of document
equivalent queries, i.e., the queries return
the same result on the MBench docu-
ments. This means that the queries in
each equivalence class return the same
result. Thus, within one class, p1, p2,
and p3 are varied, while p4, p5, and p6
are fixed. From one class to another only
one of the parameters p4, p5, or p6 is
varied. Figure 7.2 shows which param-
eter varies between classes. The class
ÃbM contains two more document equiv-
alent queries with the parameter p2 hav-
ing value three.

All in all, the query set consists of

7.2. A micro-benchmark for value-based equi-joins 133

20 joins (80 syntactically different queries). Table 7.1 lists the joins and their
corresponding parameter values. The name of a query is an encoding of its
properties. If the query is a self-join, i.e., the path expression A is the same as the
path expression B, then the query name contains the capital letter “A”, otherwise
it contains the capital letter “B”. If any join condition in a query (any query
can have one, two or three join conditions) is expressed between two attributes
with the same name, then the query contains the small letter “a”, otherwise
“b”. Further, the join name contains “&” and/or “v” for every conjunct and/or
disjunct it contains. Queries whose name contains “Ref” are id/idref chasing
joins. Finally, the join selectivity of a query is indicated by the suffix “XS”, “S”,
“M”, and “L”.

For example, query Ab&vM is a self-join containing three join conditions on
different attributes connected by a conjunction and a disjunction, and it has a
medium selectivity. The query has the following general pattern:

for $a in A, $b in A
where
$a/@att1 = $b/@att2 and
$a/@att3 = $b/@att4 or
$a/@att5 = $b/@att6
return ($a,$b)

Each query belongs to one of the six classes of document-equivalent queries. The
classes are named after their member with only one join condition. For example,
Ab&vM is document equivalent to AbM and both queries fall into the ÃbM class.

The where variant of the actual queries can be found in Figure 7.3 and 7.4.
The whole set of queries can be found online at http://ilps.science.uva.nl/
Resources/MemBeR/mb-joins/output/outcome.html.

Note that we fix the selectivity of path A and B in all the queries by filter-
ing the eNest elements with a particular property that always yields approxi-
mately 1/64th (1.6%) of all eNest elements. For example, the path-expression
//eNest[@aSixtyFour=0] returns all eNest elements whose unique random num-
ber stored in aUnique2 is divisible by 64 (@aUnique2 mod 64 = 0). The path-
expression //eNest[eOccasional] returns the same elements as the expression
//eNest[@aSixtyFour=0], since eOccasional occurs whenever an eNest has the
attribute aSixtyFour equal to 0.

We further exploit the correlation between the attribute data of the MBench
documents to create document equivalent queries and thus maintain a fixed join
selectivity within each class. This equivalence does not hold for all documents
conforming to the MBench schema (given by DTD or XML Schema), but for those
that respect value dependencies used in the creation of the MBench documents.

http://ilps.science.uva.nl/Resources/MemBeR/mb-joins/output/outcome.html
http://ilps.science.uva.nl/Resources/MemBeR/mb-joins/output/outcome.html

134 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

AaS:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e2/@aUnique2=$e1/@aUnique2
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Aa&S:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e2/@aUnique2=$e1/@aUnique2 and

$e2/@aSixtyFour=$e1/@aSixtyFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))
AavS:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e2/@aUnique2=$e1/@aUnique2 or

$e2/@aUnique1=$e1/@aUnique1
return

(data($e1/@aUnique1),data($e2/@aUnique1))

AbM:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aFour=$e2/@aSixteen
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Ab&M:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aFour=$e2/@aSixteen and

$e1/@aFour=$e2/@aSixtyFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))

AbvM:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aFour=$e2/@aSixteen or

$e1/@aSixtyFour=$e2/@aSixteen
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Ab&&M:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aFour=$e2/@aSixteen and

$e1/@aSixtyFour=$e2/@aSixteen and

$e1/@aSixtyFour=$e2/@aFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Ab&vM:
for $e1 in doc()//eNest[@aSixtyFour=0],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aSixtyFour=$e2/@aSixteen and

$e1/@aSixtyFour=$e2/@aFour or

$e1/@aFour=$e2/@aSixteen
return

(data($e1/@aUnique1),data($e2/@aUnique1))

BaS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aUnique2=$e2/@aUnique2
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Ba&S:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aUnique2=$e2/@aUnique2 and

$e1/@aSixtyFour=$e2/@aSixtyFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))
BavS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aUnique2=$e2/@aUnique2 or

$e2/@aUnique1=$e1/@aUnique1
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Figure 7.3: The where variant of the micro-benchmark query set, classes ÃaS,
ÃbM, and B̃aS.

7.2.6 Running scenarios

For measuring the impact of the query parameter, we fix the document size to the
largest value (d8, 46MB) and execute all queries on this document.

For measuring data scalability, all queries can be run on a subset (including a
small, medium, and a large size document) of the proposed documents or on all
document sizes. The latter case generates 640 measurements. Another approach
is to first analyze the impact of the query parameters and then choose a few query

7.2. A micro-benchmark for value-based equi-joins 135

BaL:
for $e1 in doc()//eNest[@aSixtyFour=4],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aLevel=$e2/@aLevel
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Ba&L:
for $e1 in doc()//eNest[@aSixtyFour=4],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aLevel=$e2/@aLevel and

$e1/@aFour=$e2/@aFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))

BavL:
for $e1 in doc()//eNest[@aSixtyFour=4],

$e2 in doc()//eNest[@aSixtyFour=0]

where $e1/@aLevel=$e2/@aLevel or

$e1/@aSixtyFour=$e2/@aSixtyFour
return

(data($e1/@aUnique1),data($e2/@aUnique1))

BbXS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique2 = $e1/eOccasional/@aRef
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Bb&XS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique2 = $e1/eOccasional/@aRef
and $e2/@aFour = $e1/@aFour

return

(data($e1/@aUnique1),data($e2/@aUnique1))

BbvXS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique2 = $e1/eOccasional/@aRef
or $e2/@aSixtyFour = $e1/@aSixtyFour

return

(data($e1/@aUnique1),data($e2/@aUnique1))

BbRefXS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique1 = $e1/eOccasional/@aRef
return

(data($e1/@aUnique1),data($e2/@aUnique1))

Bb&RefXS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique1 = $e1/eOccasional/@aRef
and $e2/@aFour=$e1/@aFour

return

(data($e1/@aUnique1),data($e2/@aUnique1))

BbvRefXS:
for $e1 in doc()//eNest[eOccasional],

$e2 in doc()//eNest[@aSixtyFour=4]

where

$e2/@aUnique1 = $e1/eOccasional/@aRef
or $e2/@aSixtyFour=$e1/@aSixtyFour

return

(data($e1/@aUnique1),data($e2/@aUnique1))

Figure 7.4: The where variant of the micro-benchmark query set, classes B̃aL,

B̃bXS, and ˜BbRefXS.

parameter value combinations—worst performing, medium performing, and best
performing—for the scalability analysis. We implement this approach for the
analysis of four XQuery engines presented in Section 7.3.

7.2.7 Analyzing benchmark results

In this section, we explain how the benchmark results should be analyzed.

Impact of p1 The robustness of the join recognition mechanism is measured by
comparing the average performance times computed on queries expressed using

136 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

one syntactic pattern. Note that all 20 joins of the micro-benchmark are expressed
using four different patterns, thus by taking the average for each syntactic variant
we cancel the influence of the other parameters on the performance times.

If the average performance times for each value of p1 are similar (not signif-
icantly different), then we can conclude that the engine is robust at recognizing
the equivalence of the syntactic join patterns.

Impact of p2 The impact of p2, number of join conditions, is measured by
comparing the average performance times computed for each value of p2, while
the other query parameters are varied.

Note that the set of queries that have the value of p2 fixed on one and the
set of queries that have the value of p2 fixed on two vary the other parameters
in all possible ways (note that in the case where p2 has value one, p3 has only
one possible value). The set of queries that correspond to p2 equals three is
composed of eight queries from the class ÃbM varying only p1 and p3, while p4–p6
are fixed. Thus, the difference between the average performance times for the
first two values of p2 show the impact of p2, indifferent of the values of the other
parameters. The average performance time computed for the third value of p2
must be interpreted in the settings of the fixed values of p4–p6.

Impact of p3 The impact of p3, the Boolean connectives, is measured by
comparing the average performance times computed for each value of p3, while
the other query parameters are varied.

The set of queries that have no Boolean connectives, the set of queries that
have one conjunct, and the set of queries with one disjunct as the Boolean con-
nective of two join conditions vary all the other parameters completely. The
difference between the average times computed on these query sets indicate the
impact of the Boolean connective used to combine join conditions, indifferent of
the values of the other tested parameters.

The average times computed on the set of queries that have two Boolean
connectives to combine three join conditions (queries Ab&&M and Ab&vM) must be
interpreted relative to the fixed values of p4–p6 corresponding to the class ÃbM.

Impact of p4 The impact of p4, the self or general join type, is measured by
comparing the average performance times computed for the ÃaS and B̃aS classes.
The results must be interpreted relative to the fixed values of p5 and p6, all the
other parameters are varied exhaustively.

Impact of p5 The impact of p5, the data-value type, is measured by comparing

the average performance times computed for the B̃bXS and ˜BbRefXS classes. The
results must be interpreted relative to the fixed values of p4 and p6, all the other
parameters are varied completely.

7.3. The micro-benchmark in action 137

Impact of p6 The impact of p6, join selectivity, can be measured by comparing

the average performance times computed on B̃bXS and ˜BbRefXS, on ÃaS and B̃aS,
on ÃbM, and on B̃aL, i.e., for each fixed value of p6. Note that p4 and p5 vary
non-systematicaly among these classes—by taking the first average we cancel the
impact of p5, the second average cancels the impact of p4, while the third and
fourth averages have different fixed value combinations for p4 and p5—thus we
cannot draw any definite conclusion with respect to this measure. We use this
measure only as an indication of the impact of p6 relative to the variance of other
parameters.

An alternative analysis of the impact of p6 can be done relative to fixed values
for p4 and p5. For example, we can compare the average performance times
computed on B̃bXS, on B̃bS, and on B̃aL to determine the impact of p6 relative
to p4 fixed to general and p5 fixed to integer. Or we can compare the average
performance times computed on ÃaS, and on ÃbM to determine the impact of p6
relative to p4 fixed to self and p5 fixed to integer.

Data scalability (impact of p7) We compare the data scalability of the
(chosen) different queries by comparing the angle of the scalability curves.

7.3 The micro-benchmark in action

In this section, we execute the join micro-benchmark on four XQuery engines
and analyze their performance. Our primary goal is to evaluate the design of the
micro-benchmark.

Experimental setup Our choice fell on the following open-source engines,
mainly because of their availability and ease of use: SaxonB v9.1 [Kay, 2009],
Qizx/Open v3.0 [Axyana Software, 2009], Galax v0.5.0 [Fernández et al., 2006],
and MonetDB/XQuery v0.30.0 [Boncz et al., 2006b]. SaxonB, Qizx/Open, and
Galax, are main-memory XQuery engines, while MonetDB/XQuery is a DBMS
handling XML databases and XQuery. SaxonB and Qizx/Open are open-source
counterparts of commercial engines SaxonA and Qizx, while Galax and Mon-
etDB/XQuery are research prototypes. All engines are of similar maturity and
language coverage [World Wide Web Consortium, 2006b]. The engines are run
with their default settings, without special indices or tuning for this particular
task.

The experiments are conducted on a Fedora 8 machine, with a 64 bit compi-
lation, with 8 CPUs, Quad-Core AMD Opteron(tm) of 2.3GHz, and 20GB RAM.
When running the Java implementations, SaxonB and Qizx/Open, we set the
Java Virtual Machine maximum heap size to 10GB.

The experiments are run with XCheck, the testing platform presented in Chap-
ter 5. The time measurements are computed by running each query 4 times and

138 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

taking the average performance time(s) of the last 3 runs. We interrupt the
query executions that take longer than 500 seconds. This is approximately two
orders of magnitude larger than the best performance time of each engine on our
benchmark.

For the present analysis we consider only the total query processing time.
The complete experimental data and results, containing more detailed time mea-
surements, can be found at http://ilps.science.uva.nl/Resources/MemBeR/
mb-joins/output/outcome.html.

Analysis of the results For determining the impact of every parameter on the
engines’ performance we follow the instructions presented in Section 7.2.7. When
the results are not conclusive due to large variances of the time measurements
within a study group, we perform more detailed analysis by fixing parameter
p1, syntactic patterns, to a subset of its values and analyzing the impact of the
remaining parameters.

To determine whether the impact of a query parameter on performance times
is significant, we use analysis of variance (ANOVA) with the significance level
set to 0.05 (α = 0.05). ANOVA is designed to test whether the means of several
groups are equal. It does so by computing the fraction of the variance between
the tested groups and the variance within the groups. This fraction is referred
to as F . The probability of obtaining the value of F assuming that the groups
have the same mean is referred to as p. In our case, a group corresponds to the
set of join queries that have the tested parameter set to a particular value. For
example, when testing the impact of p1, we consider four groups of queries and
analyze whether the performance times obtained for those groups have the same
mean. If F is a large number and p is close to zero, then there are at least two
groups whose means are significantly different, thus there are at least two values
of the parameter on which the engines perform significantly different. When we
find that a parameter has a significant impact, we determine the impact of every
parameter value using a pairwise comparison analysis called Least Significant
Difference (LSD). LSD is a significance test similar to the t-test, commonly used
for analyzing whether the means of two groups are the same.

ANOVA and LSD make three assumptions. First, they assume that the value
distribution within the groups is normal. We do not have good reasons to be-
lieve that the performance times within the tested groups conform to a normal
distribution—most likely they do not. Nevertheless, analysis of variance has been
argued to be robust against violations of this assumption [Keppel, 1973]. More-
over, we use the statistical tests in a conservative manner: whenever we find a
significant impact, we are fairly confident that the impact indeed exists, while
when we do not state a significant impact, there might be another, more suitable
significance test to detect it. The second assumption is that the groups have
similar variances. Third, the measurements within each group are assumed to

http://ilps.science.uva.nl/Resources/MemBeR/mb-joins/output/outcome.html
http://ilps.science.uva.nl/Resources/MemBeR/mb-joins/output/outcome.html

7.3. The micro-benchmark in action 139

be independent. The design of our queries guarantees that the last two assump-
tions hold. For more information on these statistical methods and their use in
computer systems performance analysis, we refer to [Jain, 1991, Cohen, 1995].

After analyzing the impact of the query parameters, we divide the query
set into subsets that show significant performance differences among each other.
The queries within a subset perform similarly. Then we pick a query from each
subset and analyze its scalability. We ignore the subsets that owe their impact
on performance to queries that exceeded the timeout.

In the following sub-sections, we present the micro-benchmark results in detail
for each engine separately. We use three types of plots to display the performance
times. First, we plot the performance of different syntactic patterns of all bench-
mark queries. Next, we use boxplots to display the performance times grouped
per parameter—for each query parameter, the corresponding boxplot groups the
performance time per parameter value. The boxplots show the median, the lower
and upper quartiles, the minimum, and maximum of the performance time within
each group of queries. The boxplots also show the group outliers (indicated by
empty circles). When we state a visible difference in performance time we refer
to the plots and when we state a significant difference we refer to the statistical
analysis mentioned above. Finally, we plot the performance time of a selection of
queries against the benchmark documents, d1–d8.

In Section 7.3.5, we further discuss engines’ performance and the micro-
benchmark design.

7.3.1 SaxonB

The performance times obtained for SaxonB on our micro-benchmark are shown
in Figure 7.5.

For the impact of parameters p1–p6 see Figure 7.5(a). First, we observe
that SaxonB performs significantly different on queries expressed via different
syntactic patterns (F = 38, p < 0.001). The filter pattern performs best. The
times for this pattern are similar on all queries revealing a robust and efficient
join processing technique. The performance times on queries expressed via where
and if patterns are very similar and are ranking second best. The queries in
the predicate pattern perform worse. Pairwise comparison of the four groups of
queries shows significant performance differences between where, predicate, and
filter, while where and if are similar.

The performance of different syntactic patterns is very different. For example,
where and if queries that contain a disjunction perform better than average, while
for predicate the same queries perform worse than average. When analyzing the
measurements for the whole query set, due to the large variances in the measure-
ments (see Figure 7.5(a)), none of the remaining parameters shows a significant
impact. Thus, we consider that the engine implements three different approaches
and analyze them separately with respect to the remaining parameters.

140 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

AaS & v AbM & v && &v BaS & v BaL & v BbXS & v BbRefXS & v
0

20

40

60

80

100

Total query processing time (sec), SaxonB, doc 46MB

Query

Wh
If
Pr
Fl

101

102

Wh If Pr Fl
p1: Syntactic pattern

SaxonB, doc 46MB
Total time (sec)

101

102

1 2 3
p2: Number of join conditions

Saxon, doc 46MB
Total time (sec)

102

− & v && &v
p3: Boolean connectives

SaxonB, doc 46MB
Total time (sec)

101

Self General
p4: Join type

SaxonB, doc 46MB
Total time (sec)

101

102

int id/idref
p5: Join−value data type

SaxonB, doc 46MB
Total time (sec)

101

102

XS S M L
p6: Join selectivity

Saxon, doc 46MB
Total time (sec)

(a) The impact of query parameters p1–p6

d1 d2 d3 d4 d5 d6 d7 d8
100

101

102
Total time (sec), SaxonB

Document

 AaS (Fl)
AaS (Wh,If)
AavS (Wh,If)
AaS (Pr)
AavS (Pr)
BbXS (Pr)
BbvXS (Pr)

(b) Document scalability (parameter p7)

Figure 7.5: SaxonB results on the join micro-benchmark.

7.3. The micro-benchmark in action 141

On the performance of the where and if patterns only p3 has a significant im-
pact (F = 66.7, p < 0.001). The queries containing two join conditions connected
by a disjunction perform significantly better than the rest.

On the performance of the predicate pattern parameters p3 and p6 have a sig-
nificant impact (F = 3.7, p = 0.049 and F = 8.9, p = 0.0015, respectively). The
queries containing two join conditions connected by a disjunction perform signif-
icantly worse than the rest. The queries that have the smallest join selectivity,
XS, perform significantly worse than the rest.

None of the parameters p2–p6 have a significant impact on the performance
of the filter pattern.

For the scalability analysis we choose the following queries: AaS (Fl), AaS

(Wh), AavS (Wh), AaS (Pr), AavS (Pr), BbXS (Pr), and BbvXS (Pr), one represen-
tative from each subset of queries obtained by slicing the whole query set conform
the impact of p1, p3, and p6. Figure 7.5(b) shows the scalability curves.

Note that the curves fall into two distinctive groups: the curves for AaS (Fl)
and AavS (Wh) have a similar slope growing slower than the curves of the rest
of the queries that also share the slope angle. This indicates that the processing
approaches used for AaS (Fl) and AavS (Wh) are essentially different (better
performing) than the approaches used for the other queries.

Interpreting the results We were surprised to observe the filter variant to be
the winner in the case of SaxonB, since this seems a less common way of expressing
joins in XQuery. We shared the benchmark results with SaxonB’s developer,
Michael Kay. The author acknowledged that filter is the only variant of the join
queries in which the sub-expression B (see the query patterns in Figure 7.1) is
being pulled out of the nested for-loop, thus it is evaluated once and the results
held in memory. In the other cases this opportunity is not being recognized or
exploited.

The fact that the where and if patterns perform the same is, as expected,
due to the fact that they share the same normal form in XQuery Core. SaxonB
first rewrites a query into its normal form and then executes it. As the developer
explains, the disjunctive joins expressed in the where and if forms are evaluated
much faster than the other queries from the same class due to the fact that for
these queries the same processing strategy as for the filter queries is applied. This
explains our results.

7.3.2 Qizx/Open

The performance results obtained for Qizx/Open on our micro-benchmark are
shown in Figure 7.6.

Figure 7.6(a) shows the impact of the query parameters. The queries expressed
via the where syntactic pattern perform significantly better than the rest (F =
36.4, p < 0.001). The performance of the other three patterns is very similar.

142 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

AaS & v AbM & v && &v BaS & v BaL & v BbXS & v BbRefXS & v
100

101

102

103
Total query processing time (sec), Qizx/Open, doc 46MB

Query

Wh
If
Pr
Fl

(a) The impact of query parameters p1–p6

d1 d2 d3 d4 d5 d6 d7 d8
100

101

102

103
Total time (sec), Qizx/Open

Document

AaS (Wh)
AavS (Wh)

(b) Document scalability (parameter p7)

Figure 7.6: Qizx/Open results on the join micro-benchmark.

Parameter p3 has a significant impact of the performance of the where pattern
(F = 2e+4, p ≈ 0), with all the queries containing a disjunction performing worse
than the rest. None of the other parameters p2 and p4–p6 have a significant
impact on the performance of Qizx/Open.

For the scalability analysis we choose the following queries: AaS (Wh) and
AavS (Wh), corresponding to the two subsets performing significantly different,
obtained by slicing the query set along p1 and p3. Figure 7.6(b) shows the results.
AaS (Wh) not only performs better than AavS (Wh), but it also has a better data
scalability, thus the processing technique applied for these queries are essentially
different.

Interpreting the results The results for Qizx/Open indicate that the engine
deploys a join recognition technique based on a syntactic pattern using the where
clause. The three other forms are evaluated in the same way, we believe, by

7.3. The micro-benchmark in action 143

materializing the Cartesian product as intermediate result. Moreover, it seems
that the syntactic pattern used for recognizing joins using the where clauses fails
to capture disjunctive join conditions, since these queries perform as bad as the
queries written in the other syntactic forms.

7.3.3 Galax

The micro-benchmark results for Galax are shown in Figure 7.7. Note that Galax
exceeded the timeout time on all queries expressed via the syntactic pattern
predicate.

All four syntactic patterns perform significantly different from each other (F =
6.2e+3, p ≈ 0). Where is the best performing, followed by if, then by filter, and
the worst performing is predicate.

Note that the shape of the curves for the if and filter patterns in the first
plot of Figure 7.7 are similar. Still they are significantly different, thus we an-
alyze each pattern separately. Only parameter p3 has a significant impact on
the performance of these patterns (F = 6.4, p = 0.003 and F = 8.1, p = 0.002,
respectively). The queries that contain two join conditions connected by a dis-
junction perform significantly worse than the ones with only one join condition.
The rest of the value pairs perform similarly.

The performance of the where pattern is significantly influenced only by the
p6 parameter (F = 164, p < 0.001). All four query groups corresponding to the
join selectivity values show significantly different performances—the larger the
join selectivity, the longer the processing times.

For the scalability analysis we choose the following queries: BbXS (Wh), AaS
(Wh), AbM (Wh), BaL (Wh), AaS (If), AavS (If), AaS (Fl), and AavS (Fl), one
representative from each subset of queries obtained by slicing the whole query set
conform the impact of p1, p3, and p6. Figure 7.7(b) shows the scalability results.

The queries expressed via the where pattern show slightly better scalability
than the rest. Further analysis is required to determine how significant the dif-
ferences are. This can be done by testing the scalability on documents of larger
sizes. We indicate in Section 7.2.4 how to obtain larger size documents.

Interpreting the results Even though the Galax implementation pipeline
[Fernández et al., 2006] indicates that all the queries are normalized to XQuery
Core before processing, the differences between the where and if patterns indi-
cate that this is not always the case. The performance on the predicate pattern
suggests that the engine computes the Cartesian product and only then applies
the join conditions.

144 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

AaS & v AbM & v && &v BaS & v BaL & v BbXS & v BbRefXS & v
101

102

103
Total query processing time (sec), Galax, doc 46MB

Query

Wh
If
Pr
Fl

102

Wh If Pr Fl
p1: Syntactic pattern

Galax, doc 46MB
Total time (sec)

102

1 2 3
p2: Number of join conditions

Galax, doc 46MB
Total time (sec)

102

− & v && &v
p3: Boolean connectives

Galax, doc 46MB
Total time (sec)

102

Self General
p4: Join type

Galax, doc 46MB
Total time (sec)

102

int id/idref
p5: Join−value data type

Galax, doc 46MB
Total time (sec)

102

XS S M L
p6: Join selectivity

Galax, doc 46MB
Total time (sec)

(a) The impact of query parameters p1–p6

d1 d2 d3 d4 d5 d6 d7 d8
10−1

100

101

102

103
Total time (sec), Galax

Document

BbXS (Wh)
AaS (Wh)
AbM (Wh)
BaL (Wh)
AaS (If)
AavS (If)
AaS (Fl)
AavS (Fl)

(b) Document scalability (parameter p7)

Figure 7.7: Galax results on the join micro-benchmark.

7.3. The micro-benchmark in action 145

AaS & v AbM & v && &v BaS & v BaL & v BbXS & v BbRefXS & v
10−1

100

101

102

103
Total query processing time (sec), MonetDB/XQuery, doc 46MB

Query

Wh
If
Pr
Fl

100

101

102

Wh If Pr Fl
p1: Syntactic pattern

MonetDB/XQuery, doc 46MB
Total time (sec)

100

101

102

1 2 3
p2: Number of join conditions

MonetDB/XQuery, doc 46MB
Total time (sec)

100

101

102

− & v && &v
p3: Boolean connectives

MonetDB/XQuery, doc 46MB
Total time (sec)

100

101

Self General
p4: Join type

MonetDB/XQuery, doc 46MB
Total time (sec)

100

101

102

int id/idref
p5: Join−value data type

MonetDB/XQuery, doc 46MB
Total time (sec)

100

101

102

XS S M L
p6: Join selectivity

MonetDB/XQuery, doc 46MB
Total time (sec)

(a) The impact of query parameters p1–p6

d1 d2 d3 d4 d5 d6 d7 d8
10−1

100

101

102
Total time (sec), MonetDB/XQuery

Document

AaS (Wh)
AavS (Wh)

(b) Document scalability (parameter p7)

Figure 7.8: MonetDB/XQuery results on the join micro-benchmark.

146 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

7.3.4 MonetDB/XQuery

The performance times obtained for MonetDB/XQuery on our micro-benchmark
are shown in Figure 7.8. Note that MonetDB/XQuery exceeded the timeout time
on the following queries expressed via the syntactic pattern filter: BbXS, Bb&XS,
BbRefXS, and Bb&RefXS.

Our first observation is that MonetDB/XQuery performs significantly worse
on queries expressed via filter, than those expressed via where, if, and predicate
(F = 7.9, p < 0.001). The latter three perform almost identically.

Although there is a visible difference in the performance times for every value
of p2—the more conditions the join has, the longer the engine takes to evaluate
it—the differences are not statistically significant due to large variances in the
measurements within each group.

The queries that contain a disjunction perform visibly worse than the rest.
Again, due to large variances in the performance times within each group, the
difference is not statistically significant. If we analyze only the queries expressed
via the syntactic patterns where, if, and predicate, thus excluding the impact
of the filter pattern, the difference becomes significant (F = 155, p ≈ 0). The
pairwise value comparison reveals that the queries that contain only a disjunction
and the queries that contain a conjunction and a disjunction perform significantly
worse than the rest and each other. The other groups do not show a significant
difference in performance.

There is no visible difference between the performance times of different values
of parameter p4 and p5.

The times obtained for the query group corresponding to query selectivity set
to XS are significantly worse than the rest (F = 3, p = 0.03). The difference is
due to the four queries that take more than 500 seconds to run. Although there
is a visible increase in performance times with the increase of query selectivity,
there is no significant difference found among the other query groups. This is due
to large variances in the measurements within each group.

In conclusion, varying p1, p2, p3, and p6 shows impact on MonetDB/XQuery
performance. For p1, p3, and p6 the impact is statistically significant. A further
detailed analysis for subsets of the benchmark queries corresponding to particular
parameter configurations might be interesting to consider.

For the scalability analysis we consider the following queries: AaS (Wh) and
AavS (Wh), corresponding to the two subsets performing significantly different,
obtained by slicing the query set along p1 and p3. Figure 7.8(b) shows the results.
The curve for AavS (Wh) seems to grow faster than the curve for AaS (Wh), again
showing essential differences in the processing approaches used for these queries.
Considering larger document sizes might help to determine whether the slope
angles are indeed significantly different.

7.3. The micro-benchmark in action 147

Interpreting the results The results for MonetDB/XQuery indicate that the
engine’s join recognition mechanism detects the equivalence of the where, if, and
predicate patterns. Nevertheless, the performance times for two queries, AaS (Wh)
and BavL (Pr), deviate from the performance times of the queries expressed in
the other two patterns. We do not have an explanation for this.

The join processing strategy used for the filter pattern performs worse than
the strategy used for the joins expressed in the other patterns. On queries BbXS,
Bb&XS, BbRefXS, and Bb&RefXS, the engine stumbles and does not recognize the
join operation—it seems that the engine is computing the Cartesian product as
an intermediate result.

7.3.5 Lining up the micro-benchmark results

SaxonB Qizx/Open Galax MonetDB/XQ
p1 Fl,(Wh,If),Pr Wh,(If,Pr,Fl) Wh,If,Fl,Pr (Wh,If,Pr),Fl
p2 – – – –
p3 (Wh,If): Wh: If, Fl: (Wh,If,Pr):

(-,&,&&),(v,&v) (-,&,&&),(v,&v) (-,&,&&),(v,&v) (-,&,&&),v,&v
Pr: (v,&v),(-,&,&&)

p4 – – – –
p5 – – – –
p6 Pr: (S,M,L),XS – Wh: XS,S,M,L (S,M,L),XS

Table 7.2: Summary of which query parameters have significant impact on the
performance of the four engines. The parameter values are given in the order
of significantly decreasing performance. The values that perform similarly are
grouped together.

Table 7.2 contains a summary of the results. For every engine we indicate
which parameters have a significant impact and on which of its values the engine
shows a significantly different performance. The parameter values are given in the
order of significantly decreasing performance. The values that perform similarly
are grouped together. Some results are indicated for parameter p1 being fixed to
a subset of its values.

Note that parameters p1, p3, and p6 have a different impact on each engine.
None of the engines is able to recognize the equivalence of all four syntactic

patterns. MonetDB/XQuery is the most robust with respect to this task by
performing similarly on three of the four patterns. What is more surprising
is that only two of the four engines have the same performance on the where
and if patterns, in spite of the fact that an equivalence preserving translation
of the where pattern into the if pattern is given by the W3C [World Wide Web
Consortium, 2007b].

148 Chapter 7. A Micro-Benchmark for Value-Based Equi-Joins

Though the joins with conjunctive connectives showed visible negative impact
on the engines’ performance, all engines performed significantly different on joins
with disjunctive connectives. One engine, SaxonB, showed better performance
on disjunctive joins expressed via the predicate pattern. In all other cases, the
disjunctive joins performed worse.

In general, we observed a tendency of Galax and MonetDB/XQuery to take
more time to answer joins with larger selectivity. However, due to large variances
of performance time measurements of queries within the same join selectivity
class, the impact of this parameter is not always significant. SaxonB and Mon-
etDB/XQuery showed significantly large performance differences on joins with
the smallest selectivity, XS. We do not have an explanation for this (abnormal)
behavior.

Parameters p2, p4, and p5 did not show a significant impact on any engine.
Parameter p2 has a visible impact on performance. Generally, the more join

conditions the longer it takes to evaluate the join. But due to large variances in
performance times of queries that contain conjunctions and those that contain
disjunctions the influence is not significant. This parameter might show significant
impact on those engines on which the impact of p3 is not as large.

Parameters p4 and p5 did not show any visible impact on any of the engines.
This raises the question of whether the engines miss optimization opportunities or
whether these parameters do not have an impact on value-based join processing
as opposed to processing of joins in relational databases. The previous work on
optimizing join processing techniques that we cite in Section 7.2.3 and the fact
that other XQuery benchmarks also account for these parameters (Chapter 3),
are a strong indication that these two parameters are interesting to consider.
The results obtained on four engines are not yet convincing arguments against
the importance of these parameters. Thus, we believe that the first conclusion is
more likely and the engines do not optimize for these parameters.

7.4 Conclusions

Our aim in this chapter was to create a micro-benchmark that targets the perfor-
mance of query processing techniques for value-based joins. The research ques-
tions we addressed are: How to measure the performance of value-based joins
expressed in XQuery? What is a suitable measure and which parameters are im-
portant to consider?

In designing the micro-benchmark we followed the MemBeR methodology.
In particular, the benchmark measures the impact of seven query and data pa-
rameters on the performance times of an engine. In choosing the benchmark
parameters we drew inspiration from the observations that we made previously
when analyzing the Michigan benchmark in Chapter 3 and from the work on
join optimization techniques in relational databases. The benchmark query set

7.4. Conclusions 149

is carefully designed to allow for testing the impact of every parameter value in
isolation. For example, for every parameter and for every two of its values, there
are two queries in the set that differ only by these values. This guarantees the
accuracy of the benchmark measure with respect to the tested parameters.

We tested our benchmark by analyzing the performance of four XQuery en-
gines. As a result, we obtained a comprehensive overview of the performance
of each engine when it comes to evaluating joins and we identified some short-
comings of the engines. Out of seven benchmark parameters, five parameters,
syntactic pattern, number of join conditions, Boolean connectives, join selectivity,
and document size, showed visible or significant impact on the performance of
at least one engine. None of the engines showed impact of the remaining two
parameters, join-type and join-value data type. We believe that this indicates
a missed chance for the four engines to optimize for these parameters and that
these parameters are still interesting to consider. We therefore conclude that the
benchmark achieves its target and it is a useful tool for profiling the performance
of XQuery engines on value-based joins.

In Part I of the thesis, we were concerned with developing methodology and tools
for performance evaluation of XQuery processing techniques and engines. We
discussed existing XQuery benchmarks, we investigated how to ensure repeata-
bility of experimental studies, we developed a tool for automatic execution of
benchmarks, and, finally, we proposed a micro-benchmarking methodology and a
micro-benchmark for testing value-based joins expressed in XQuery.

In the next part of the thesis, Part II, we are concerned with optimizing
recursion in XQuery. In Section 8.7, we use the tools and methodology developed
in Part I to evaluate the optimization we propose.

Part II

Recursion

151

152

In this part of the thesis, we address the research questions referring to recursion
in XQuery. In Chapter 8, we consider adding an inflationary fixed point operator
to XQuery. We develop an optimization technique for processing this operator.
Further, we implement this technique on top of MonetDB/XQuery, and evaluate
its performance using the tools developed in Part I. In Chapter 9, we study the
theoretical properties, decidability and expressivity, of this inflationary fixed point
operator in the setting of Core XPath, the XML tree navigational core of XPath
and XQuery.

Chapter 8

An Inflationary Fixed Point Operator
for XQuery

In this chapter, we investigate a query processing technique for recursion in
XQuery and use an experimental analysis to evaluate our approach. Our work is
motivated by the current lack of declarative recursive operators in the language.
We propose to introduce an inflationary fixed point (IFP) operator to XQuery
and we present an efficient processing technique for it. This approach lifts the
burden of optimizing recursive queries from the user’s shoulders and shifts it to
the automatic (algebraic) query optimizer.

This chapter is organized as follows: we begin by formally introducing an IFP
operator in the setting of XQuery in Section 8.2; in Section 8.3, we present two
evaluation algorithms for IFP, one is the direct implementation of the IFP se-
mantics and the other is an optimized variant; we define a distributivity property
that allows us to optimize the IFP evaluation in Section 8.4; in Sections 8.5 and
8.6, we provide sufficient syntactic and algebraic conditions for distributivity; we
present our implementation of the IFP operator in MonetDB/XQuery and show
the gains of the optimization in Section 8.7; in Section 8.8, we address related
work on recursion in XQuery as well as on the relational side of the fence; and
finally we conclude and discuss future work in Section 8.9.

This chapter is based on work previously published in [Afanasiev et al., 2008,
2009].

8.1 Introduction

The backbone of the XML data model, namely ordered, unranked trees, is in-
herently recursive and it is natural to equip the associated query languages with
constructs that can query such recursive structures. While XPath has a very re-
stricted form of recursion via the recursive axes, e.g., ancestor and descendant,
XQuery’s [World Wide Web Consortium, 2007] recursive user-defined functions

153

154 Chapter 8. An Inflationary Fixed Point Operator for XQuery

<!ELEMENT curriculum (course)*>
<!ELEMENT course prerequisites>
<!ATTLIST course code ID #REQUIRED>
<!ELEMENT prerequisites (pre_code)*>
<!ELEMENT pre_code #PCDATA>

Figure 8.1: Curriculum data (simplified DTD).

<curriculum>
<course code="c1">

<prerequisites>
<pre_code>c2</pre_code>

</prerequisites>
</course>
<course code="c2">

<prerequisites>
<pre_code>c3</pre_code>
<pre_code>c4</pre_code>

</prerequisites>
</course>

<course code="c3">
<prerequisites/>

</course>
<course code="c4">

<prerequisites>
<pre_code>c3</pre_code>
<pre_code>c1</pre_code>

</prerequisites>
</course>

</curriculum>

Figure 8.2: Curriculum data snippet “curriculum.xml”.

(RUDFs) are the key ingredient of its Turing completeness. To obtain expressive
power, the designers of the language took a giant leap, however. User-defined
functions in XQuery admit arbitrary types of recursion, which makes recursion
in the language procedural by nature—a construct that largely evades automatic
optimization approaches beyond improvements like tail-recursion elimination or
unfolding. This puts the burden of optimization on the user’s shoulders.

To make matters concrete, let us consider a typical example of a recursive
data and information need.

8.1.1. Example. The DTD of Figure 8.1 (taken from [Nentwich et al., 2002])
describes recursive curriculum data, including courses, their lists of prerequisite
courses, the prerequisites of the latter, and so on. Figure 8.2 shows an XML
snippet of data that conforms to the given schema. A student wants to know
what the courses are that (s)he needs to pass before being able to follow the
course coded with "c1". This query cannot be expressed in XPath 2.0, while in
XQuery it can be done only by means of recursive user-defined functions. The
XQuery expression of Figure 8.3, for instance, uses the course element node with
code "c1" to seed a computation that recursively finds all prerequisite courses,
direct or indirect, of course "c1". For a given sequence $x of course nodes,
function fix(·) calls out to rec body(·) to find their prerequisites. As long as
new nodes are encountered, fix(·) calls itself with the accumulated course node
sequence.

8.1. Introduction 155

1 declare function rec body ($cs) as node()*
2 { $cs/id (./prerequisites/pre code)
3 };
4

5 declare function fix ($x) as node()*
6 { let $res := rec body ($x)
7 return if (empty ($x except $res))
8 then $res
9 else fix ($res union $x)

10 };
11

12 let $seed := doc ("curriculum.xml")
13 //course[@code="c1"]
14 return fix (rec body ($seed))

Figure 8.3: An XQuery query for computing the prerequisites for the course "c1"

(marks the fixed point computation).

Note that fix(·) implements a generic fixed point computation: only the initial-
ization (let $seed := · · ·) and the recursion body rec body(·) are specific to
the curriculum problem. The XQuery expression describes how to get the an-
swer rather than what the answer is, i.e., the expression is procedural rather than
declarative. The evaluation strategy encoded by fix(·) is not optimal, since it
feeds already discovered course element nodes back into rec body(·). There are
many ways to optimize a fixed point computation, but this task is left to the
user—the query engine has little chance to recognize and optimize the particular
recursion operator this expression describes.

Another difficulty with the RUDFs is that they do not seem to fit into the
algebraic framework commonly adopted by the database community for query
optimization (e.g., Natix Physical Algebra (NPA) [Fiebig et al., 2002], or TAX,
a tree algebra for XML used by the Timber engine [Jagadish et al., 2001]). Most
XQuery engines have an underlying algebra that facilitates optimizations, but
since there is no proper algebraic correspondent for user-defined recursive func-
tions, these optimizations cannot be used for recursive queries. On the other
hand, working with operators allows an engine to uniformly apply the algebraic
reasoning framework.

Thus, the question we are facing is:

8.1. Question. What is a suitable declarative recursive operator in XQuery that
is rich enough to cover interesting cases of recursion query needs and that allows
for (algebraic) automatic optimizations?

In this chapter, we consider adding a declarative, and thus controlled, form
of recursion to XQuery. Our choice falls on the inflationary fixed point (IFP) op-
erator, familiar from the context of relational databases [Abiteboul et al., 1995].

156 Chapter 8. An Inflationary Fixed Point Operator for XQuery

While IFP imposes restrictions on the expressible types of recursion, it encom-
passes a family of widespread use cases of recursion in XQuery, including struc-
tural recursion (navigating recursively in one direction in the XML tree) and the
more general and pervasive transitive closure (TC) on path expressions (capturing
relations between XML nodes). In particular, XPath extended with IFP captures
Regular XPath [ten Cate, 2006b], a version of XPath extended with a transitive
closure operator. Most importantly, the IFP operator is susceptible to systematic
optimizations.

Our goal is to define and implement an IFP operator in the setting of XQuery.
We look at a standard optimization technique for IFP developed in the setting of
relational databases and check whether it fits the new setting. The optimization
consists of reducing the number of items that are fed into the recursion body,
avoiding re-computation of items already obtained in previous steps of the recur-
sion. Provided that the recursion body exhibits a specific distributivity property,
this technique can be applied.

Unlike general user-defined XQuery functions, this account of recursion puts
the query processor in control to decide whether the optimization may be safely
applied. Distributivity may be assessed at a syntactic level—a non-invasive ap-
proach that can easily be realized on top of existing XQuery processors. Alter-
natively, if we adopt a version of relational algebra extended with a special tree
aware operator and with the IFP operator for reasoning about XQuery queries
(as in [Grust et al., 2004]), the seemingly XQuery-specific distributivity notion
turns out to be elegantly modeled at the algebraic level.

To assess the viability of our approach in practice, we integrated the IFP oper-
ator into Pathfinder,1 an open-source XQuery compiler of the relational back-end
MonetDB [Boncz et al., 2006a]. The compiler is part of the MonetDB/XQuery
system,2 one of the fastest and most scalable XQuery engines today. Compliance
with the restriction that IFP imposes on query formulation is rewarded by signif-
icant query runtime savings that the IFP-inherent optimization hook can offer.
We document the effect for the XQuery processors MonetDB/XQuery [Boncz
et al., 2006a] and Saxon [Kay, 2009].

8.2 Defining an Inflationary Fixed Point opera-

tor for XQuery

In this section, we define an inflationary fixed point operator for XQuery expres-
sions similar to the inflationary fixed point operator defined in the relational set-
ting [Abiteboul et al., 1995]. We consider the XQuery fragment without recursive
user defined functions.

1http://www.pathfinder-xquery.org/
2http://monetdb.cwi.nl/XQuery/

http://www.pathfinder-xquery.org/
http://monetdb.cwi.nl/XQuery/

8.2. Defining an Inflationary Fixed Point operator for XQuery 157

Throughout this chapter, we regard an XQuery expression e1 containing a free
variable $x as a function of $x, denoted by e1($x). We write e1(e2) to denote a
safe substitution e1[e2/$x], i.e., the uniform replacement of all free occurrences of
$x in e1 by e2 making sure that no other free variables get accidentally bound.
Finally, e1(X) denotes the result of e1($x), evaluated on some given document,
when $x is bound to the sequence of items X. It is always clear from the context
which free variable we consider. The function fv(e) returns the set of free variables
of expression e.

Further, we introduce set-equality (
s
=), a relaxed notion of equality for XQue-

ry item sequences that disregards duplicate items and order, e.g., (1,"a")
s
=

("a",1,1). For X1, X2 sequences of type node()*, we have

X1
s
=X2 ⇔ fs:ddo(X1) = fs:ddo(X2) , (SetEq)

where fs:ddo(·) abbreviates the function fs:distinct-doc-order(·) of the
XQuery Formal Semantics [World Wide Web Consortium, 2007b].

To streamline the discussion, in the following we only consider XQuery expres-
sions and sequences of type node()*. An extension of our definitions and results
to general sequences of type item()* is possible but requires the replacement of
XQuery’s node set operations that we use (fs:ddo(·), union and except) with
the corresponding operations on sequences of items.

8.2.1. Definition (Inflationary Fixed Point Operator). Let eseed and
ebody($x) be XQuery expressions. The inflationary fixed point (IFP) operator
applied to ebody($x) and eseed is the expression

with $x seeded by eseed recurse ebody($x) . (8.1)

The expressions ebody , eseed , and $x are called, respectively, the recursion body,
seed, and variable of the IFP operator.

The semantics of (8.1), called the IFP of ebody($x) seeded by eseed , is the
sequence Resk obtained in the following manner:

Res0 ← ebody(eseed)
Res i+1 ← ebody(Res i) union Res i , i > 0 ,

(IFP)

where k > 1 is the minimum number for which Resk
s
=Resk−1. If no such k exists,

the semantics of (8.1) is undefined.

Note that if expression ebody does not use node constructors (e.g., element {·} {·}
or text {·}), expression (8.1) operates over a finite domain of nodes and its se-
mantics is always defined. Otherwise, nodes might be created at each iteration
and the semantics of (8.1) might be undefined. For example, with $x seeded by

() recurse <a>{$x} generates infinitely many distinct elements, thus it is
undefined. When the result is defined, it is always a duplicate free and document
ordered sequence of nodes, due to the semantics of the set operation union.

158 Chapter 8. An Inflationary Fixed Point Operator for XQuery

8.2.2. Example. Using the new operator we can express the query from Exam-
ple 8.1.1 in a concise and elegant fashion:

with $x seeded by doc ("curriculum.xml")//

course[@code="c1"]

recurse $x/id (./prerequisites/pre code)

(Q1)

In XQuery, each specific instance of the IFP operator can be expressed via the
recursive user-defined function template fix(·) (shown in in Figure 8.3).
Since the IFP operator is a second-order construct taking an XQuery variable
name and two XQuery expressions as arguments, the function fix(·) has to be
interpreted as a template in which the recursion body rec body(·) needs to be
instantiated. Note that XQuery 1.0 does not support higher-order functions.
Given this, Expression (8.1) is equivalent to the expression

let $x := eseed return fix (rec body ($x)).

8.2.3. Definition. XQuery-rudf is the XQuery fragment without recursive user
defined functions, i.e., where the function dependency graph is acyclic. XQue-
ry-rudf,+ifp is XQuery-rudf closed under the IFP operator.

8.2.1 Using IFP to compute Transitive Closure

Transitive closure is an archetype of recursive computation over relational data,
as well as over XML instances. For example, Regular XPath [ten Cate, 2006b,
Marx, 2004] extends the navigational fragment of XPath, Core XPath [Gottlob
and Koch, 2002], with a transitive closure operator defined on location paths. We
extend this definition to any XQuery expression of type node()*.

8.2.4. Definition (Transitive Closure). Let e be an XQuery expression.
The transitive closure (TC) operator (.)+ applied to e is the expression e+. The
semantics of e+ is the result of

e union e/e union e/e/e union . . . , (TC)

if it is a finite sequence. Otherwise, the semantics of e+ is undefined.

Analogously to the IFP operator, e+ might be undefined only if e contains node
constructors. For example, <a/>+ generates infinitely many distinct empty ele-
ments tagged with a, thus it is undefined.

8.2.5. Example. The TC operator applied to location paths expresses the tran-
sitive closure of paths in the tree:

(child::*)+ ≡ descendant::* ,
(child::*)+/self::a ≡ descendant::a .

8.2. Defining an Inflationary Fixed Point operator for XQuery 159

The TC operator applied to any expression of type node()* expresses the tran-
sitive closure of node relations: the query from Example 8.1.1 can be expressed
as

doc("curriculum.xml")//course[@code="c1"]/

(id(./prerequisites/pre code))+ .

8.2.6. Definition. XQuery-rudf,+tc is the XQuery fragment without recursive
user-defined functions extended with the TC operator, i.e., is the XQuery-rudf

fragment of XQuery closed under the TC operator.

Note that Regular XPath is a strict fragment of XQuery-rudf,+tc—the expression
in the scope of the TC operator in the curriculum example is a data-value join
and cannot be expressed in Regular XPath.

8.2.7. Remark. For some expression e, the transitive closure of e can be ex-
pressed using the IFP operator as follows:

e+ ≡ with $x seeded by . recurse $x/e ,

where ‘.’ denotes the context node. In Section 8.4, we define a distributivity
property for e that guarantees the correctness of this translation. We also show
that all Regular XPath queries have this property, thus can be expressed in XQue-
ry-rudf,+ifp using this translation.

8.2.2 Comparison with IFP in SQL:1999

The IFP operator is present in SQL in terms of the WITH RECURSIVE clause in-
troduced in the ANSI/ISO SQL:1999 standard [Gulutzan and Pelzer, 1999]. The
WITH clause defines a virtual table, while RECURSIVE specifies that the table is
recursively defined. To exemplify this, consider the table Curriculum(course,
prerequisite) as a relational representation of the curriculum data from Fig-
ure 8.2. The prerequisites P(course code) of the course with code ’c1’ expressed
in Datalog are:

P(x) ← Curriculum(′c1′, x)
P(x) ← P(y), Curriculum(y, x) .

The equivalent SQL query is:

WITH RECURSIVE P(course code) AS
(SELECT prerequisite

FROM Curriculum

WHERE course = ’c1’)

}
seed

UNION ALL
(SELECT Curriculum.prerequisite

FROM P, Curriculum

WHERE P.course code = Curriculum.course)

}
body

SELECT DISTINCT * FROM P;

160 Chapter 8. An Inflationary Fixed Point Operator for XQuery

res ← ebody(eseed);

do

res ← ebody(res) union res;
while res grows ;
return res;

(a) Algorithm Näıve

res ← ebody(eseed);
∆← res;
do

∆← ebody(∆) except res;
res ← ∆ union res;

while res grows ;
return res;

(b) Algorithm Delta

Figure 8.4: Algorithms to evaluate the IFP of ebody seeded by eseed . The result is
res .

Analogously to the XQuery variant, the query is composed of a seed and a body. In
the seed, table P is instantiated with the direct prerequisites of course ’c1’. In the
body, table P is joined with table Curriculum to obtain the direct prerequisites
of the courses in P. The result is added to P. The computation of the body is
iterated until P stops growing.

The SQL:1999 standard only requires engine support for linear recursion, i.e.,
each RECURSIVE definition contains at most one reference to a mutually recursively
defined table. Note that the recursive table P in the example above is defined
linearly: it is referenced only once in the FROM clause of the body. This syntactic
restriction allows for efficient evaluation. The SQL:1999 WITH RECURSIVE clause
without syntactic restrictions, we call full recursion.

Note that the IFP operator introduced in Definition 8.2.1 does not state any
syntactic restriction on the recursive body. In this respect, the IFP in XQue-
ry-rudf,+ifp corresponds to full recursion in SQL. In Section 8.5, we define a syn-
tactic restriction for IFP expressions in XQuery-rudf,+ifp that is similar to linear
recursion in SQL.

8.3 Algorithms for IFP

In this section, we describe two algorithms, Näıve [Bancilhon and Ramakrishnan,
1986] and Delta [Güntzer et al., 1987], commonly used for evaluating IFP queries
in the relational setting. Delta is more efficient than Näıve, but, unfortunately,
Delta is not always correct for our IFP operator for XQuery.

8.3.1 Näıve

The semantics of the inflationary fixed point operator given in Definition 8.2.1 can
be implemented straightforwardly. Figure 8.4(a) shows the resulting procedure,
commonly referred to as Näıve [Bancilhon and Ramakrishnan, 1986]. At each
iteration of the while loop, ebody(·) is executed on the intermediate result sequence

8.3. Algorithms for IFP 161

declare function delta ($x,$res) as node()*
{
let $delta := rec body ($x) except $res
return if (empty ($delta))

then $res
else delta ($delta,$delta union $res)

};

Figure 8.5: An XQuery formulation of Delta.

res until no new nodes are added to it. Note that the recursive function fix(·)
shown in Figure 8.3 is the XQuery equivalent of Näıve. Another remark is that the
old nodes in res are fed into ebody(·) over and over again. Depending on the nature
of ebody(·), Näıve may involve a substantial amount of redundant computation.

8.3.2 Delta

A folklore variation of Näıve is the Delta algorithm [Güntzer et al., 1987] of Fig-
ure 8.4(b). In this variant, ebody(·) is invoked only for those nodes that have
not been encountered in earlier iterations: the node sequence ∆ is the differ-
ence between ebody(·)’s last answer and the current result res . In general, ebody(·)
will process fewer nodes. Thus, Delta introduces a significant potential for perfor-
mance improvement, especially for large intermediate results and computationally
expensive recursion bodies (see Section 8.7).

Figure 8.5 shows the corresponding XQuery user-defined function delta(·,·)
which, for Example 8.1.1 and thus Query Q1, can serve as a drop-in replacement
for the function fix(·)—line 14 needs to be replaced by

return delta (rec body ($seed),()).

Unfortunately, Delta is not always a valid optimization for the IFP operator in
XQuery. Consider the following examples.

8.3.1. Example. Consider expression (Q2) below.

let $seed := (<a/>,<c><d/></c>)

return

with $x seeded by $seed
recurse

if(some $i in $x satisfies $i/self::a)

then $x/* else ()

(Q2)

While Näıve computes (a,b,c,d), Delta computes (a,b,c), where a, b, c, and d
denote the elements constructed by the respective subexpressions of the seed. The
table below illustrates the progress of the iterations performed by both algorithms.

162 Chapter 8. An Inflationary Fixed Point Operator for XQuery

Iteration Näıve Delta
res res ∆

0 (a,b) (a,b) (a,b)
1 (a,b,c) (a,b,c) (c)
2 (a,b,c,d) (a,b,c) ()
3 (a,b,c,d)

8.3.2. Example. Consider another expression:

with $x seeded by ()

recurse if(count($x) < 10)

then <a>{$x}

else ()

Näıve computes a sequence of 10 elements with the tag a of different structure:
the first element is a tree containing one node, the last one is a tree of depth
9.3 On the other hand, Delta falls into an infinite loop and thus the result is
undefined.

Even though Delta does not always compute the IFP operator correctly, we can
investigate for which IFP expressions Delta does compute the correct result and
to apply it in those cases. In the next section, we provide a natural semantic
property that allows us to trade Näıve for Delta.

8.4 Distributivity for XQuery

In this section, we define a distributivity property for XQuery expressions. We
show that distributivity implies the correctness of Delta. We also show that dis-
tributivity allows for the elegant translation of the TC operator into the IFP
operator discussed in Section 8.2.1. Unfortunately, determining whether an ex-
pression is distributive is undecidable. In the next section though, we present an
efficient and expressively complete syntactic approximation of distributivity.

8.4.1 Defining distributivity

A function e defined on sets is distributive if for any non-empty sets X and Y ,
e(X∪Y) = e(X)∪e(Y). This property suggests a divide-and-conquer evaluation
strategy which consists of applying e to subsets of its input and taking union of the
results. We define a similar property for XQuery expressions using the sequence
set-equality defined by (SetEq) in Section 8.2. Recall that in this chapter we only
consider XQuery expressions and sequences of type node()*.

3For the interested reader, this expression computes the tree encoding of the first 10 von
Neumann numerals: the nodes represent sets of sets and the child relation represents the set
membership.

8.4. Distributivity for XQuery 163

8.4.1. Definition (Distributivity Property). Let e($x) be an XQuery ex-
pression. Expression e($x) is distributive for $x iff for any non-empty sequences
X1, X2,

e(X1 unionX2)
s
= e(X1) union e(X2) . (8.2)

Note that if e does not contain node constructors and if e is constant for $x, i.e.,
$x is not a free variable of e, then Eq. (8.2) always holds, thus e is distributive
for $x.

8.4.2. Proposition. Let e be an XQuery expression. Expression e($x) is dis-
tributive for $x iff for any sequence X 6= () and any fresh variable $y,

(for $y in $x return e($y))(X)
s
= e(X) . (8.3)

Proof. Consider the following equality: for any sequence X = (x1, . . . , xn),
n ≥ 1,

(e(x1) union . . . union e(xn))
s
= e(X) . (8.4)

It is easy to see that for any partition X1 and X2 of X, i.e., X1 ∩ X2 = ∅ and
X1 ∪X2 = X, if Eq. (8.2) holds then Eq. (8.4) also holds for X, and vice versa.
Thus Eq. (8.2) is equivalent to Eq. (8.4).

Conform XQuery formal semantics [World Wide Web Consortium, 2007b],
for X = (x1, . . . , xn), n ≥ 1, the left-hand side of Eq. (8.3) equals the se-
quence concatenation (e(x1),. . . ,e(xn)). The later sequence is set-equal to (e(x1)
union . . . union e(xn)), the left-hand side of Eq. (8.4). From the equivalence
of Eq. (8.2) and (8.4), the equivalence of Eq. (8.2) and (8.3) follows. qed

We will use Eq. (8.3) as an alternative definition of distributivity.

8.4.3. Proposition (Distributivity of Path Expressions). An XQuery
expression of the form e($x) = $x/p is distributive for $x if the expression p
neither contains (i) free occurrences of $x, nor (ii) calls to fn:position() or
fn:last() that refer to the context item sequence bound to $x, nor (iii) node
constructors.

Proof. Consider the XQuery Core [World Wide Web Consortium, 2007b] equiv-
alent of $x/p, fs:ddo(for $fs:dot in $x return p), which is set-equal to
for $fs:dot in $x return p, where $fs:dot is a built-in variable that rep-
resents the context item. Given conditions (i) to (iii), the left-hand side of
Eq. (8.3), (for $y in $x return (for $fs:dot in $y return p))(X) is set-
equal to the right-hand side, (for $fs:dot in $x return p)(X), for any non-
empty X. qed

8.4.4. Example. Expressions of the form $x/p where p is a Core XPath or even
Regular XPath expression are examples of distributive expressions in XQuery.
Note that, by definition, all Core XPath and Regular XPath expressions satisfy
conditions (i) to (iii) of Proposition 8.4.3 above.

164 Chapter 8. An Inflationary Fixed Point Operator for XQuery

8.4.5. Example. It is easy to see that $x[1] is not distributive for $x. For a
counterexample, let $x be bound to (a, b), then $x[1] evaluates to (a), while
for $i in $x return $i[1] evaluates to (a, b).

In the next section, we establish the main benefit of distributivity, namely that
we can safely trade Näıve for Delta for computing distributive IFP expressions.

8.4.2 Trading Näıve for Delta

We say that Delta and Näıve are equivalent for a given IFP expression, if for any
XML document (collection) both algorithms produce the same sequence of nodes
or both fall into infinite loops.

8.4.6. Theorem (Delta computes IFP). Consider the expression with $x
seeded by eseed recurse ebody($x). If ebody($x) is distributive for $x, then the
algorithm Delta correctly computes the IFP of ebody($x) seeded by eseed .

Proof. We show by inductive reasoning that Delta and Näıve have the same
intermediate results, denoted by res∆

i and resi, respectively. The equivalence of
Näıve and Delta follows from this. The induction is on i, the iteration number
of the do · · ·while loops.

In its first iteration, Näıve yields erec(erec(eseed)) union erec(eseed) which is
equivalent to Delta’s first intermediate result (erec(erec(eseed)) except erec(eseed))
union erec(eseed).

Suppose that res∆
k = resk, for all k ≤ i. We show that res∆

i+1 = resi+1.
By the definition of Näıve, resi+1 = ebody(resi) union resi. Since ebody is

distributive for $x, we can apply Set-Eq. (8.2) to ebody(resi)=ebody

(
(resi except

∆i) union ∆i

)
and obtain

resi+1 =
(
ebody(resi except ∆i) union ebody(∆i)

)
union resi . (8.5)

Note that we are allowed to replace set-equality with strict equality here, since
both sequences are document ordered and duplicate free due to the semantics of
union.

By induction, res∆
i = resi and thus the right-hand side of (8.5) can be written

as
(
ebody(res∆

i except ∆i) union ebody(∆i)
)
union res∆

i . Note that res∆
i is the

disjoin union of res∆
i−1 and ∆i. As a result, (8.5) becomes

resi+1 = ebody(res∆
i−1) union ebody(∆i) union res∆

i . (8.6)

By applying the induction step once more, we obtain

resi+1 = ebody(resi−1) union ebody(∆i) union resi . (8.7)

8.4. Distributivity for XQuery 165

Since ebody(resi−1) is contained in resi, it follows that the left-hand side of (8.7)
equals ebody(∆i) union resi, which by induction equals ebody(∆i) union res∆

i . A
final chain of equalities brings us the desired result:

resi+1 = ebody(∆i) union res∆
i

=
(
ebody(∆i) except res∆

i

)
union res∆

i

= ∆i+1 union res∆
i

= res∆
i+1 .

(8.8)

qed

We have proven that Delta can be correctly applied for the evaluation of a dis-
tributive IFP expression. In the next section, we discuss one more benefit of
distributivity, namely the correctness of the straightforward translation of the
TC operator into the IFP operator discussed in Section 8.2.1.

8.4.3 Translating TC into IFP

Distributivity is also a key to understanding the relation between the TC operator
and the IFP operator in the setting of XQuery. Intuitively, if expression e is
distributive for the context sequence, then e+ is equivalent to with $x seeded

by . recurse $x/e, where $x, a fresh variable, is a place holder for the context
sequence.

8.4.7. Theorem. Consider an XQuery expression e and a variable $x, such that
$x6∈ fv(e). If $x/e is distributive for $x, then

e+ = with $x seeded by . recurse $x/e. (TC2IFP)

Proof. First, we rewrite Definition 8.2.4 of the TC operator. It is not hard to see
that the semantics given by (TC′) below it is equivalent to the semantics given by
(TC)—it is merely a change in representation. Thus, we consider the semantics of
e+ to be the sequence of nodes Res ′k, if it exists, obtained in the following manner:

Θ0 ← e
Res ′0 ← e
Θi+1 ← Θi/e
Res ′i+1 ← Θi+1 union Res ′i, i > 0,

(TC′)

where k > 1 is the minimum number for which Res ′k
s
= Res ′k−1. Otherwise, e+

is undefined. Next, let us compare the Res′i sequences with the sequences Resi
obtained conform Definition 8.2.1 while computing the IFP of $x/e seeded by

. (the context node):

Res0 ← ./e
Res i+1 ← Resi/e union Resi, i > 0.

166 Chapter 8. An Inflationary Fixed Point Operator for XQuery

If $x/e is distributive for $x then Res′i+1 = Θi/e union Res′i is equal to Resi/e
union Resi = Resi+1. Below, we prove this equality rigorously. The correctness
of the given translation of the TC operator into the IFP operator follows.

Let ebody = $x/e and eseed = . (the context node). Further, let Resi, i > 0 be
sequences obtained conform Definition 8.2.1 while computing the IFP of ebody($x)
seeded by eseed . Similarly, let Res′i, i > 0 be sequences obtained conform (TC′)
while computing e+. We show by induction on i that Resi equals Res′i. This
proof is similar to the proof of Theorem 8.4.6.

The base of the induction holds straightforwardly:

Res1 = ebody

(
ebody(eseed)

)
union ebody(eseed)

= ./e/e union ./e
= e/e union e
= Res′1 .

Suppose that Resj = Res ′j, for all j 6 i. The equality Resi+1 = Res′i+1 is easily
achieved by applying several times the induction hypothesis and the distributivity
of ebody :

Resi+1 = ebody(Resi) union Resi

= ebody(Res′i) union Resi

= ebody(Θi union Res′i−1) union Resi

= ebody(Θi) union ebody(Res′i−1) union Resi

= ebody(Θi) union ebody(Resi−1) union Resi

= ebody(Θi) union Resi union Resi

= ebody(Θi) union Resi

= ebody(Θi) union Res′i
= Res′i+1 .

(8.9)

Note that all the expressions above are unions of sequences of nodes, thus we can
safely replace all set-equalities with strict equalities. qed

8.4.8. Remark. Any Regular XPath expression e+ is equivalent to the IFP ex-
pression with $x seeded by . recurse $x/e. Moreover, Delta correctly eval-
uates this expression.

Proof. Any Regular XPath expression $x/e is of the form described by (i) to
(iii) in Proposition 8.4.3, thus it is distributive for $x. Then, by Theorem 8.4.7, e+

is equivalent to with $x seeded by . recurse $x/e. By Theorem 8.4.6, Delta
correctly computes e+. qed

Distributivity gives us a clean translation of the TC operator into the IFP op-
erator. In the general case, we do not know whether there is a translation from
XQuery-rudf,+tc into XQuery-rudf,+ifp and vice versa. In Section 8.8, we will discuss

8.5. A syntactic approximation of distributivity 167

related work on the expressive power of the TC and IFP operators in the context
of XPath.

We have seen two benefits of distributivity: distributive TC expressions can
be translated into distributive IFP expressions, and then Delta can be applied for
their evaluation. Further, we need to be able to determine which expressions are
distributive. Unfortunately, in the next section, we show that the distributivity
property is undecidable.

8.4.4 Undecidability of the distributivity property

When we plan the evaluation of with $x seeded by eseed recurse ebody , know-
ing the answer to “Is ebody distributive for $x?” allows us to apply Delta for
computing the answer. Can we always answer this question, i.e., is there an
implementable characterization—sufficient and necessary conditions—for the dis-
tributivity property? The answer is no.

8.4.9. Theorem. The problem of determining whether a given XQuery expres-
sion e($x) is distributive for $x is undecidable.

Proof. Consider two arbitrary expressions e1, e2, in which $x does not occur free.
If an XQuery processor could assess whether if (deep-equal(e1,e2)) then $x
else $x[1] is distributive for $x, it could also decide the equivalence of e1 and
e2. Since the equivalence problem for XQuery is undecidable (as follows from
the Turing-completeness of the language [Kepser, 2004]), determining whether an
expression is distributive with respect to some variable is also undecidable. qed

In spite of this negative result, in practice, safe approximations of distributivity
are still worth while to consider. In the next two sections, we present two such
approximations, one at the syntactic level of XQuery, and the other at the level
of an algebra underlying XQuery.

8.5 A syntactic approximation of distributivity

In this section, we define a syntactic fragment of XQuery parametrized by a
variable $x, called the distributivity-safe fragment. This syntactic fragment bares
analogy with the syntactic fragment defined by the linearity condition in SQL:1999
(see Section 8.2.2). We show that all expressions that are distributivity-safe for
a variable $x are distributive for that variable. Moreover, membership in this
fragment can be determined in linear time with respect to the size of the expres-
sion. Since distributivity is undecidable (see Section 8.4.4), the distributivity-safe
fragment does not contain all distributive expressions. We give an example of
a distributive expression that is not distributivity-safe. Nevertheless, we show
that this fragment is expressively complete for distributivity, i.e., any distributive

168 Chapter 8. An Inflationary Fixed Point Operator for XQuery

XQuery expression is expressible in the distributivity-safe fragment of XQuery.
Moreover, membership in this fragment can be determined in linear time with
respect to the size of the expression.

In Section 8.5.1, we define the distributivity-safe fragment. We state the
soundness of the fragment with respect to distributivity. We also state and prove
the expressive completeness. In Section 8.5.2, we provide the proof of soundness.

8.5.1 The distributivity-safe fragment of XQuery

In the following, we define the distributivity-safe fragment of XQuery that implies
distributivity. We consider LiXQuery [Hidders et al., 2004], a simplified version
of XQuery. Then we define an auxiliary fragment of LiXQuery, the position and
last guarded fragment. Finally, we define the distributivity-safe fragment as a
fragment of LiXQuery.

LiXQuery is a simplified version of XQuery that preserves Turing-completeness.
LiXQuery has a simpler syntax and data model than XQuery. It includes the most
important language constructs, 3 basic types of items: xs:boolean, xs:string,
and xs:integer; and 4 types of nodes: element(), attribute(), text(), and
document-node(). The syntax of LiXQuery is given in Figure A.1 in Appendix A.
This language has a well-defined semantics and it was designed as a convenient
tool for studying properties of the XQuery language. We consider static-type(·)
to be the mapping of LiXQuery expressions to their static type, conform XQuery’s
formal semantics [World Wide Web Consortium, 2007b].

Let LiXQuery−nc be the fragment of LiXQuery without node constructors. We
define an auxiliary fragment of LiXQuery−nc that contains the built-in functions
position() and last() only as subexpressions of the second argument of the
path and filter operators. In Section 8.5.2, we will relate this fragment to a
semantic notion of context position and size independence.

8.5.1. Definition (Position and Last Guarded). An XQuery expression e
is called position and last guarded, plg(e), if it can be generated using the syntactic
rules in Figure 8.6.

The inference rules Atomic and Closure in Figure 8.6 define the LiXQue-
ry−nc fragment that does not contain position() and last() at all, while the
rules Path and Filter allow these two functions as subexpressions of the second
argument of the path and filter operators.

Using the position and last guarded fragment, we define the distributivy-safe
fragment of LiXQuery−nc. But first, we give an intuition of this fragment.

Intuitively, we may apply a divide-and-conquer evaluation strategy for an ex-
pression e($x), if any subexpression of e processes the nodes in $x one by one. The
most simple example of such a subexpression is for $y in $x return e($y),
where e is in LiXQuery−nc and $x does not occur free in e. On the other hand,
we may not apply a divide-and-conquer evaluation strategy if any subexpression

8.5. A syntactic approximation of distributivity 169

e–atomic e 6= position() e 6= last()

plg(e)
(Atomic)

� ∈ {/, //} plg(e1)
plg(e1 � e2)

(Path)
plg(e1)

plg(e1[e2])
(Filter)

�–any operator or function name plg(ei), 1 ≤ i ≤ n
plg(� (e1, . . . , en))

(Closure)

Figure 8.6: Position and last guarded plg(·): A fragment of LiXQuery−nc that
contains position() and last() only in the second argument of the path and
filter operators.

ds$x ($x)
(Var)

$x /∈ fv(e)
ds$x (e)

(Const)
⊕ ∈ {,, |} ds$x (e1) ds$x (e2)

ds$x (e1 ⊕ e2)
(Concat)

$x /∈ fv(e1) ds$x (e2) ds$x (e3)
ds$x (if (e1) then e2 else e3)

(If)

$x /∈ fv(e1) ds$x (e2)
ds$x (for $v at $p in e1 return e2)

(For1)
ds$x (e1) $x /∈ fv(e2)

ds$x (for $v in e1 return e2)
(For2)

$x /∈ fv(e0) ds$x (ei)1≤i≤n+1

ds$x

typeswitch (e0)
case τ1 return e1...
case τn return en
default return en+1

(TypeSw)

$x /∈ fv(e1) ds$x (e2)
ds$x (let $v := e1 return e2)

(Let1)

ds$x (e1) $x /∈ fv(e2) ds$v (e2)
ds$x (let $v := e1 return e2)

(Let2)

� ∈ {/, //} $x /∈ fv(e1) ds$x (e2)
ds$x (e1 � e2)

(Path1)

� ∈ {/, //} ds$x (e1) $x /∈ fv(e2) plg(e2)
ds$x (e1 � e2)

(Path2)

ds$x (e1) $x /∈ fv(e2) plg(e2) static-type(e2) = xs:boolean

ds$x (e1[e2])
(Filter)

declare function f($v1,. . . ,$vn) { e0 }
ds$x (ei) ∧ ($x ∈ fv(ei) implies ds$vi

(e0)), for each 1 ≤ i ≤ n
ds$x (f(e1,. . . ,en))

(FunCall)

Figure 8.7: Distributivity-safety ds$x (·): A syntactic approximation of the dis-
tributivity property for LiXQuery−nc expressions.

170 Chapter 8. An Inflationary Fixed Point Operator for XQuery

of e inspects $x as a whole. Examples of such problematic subexpressions are
count($x) and $x[1], but also the general comparison $x = 10 which involves
existential quantification over the sequence bound to $x.

Subexpressions whose value is independent of $x, on the other hand, are
distributive. The only exception of this rule are XQuery’s node constructors, e.g.,
element {·} {·}, which create new node identities upon each invocation. With $x
bound to (<a/>,), for example,

element { "c" } { () } 6=s for $y in $x return element { "c" } { () } ,

since the right-hand side will yield a sequence of two distinct element nodes. This
is the reason why we consider the distributivity-safe fragment inside LiXQuery−nc.

8.5.2. Definition (Distributivity-safety). An XQuery expression e is said
to be distributivity-safe for $x, indicated by ds$x (e), if it can be generated using
the syntactic rules in Figure 8.7.

The rules Var and Const in Figure 8.7 define the base of the fragment, while
the other inference rules define the closure with respect to a number of language
operators. Note that the rules For1 and For2 ensure that the recursion variable
$x occurs either in the body e2 or in the range expression e1 of a for-iteration
but not both. This condition is closely related with the linearity constraint of
SQL:1999 (for an in-depth discussion on this, see Section 8.8). A similar remark
applies to Rules Let1, Let2, Path1 and Path2. One condition of Filter
involves plg(·) defined in Definition 8.5.1, another asks e2 to be of static type
xs:boolean. In order to check the latter, an engine should implement static type
checking. This is an optional functionality (note that the expressive completeness
does not depend on this rule). Also note how the rule FunCall requires the
distributivity for every function argument of the function body if the recursion
variable occurs free in that argument.

8.5.3. Remark. All the rules of Definitions 8.5.1 and 8.5.2 can be checked in
parallel with a single traversal of the parse tree of a LiXQuery−nc expression.
Checking membership of LiXQuery can thus be done in linear time with respect
to the size of an XQuery expression (the size of an expression is the number of
subexpressions, which equals the size of the parse tree).

Finally, we can state the property that we most desire of the distributivity-safe
fragment, the soundness with respect to distributivity.

8.5.4. Theorem (Soundness). Any XQuery expression e that is distributivity-
safe for a variable $x, i.e., for which ds$x (e) holds, is also distributive for $x.

8.5. A syntactic approximation of distributivity 171

A formal proof in the settings of LiXQuery is given in Section 8.5.2. The proof is
by induction on the structure of the expression.

The distributive-safe fragment does not contain all distributive expressions.
For example, count($x) >= 1 is not distributivity-safe, but still distributive for
$x. However, it is interesting to note that the distributivity-safe fragment is
expressively complete for distributivity.

8.5.5. Proposition (Expressive completeness). If an XQuery expression
e($x) is distributive for $x and it does not contain node constructors as subexpres-
sions, then it is set-equal to for $y in $x return e($y), which is distributivity-
safe for $x.

Proof. This is a direct consequence of the rule For2 (Figure 8.7) and Proposi-
tion 8.4.2. qed

Thus, at the expense of a slight reformulation of the query, we may provide a
“syntactic distributivity hint” to an XQuery processor.

In the next section, we provide the proof of Theorem 8.5.4 in the setting of
LiXQuery.

8.5.2 Distributivity-safety implies distributivity

In this section we prove the soundness of the distributivity-safety rules with re-
spect to the distributivity property in the context of LiXQuery. The result trans-
fers directly to XQuery, since LiXQuery is its fragment. Before proceeding with
the proof of Theorem 8.5.4, we first cover the basics of the LiXQuery semantics.
The complete definition can be found in [Hidders et al., 2004].

LiXQuery in nutshell

An XML store, denoted by St, contains the XML documents and collections that
are queried, and also the XML fragments that are created during the evaluation
of an expression. The query evaluation environment of an XML store, denoted
by En = (a,b,v,x,k,m), consists of:

• a partial function a that maps a function name to its formal arguments;

• a partial function b that maps a function name to its body;

• a partial function v that maps variable names to their values;

• x, which is undefined or an item of the XML store, and indicates the context
item;

• k, which is undefined or an integer and gives the position of the context
item in the context sequence;

172 Chapter 8. An Inflationary Fixed Point Operator for XQuery

• m, which is undefined or an integer and gives the size of the context se-
quence.

We use En[a(n) 7→ y] (En[b(n) 7→ y], En[v(n) 7→ y]) to denote the environment
that is equal to En except that the function a (b, v) maps the name n to the
item y. Similarly, we let En[x 7→ y] (En[k 7→ z], En[m 7→ z]) denote changing
the environment En only by attributing x a new item y (attributing k, m a new
integer value z).

We denote a sequence of items by S = (y1, y2, . . . , yn), the empty sequence by
(), and the concatenation of two sequences S1 and S2 by S1 ◦S2. The set of items
in a sequence S is Set(S). Given a sequence of nodes S in an XML store St,
we denote OrdSt(S) to be the unique sequence S ′ = (y′1, y

′
2, . . . , y

′
m), such that

Set(S) = Set(S ′) and y′1 �St · · · �St y
′
m, where�St is a total order on the nodes

of the store St denoting the document order. Using this notation, we can rewrite
the equivalence (SetEq) into: S

s
= S ′ iff OrdSt

(
Set(S)

)
= OrdSt

(
Set(S ′)

)
.

Further, the semantics of LiXQuery is defined by a set of semantic rules. We
write St, En ` e ⇒ V to denote that the evaluation of expression e against the
XML store St and environment En of St results in a sequence V of values of St.4

For an example of a semantic rule, let us take the Concatenation Rule [Hidders
et al., 2004]:

St, En ` e1 ⇒ V ′ St′, En ` e2 ⇒ V ′′

St, En ` e1,e2 ⇒ V ′ ◦ V ′′

Given this, we can write the definition of distributivity for $x in terms of Li-
XQuery semantics. Let St be a store, En[v(x) 7→ (x1, . . . , xn)] an environment
that binds $x to a non-empty sequence of items (x1, . . . , xn). Applying the Li-
XQuery semantic rules on both sides of Eq. (8.2) of Definition 8.4.1 we obtain
the following: V1 ◦ · · · ◦ Vn

s
= V , where St, En[v(x) 7→ (x1, . . . , xn)] ` e⇒ V and

St, En[v(x) 7→ xi] ` e ⇒ Vi, for 1 ≤ i ≤ n. Thus, e is distributive for $x if
OrdSt

(
Set(V1 ◦ · · · ◦ Vn)

)
= OrdSt

(
Set(V)

)
.

One last remark is that the path operators / and // are defined to be left
associative, i.e., e1/e2/e3 means (e1/e2)/e3.

Proving the soundness

Before giving the proof of Theorem 8.5.4 we define a notion of context position
and size independence and prove two lemmas.

8.5.6. Definition (Context Position and Size Independence). A LiX-
Query expression e is context position and size independent (c.p. and s. ind.) if

4In fact, the semantic rules of LiXQuery are of the form St,En ` e ⇒ (St′, V), where St′

might be a new XML store and V is a sequence of values of St′. But since we consider LiXQuery
without node constructors, the evaluation of expression e against the XML store St and the
environment En results always in the same XML store St and a sequence V of values of St.

8.5. A syntactic approximation of distributivity 173

for any XML store St, environment En, and any sequence of items V , we have
St, En ` e⇒ V if and only if St, En[m 7→ 1][k 7→ 1] ` e⇒ V .

In other words, e is c.p. and s. ind. if no matter what the values for the environ-
ment parameters m and k are, e evaluates to the same result as if m and k are set
to 1. An expression that is c.p. and s. ind. does not use other information about
the context sequence than the context item. We can interpret this property as
distributivity for the context sequence.

The expression a/b/c is obviously c.p. and s. ind., while position()>1 is
not, if the context sequence contains more than one item. In fact, the position
and last guarded fragment defined by plg(·) (Definition 8.5.1) is an approximation
of the context position and size independent fragment of LiXQuery:

8.5.7. Lemma. Any LiXQuery expression e that is position and last guarded,
i.e., plg(e), is also c.p. and s. independent.

Proof. The proof goes by induction on the structure of e. The base case consists
of checking the implication for atomic expressions satisfying the rule Atomic in
Figure 8.6. Below, we list all atomic expressions in LiXQuery, grouped by clause
in the BNF definition of the language:

〈V ar〉 : “$”〈Name〉
〈BuiltIn〉 : “true()”, “false()”, “position()”, “last()”
〈Step〉 : “.”, “..”, 〈Name〉, “@”〈Name〉, “*”, “@*”, “text()”
〈Literal〉 : 〈String〉, 〈Integer〉
〈EmpSeq〉 : “()”

By the conditions of Rule Atomic, e cannot be position() or last(). None
of the semantic rules for the remaining atomic expressions refer to k or m, thus
e evaluates to the same sequence of items irrespective of the value of these pa-
rameters: St, En ` e ⇒ V and St, En[k 7→ 1][m 7→ 1] ` e ⇒ V , for any St and
En.

Next, we prove the induction step for the expressions defined by Rules Path,
Filter and Closure.

Path and Filter expressions. Let e = e1 � e2, where � ∈ {/, //, []},
and let plg(e). By the rules Path and Filter, plg(e1). Suppose also that e1

is c.p. and s. independent. We prove that St, En ` e1 � e2 is equivalent with
St, En[k 7→ 1][m 7→ 1] ` e1 � e2. By the semantic rules for both path and filter
expressions (see Rules (18) and (17), in [Hidders et al., 2004]), e1 is evaluated first:
St, En ` e1 ⇒ (x1, . . . , xm). Since e1 is c.p. and s. independent, St, En[k 7→
1][m 7→ 1] ` e1 ⇒ (x1, . . . , xm). Further, e2 is evaluated for each item in the
result sequence of e1: St, En[x 7→ xi][k 7→ i][m 7→ m] ` e2, 1 ≤ i ≤ m. Note that
the values of k and m are changed by the semantics of these operators and that
the result of the evaluation of e2 does not depend on the initial context position

174 Chapter 8. An Inflationary Fixed Point Operator for XQuery

and size. Thus, no matter which of the three operators we consider, the end
result of e evaluated against St and En is the same as evaluated against St and
En[k 7→ 1][m 7→ 1].

Other expressions. Let e = �(e1, . . . , en), n ≥ 1 be a complex expression,
where �(·, . . . , ·) is any operator or function in the language. Suppose plg(e)
then by the rule Closure, plg(ei), 1 ≤ i ≤ n. Suppose also that ei is c.p. and
s. independent. For � equal to one of the path operators or the filter operator,
we have already proved that e is c.p. and s. independent. The semantic rules
of the remaining operators and functions in the languages do not refer to the
parameters k and m, thus e is trivially c.p. and s. independent. qed

8.5.8. Lemma. For any LiXQuery expression e and variable $x /∈ fv(e), e is
distributive for $x.

Proof. Let St be an XML store and En an environment that binds $x to a
non-empty sequence of size n. Suppose that St, En ` e ⇒ (x1, . . . , xm). In
this case, the result of the corresponding for-expression is a sequence constructed
by concatenating (x1, . . . , xm) n times: St, En ` for $y in $x return e ⇒
(x1, . . . , xm) ◦ (x1, . . . , xm) ◦ · · · ◦ (x1, . . . , xm), which is set-equal to (x1, . . . , xm).
Note that $y /∈ fv(e) and the result of e does not depend on the binding of $y.
qed

Proof of Theorem 8.5.4. As before, the proof goes by induction on the struc-
ture of e.

The base case consists of checking the implication for atomic expressions and
for expressions that do not contain $x as a free variable (constant w.r.t. $x). First,
suppose e is an expression for which $x /∈ fv(e). By the rule Const in Figure 8.7,
e is distributivity-safe for $x and by Lemma 8.5.8, e is distributive for $x. Second,
suppose e = $x, distributivity-safe for $x by the rule Var. Let St be a store and
En an environment that binds $x to the non-empty sequence of items (x1, . . . , xn),
then St, En ` $x ⇒ (x1, . . . , xn) and St, En ` for $y in $x return $y ⇒
(x1) ◦ · · · ◦ (xn). Thus expression e is distributive for $x.

The induction step consists of checking the implication for the complex ex-
pressions defined by the rest of the distributivity-safety rules in Figure 8.7. The
induction hypothesis (IH) is: any distributive-safe for $x subexpression of e is
distributive for $x. We suppose that $x ∈ fv(e), otherwise e was already consid-
ered in the base case. Further, let St be a store, En an environment that binds
$x to the non-empty sequence of items (x1, . . . , xn).

If expressions. Suppose e = if (e1) then e2 else e3 and ds$x (e), then
by the rule If: ds$x (e2), ds$x (e3), and $x /∈ fv(e1). Let St, En ` e1 ⇒ b,
St, En ` e2 ⇒ V and St, En ` e3 ⇒ V ′, where b is a boolean value, V and V ′

are sequences of items.
Suppose b is true, then St, En ` e ⇒ V (otherwise, St, En ` e ⇒ V ′). By

Lemma 8.5.8, e1 is distributive for $x, thus it yields the same boolean value for any

8.5. A syntactic approximation of distributivity 175

binding of $x to a singleton xi: St, En[v(x) 7→ xi] ` e1 ⇒ true, 1 ≤ i ≤ n. From
this we obtain: if St, En[v(x) 7→ xi] ` e2 ⇒ Vi then St, En[v(x) 7→ xi] ` e⇒ Vi,
for any 1 ≤ i ≤ n. By the IH, e2 is distributive for $x, so V

s
= V1 ◦ · · · ◦ Vn. The

reasoning is identical when b is false, thus e is distributive for $x.
Type-switch expressions. The proof for the type-switch expressions that

are defined by Rule (TypeSw) is similar to the proof for if-expressions.
Path expressions. Suppose e = e1/e2 (the case for ‘//’ is identical) and

ds$x (e), then e must satisfy Rule Path1 or Rule Path2.
Suppose e satisfies Rule Path1, then $x /∈ fv(e1) and ds$x (e2). First, let

St, En ` e1 ⇒ (y1, . . . , ym) and, since e1 is constant w.r.t. $x, St, En[v(x) 7→
xi] ` e1 ⇒ (y1, . . . , ym), 1 ≤ i ≤ n. Second, let St, En[x 7→ yj] ` e2 ⇒ Vj
and St, En[v(x) 7→ xi][x 7→ yj] ` e2 ⇒ Vi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ m.
By the IH, e2 is distributive for $x and thus, Vj

s
= V1,j ◦ · · · ◦ Vn,j, for 1 ≤

j ≤ m. Following the semantic rule for path expressions in [Hidders et al.,
2004], St, En ` e ⇒ OrdSt

(⋃
1≤j≤m Set(Vj)

)
and St, En[v(x) 7→ xi] ` e ⇒

OrdSt
(⋃

1≤j≤m Set(Vi,j)
)
. Finally, from the distributivity for $x of e2, it follows

that

OrdSt
(⋃

1≤j≤m

Set(Vj)
) s

= OrdSt
(⋃

1≤j≤m

Set(V1,j)
)
◦ · · · ◦OrdSt

(⋃
1≤j≤m

Set(Vn,j)
)
,

which means that e is distributive for $x.
In the other case, if e satisfies Rule Path2, then ds$x (e1), $x /∈ fv(e2)

and plg(e2). Let St, En ` e1 ⇒ (y1, . . . , ym) and St, En[v(x) 7→ xi] ` e1 ⇒
(yi1, . . . , y

i
mi

), 1 ≤ i ≤ n. By the IH, e1 is distributive for $x, thus (y1, . . . , ym)
s
=

(y1
1, . . . , y

1
m1

) ◦ · · · ◦ (yn1 , . . . , y
n
mn

), which means that for any 1 ≤ k ≤ m, ex-
ists 1 ≤ i ≤ n and 1 ≤ j ≤ mi, such that yk = yij, and vice versa, for any
1 ≤ i ≤ n and 1 ≤ j ≤ mi, exists 1 ≤ k ≤ m with the same property. Next,
let St, En[x 7→ yk] ` e2 ⇒ Vk and St, En[x 7→ yij] ` e2 ⇒ Vi,j, for respective k,
i, and j. Note that during the evaluation of e2 we disregard the values of the
parameters k and m, and the binding of the variable $x: the former is allowed
by the fact that plg(e2) and, by Lemma 8.5.7, e2 is c.p. and s. independent; the
latter is allowed by the fact that e2 is constant w.r.t. $x. Finally, observe that for
any 1 ≤ k ≤ m, there is 1 ≤ i ≤ n and 1 ≤ j ≤ mi, such that Vk = Vi,j, and vice
versa. This implies that OrdSt

(⋃
1≤k≤m Set(Vk)

) s
= OrdSt

(⋃
1≤j≤m1

Set(V1,j)
)
◦

· · · ◦OrdSt
(⋃

1≤j≤mn
Set(Vn,j)

)
, which means that e is distributive for $x.

For expressions. Suppose e is a for-expression and ds$x (e), then e must
satisfy Rule For1 or Rule For2 in Figure 8.7. If e satisfies Rule For1, then the
proof is similar to the proof for the path expressions satisfying Rule Path1. And
if e satisfies Rule For2, then the proof is similar to the one for path expressions
satisfying Rule Path2. Note that such expressions do not contain the positional
variable “at $p”. This condition forms the counterpart of the position and last
guarded condition in the case of path expressions.

176 Chapter 8. An Inflationary Fixed Point Operator for XQuery

Let expressions. Suppose e = let $v := e1 return e2 and ds$x (e), then
e must satisfy Rule Let1 or Rule Let2.

Suppose e satisfies Rule Let1, then $x /∈ fv(e1) and ds$x (e2). By the IH, e2

is distributive for $x and the distributivity for $x of e follows straightforwardly.

Suppose e satisfies Rule Let2, then ds$x (e1), $x /∈ fv(e2) and ds$v (e2). By
the IH, e1 is distributive for $x and e2 is distributive for $v. Let St, En ` e1 ⇒
(y1, . . . , ym) and St, En[v(x) 7→ xi] ` e1 ⇒ (yi1, . . . , y

i
mi

), 1 ≤ i ≤ n. Since
e2 is distributive for $x, (y1, . . . , ym)

s
= (y1

1, . . . , y
1
m1

) ◦ · · · ◦ (yn1 , . . . , y
n
mn

), which
means that for any 1 ≤ k ≤ m, exists 1 ≤ i ≤ n and 1 ≤ j ≤ mi, such that
yk = yij, and vice versa, for any 1 ≤ i ≤ n and 1 ≤ j ≤ mi, exists 1 ≤ k ≤ m
with the same property. Further, let St, En[v(v) 7→ (y1, . . . , ym)] ` e2 ⇒ V and
St, En[v(v) 7→ yk] ` e2 ⇒ Vk, 1 ≤ k ≤ m. Since e2 is distributive for $v, it follows
that V

s
=V1◦· · ·◦Vm. Last, let St, En[v(x) 7→ xi][v(v) 7→ (yi1, . . . , y

i
mi

)] ` e2 ⇒ V i

and St, En[v(x) 7→ xi][v(v) 7→ yij] ` e2 ⇒ V i
j , for 1 ≤ i ≤ n, 1 ≤ j ≤ mi.

Note that since e2 is constant w.r.t. $x, the binding of this variable does not
influence the result of e2. And again, since e2 is distributive for $v, it follows
that V i s

= V i
1 ◦ · · · ◦ V i

mi
, 1 ≤ i ≤ n. We saw before that for any k, there exist

i and j, such that yk = yij, which implies Vk = V i
j , and vice versa, for any

i and j, there exists a k, with the same property. This, finally, implies that
V

s
=V1 ◦ · · · ◦Vm

s
=V 1

1 ◦ · · · ◦V 1
m1
◦ · · · ◦V n

1 ◦ · · · ◦V n
mn

s
=V 1 ◦ · · · ◦V n, which means

that e is distributive for $x.

Filter expressions. Suppose e = e1[e2] and ds$x (e), then by the rule Fil-
ter: ds$x (e1), $x /∈ fv(e2), plg(e2) and e2 is static type xs:boolean. Let St, En `
e1 ⇒ (y1, . . . , ym) and St, En[v(x) 7→ xi] ` e1 ⇒ (yi1, . . . , y

i
mi

), 1 ≤ i ≤ n. By the
IH, e1 is distributive for $x, thus (y1, . . . , ym)

s
= (y1

1, . . . , y
1
m1

) ◦ · · · ◦ (yn1 , . . . , y
n
mn

),
which means that for any 1 ≤ k ≤ m, there exists 1 ≤ i ≤ n and 1 ≤ j ≤ mi,
such that yk = yij, and vice versa, for any 1 ≤ i ≤ n and 1 ≤ j ≤ mi, there
exists 1 ≤ k ≤ m with the same property. Next, let St, En[x 7→ yk] ` e2 ⇒ bk
and St, En[x 7→ yij] ` e2 ⇒ bij, where bk and bij are booleans, for all k, i, and j.
Note that during the evaluation of e2 we disregard the values of the parameters k
and m, and the binding of the variable $x: the former is allowed by the fact that
plg(e2) and, by Lemma 8.5.7, e2 is c.p. and s. independent; the latter is allowed
by the fact that e2 is constant w.r.t. $x. It is clear that if yk = yij then bk = bij.
This means that yk is contained in the result of e evaluated against St and En,
iff yij is contained in the concatenation of the results of e evaluated against St
and En[v(x) 7→ xi]. Thus, the respective result sequences are set-equal and e is
distributive for $x.

Other expressions. Suppose e = e1 ⊕ e2, where ⊕ ∈ {,, |} or e =
f(e1, . . . , el), a function call, and ds$x (e). By the rules Concat and FunCall,
ds$x (ei), for all 1 ≤ i ≤ l. Then the distributivity for $x of e follows directly
from the distributivity for $x of ei, which follows from the IH. qed

8.6. An algebraic approximation of distributivity 177

XDM XDM

Tables Tables

XQuery

Relational Algebra

Figure 8.8: Relational (algebra based) approach to XQuery processing.

8.6 An algebraic approximation of distributiv-

ity

XQuery is a syntactically rich language with many equivalent ways of expressing
the same information need. Reasoning about the queries at the syntactic level
is cumbersome. Most XQuery engines adopt algebras as a convenient formalism
for query normalization and optimization. One would also expect that reasoning
about distributivity is more elegant at the algebraic level.

In this section, we follow an algebraic route for checking the applicability of
Delta for the evaluation of the IFP of an XQuery expression ebody . We adopt a re-
lational approach to XML data modeling and XQuery evaluation, and instead of
performing the distributivity test at the syntactic level, we inspect the relational
algebraic query plan compiled for ebody . As we would expect, the algebraic rep-
resentation of ebody renders the check for the distributivity property particularly
robust and simple.

In the following, we first sketch the relational approach to XQuery that we
follow. Then we define an algebraic distributivity property that is equivalent to
the XQuery distributivity property and present an incomplete but effective test
for it. We also discuss this approach in comparison with the syntactic approach
presented in the previous section.

Relational XQuery. The alternative route we take in this section builds on
the Pathfinder project, which fully implements a purely relational approach to
XQuery. Pathfinder compiles instances of the XQuery Data Model (XDM) and
XQuery expressions into relational tables and algebraic plans over these tables,
respectively, and thus follows the dashed path in Figure 8.8. The translation
strategy (i) preserves the XQuery semantics (including compositionality, node
identity, iteration and sequence order), and (ii) yields relational plans which rely
on regular relational query engine technology [Grust et al., 2004].

The compiler emits a dialect of relational algebra that mimics the capabili-
ties of modern SQL query engines. The algebra operators are presented in Ta-
ble 8.1. The row numbering operator %a:〈b1,...,bn〉/p compares with SQL:1999’s
ROW NUMBER() OVER (PARTITION BY p ORDER BY b1, . . . , bn) and correctly im-
plements the order semantics of XQuery on the (unordered) algebra. Other non-

178 Chapter 8. An Inflationary Fixed Point Operator for XQuery

Operator Semantics

πa1:b1,...,an:bn project onto col.s ai, rename bi into ai
σb select rows with column b = true
onp join with predicate p
:-
onq iterated evaluation of rhs argument (APPLY)
× Cartesian product
∪ union
\ difference
counta:/b aggregates (group by b, result in a)
}a:〈b1,...,bn〉 n-ary arithmetic/comparison operator ◦
%a:〈b1,...,bn〉/p ordered row numbering (by b1, . . . , bn)
α::n XPath step join (axis α, node test n)

ε, τ, . . . node constructors
µ, µ∆ fixpoint operators

Table 8.1: Relational algebra dialect emitted by the Pathfinder compiler.

textbook operators, like ε or , are merely macros representing “micro plans”
composed of standard relational operators: expanding α::n(q), for example,
would reveal doc onp q, where p is a conjunctive range predicate that realizes
the semantics of an XPath location step along axis α with node test n between
the context nodes in q and the encoded XML document doc. Dependent joins
:-
on—also named CROSS APPLY in Microsoft SQL Server’s SQL dialect Transact-
SQL—like are a logical concept and can be replaced by standard relational
operators [Galindo-Legaria and Joshi, 2001].

The plans operate over relational encodings of XQuery item sequences held in
flat (1NF) tables with an iter|pos|item schema. In these tables, columns iter and
pos are used to properly reflect for-iteration and sequence order, respectively.
Column item carries encodings of XQuery items, i.e., atomic values or nodes.
The inference rules driving the translation procedure from XQuery expressions
into algebraic query plans are described in [Grust et al., 2004] and [Afanasiev
et al., 2009]. The result is a DAG-shaped query plan where the sharing of sub-
plans primarily coincides with repeated references to the same variable in the
input XQuery expression. Further details of Relational XQuery do not affect our
present discussion of distributivity or IFP evaluation and may be found in [Grust
et al., 2004, Afanasiev et al., 2009].

In the following, we extend the algebra with two algebraic fixed point operators
corresponding to the fixed point computation algorithms discussed in Section 8.3
and assess distributivity based purely on algebraic equivalences.

8.6. An algebraic approximation of distributivity 179

8.6.1 An algebraic account of distributivity

qseed

qbody$x µ

An occurrence of the new with $x seeded by eseed recurse

ebody form in a source XQuery expression will be compiled into
a plan fragment as shown here on the right. In the following,
let q denote the algebraic query plan that has been compiled for
XQuery expression e. Operator µ, the algebraic representation of
the algorithm Näıve (Figure 8.4(a)), iterates the evaluation of the
algebraic plan for ebody and feeds its output back to its input
until the IFP is reached. If we can guarantee that the plan for ebody

is distributive, we may safely trade µ for its Delta-based variant
µ∆ which, in general, will feed significantly less items back in each
iteration (see Figure 8.4(b) and Section 8.7).

In Section 8.4, we defined the distributivity property of XQuery expressions
based on the XQuery operator union (see Definition 8.4.1). In the algebraic set-
ting, the XQuery union operation is compiled to the following expression that im-
plements the XQuery order requirements—for each iteration the result is ordered
by the node rank in column item (see [Afanasiev et al., 2009] for the compilation
rule):

e1 union e2 Z⇒

%pos:〈item〉/iter
πiter,item

∪
q1 q2

.

A straightforward application of this translation to Definition 8.4.1 allows us to
express the distributivity criterion based on the equivalence of relational plans.
If we can prove the set-equality of the two plans in Figure 8.9(a), we know that
the XQuery expression qbody must be distributive. This equality is the algebraic
expression of the divide-and-conquer evaluation strategy: evaluating ebody over a
composite input (left-hand side, ∪) yields the same result as the union of the
evaluation of ebody over a partitioned input (right-hand side).

Given that the distributivity property is undecidable (see Theorem 8.4.9), we
propose an effective approximation to distributivity. First, we loosen up the con-
dition expressed in Figure 8.9(a). One prerequisite for distributivity is that the
recursion body qbody does not inspect sequence positions in its input. Thus, for a
distributive qbody it must be legal to omit the row-numbering operator %pos:〈item〉/iter
in the left-hand side of Figure 8.9(a) and discard all position information in the
inputs of sub-plan qbody (using πiter,item). Further, since the set-equality (used to
define distributivity) is indifferent to sequence order, we are also free to disre-
gard the row-numbering operator on top of the right-hand-side plan and place a
projection πiter,item on top of both plans to make the order indifference explicit.
Proving the equivalence illustrated in Figure 8.9(b), therefore, is sufficient to
decide distributivity.

Further, we propose an assessment of distributivity based on algebraic rewrites.

180 Chapter 8. An Inflationary Fixed Point Operator for XQuery

∪
πiter,item

%pos:〈item〉/iter

qbody

s
=

qbody qbody

∪
πiter,item

%pos:〈item〉/iter

(a) Algebraic equivalent of the
distributivity property: ebody is
distributive if and only if its algebraic
counterpart qbody satisfies this
set-equality.

πiter,item

qbody

∪
πiter,

item
πiter,

item

s
=?

πiter,item

qbody qbody

∪

πiter,item πiter,item

(b) Distributivity assessment agnostic
to sequence order.

Figure 8.9: Algebraic distributivity assessment.

⊗ ∈ {π, σ,}, }
⊗ (q1] q2)→ (⊗ (q1))] (⊗ (q2))

(Unary)

⊗ ∈ {∪,×,on,
:-
on}

(q1] q2)⊗ q3 → (q1 ⊗ q3)] (q2 ⊗ q3)
(Binary1)

⊗ ∈ {∪,×,on,
:-
on}

q1 ⊗ (q2] q3)→ (q1 ⊗ q2)] (q1 ⊗ q3)
(Binary2)

(q1] q2) ∪ (q3] q4)→ (q1 ∪ q3)] (q2 ∪ q4)
(Union)

Figure 8.10: An algebraic approximation of the distributivity property for arbi-
trary XQuery expressions.

8.6. An algebraic approximation of distributivity 181

If we can successfully “push” a union operator ∪ through the sub-plan qbody in
the left-hand side of Figure 8.9(b) to obtain the right-hand side, its corresponding
XQuery expression ebody must be distributive and we can safely trade µ for µ∆ to
compute the fixed point.

To this end, we use a set of algebraic rewrite rules (Figure 8.10) that try to
move a union operator upwards through the DAG. To avoid ambiguity or infinite
loops during the rewrite process, we mark the union operator (indicated as]) in
the left-hand-side plan qleft of Figure 8.9(b), before we start rewriting. We then
exhaustively apply the rule set in Figure 8.10 to each sub-plan in qleft in a bottom-
up fashion. Since each rule in the set strictly moves the marked union operator
upwards inside the plan, termination of the process is guaranteed. Further, the
number of operators n in qbody is an upper bound for the number of rewrites
needed to push] through qbody ; n itself is bounded by the size of ebody (we have
seen the same complexity bound for the syntactic analysis of Section 8.5).

Once the rule set does not permit any further rewrites, we compare the rewrit-
ten plan q′left with the right-hand side plan qright of Figure 8.9(b) for structural
equality. This type of equality guarantees the equivalence of both plans and,
hence, the distributivity of ebody .

Figure 8.11 shows the rewrites involved to determine the distributivity of ebody

for Query Q1 (Section 8.2). We place a marked union operator] as the input
to the algebraic plan qbody obtained for the recursion body of Query Q1. The
resulting plan corresponds to the left-hand side of Figure 8.9(b). Applying the
equivalence rules Unary, Binary1, and again Rule Unary pushes] up to the
plan root, as illustrated in Figures 8.11(b), 8.11(c), and 8.11(d), respectively.
The final plan (Figure 8.11(d)) is structurally identical to the right-hand side of
Figure 8.9(b), with qbody instantiated with the recursion body in Query Q1. We
can conclude distributivity for qbody and, consequently, for the recursion body in
Query Q1.

To prove the soundness of this approach it is enough to acknowledge the
correctness of the rewrite rules in Figure 8.10. Once union has been pushed
through the algebraic plan of ebody and the equality in Figure 8.9(b) holds, we
can conclude that the expression is distributive and apply Delta for its evaluation.
For more details, we refer to [Afanasiev et al., 2009].

8.6.2 Algebraic vs. syntactic approximation

Compared to the syntactic approximation ds (·), the above algebraic account of
distributivity draws its conciseness from the fact that the rather involved XQuery
semantics and substantial number of built-in functions nevertheless map to a small
number of algebraic primitives (given suitable relational encodings of the XDM).
Further, for these primitives, the algebraic distributivity property is readily de-
cided.

To make this point, consider this equivalent slight variation of Query Q1 in

182 Chapter 8. An Inflationary Fixed Point Operator for XQuery

]
πiter,item

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2:ref

:-
on
qbind

πiter,item:item2

(a)

πiter,
item

πiter,
item

]

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2:ref

:-
on
qbind

πiter,item:item2

(b)

πiter,
item

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2,
ref

:-
on
qbind

πiter,
item

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2,
ref

:-
on
qbind

]
πiter,item:item2

(c)

πiter,
item

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2,
ref

:-
on
qbind

πiter,
item

qbind

child::
prerequisites

child::
pre code

id ref...
...

on
item=id

πitem2,
ref

:-
on
qbind

πiter,item:item2 πiter,item:item2

]

(d)

Figure 8.11: The query plan transformation involved in determining the dis-
tributivity of ebody for Query Q1. The union operator] marks the input to the
algebraic plan qbody obtained for the recursion body of Query Q1. Applying the
equivalence rules Unary, Binary1, and again Rule Unary pushes] up to the
plan root, as illustrated in Figures 8.11(b), 8.11(c), and 8.11(d), respectively.

8.7. Practical impact of distributivity and Delta 183

which variable $x now occurs free in the argument of function id(·):

with $x seeded by
doc ("curriculum.xml")/course[@code="c1"]

recurse id ($x/prerequisites/pre code) .

If we unfold the implementation of the XQuery built-in function id(·) (effectively,
this expansion is performed when Rule FunCall recursively invokes ds$x (·) to
assess the distributivity of the function body of id(·)), we obtain

with $x seeded by
doc("curriculum.xml")/course[@code="c1"]

recurse
for $c in doc("curriculum.xml")/course
where $c/@code = $x/prerequisite/pre code
return $c .

The syntactic approximation will flag the recursion body as non-distributive be-
cause of the presence of the where clause (Section 8.5). Even if we rewrite the filter
condition using an if-construct, the expression still remains not distributivity-safe
due to the occurrence of the variable $x in the condition. While the algebraic ap-
proach is not affected by the two variations, the rule set of Figure 8.7 needs to be
extended with a specific rule for id(·) to be able to infer its actual distributivity.

For each syntactic rule in Figure 8.7 we can prove that the corresponding
algebraic plan passes the test for distributivity. Thus, the algebraic approach
determines a larger fragment of distributive expressions and it is more succinct
and easier to work with than the syntactic approach.

In spite of the fact that the approximation is bound to a particular (relational)
algebra, we believe that this approach can easily be adapted for other algebras
for XQuery.

8.7 Practical impact of distributivity and Delta

Exchanging RUDFs for the IFP operator limits the expressive power of the lan-
guage. However, it also puts the query optimizer in control while the user is
spared the trouble of deciding which algorithm should be used for the fix point
computation. Trading Näıve for Delta is a promising optimization and in the
previous sections we showed that it can be effectively decided. In this section,
we provide experimental evidence that significant gains can indeed be realized,
much like in the relational domain.

To quantify the impact, we implemented the two fixed point operator vari-
ants µ and µ∆ in MonetDB/XQuery 0.18 [Boncz et al., 2006a], an efficient and
scalable XQuery processor that implements the Relational XQuery approach (Sec-
tion 8.6). Its algebraic compiler front-end Pathfinder has been enhanced (i) to

184 Chapter 8. An Inflationary Fixed Point Operator for XQuery

Q
u

ery
M

o
n

e
tD

B
/
X

Q
u

e
ry

S
a
x
o
n

-S
A

8
.9

T
otal

#
of

n
o
d

es
fed

to
b

o
d

y
R

ecu
rsion

N
äıve

D
elta

N
äıve

D
elta

N
äıve

D
elta

d
ep

th

B
idder

netw
ork

(sm
all)

362
m

s
165

m
s

2,307
m

s
1,872

m
s

40,254
9,319

10
B

idder
netw

ork
(m

edium
)

5,010
m

s
1,995

m
s

15,027
m

s
7,284

m
s

683,225
122,532

16
B

idder
netw

ork
(large)

40,785
m

s
13,805

m
s

123,316
m

s
52,436

m
s

5,694,390
961,356

15
B

idder
netw

ork
(huge)

9
m

46
s

176,890
m

s
32

m
40

s
12

m
04

s
87,528,919

9,799,342
24

R
om

eo
and

Juliet
6,795

m
s

1,260
m

s
1,150

m
s

818
m

s
37,841

5,638
33

C
urriculum

(m
edium

)
183

m
s

135
m

s
1,308

m
s

1,040
m

s
12,301

3,044
18

C
urriculum

(large)
1,466

m
s

646
m

s
3,485

m
s

2,176
m

s
127,992

19,780
35

H
ospital

(m
edium

)
734

m
s

497
m

s
1,301

m
s

1,290
m

s
99,381

50,000
5

T
ab

le
8.2:

N
äıve

v
s.

D
elta:

C
om

p
arison

of
q
u
ery

evalu
ation

tim
es

an
d

total
n
u
m

b
er

of
n
o
d
es

fed
to

th
e

recu
rsion

b
o
d
y

as
in

p
u
t.

8.7. Practical impact of distributivity and Delta 185

declare variable $doc := doc("auction.xml");

declare function bidder ($in as node()*) as node()*
{ for $id in $in/@id

let $b := $doc//open auction[seller/@person = $id]
/bidder/personref

return $doc//people/person[@id = $b/@person]
};

for $p in $doc//people/person
return <person>

{ $p/@id }
{ data ((with $x seeded by $p

recurse bidder ($x))/@id) }
</person>

Figure 8.12: XMark bidder network query.

process the syntactic form with · · · seeded by · · · recurse, and (ii) to implement
the algebraic distributivity check. All queries in this section were recognized as
being distributive by Pathfinder. To demonstrate that any XQuery processor can
benefit from optimized IFP evaluation in the presence of distributivity, we also
performed the transition from Näıve to Delta on the XQuery source level and
let Saxon-SA 8.9 [Kay, 2009] process the resulting user-defined recursive queries
(cf. Figures 8.3 and 8.5). All experiments were conducted on a Linux-based host
(64 bit), with two 3.2 GHz Intel Xeon® CPUs, 8 GB of primary and 280 GB SCSI
disk-based secondary memory.

In accordance with the micro-benchmarking methodology developed in Part I,
we identify which query parameters might influence the performance of the IFP
computation. There are three such parameters: (i) the complexity of the recur-
sion body, (ii) the size of the input fed to the recursion body during the queries
computation, and (iii) the depth of the recursion. Our goal is to measure the
practical gains of the proposed optimization on real-life examples, rather than
a thorough investigation of the precise impact of these parameters. Thus, for
our experiment, we chose four queries on different XML data sets that are both
natural (borrowed from related literature) and that cover different values of these
parameters. We leave a more thorough investigation in the style of the MemBeR
micro-benchmarking for future work.

Table 8.2 summarizes our measurements of query evaluation time, total size
of the input fed to the recursion body during the recursive computation, and
recursion depth, for the four queries. We varied the data instance sizes to test
for scalability. Note that varying the data instance size we influence both the
recursion body input size (ranging from 12K to 87M nodes for Näıve and from
3K to 9M nodes for Delta) and the recursion depth (ranging from 5 to 33). Below
we describe each query and its performance.

186 Chapter 8. An Inflationary Fixed Point Operator for XQuery

let $lengths :=
for $speech in doc ("r_and_j.xml")//SPEECH
let $rec :=

with $x seeded by (: pair of speeches :)
($speech/preceding-sibling::SPEECH[1], $speech)

recurse $x/following-sibling::SPEECH[1]
[SPEAKER = preceding-sibling::SPEECH[2]/SPEAKER]

return count ($rec)
return max ($lengths)

Figure 8.13: Romeo and Juliet dialogs query.

XMark Bidder Network. The first query computes a bidder network—re-
cursively connecting the sellers and bidders of auctions—over XMark [Schmidt
et al., 2002] XML data (see Figure 8.12). We vary the data size from small
(1MB, scale factor 0.01) to huge (37MB, scale factor 0.33). If Delta is used to
compute the IFP of this network, MonetDB/XQuery as well as Saxon benefit
significantly: 2.2 to 3.3 times faster and 1.2 to 2.7 times faster, respectively. Note
that the number of nodes in the network (the same as the total number of nodes
fed to body) grows quadratically with the input document size. Algorithm Delta
feeds significantly fewer nodes to the recursion body, bidder(·), at each recursion
level which positively impacts the complexity of the value-based join inside the
function: for the huge network, Delta feeds exactly those 10 million nodes into
bidder(·) that make up the result, while Näıve repeatedly revisits intermediate
results and processes 9 times as many nodes.

Romeo and Juliet Dialogs. Far less nodes are processed by a recursive ex-
pression that queries XML markup of Shakespeare’s Romeo and Juliet5 to deter-
mine the maximum length of any uninterrupted dialog (see Figure 8.13). Seeded
with SPEECH element nodes, each level of the recursion expands the currently
considered dialog sequences by a single SPEECH node given that the associated
SPEAKERs are found to alternate. This query expresses horizontal structural re-
cursion along the following-sibling axis. Although the recursion is shallow
(depth 6 on average), Table 8.2 shows how both, MonetDB/XQuery and Saxon,
completed evaluation up to 5 times faster because the query had been specified
in a distributive fashion.

Curriculum. The following query, (Q1), was first presented in Example 8.1.1
and served as the leading example throughout the chapter. This query is borrowed
directly from related work [Nentwich et al., 2002] (Rule 5 in the Curriculum Case
Study in Appendix B). It implements a consistency check over the curriculum
data (cf. Figure 8.1) and finds courses that are among their own prerequisites.

5http://www.ibiblio.org/xml/examples/shakespeare/

http://www.ibiblio.org/xml/examples/shakespeare/

8.8. Related work 187

let $hospital := doc ("hospital.xml")/hospital
for $patient in $hospital/patient
where

(with $x seeded by $patient
recurse $x/parent/patient)/visit/treatment/test
and
$patient/visit/treatment[contains (medication, "headache")]

return $patient/pname

Figure 8.14: Hospital records query.

We generated the data instances for this query with the help of ToXgene [Barbosa
et al., 2002].

Much like for the bidder network query, the larger the query input (medium
instance: 800 courses, large: 4,000 courses), the bigger the benefit of Delta, for
both query engines.

Hospital records. The last query explores 50,000 hospital patient records to
investigate a hereditary disease. The query, shown in Figure 8.14, is taken from
[Fan et al., 2006]. We generated the corresponding data instances with the help of
ToXgene [Barbosa et al., 2002]. In this case, the recursion follows the hierarchical
structure of the XML input (from patient to parents), recursing into subtrees of
a maximum depth of five. Again, Delta makes a notable difference even for this
computationally rather “light” query.

In conclusion, this experiment renders the particular controlled form of XQuery
recursion that we propose and its associated distributivity notion attractive,
even for processors that do not implement a dedicated fixed point operator (like
Saxon).

8.8 Related work

Achieving adequate support for recursion in XQuery is an important research
topic. Recursion exists at different levels of the language, starting with the essen-
tial recursive XPath axes (e.g., descendant or ancestor) and ending with the
recursive user-defined functions. While efficient evaluation of the recursive axes is
well understood by now [Al-Khalifa et al., 2002, Grust et al., 2003], the optimiza-
tion of recursive user-deT, ned functions has been found to be tractable only in the
presence of restrictions: [Park et al., 2002, Grinev and Lizorkin, 2004] propose
exhaustive inlining of functions but require that functions are structurally recur-
sive (use axes child and descendant to navigate into subtrees only) over acyclic
schemata to guarantee that inlining terminates. Beyond inlining, the recursive
user-defined functions do not come packaged with an effective optimization hook
comparable to what the inflationary fixed point operator offers.

188 Chapter 8. An Inflationary Fixed Point Operator for XQuery

A prototypical use case for inflationary fixed point computation is transitive
closure of arbitrary path expressions. This is also reflected by the advent of XPath
dialects like Regular XPath [ten Cate, 2006b] and the inclusion of a dedicated
dyn:closure(·) construct in the EXSLT function library [EXSLT, 2006]. In
Section 8.7, we have seen two applications relying on transitive closure [Nentwich
et al., 2002, Fan et al., 2006] and recent work on data integration and XML views
adds to this [Fan et al., 2007].

The adoption of inflationary fixed point semantics by Datalog and SQL:1999
with its WITH RECURSIVE clause (Section 8.2) led to an intense search for effi-
cient evaluation techniques for inflationary fixed point operators in the domain
of relational query languages. The Näıve algorithm implements the inflationary
fixed semantics directly and it is the most widely described algorithm [Bancilhon
and Ramakrishnan, 1986]. Its optimized Delta variant, in focus since the 1980’s,
has been coined delta iteration [Güntzer et al., 1987], semi-näıve [Bancilhon and
Ramakrishnan, 1986], or wavefront [Han et al., 1988] strategy in earlier work.
Our work rests on the adaptation of these algorithms to the XQuery Data Model
and language.

While Näıve is applicable to all accounts of inflationary fixed points, Delta is
mainly applicable under syntactic restrictions, such as linear recursion. For strat-
ified Datalog programs [Abiteboul et al., 1995], Delta is applicable in all cases,
since positive Datalog maps onto the distributive operators of relational algebra
(π, σ, on, ∪, ∩) while stratification yields partial applications of the difference op-
erator x \R in which R is fixed (f(x) = x \R is distributive). SQL:1999, on the
other hand, imposes rigid syntactic restrictions [Melton and Simon, 2002] on the
iterative fullselect (recursion body) inside WITH RECURSIVE that make Delta ap-
plicable: grouping, ordering, usage of column functions (aggregates), and nested
subqueries are ruled out, as are repeated references to the virtual table computed
by the recursion. The distributivity-safe syntactic fragment introduced in Sec-
tion 8.5.1 is essentially the XQuery counterpart of the linearity condition. We saw
in Section 8.6, that replacing this coarse syntactic check by an elegant algebraic
distributivity assessment renders a larger class of queries admissible for efficient
fixed point computation.

Another well-known algorithm in the relational world, called Smart, is pre-
sented again only for linear recursion [Ioannidis, 1986]. Smart targets the infla-
tionary fixed point computation of relational operators specifically and it performs
better than Delta on shallow recursion. In the settings of XQuery, were the re-
cursion body is any expression, Smart is less applicable.

8.9 Conclusions and discussions

The problem we faced in this chapter is the lack of declarative recursive operators
in XQuery that allow for (algebraic) automatic optimizations. As a solution, we

8.9. Conclusions and discussions 189

introduced a declarative IFP operator for XQuery, borrowed from the context of
relational databases. This operator covers a family of widespread use cases of
recursion in XQuery, including the transitive closure of path expressions, while
also being susceptible to systematic optimizations. We adopt an optimization
technique widely used in relational databases and adapt it to the XQuery settings.
This optimization relies on a distributivity property of XQuery expressions that
can be effectively detected at the syntactic level. Furthermore, if we adopt a
relational approach to XQuery evaluation, then distributivity can be detected
more conveniently and effectively at the underlying algebraic level. Nevertheless,
the IFP operator and the optimization technique that we propose can be easily
implemented on top of any XQuery engine.

We integrated the IFP operator into the MonetDB/XQuery system and as-
sessed the practical gain of our approach on real-life use cases. MonetDB/XQuery
implements a relational approach to XQuery query evaluation and it is one of the
fastest and most scalable XQuery engines today. We also experimented with
Saxon, a popular open-source XQuery engine implementing a native approach to
query evaluation. Our experiments showed significant performance gain (up to
five times faster query evaluation times) on both engines. The main advantage
of our approach—relying on a declarative recursive operator—is that this gain is
obtained automatically, thus lifting the burden put on the user by the RUDFs.

While the empirical evidence is there, a foundational question remains: how
feasible it is to do static analysis for recursive queries specified by means of the
IFP operator. Specifically, are there substantial fragments of XQuery with the
IFP operator for which static analysis tasks such as satisfiability are decidable?
We address this question in the next chapter, Chapter 9.

Our choice of declarative recursive operator fell naturally on the IFP operator
due to its success in relational databases. As we have shown, its good properties
transfer to the XQuery setting. Nevertheless, there are other recursive operators,
including other types of fixed points, such as the least fixed point operator, worth
investigating. For example, a good understanding of the theoretical properties
of the IFP operator for XQuery, such as its expressive power, is still missing. In
Chapter 9, we study the theoretical properties of the IFP operator in the setting
of the navigational core of XPath.

In spite of the fact that IFP covers a large class of recursive query needs in
XQuery, some natural recursive operations cannot be expressed with it or it is
very cumbersome, e.g., recursive XML construction (XML transformations) and
recursive aggregates. It remains an open question what set of declarative recursive
operators would be most natural to implement in the XQuery settings. This set
should: (i) cover the most useful, commonly used, recursive query needs, and
(ii) be easily implementable and susceptible to automatic optimizations.

Chapter 9

Core XPath with Inflationary Fixed
Points

In the previous chapter, we proposed to introduce an inflationary fixed point
(IFP) operator in XQuery. We presented an efficient processing technique for
it and argued for its practical advantage, both on theoretical and experimental
grounds. In this chapter, we continue with our theoretical investigation of the
IFP operator in the context of Core XPath 1.0 (CXP) [Gottlob and Koch, 2002],
the core navigational fragment of XPath and thus of XQuery.

We prove that the satisfiability problem of CXP extended with the IFP oper-
ator is undecidable. In fact, the fragment containing only the self and descendant
axes is already undecidable. This means that a complete static analysis of re-
cursive queries specified by means of the inflationary fixed point operator is not
feasible. As a by-product of our result, we also obtain that CXP extended with
IFP is strictly more expressive than CXP extended with the transitive closure
(TC) operator, also known as Regular XPath [Marx, 2004].

This chapter is organized as follows: in Section 9.2, we define two languages,
Core XPath extended with IFP (CXP+IFP) and Modal Logic extended with IFP
(ML+IFP). In Section 9.3, we relate the two languages and give a truth-preserving
translation from ML+IFP into CXP+IFP. In Section 9.4, we establish that the
satisfiability of ML+IFP is undecidable on finite trees by presenting an encoding
of successful runs of 2-register machines in ML+IFP. In Section 9.5, we discuss
the implications of this result, the remaining open questions, and conclude.

9.1 Introduction

In the previous chapter, an extension of XQuery with an inflationary fixed point
operator was proposed and studied. The motivation for this study stemmed from
a practical need for declarative recursion operators. The existing mechanism in
XQuery for expressive recursive queries (i.e., user defined recursive functions)

191

192 Chapter 9. Core XPath with Inflationary Fixed Points

is procedural in nature, which makes queries both hard to write and hard to
optimize. The inflationary fixed point operator provides a declarative means to
specify recursive queries, and is more amenable to query optimization since it
blends in naturally with algebra-based query optimization frameworks such as
the one of MonetDB/XQuery [Boncz et al., 2006a]. Indeed, we showed that a
significant performance gain can be achieved in this way.

While the empirical evidence is there, a foundational question remains:

9.1. Question. How feasible is it to do static analysis for recursive queries spec-
ified by means of the fixed point operator. Specifically, are there substantial frag-
ments of XQuery with the fixed point operator for which static analysis tasks such
as satisfiability are decidable?

In this chapter, we give a strong negative answer. Our main result states that,
already for the downward-looking fragment of Core XPath 1.0 with the inflation-
ary fixed point operator (CXP+IFP), satisfiability is undecidable. The proof is
based on a reduction from the undecidable halting problem for 2-register ma-
chines (cf. [Börger et al., 1997]), and borrows ideas from the work of Dawar et
al. [2004] on the Modal Iteration Calculus (MIC), an extension of modal logic
with inflationary fixed points.

As a by-product of our investigation, we establish a relationship between
CXP+IFP and MIC. While similar in spirit, it turns out that the two formalisms
differ in subtle and important ways. Nevertheless, we obtain a translation from
1MIC (the fragment of MIC that does not involve simultaneous induction) to
CXP+IFP node expressions.

In [Dawar et al., 2004], after showing that the satisfiability problem for MIC
on arbitrary structures is highly undecidable, the authors ask whether there are
fragments that are still interesting to consider, and also whether the logic has
any relevance for practical applications. Our results shed some light on these
questions. We obtain as part of our investigation that the satisfiability problem
for 1MIC is already undecidable on finite trees, and the relationship between MIC
and CXP+IFP adds relevance to the study of MIC.

Another implication of our encoding of the halting problem for 2-register
machines is the fact that CXP extended with IFP is strictly more expressive
than CXP extended with the transitive closure (TC) operator, also known as
Regular XPath [Marx, 2004]. The result follows from the ability of CXP+IFP
to define a non-regular string language, while in Regular XPath this language
cannot be defined.

9.2. Preliminaries 193

9.2 Preliminaries

9.2.1 Core XPath 1.0 extended with IFP (CXP+IFP)

Core XPath 1.0 (CXP) was introduced in [Gottlob and Koch, 2002] to capture the
navigational core of XPath 1.0. The definition that we use here differs slightly
from the one of [Gottlob and Koch, 2002]. We consider only the downward
axes child and descendant (plus the self axis), both in order to facilitate the
comparison with MIC, and because this will already suffice for our undecidability
result. We will briefly comment on the other axes later. Other differences with
[Gottlob and Koch, 2002] are that we allow filters and unions to be applied to
arbitrary expressions.

We consider the extension of CXP, which we call CXP+IFP, with an in-
flationary fixed-point operator. This inflationary fixed-point operator was first
proposed in Chapter 8 in the context of XQuery, and is naturally adapted here
to the setting of CXP. We first give the syntax and semantics of CXP+IFP, and
then discuss the intuition behind the operator.

9.2.1. Definition (Syntax and Semantics of CXP+IFP). Let Σ be a set
of labels and VAR a set of variables. The CXP+IFP expressions are defined as
follows:

axis ::= self | child | desc
step ::= axis::l | axis::*
α ::= step | α1/α2 | α1 ∪ α2 | | α[φ] | X | with X in α1 recurse α2

φ ::= false | 〈α〉 | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | X ,

where l ∈ Σ and X ∈ V AR. The α expressions are called path expressions,
the φ expressions are called node expressions. The with . . . in . . . recurse . . .
operator is called the WITH operator, while X, α1, and α2 in the expression
with X in α1 recurse α2 are called the variable, the seed, and the body of the
recursion.

The CXP+IFP expressions are evaluated on finite node-labeled trees. Let
T = (N,R,L) be a finite node-labeled tree, where N is a finite set of nodes,
R ⊂ N × N is the child relation in the tree, and L is a function from N to a
set of labels. Let g(·) be an assignment function from variables to sets nodes,
g : V AR→ ℘(N). Then the semantics of CXP+IFP expressions are as follows:

[[self]]T,g = {(u, u) | u ∈ N}
[[child]]T,g = R

[[axis::l]]T,g = {(u, v) ∈ [[axis]]T | L(u) = l}
[[axis::*]]T,g = [[axis]]T

194 Chapter 9. Core XPath with Inflationary Fixed Points

[[α1/α2]]T,g = {(u, v) | ∃w.(u,w) ∈ [[α1]]T,g ∧ (w, v) ∈ [[α2]]T,g}
[[α1 ∪ α2]]T,g = [[α1]]T,g ∪ [[α2]]T,g

[[α[φ]]]T,g = {(u, v) ∈ [[α]]T,g | v ∈ [[φ]]T,g}
[[X]]T,g = N × g(X), X ∈ V AR

[[with X in α1

recurse α2]]T,g = union of all sets {w} × gk(X), for w ∈ N ,
where gk is obtained in the following manner, for i ≥ 1:
g1 := g[X 7→ {v ∈ N | (w, v) ∈ [[α1]]T,g}],
gi+1 := gi[X 7→ gi(X) ∪ {v ∈ N | (w, v) ∈ [[α2]]T,gi

}],
and k is the least natural number for which gk+1=gk.

[〈false〉]T,g = ∅
[〈〈α〉〉]T,g = {u ∈ N | (u, v) ∈ [[α]]T,g}
[〈¬φ〉]T,g = N \ [〈φ〉]T,g

[〈φ1 ∧ φ2〉]T,g = [〈φ1〉]T,g ∩ [〈φ2〉]T,g
[〈φ1 ∨ φ2〉]T,g = [〈φ1〉]T,g ∪ [〈φ2〉]T,g

[〈X〉]T,g = g(X), X ∈ V AR

While the semantics [[α]]T,g of a path expression α is defined as a binary relation,
it is natural to think of it as a function mapping each node u to a set of nodes
{v | (u, v) ∈ [[α]]T,g}, which we denote by Resultgu(α). It represents the result of
evaluating α in the context node u (using the assignment g). The semantics of
the variables and of the WITH operator is most naturally understood from this
perspective, and can be equivalently stated as follows:

• Resultgu(X) = g(X), i.e., when X is used as a path expression, it evaluates
to g(X) regardless of the context node.

• Resultgu(with X in α1 recurse α2) = Xk, where X1 = Result
g[X 7→∅]
u (α1),

Xi+1 = Xi∪Resultg[X 7→Xi]
u (α2) for i ≥ 1, and k is the smallest number such

that Xk = Xk+1.

Note that, at each iteration, the context node of the evaluation of α1 or α2 remains
u.

When a variable X is used as a node expression, it simply tests whether the
current node belongs to the set assigned to X.

The example query below yields the set of nodes that can be reached from the
context node by following the transitive closure of the child::a relation.

with X in child::a recurse X/child::a

The query below yields the set of nodes that are labeled with a and are at an
even distance from the context node.

(with X in self:: ∗ recurse X/child::*/child::*)/self::a

9.2. Preliminaries 195

It is important to note that (unlike MIC) the language provides no way to test
whether a given node belongs to the result of with X in α1 recurse α2, it only
allows us to go to a node belonging to the result set. From the point of view
of XQuery and XPath, it is very natural to define the inflationary fixed point
operator in this way, i.e., as an operator on path expressions. However, this has
some subtle consequences, as we explain next.

The semantics of the WITH operator we give here differs slighly from the
original semantics used in Chapter 8. According to the original semantics, when
Resultgu(with α1 in α2 recurse) is computed, the result of α1 is only used as
a seed of the recursion but is not itself added to the fixed point set. In other
words, Resultgu(with X in α1 recurse α2) was defined there as Xk, where X0 =

Result
g[X 7→∅]
u (α1), X1 = Result

g[X 7→X0]
u (α2), Xi+1 = Xi ∪ Resultg[X 7→Xi]

u (α2) for
i ≥ 1, and k is the least number such that Xk = Xk+1. The semantics we
use here is arguably mathematically cleaner and more intuitive since it is truly
inflationary: all the nodes assigned to the recursion variable during fixed-point
computation end up in the result.

9.2.2 Propositional Modal Logic extended with IFP
(ML+IFP)

The language ML+IFP we consider is an extension of Propositional Modal Logic
(ML) [Blackburn et al., 2002] with a monadic IFP operator. It is also known
as 1MIC, the fragment of Modal Iteration Calculus (MIC) that does not involve
simultaneous induction, and it was first introduced in [Dawar et al., 2004], where
it was also shown that its satisfiability problem is undecidable on arbitrary struc-
tures.

9.2.2. Definition (ML+IFP). Let Σ be a set of labels and V AR a set of
variables. Then the syntax of ML+IFP is defined as follows:

φ ::= ⊥ | l | X | ♦φ | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 |
(
ifp X ← φ

)
where l ∈ Σ, X ∈ V AR.

The semantics of ML+IFP is given in terms of Kripke models. To facilitate
the comparison with CXP+IFP, we will assume that the Kripke models assign
a unique label to each node, rather than a set of labels. This is not essential,
since for a finite set of labels Σ this property can be expressed with a Modal
Logic formula. Let T = (N,R,L) be a Kripke model, where N is a set of nodes,
R ⊆ N ×N is a binary relation on the nodes in N , and L is a valuation function
that assigns a label from Σ to to each in N . Let g(·) be an assignment function
from variables to sets of nodes, g : V AR→ ℘(N). Then the semantics of ML+IFP

196 Chapter 9. Core XPath with Inflationary Fixed Points

formulas are as follows:

[[⊥]]T,g = ∅
[[l]]T,g = {n ∈ N | L(n) = l}

[[X]]T,g = g(X)
[[♦φ]]T,g = {u | ∃v.(u, v) ∈ R ∧ v ∈ [[φ]]T,g}
[[¬φ]]T,g = N \ [[φ]]T,g

[[φ1 ∧ φ2]]T,g = [[φ1]]T,g ∩ [[φ2]]T,g
[[φ1 ∨ φ2]]T,g = [[φ1]]T,g ∪ [[φ2]]T,g

[[ifp X ← φ]]T,g = gk(X), where gk is obtained in the following manner:
g0 := g[X 7→ ∅],
gi+1 := gi[X 7→ gi(X) ∪ [[φ]]T,gi

], for i ≥ 0,
where k is the minimum number for which gk+1=gk.

We write T, g, u φ if v ∈ [[φ]]T,g. If a formula has no free variables, we may leave
out the assignment and write T, u φ or u ∈ [[φ]]T .

It was shown in [Dawar et al., 2004] that the satisfiability problem for ML+IFP
on arbitrary Kripke models is highly undecidable. As we will show below, it is
undecidable on finite trees as well.

9.3 ML+IFP vs. CXP+IFP

In this section, we give a truth-preserving translation from ML+IFP to CXP+IFP.
In fact, the translation yields CXP+IFP expressions that use only the self and
descendant axes. It follows that this fragment of CXP+IFP already has (at least)
the expressive power of ML+IFP.

One of the main differences between ML+IFP and CXP+IFP is that, in the
former, fixed-point expressions are node expressions that test whether the current
node belongs to the fixed point of a formula, while in the latter, fixed-point ex-
pressions are path expressions that travel to nodes belonging to the fixed point of
a formula. Another difference is that, in CXP+IFP, during the entire fixed point
computation, the expressions are evaluated from a fixed context node, whereas
in ML+IFP, whether a node is added to the set at some stage of the fixed point
computation is determined by local properties of the subtree below that node.

In our translation from ML+IFP to CXP+IFP we have to overcome these
differences. The main idea for the translation of ML+IFP formulas of the form
ifp X ← φ will be that, during the fixed point computation, we treat leaf nodes in
a special way, never adding them to the fixed point set but keeping track of them
separately. More precisely, we first compute the set Y of all leaf nodes satisfying
ifpX ← φ. Next, we let X0 = ∅ and Xi+1 is computed as Xi∪([[φ]]T,g[X 7→Xi∪Y]−Y).
Observe how the nodes in Y are added to the input and substracted again from
the output. Let Xk be the fixed point of the sequence X0 ⊆ X1 ⊆ · · · . Then we

9.3. ML+IFP vs. CXP+IFP 197

have that [[ifp X ← φ]]T,g = Xk ∪ Y . The advantage of this construction is that,
since the leaves are never added during the fixed point computation, they can be
freely used for signalling that the context node was added to the set X: if the
context node is added at some stage, we add a leaf node as well, and the presence
of a leaf node in the result set will be used as a sign that we test for afterwards.

Before we give the details of the construction, we first note that when com-
puting the inflationary fixed point of an ML+IFP formula, any leaf node that is
added to the fixed point set is in fact already added at the first stage of the fixed
point computation. This is expressed by the following lemma.

9.3.1. Lemma. Let u be any node in a Kripke model T , and let φ(X) be any
ML+IFP formula and g an assignment. If u has no successors, then u ∈ [[ifp X ←
φ]]T,g iff u ∈ [[φ]]T,g[X 7→∅].

Proof. Follows from the fact that the modal formula φ only speaks about the
submodel generated by u, i.e., the submodel consisting only of the node u itself.
qed

In what follows we will use � as shorthand for self:: ∗ [false], desc-or-self::* as
shorthand for desc::*∪ self::*, and leaf as shorthand for ¬〈child::∗〉. Also, for node
expressions φ, ψ and a variable X, such that X only occurs in φ in the form of
node tests, we will denote by φX/ψ the node expression obtained from by replacing
all free occurrences of X in φ by the node expression ψ.

The translation τ(·) from ML+IFP formulas to CXP+IFP node expressions
is given by Equation (9.1).

τ(⊥) = false
τ(l) = 〈self::l〉

τ(φ1 ∧ φ2) = τ(φ1) ∧ τ(φ2)
τ(φ1 ∨ φ2) = τ(φ1) ∨ τ(φ2)

τ(¬φ) = ¬τ(φ)
τ(X) = X
τ(♦φ) = 〈child:: ∗ [τ(φ)]〉

τ
(
ifp X ← φ

)
= 〈

(
with X in desc-or-self::*[τ(φ)X/false ∧ ¬leaf] recurse

desc-or-self::*[τ(φ)X/(X∨τ(φ)leaf) ∧ ¬leaf] ∪
self:: ∗ [X ∨ τ(φ)leaf]/desc:: ∗

)
[leaf]〉

where τ(φ)leaf = τ(φ)X/false ∧ leaf

(9.1)

9.3.2. Theorem. Let T = (N,R,L) be a node-labeled finite tree, g an assign-
ment, and u a node in T . Then T, g, u φ iff T, g, u τ(φ).

Proof. The proof is by simultaneous induction on the form of the formula φ.
The cases for ⊥, l, ψ1 ∧ ψ2, ψ1 ∨ ψ2, ¬ψ, X, and ♦ψ are immediate. Therefore,
let φ =

(
ifp X ← ψ

)
.

198 Chapter 9. Core XPath with Inflationary Fixed Points

Since ML+IFP formulas and CXP+IFP node expressions can only see the
subtree of the context node, we may assume without loss of generality that u is
the root of the tree T . We write Tu instead of T , to make this explicit.

Let gi, 0 ≤ i ≤ k, be the variable assignments computed for φ in accordance
with the semantics of the IFP operator (see Definition 9.2.2) on Tu, where g0 =
g[X 7→ ∅] and where k is the least natural number such that either u ∈ gk(X) or
gk(X) = gk+1(X), whichever happens first. Similarly, let g′i, 1 ≤ i ≤ k, be the
first k variable assignments computed for the recursive sub-expression of τ(φ) in
accordance with the semantics of the WITH operator (see Definition 9.2.1) for u
as the context.

Let Y = [[τ(φ)leaf]]T,g. It follows from the induction hypothesis, together with
Lemma 9.3.1, that Y is precisely the set of all leaf nodes belonging to gk(X), and
moreover, for every 1 ≤ i ≤ k, Y is precisely the set of all leaf nodes belonging
to gi(X).

Now, a straightforward induction shows that, for each i ≤ k, gi(X) is exactly
the disjoint union of the sets g′i(X) and Y (note that we use here the fact that
u 6∈ gk−1(X)).

Now, there are two possibilities: either u ∈ gk(X) (in which case u satisfies(
ifp X ← φ

)
) or u 6∈ gk(X) (in which case u does not satisfy

(
ifp X ← φ

)
). In

the first case, it is easy to see that g′k+1(X) contains all nodes below u, and in
particular, contains a leaf node, and therefore τ(

(
ifp X ← φ

)
) is satisfied. In the

second case, g′k+1(X) = g′k(X), and therefore u does not satisfy τ(
(
ifp X ← φ

)
).

This concludes the proof. qed

We can conclude that CXP+IFP node expressions have (at least) the expressive
power of ML+IFP. Since the desc axis is definable from the child axis, the same
holds of course for the fragment of CXP+IFP without the desc axis. What is
more surprising is that the same holds for the fragment of CXP+IFP without
the child axis. The next lemma shows that the use of the child axis in the above
translation can be avoided (provided that we keep, of course, the desc axis). Note
that the child axis was only used in the translation of formulas of the form ♦φ.

9.3.3. Proposition. For any node expression φ, 〈child::*[φ]〉 is equivalent to the
following node expression (which does not use the child axis):

〈
(
with X in desc:: ∗ /desc:: ∗ [leaf] recurse

self:: ∗ [〈desc:: ∗ [leaf ∧ ¬X ∧ φ]〉]
)

[¬leaf]〉
∨

〈
(
with X in desc:: ∗ /desc:: ∗ [¬leaf] recurse

desc:: ∗ [¬leaf ∧ ¬X ∧ φ]/desc:: ∗
)

[leaf]〉

9.4. CXP+IFP and ML+IFP are undecidable on finite trees 199

Proof. Let T = (N,R,L) be a finite nodel-labeled tree, u ∈ N a node, and
g : V AR → ℘(N) an assignment. We will show that the first disjunct of the
node expression is true at u under the assignment g if and only if u has a child
satisfying φ (under g) that is a leaf. Similarly, it can be shown that the second
disjunct is true if and only if u has a child satisfying φ that is not a leaf.

Thus, let us consider the first disjunct. In the first step of the inflationary
fixed point computation, all leaf nodes below u are added to the set X except
those that are a child of u. Next, u itself is added to the set X just in case it has
a descendant satisfying φ that is a leaf and that was not marked with X already.
After these two steps, the fixed point is reached. It is easy to see that the set X
obtained in this way contains a non-leaf node if and only if it contains the node
u, which holds if and only if u has a descendant satisfying φ that is a leaf and
that was nor marked by X in the first step of the fixed point computation. The
latter holds if and only if u has a child that is a leaf and that satisfies φ.

In the same way, for the second disjunct of the node expression, it can be
shown that the inflationary fixed point set X contains a leaf node if and only if
u has a child satisfying φ that is not a leaf. qed

9.4 CXP+IFP and ML+IFP are undecidable on

finite trees

We show that the satisfiability problem for ML+IFP on finite trees is undecid-
able, and therefore also (by our earlier translation), the satisfiability problem for
CXP+IFP.

9.4.1. Theorem. The satisfiability problem of ML+IFP on finite trees is unde-
cidable.

9.4.2. Corollary. The satisfiability problem of CXP+IFP is undecidable, even
if the child axis is disallowed.

The proof, given in Section 9.4.2, is based on a reduction from the halting problem
for 2-register machines (cf. [Börger et al., 1997]).

9.4.1 2-Register machines

A 2-register machine is a very simple kind of deterministic automaton without
input and output. It has two registers containing integer values, and instructions
for incrementing and decrementing the content of the registers. These 2-register
automata form one of the simplest types of machines for which the halting prob-
lem is undecidable. The formal definition is as follows:

A 2-register machine M is a tuple M = (Q, δ, q0, qf), where Q is a finite set of
states, δ is a transition function from Q to a set of instructions I, defined below,

200 Chapter 9. Core XPath with Inflationary Fixed Points

and q0, qf are designated states in Q, called initial and final states, respectively
[Börger et al., 1997].

The set of instructions I consists of four kinds of instructions:

• INCA(q′): increment the value stored in A and move to state q′;

• INCB(q′): increment the value stored in B and move to state q′;

• DECA(q′, q′′): if the value stored in A is bigger than 0 then decrement it
with one and move to state q′, otherwise move to state q′′ without changing
the value in A nor B; and

• DECB(q′, q′′): if the value stored in B is bigger than 0 then decrement it
with one and move to state q′, otherwise move to state q′′ without changing
the value in A nor B.

A configuration of the machine M is a triple S = (q, a, b), where q is a state in
Q, and a, b are non-negative integers that correspond to the numbers stored in
the registers A and B, respectively. The configuration S0 = (q0, 0, 0) is called
the initial configuration, and the configuration Sf = (qf , 0, 0) is called the final
configuration.

A successful run of the machine is a sequence of configurations, Si = (qi, ai, bi),
0 ≤ i ≤ n, n > 0, such that:

• the sequence starts with the initial configuration, S0, and it ends with the
final configuration Sf , and

• any pair of consecutive configurations in the sequence, Si and Si+1, satis-
fies δ, i.e., the state and the register values in the successor configuration
correspond to the instruction attributed to the state in the predecessor
configuration by δ:

– if δ(qi) = INCA(q′i), then Si+1 = (q′i, ai + 1, bi);

– if δ(qi) = INCB(q′i), then Si+1 = (q′i, ai, bi + 1);

– if δ(qi) = DECA(q′i, q
′′
i), then Si+1 = (q′i, ai − 1, bi), if ai > 0, else

Si+1 = (q′′i , ai, bi);

– if δ(qi) = DECB(q′i, q
′′
i), then Si+1 = (q′i, ai, bi − 1), if bi > 0, else

Si+1 = (q′′i , ai, bi).

9.4.3. Theorem ([Börger et al., 1997]). The following question is known to
be undecidable: given a 2-register machine, is there a successful run of this ma-
chine?

9.4. CXP+IFP and ML+IFP are undecidable on finite trees 201

Note that, since a 2-register machine is deterministic without input, it can have
only one minimal successful run, and any other successful other run must contain
the first one as a prefix. We may in fact assume without loss of generality that
the machine does not pass through the final configuration (q0, 0, 0) more than
once, and hence has at most one successful run. Two further assumptions we can
safely make are: (i) the initial and final states are distinct (if q0 = qf then the
machine trivially has a successful run), and (ii) no two subsequent configurations
on any run of the machine have the same state (this can be ensured by adding
additional intermediate states if necessary).

9.4.2 The reduction

In this section, we construct a ML+IFP formula that is satisfied in the root of a
finite labeled tree if and only if all the paths from the root to the leaves represent
a successful run of a given 2-register machine. If a successful run exists, then
there is a tree that satisfies this formula, and vice versa, if there is no successful
run, then there is no tree that satisfies the formula.

For the remainder of this section, fix a 2-register machine M = (Q, δ, q0, qf).
The set of labels used in the formula will be Σ = Q ∪ {a, b, $}, where Q is the
set of states of the 2-register machine, a, b are symbols used for representing the
register content in each configuration, and $ is another symbol used for marking
the end of the encoding of the successful run. It is convenient in what follows to
treat these labels as mutually exclusive. In other words, when we write a symbol
such as a, we actually mean a ∧

∧
c∈Σ\{a} ¬c.

We model the registers A and B of a 2-register machine with paths labeled
with a and b, respectively. The number of nodes in the path corresponds to the
integer number stored in the respective register. Then we prove that we can
express the equality of two register values in ML+IFP. This is needed in order to
express that two configurations of the machine satisfy the transition function δ.
Once we can express that two configurations satisfy the transition function, we
construct a formula that forces the existence of a sequence of configurations that
forms a successful run.

It will be convenient to consider regular expressions describing paths in the
tree. By a path in a tree, we mean a sequence of nodes v1, . . . , vn (n ≥ 1) such
that any two consecutive nodes satisfy the child relation, i.e., (vi, vi+1) ∈ R,
for 1 ≤ i ≤ n − 1. A path that ends with a leaf node is called a branch. A
prefix of a path v1, . . . , vn is any path v1, . . . , vi with i ≤ n. In order to describe
paths, we will use expressions built up inductively from ML+IFP formulas using
the regular operations of composition, union (+), and transitive closure (·+) as
well as reflexive transitive closure (·∗). We call such expressions regular path
expressions. For example, a(¬a) is a regular path expression that is satisfied by
paths of length two whose first node satisfies a and whose second node does not,
and (>>)∗ is a regular path expression that is satisfied by paths of even length.

202 Chapter 9. Core XPath with Inflationary Fixed Points

We want to build a formula that describes a successful run of a given 2-
register machine. For this purpose, we encode a configuration of this machine,
S = (q, n,m), n,m ≥ 0, with a path that satisfies qan+1bm+1, i.e, we represent
the values n and m stored in the A and B registers with a sequence of n + 1
a-labels and a sequence of m+ 1 b-labels. A sequence of configurations S1, . . . , Sk
is encoded by a path that satisfies q1a

n1+1bm1+1 . . . qka
nk+1bmk+1$, where $ is a

special label indicating the end of the sequence. In order to describe a successful
run, we first build a formula describing that a pair of configurations satisfy the
transition function δ of the given machine, then we build a formula that ensures
that every consecutive pair of configurations satisfies δ. In order to describe a
pair of configurations that satisfy δ, we need to be able to express the equality
constraints that δ enforces on the register values before and after a transition.
For example, for δ(q) = INCA(q′) and two configurations that satisfy δ, S =
(q, n,m) and S ′ = (q′, n+1,m), n,m > 0, we need to express that a path satisfies
qanbmq′an+1bm.

Below, in Lemma 9.4.5, we show a generic formula that expresses the equality
of the lengths of two a-labeled sequences. But first, we prove an auxiliary lemma
that helps with the notations and interpretation of the formulas.

9.4.4. Lemma. Let α be any regular path expression. Then there are ML+IFP
formulas φ∃α and φ∀α such that for any finite labeled tree T and node v,

1. T, v ` φ∃α iff there is a path starting with v satisfying α, and

2. T, v ` φ∀α iff every branch starting with v has a prefix-path that satisfies α.

Proof. We know that the statement holds for the modal mu-calculus (it follows
from the fact that the modal mu-calculus is the bisimulation invariant fragment
of MSO on finite trees [Janin and Walukiewicz, 1996]). To see that it holds also
for ML+IFP we proceed as follows:

Let an expression α be given. First we replace each ML+IFP formula ψ ocur-
ring in α by a new corresponding fresh propositional variable pψ. Let the resulting
expression be α′. Then, clearly, α′ is an expression built up from formulas of the
modal mu-calculus using concatenation, union, and star. Hence, there are formu-
las φ∃α′ and φ∀α′ of the modal mu-calculus satisfying the required conditions with
respect to α′. Now, replace each pψ back by the original formula ψ (making sure
that no free occurrences of variables in ψ accidentally get bound by a fixed point
operator during the substitution—this can be ensured by renaming bound vari-
ables appropriately). It follows that the resulting formulas satisfy the required
conditions with respect to α. qed

In the following, we rely heavily on this lemma.

9.4.5. Lemma. There is a formula, φ∀anbanc, such that for any finite labeled tree
T and a node v in this tree, T, v φ∀anbanc iff there is a k > 0 such that every
branch starting with v has a prefix-path that satisfies akbakc.

9.4. CXP+IFP and ML+IFP are undecidable on finite trees 203

Proof. In [Dawar et al., 2004], a formula was constructed that, on finite strings
(i.e., finite trees in which each node has at most one child), defines the language
anb≥n. Our construction below differs from the one in [Dawar et al., 2004] in that
our formula expresses exact equality, and, more importantly, in the fact that it
works on arbitrary finite trees, which makes it a non-trivial generalization.

We define φ∀anbanc as in Equation (9.2).

φ∀anbanc := φ∀
anba≥nc

∧ ¬φ∃anba>nc+aa+c , (9.2)

where

φ∀
anba≥nc

:= φ∀a∗ba∗c ∧
(
ifp X ← φ∀a(a∧X)∗b(a∧¬X)a∗c ∨ φ∃a(a∧X)∗c

)
φ∃anba>nc+aa+c :=

(
ifp X ← φ∃a(a∧X)∗b(a∧¬X)a∗ac ∨ φ∃a(a∧X)∗ac

)
The idea behind the two conjuncts of the formula is that φ∀

anba≥nc
expresses some-

thing slightly too weak, since it only enforces the second sequence of a-nodes
on each path to be at least as long as the first sequence. The second conjunct
¬φ∃anba>nc+aa+c corrects for this by enforcing that there is no path on which the
second sequence of a-nodes is strictly longer than the first sequence. For technical
reasons, the formula φ∃anba>nc+aa+c in question expresses something weaker than
the existence of a path satisfying anba>nc: it also accepts nodes where a path
starts satisfying aa+c. However, this clearly does not affect the correctness of the
overall formula φ∀anbanc.

Below, we prove that the formulas φ∀
anba≥nc

and φ∃anba>nc+aa+c do indeed have
the intended meaning, which is captured by the following claims:

1. T, v φ∀
anba≥nc

iff ∃k, such that every branch starting with v has a prefix-
path that satisfies a≤kba≥kc.

2. T, v φ∃anba>nc+aa+c iff there exists a path starting with v that satisfies
anbamc, for some m > n > 0, or that satisfies anc, for some n ≥ 2.

It is clear from the above discussion that the lemma follows directly from (1)
and (2). Below we give the proof for (1). The proof for (2) is similar. Note
that we rely on Lemma 9.4.4 for the existence and the semantics of the formulas
φ∃a(a∧X)∗b(a∧¬X), φ

∀
a(a∧X)∗b(a∧¬X), φ

∃
a(a∧X)∗ac, and φ∀a∗ba∗c.

Let g(·) be a variable assignment and let gi(·), 0 ≤ i, be the variable assign-
ments obtained for

(
ifp X ← φ∀a(a∧X)∗b(a∧¬X) ∨ φ∃a(a∧X)∗c

)
in accordance with the

semantics of the IFP operator (Definition 9.2.2), where g0 = g[X 7→ ∅]. First, we
show, by induction on i, 0 < i, the following:

i. A node in [[φ∃a+c]]T,g is added to gi(X) at the recursion step i iff there is a
path from that node that satisfies aic and there is no other path from that
node that satisfies a<ic (i.e., that satisfies aj for some j < i).

204 Chapter 9. Core XPath with Inflationary Fixed Points

Here, by “is added to gi(X) at the recursion step i”, we mean that the node
belongs to gi(X) and not to gi−1(X). Then, using this equivalence, again by
induction on i, 0 < i, we show the following:

ii. A node in [[φ∀a∗ba∗c]]T,g is added to gi(X) at the recursion step i iff every
branch starting with that node has a prefix-path that satisfies a≤iba∗aic
and i is the least number with this property.

Suppose u ∈ [[φ∃a+c]]T,g. It is easy to see that u is added to g1(X) iff u ∈
[[φ∃a(a∧X)∗c]]T,g[X 7→∅] iff there is a path starting with u that satisfies ac. Next,

suppose that (i) holds for some i ≥ 1. We show that (i) holds for i+ 1.
Suppose u ∈ [[φ∃a+c]]T,g and u is added to gi+1(X). Then u ∈ [[φ∃a(a∧X)∗c]]T,gi

.
From this it follows that u is labeled with a and there is a successor w labeled
with c or w ∈ gi(X). Note that w ∈ [[φ∃a∗c]]T,g. In the first case, by induction
hypothesis, u was added already to g1(X), which contradicts our assumption. In
the second case, w ∈ gi(X) and w was added to gi(X) at the recursion step i,
otherwise, by the same argument, u would be already in gi(X). By induction
hypothesis, there is a path starting with w that satisfies aic and thus, there is a
path starting with u that satisfies ai+1c.

Conversely, suppose that there is a path from u that satisfies ai+1c and there
is no other path from that node that satisfies a<i+1c. Let w be the successor of u
on that path. Then there is a path from w that satisfies aic and there is no other
path from w that satisfies a<ic. By induction hypothesis, w was added to gi(X)
and thus, u must be added to gi+1(X).

This concludes the proof of (i). We now proceed with the proof of (ii).
Suppose u ∈ [[φ∀a∗ba∗c]]T,g. Again it is easy to see that u is added to g1(X) iff

u ∈ [[φ∀a(a∧X)∗b(a∧¬X)a∗c]]T,g[X 7→∅] iff every branch starting with u has a prefix-path

that satisfies abaa∗c. Further, suppose that (ii) holds for i, 0 < i. We show that
(ii) holds for i+ 1.

Suppose u ∈ [[φ∀a∗ba∗c]]T,g and u is added to gi+1(X). Then we know that
u ∈ [[φ∀a(a∧X)∗b(a∧¬X)a∗c]]T,gi

and thus, every successor w of u (there is at least

one successor) is in gi(X). Suppose that w was added to gj(X) at iteration
step j ≤ i. By induction hypothesis, every branch from w has a prefix-path
that satisfies a≤jba∗ajc, thus it satisfies a≤iba∗c. By statement (i) proven above,
every branch from u has prefix-path that satisfies a∗ba∗ai+1c. From the last two
statements it follows that every branch from u has a prefix-path that satisfies
a≤i+1ba∗ai+1c. Note that i + 1 is the least number with this property, otherwise
u would have been added at an earlier iteration step.

For the other direction, suppose that every branch from u has a prefix-path
that satisfies a≤i+1ba∗ai+1c and i+1 is the least number with this property. From
this, it follows that every branch from a successor w of u, has a prefix-path that
satisfies a≤iba∗ai+1c, and hence a≤iba∗aic. Let j be the least number with this
property for w. Then, by induction hypothesis, it follows that w was added to

9.4. CXP+IFP and ML+IFP are undecidable on finite trees 205

gj(X) at iteration step j. Let j0 be the least number such that gj0(X) contains
all successors of u. Note that j0 equals i, otherwise every branch from u has
a prefix-path that satisfies a≤iba∗aic, which contradicts our initial assumption.
From this, it follows that u ∈ [[φ∀

a(a∧X)≤iba∗aic
]]T,gi

and i is the least number with
this property. From the fact that every branch from u has a prefix-path that
satisfies a≤i+1ba∗ai+1c and conform the statement (i) proven above, it follows
that u ∈ [[φ∀a∗b(a∧¬X)a∗(a∧X)ic]]T,gi

. From the last two statements it follows that u

is added to gi+1(X) at iteration step i+ 1.

Now, based on (ii) we can prove the statement of (1): T, v φ∀
anba≥nc

iff
v ∈ gk(X) ∩ [[φ∀a∗ba∗c]]T,g, where k is the recursive step at which the computation
of the IFP operator ends ⇐⇒ ∃n0, 0 < n0 ≤ k, such that v was added to
gn0(X) at the iteration n0 and v ∈ [[φ∀a∗ba∗c]]T,g ⇐⇒ ∃n0, 0 < n0 ≤ k, every
branch starting with that node has a prefix-path that satisfies anbamc, for some
0 < n ≤ n0 ≤ m.

The proof for (2) is similar to the proof for (i). qed

Lemma 9.4.5 can be extended to other formulas of the form φ∀αanβanγ, where α,
β, and γ are a certain kind of regular expressions denoting sequences of labels.
We do not attempt a general result along these lines, but we consider instances
of this general pattern for which it is clear that the proof of Lemma 9.4.5 works.
In particular, in order for the proof of Lemma 9.4.5 to work, it is important that
β and γ are incompatible, in the sense that they cannot be satisfied by the same
path. Below, we give two examples of such formulas and state their semantics.
We use these examples further on for our reduction.

Intuitively, the first example is a formula that describes a transition of the
2-register machine, in which register A is incremented. The second example
describes a transition in which register A is decremented. The variable Y in
these formulas is intended to represent that the remaining part of the run is
already known to be correct (and will be bound by an IFP-operator).

Let q, q′, q′′ ∈ Q such that q 6= q′ and q 6= q′′, and let Q′Y := q′ ∧ Y , Q′′Y :=
q′′ ∧ Y , and EY := Y ∨ $, where Y is a variable in V AR.

9.4.6. Example. Consider φ∀qanb∗Q′Y a
n+1b∗EY

defined by Equation (9.3). Similarly

to Lemma 9.4.5, we can prove that φ∀qanb∗Q′Y a
n+1b∗EY

is valid in a node v of a finite

labeled tree T iff every branch starting with v has a prefix-path that satisfies
qanb∗Q′Y a

n+1b∗EY , for some n > 0.

206 Chapter 9. Core XPath with Inflationary Fixed Points

φ∀qanb∗Q′Y a
n+1b∗EY

:= φ∀
qanb∗Q′Y a

≥n+1b∗EY
∧

¬φ∃qanb∗Q′Y a
>n+1b∗EY +a∗a3b∗EY

φ∀
qanb∗Q′Y a

≥n+1b∗EY
:= φ∀qa∗b∗Q′Y a∗b∗EY

∧
�
(
ifp X ← φ∀a(a∧X)∗b∗Q′Y (a∧¬X)a∗ab∗EY

∨
φ∃a(a∧X)∗(a∧¬X)b∗EY

)
φ∃qanb∗Q′Y a

>n+1b∗EY +a∗a3b∗EY
:= q ∧ ♦

(
ifp X ← φ∃a(a∧X)∗b∗Q′Y (a∧¬X)a∗a2b∗EY

∨
φ∃a(a∧X)∗(a∧¬X)2b∗EY

)
(9.3)

9.4.7. Example. For convenience, consider the following alternative notations
for the until formulas ψ1 EU ψ2 := φ∃ψ∗1ψ2

and ψ1 AU ψ2 := φ∀ψ∗1ψ2
. Consider

φ∀qa∗bn+1Q′Y a
∗bnEY

defined by Equation (9.4) and let g(·) be a variable assignment

that covers Y . Similarly to Lemma 9.4.5, we can prove that φ∀qa∗bn+1Q′Y a
∗bnEY

is

valid in a node v of a finite labeled tree T and given g(·) ⇐⇒ every branch
starting with v has a prefix-path that satisfies qa∗bn+1Q′Y a

∗bnEY , for some n > 0.

φ∀qa∗bn+1Q′Y a
∗bnEY

:= φ∀
qa∗bn+1Q′Y a

∗b≥nEY
∧

¬φ∃qa∗bn+1Q′Y a
∗b>nEY +b∗b2EY

φ∀
qa∗bn+1Q′Y a

∗b≥nEY
:= φ∀qa∗b∗Q′Y a∗b∗EY

∧
(
a AU (b∧(

ifp X ← φ∀b(b∧X)∗Q′Y a
∗(b∧¬X)b∗EY

∨ φ∃b(b∧X)∗EY

)
)
)

φ∃qa∗bn+1Q′Y a
∗b>nEY +b∗b2EY

:= q ∧
(
a EU (b∧(

ifp X ← φ∃b(b∧X)∗Q′Y a
∗(b∧¬X)b∗bEY

∨
φ∃b(b∧X)∗(b∧¬X)EY

)
)
)

(9.4)

In a similar fashion, we construct the following formulas:

φ∀qanb∗Q′Y a
nb∗EY

φ∀qa∗bmQ′Y a∗bmEY

φ∀qanb∗Q′Y a
n+1b∗EY

φ∀qa∗bmQ′Y a∗bm+1EY

φ∀qan+1b∗Q′Y a
nb∗EY

φ∀qa∗bm+1Q′Y a
∗bmEY

φ∀qanbQ′′Y a
nbEY

φ∀qabnQ′′Y abnEY

An equivalent of Lemma 9.4.5 can be proven for each of these formulas. Finally,
we are ready to define the transition function of a given 2-register machine.

φ∀qanbmQ′Y a
n+1bmEY

:= φ∀qanb∗Q′Y a
n+1b∗EY

∧ φ∀qa∗bmQ′Y a∗bmEY

φ∀qanbmQ′Y a
nbm+1EY

:= φ∀qanb∗Q′Y a
nb∗EY

∧ φ∀qa∗bmQ′Y a∗bm+1EY

φ∀qan+1bmQ′Y a
nbmEY

:= φ∀qan+1b∗Q′Y a
nb∗EY

∧ φ∀qa∗bmQ′Y a∗bmEY

φ∀qanbm+1Q′Y a
nbmEY

:= φ∀qanb∗Q′Y a
nb∗EY

∧ φ∀qa∗bm+1Q′Y a
∗bmEY

(9.5)

9.4. CXP+IFP and ML+IFP are undecidable on finite trees 207

Trq(Y) :=

φ∀qanbmQ′Y a

n+1bmEY
if δ(q) = INCA(q′),

φ∀qanbmQ′Y a
nbm+1EY

if δ(q) = INCB(q′),

φ∀qan+1bmQ′Y a
nbmEY

∨ φ∀qabnQ′′Y abnEY
if δ(q) = DECA(q′, q′′),

φ∀qanbm+1Q′Y a
nbmEY

∨ φ∀qanbQ′′Y a
nbEY

if δ(q) = DECB(q′, q′′)

Tr(Y) :=
∨
q∈Q Trq(Y)

(9.6)

Recall from Section 9.4.1 that we assume without loss of generality that the
2-register machine M is such that no two subsequent configurations on a run
have the same state and therefore q′ and q′′ are always distinct from q in the
formulas in (9.6). Thus, generalizing from the above examples and the proof of
Lemma 9.4.5, we have the following.

9.4.8. Lemma. Let T = (N,R,L) be a finite labeled tree and g(·) be a variable
assignment that covers the free variable Y . Then T, v, g Tr(Y) iff every branch
starting with v has a prefix-path that satisfies qanbmq′an

′
bm
′
EY , for some pair of

triples, S = (q, n,m) and S ′ = (q′, n′,m′), that satisfies δ (n, n′,m,m′ > 0).

Having the formula that describes a transition, we can build the formula φrun,
below, that describes a successful run of a given 2-register machine; φrun enforces
that every branch starting from a node in the tree represents a successful run of
the given machine.

Qs := φ∀qsab(
W

q∈Q q)

Qf := φ∀qfab$

φrun := Qs ∧
(
ifp Y ← Tr(Y) ∨Qf

) (9.7)

9.4.9. Theorem. The formula φrun is satisfiable iff the 2-register machine M
has a successful run.

Proof.(⇐=) Suppose that the sequence of configurations, S1, . . . , Sn, n > 0, is a
successful run of M , with Si = (qi, ki, `i). In particular, S1 = (q0, 0, 0) is the initial
configuration and Sn = (qf , 0, 0) is the final configuration. Also, as explained in
Section 9.4.1, we may assume that n > 1, and that qi 6= qi+1 for 1 ≤ i < n.
Let T be the tree consisting of a single branch, such that the sequence of labels
of the nodes on the branch forms the string q1a

k1+1b`1+1 · · · qnakn+1bkn+1$. Let
ui (for 1 ≤ i ≤ n) be the i-th node on the branch whose label belongs to Q.
It is clear that the root of the tree, u1, satisfies Qs, and that un satisfies Qf .
Furthermore, for each i ≤ n, T, ui

(
ifp Y ← Tr(Y) ∨ Qf

)
as can be shown by

a straightforward induction on n− i. It follows that T, u1 φrun.
(=⇒) Suppose T, v φrun. Let g(·) be a variable assignment. Since T, v (

ifp Y ← Tr(Y) ∨ Qf

)
we have that v ∈ gk(Y), where gk(·) is the last variable

208 Chapter 9. Core XPath with Inflationary Fixed Points

assignment obtained conform the definition of the IFP operator (Definition 9.2.2)
for
(
ifp Y ← Tr(Y) ∨ Qf

)
. One can show by a straightforward induction on i,

1 ≤ i ≤ k, that for every branch starting with a node u ∈ gi(Y), the sequence
of labels of the nodes on this branch, up to the first node satisfying $, forms
an encoding of a run of the 2-register machine, starting in some (not necessarily
initial) configuration and ending in the final configuration. In particular, since
v ∈ gk(Y), and also T, v Qs, we then have that for every branch starting at v,
the sequence of labels of the nodes on this branch, up to the first node saytisfying
$, forms an encoding of a successful run of the 2-register machine (starting in the
initial configuration). qed

We have shown that the undecidable halting problem for 2-register machines
reduces to the satisfiability problem for ML+IFP on finite trees. Theorem 9.4.1
now follows.

9.5 Discussions and conclusions

We proved that the fragment of CXP+IFP with only self and descendant axes
is undecidable. This implies the undecidability of CXP+IFP with all the axes.
Moreover, since the undecidability proof for ML+IFP, as well as the translation
from ML+IFP into CXP+IFP, works on strings too, no matter what axis one
takes (along with the self axis) the fragment of CXP+IFP with only that axis is
undecidable. Recall that the transitive axes (e.g., descendant, ancestor, following-
sibling, preceding-sibling) are easily defined from the corresponding non-transitive
axes using the IFP operator.

This result means that a complete static analysis of recursive queries specified
by means of the IFP operator is not feasible. In other words, we cannot do
better than implementing sound-but-not-complete query optimizations, such as
the distributivity-based optimization presented in Chapter 8.

Another recursion operator that has been studied extensively in the context
of CXP, is the transitive closure (TC) of path expressions and the language is
known as Regular XPath [Marx, 2004]. Note that we can express the transitive
closure of a path expression α by using the IFP operator as follows:

α+ = with X in α recurse X/α

Regular XPath falls within monadic second-order logic (MSO) [ten Cate, 2006a],
while by Lemma 9.4.5, CXP+IFP can define (among all finite strings) the strings
that satisfy anbnc, n > 0, which is not a regular string language and thus not
definable in MSO [Thomas, 1997]. From this it follows that CXP+IFP is strictly
more expressive than Regular XPath.

Note that the definition of the TC operator via IFP does not use negation on
the recursion variable. Thus the TC operator can be expressed also via a least

9.5. Discussions and conclusions 209

fixed point (LFP) operator, which is a non-inflationary fixed point operator that
does not allow the recursion variable to occur under an odd number of negations.
If we consider CXP extended with LFP, then this language still falls within MSO
and is at least as expressive as Regular XPath but strictly less expressive than
CXP+IFP on finite trees.

In conclusion, when choosing a recursion operator to extend CXP, one should
keep in mind that the inflationary fixed point operator is the most expressive
and expensive operator (with undecidable static analysis problems) of the three
recursion operators discussed above.

9.5.1 Remaining questions

One natural follow-up question is whether CXP+IFP node expressions are strictly
more expressive than ML+IFP formulas.

Other natural follow-up questions concern fragments of CXP+IFP. Recall that
in CXP+IFP, the variables can be used both as atomic path expressions and as
atomic node expressions. The former is the most natural, but the translation
we gave from ML+IFP to CXP+IFP crucially uses the latter. Our conjecture
is that the fragment of CXP+IFP in which variables are only allowed as atomic
path expressions is also undecidable.

It is also natural to consider CXP+IFP expressions where the fixed point vari-
ables occur only under an even number of negations, so that the WITH-operator
computes the least fixed point of a monotone operation. Note that this fragment
is decidable, since it is contained in monadic second-order logic. Thus, further
questions like the complexity of the static analysis problems and the expressive
power of this language are open to investigation.

In Part II of this thesis, we showed how to optimize recursion in XQuery by ex-
tending the language with an Inflationary Fixed Point operator. We implemented
the operator, and the optimization technique, in MonetDB/XQuery, and we pro-
vided experimental evidence for its advantages in practice. We also investigated
the theoretical properties of the operator in the context of Core XPath.

Chapter 10

Conclusions

In this chapter, we revisit the research questions that we pursed in this thesis and
summarize our answers. We then wrap-up with a discussion of future directions.

10.1 Answering the research questions

In this thesis, we pursued two main research themes: How to evaluate the per-
formance of XML query processing? and How to optimize recursion in XQuery?
These general questions boiled down to more concrete questions that we addressed
in the different chapters of the thesis. In this section, we summarize our answers
to each of these questions.

Developing benchmarking methodology

While pursuing the first general research question, we focused our investigation
on the XQuery language and started with an analysis of existing XQuery bench-
marks: XMach-1, XMark, X007, MBench, and XBench. The main conclusion of
this analysis is that that the benchmarks are very useful for exploratory perfor-
mance studies, but not adequate for rigorous performance evaluations of XML
query processors. The three detailed questions that we addressed, Question 3.1,
3.2, and 3.3, and their answers follow.

Question 3.1: What do the benchmarks measure?

We analyzed and compared the workloads (i.e., the data and query sets) and
measures of the five benchmarks. The benchmarks differ in their target and
performance measure. Our comparison showed that XMach-1 and MBench have
a distinct and clear focus, while X007, XMark, and XBench, have a more diffuse
focus and are similar in many respects. XMach-1 is an application benchmark that
tests the overall performance of an XML DBMS in a real application scenario; the
benchmark measure is the query throughput. MBench a micro-benchmark that

211

212 Chapter 10. Conclusions

tests the performance of an XML query processor on five language features on an
artificial document, where the benchmark measure is the query processing time.
X007, XMark, and XBench are application benchmarks that test the performance
of an XML query processor on a relatively small set of complex queries. The latter
benchmarks differ from each other in the document scenario they test: X007,
XMark, and XBench TC/SD and DC/SD test a single-document scenario, while
XBench TC/MD and DC/MD test a multi-document scenario.

All benchmark queries have a common characteristic: they are designed to test
important language features. However, we observed that a single query usually
contains more than one language feature and an engine’s performance on that
query cannot be attributed to only one of them. From this, we concluded that
the benchmark queries have an exploratory nature rather than precise nature.

When considered together, as a family, the benchmarks have a good coverage
of the main characteristics of XML documents and of the important XQuery lan-
guage features. Nevertheless, they do not cover the whole space of XML query
processing scenarios and parameters. Several advanced XML/XQuery features,
such as typed data, namespaces, recursion, etc., are poorly covered. Also, 90%
of all benchmark queries can already be expressed in XPath 1.0 or 2.0, provided
that we consider only the element retrieval functionality and ignore the XML con-
struction functionality of XQuery (the other 10% of the queries test two XQuery
constructs: sorting and recursive user-defined functions).

Question 3.2: How are the benchmarks used?

We conducted a survey of scientific articles that contain experimental studies of
XML processing and were reported in the 2004 and 2005 proceedings of the ICDE,
SIGMOD and VLDB conferences, 41 papers in total. The survey showed that
fewer than 1/3 of the articles on XML query processing that provide experimental
results use benchmarks (11 papers use XMark and 2 papers use XBench). The
remaining articles use ad-hoc experiments to evaluate their research results. The
majority of these (73%) use benchmark data sets or real data and ad-hoc query
sets. Thus, we concluded that with the exception of XMark and XBench, the
benchmarks are not used. A reason for the limited usage of the benchmarks
might be that many of the papers contain an in-depth analysis of a particular
XPath/XQuery processing technique and the benchmarks are not suitable for this
kind of analysis.

Question 3.3: What can we learn from using the benchmarks?

To answer Question 3.3, we ran the benchmarks on four XQuery engines: Galax,
SaxonB, Qizx/Open, and MonetDB/XQuery and compared their performance.
We observed that: (i) the engines produce errors and suffer from crashes (even
on workloads of small size); (ii) the relative performance of the engines varies on
different benchmarks; and (iii) the engines’ performance differs per benchmark

10.1. Answering the research questions 213

even for queries intended to test the same language feature. We concluded that
the tested engines (or at least the versions we tested) are still immature and that
no engine can be crowned as a winner. The results further indicate that implicit
benchmark parameters have a big impact on the performance. The benchmarks,
even applied together, cannot be used to obtain a comprehensive understanding
of the performance of an engine.

Since MBench was designed as a micro-benchmark, we tested whether MBench
is suitable for a rigorous analysis of a language feature it targets, namely attribute-
value joins. Based on the benchmarks results obtained on Qizx/Open, we con-
cluded that the set of four queries designed for micro-benchmarking joins is insuf-
ficient for drawing sound conclusions about its performance. Thus, even though
MBench provides a good starting point for micro-benchmarking, it is incomplete,
which leads to inconclusive results.

Question 4.1: How to ensure the repeatability of experimental studies of database
systems? This question incorporates two sub-questions: (i) What is a
proper methodology for designing and reporting on experimental studies
that facilitates their repeatability? and (ii) What is a proper mechanism
for evaluating and improving the repeatability of experimental studies pre-
sented in scientific research?

At the SIGMOD 2008 conference, by way of an experiment, submitted papers
were subjected to a repeatability reviewing process. Although repeatability re-
viewing was optional, most authors participated. In order to facilitate the task
of the reviewers, the authors of the papers were requested to follow a specific
methodology in describing and reporting on their experiments. All in all, this
mechanism provides a solution for ensuring repeatability of experimental stud-
ies of database systems, and it shows that repeatability may be achieved and
measured. Based on our experience as a member of the repeatability reviewing
committee, we were able to address the above questions.

Concerning Question 4.1 (i), the methodology used for describing and report-
ing experiments that the repeatability committee developed was enough to cover
the 289 papers that were submitted for the repeatability review. Out of 64 pa-
pers that were assessed by the repeatability committee, 33 (52%) achieved the
repeatability of all presented experiments and 20 (31%) achieved repeatability of
some of the experiments. Considering that we strive for all experiments to be
repeatable, 52% is a small number. Nevertheless, we consider these results to be
a good start towards achieving the repeatability of experimental studies in the
database research field.

Concerning Question 4.1 (ii), the high percentage of participation in the op-
tional review, 66% of the total submissions to the conference (289 out of 436),
hints at the perceived usefulness of a peer reviewing process. The positive feed-
back from the authors of the papers recorded by the survey also confirms that

214 Chapter 10. Conclusions

such a review is considered useful for the community: 80% of the surveyed au-
thors found the process useful, while 84% would participate in such a process in
the future.

There are still some problems that need to be addressed, though, if ensuring
repeatability is to become a common practice in the database community. One
of the problems is the amount of effort that the reviewing process takes.

Question 5.1: Is it possible to build a generic tool for automating the following
three tasks: (i) running a performance benchmark, (ii) documenting the
benchmark experiment, and (iii) analyzing the benchmark results? What
are the design choices needed to be made?

We presented XCheck, a tool for running performance benchmarks that measure
execution times on sets of XML documents and sets of queries, formulated in an
XML query language, such as XPath and XQuery. Given a benchmark and a set
of engines, XCheck runs the benchmark on these engines, collects performance
times, query results, and the testing environment configuration. XCheck was used
for running all experiments in this thesis, and, as of September 2009, it has been
used in at least 9 scientific papers.

During the development of XCheck we had to address several issues. First,
we had to decide how XCheck should communicate with the tested engines.
The command line adapter design that XCheck implements is elegant and easily
implementable—many of the XML query engines have a command line inter-
face. Second, we had to decide what atomic metric XCheck should implement.
Based on what the current XQuery benchmarks measure, namely performance
times of a set of queries on a set of documents/collections, the atomic metric
deployed by XCheck is the total execution time of processing one query on a
document/collection. If the engines provide more detailed performance times,
e.g., document processing, query compilation, etc., XCheck also collects these
times. Finally, we had to decide how to store and present the performance re-
sults. XCheck uses XML to store the raw measurement data, and it uses HTML
and plots to present it to the user in an easily readable format.

Question 6.1: What is a suitable methodology for precise and comprehensive
performance evaluations of XML query processing techniques and systems?

As a result of investigating Questions 3.1–3.3, we identified a lack of suitable
tools for precise and comprehensive performance evaluations. As a solution to this
problem, we proposed MemBeR, an open-ended, community driven, repository of
micro-benchmarks. We endowed the repository with micro-benchmarking design
principles and methodology, with a fixed micro-benchmark structure, with sugges-
tions for potentially interesting parameters, and tools for generating parametrized
data sets. In Chapter 7, we presented a concrete micro-benchmark for evaluating
value-based joins processing techniques that follows the MemBeR methodology.

10.1. Answering the research questions 215

With MemBeR we aim to consolidate the experience of individual researchers
that spend time and effort in designing micro-benchmarks for performance eval-
uation of their query optimization and processing techniques. We hope MemBeR
will provide the necessary performance evaluation tools and methodology and will
be used in the XML data management community.

Question 7.1: How to measure the performance of value-based joins expressed in
XQuery? What is a suitable measure and which parameters are important
to consider?

We designed a micro-benchmark for value-based joins in XQuery, following the
MemBeR methodology. The benchmark measures the impact of seven query and
data parameters on the performance times of an engine. The benchmark query
set is carefully designed to allow for testing the impact of every parameter value
in isolation. We validated our benchmark by analyzing the performance of four
XQuery engines. We obtained a comprehensive overview of the performance of
each engine when it comes to evaluating joins, and we identified some shortcom-
ings of the engines, as well as some missed opportunities for optimization. We
concluded that the benchmark achieves its target and it is a useful tool for profil-
ing the performance of XQuery engines on value-based joins with respect to the
tested parameters.

Recursion in XQuery

Next, we answer the research questions pursued in the second part of the thesis,
referring to recursion in XQuery.

Question 8.1: What is a suitable declarative recursive operator in XQuery that
is rich enough to cover interesting cases of recursion query needs and that
allows for (algebraic) automatic optimizations?

As a solution to this question we proposed an inflationary fixed point (IFP) opera-
tor for XQuery. This operator covers important use cases of recursion in XQuery,
such as the transitive closure of path expressions, while also being susceptible
to systematic optimizations. We also propose an optimization technique for this
operator. This optimization relies on a distributivity property of XQuery ex-
pressions that can be effectively detected at the syntactic level. Furthermore, if
we adopt a relational approach to XQuery evaluation, then distributivity can be
detected more conveniently and effectively at the underlying algebraic level. We
integrated the IFP operator into the MonetDB/XQuery system and assessed the
practical gain of our approach on real-life use cases using the benchmarking tools
developed in Part I.

216 Chapter 10. Conclusions

Question 9.1: How feasible is it to do static analysis for recursive queries specified
by means of the fixed point operator? Specifically, are there substantial
fragments of XQuery with the fixed point operator for which static analysis
tasks such as satisfiability are decidable?

We investigated the theoretical aspects of the IFP operator in the context of Core
XPath (CXP) [Gottlob and Koch, 2002], the navigational core of XPath. We
proved that the satisfiability problem of CXP extended with the IFP operator is
undecidable. In fact, the fragment containing only the self and descendant axes
is already undecidable. This means that a complete static analysis of recursive
queries specified by means of the inflationary fixed point operator is not feasible.
In other words, we cannot do better than implementing sound-but-not-complete
query optimizations, such as the distributivity-based optimization presented in
Chapter 8. As a by-product of the undecidability result, we also obtained that
CXP extended with IFP is strictly more expressive than CXP extended with the
transitive closure (TC) operator, also known as Regular XPath [Marx, 2004].

10.2 Outlook and further directions

While answering the above research questions, we have raised new questions and
identified unsolved problems. In this section, we list these questions and problems
for each research theme separately.

Performance evaluation of XQuery engines

We have analyzed existing benchmarks for performance evaluation of XQuery
benchmarks and arrived at the conclusion that the XQuery community will benefit
from new benchmarks—both application benchmarks and micro-benchmarks—
that have a good coverage of XQuery features. Indeed, at the time of writing this
thesis, another XQuery application benchmark has been proposed, TPox [Nicola
et al., 2007], while we developed and presented micro-benchmarks and related
methodology. A new question arises: do these new benchmarks and benchmarking
methodology fulfill the need for benchmarking XQuery processing? In either case,
our analysis showed that a serious investment should be made for maintaining
the benchmarks at the same pace as the development of the XQuery engines (and
language) themselves, otherwise the benchmarks quickly become obsolete.

Addressing the need for precise and comprehensive benchmarks, we developed
a micro-benchmarking repository and related methodology, MemBeR. We have
also developed a MemBeR micro-benchmark targeting the processing of value-
based joins expressed in XQuery. Nevertheless, there is still a long way before
the repository will contain micro-benchmarks covering many language features of
XQuery and other XML query languages. We hope that more contributions will

10.2. Outlook and further directions 217

be made to MemBeR and that the MemBeR micro-benchmarks will be used by
the community.

With respect to the value-based join micro-benchmark that we developed, we
have two questions left. One is whether the two benchmark parameters that did
not show impact on the performance of the tested engines have impact on other
engines and what impact. Another question is whether there are other parameters
that might influence the impact of performance of this language features and, if
so, can the micro-benchmark be extended to include them.

Benchmarking tools are only one aspect of achieving good performance eval-
uation. We have addressed the problem of ensuring the repeatability of exper-
imental studies in the database community. Though, we made a first step and
showed that repeatability may be indeed achieved and measured, there are still
problems that need to be addressed, if ensuring repeatability is to become a com-
mon practice. One of the problems is the amount of effort that the reviewing
process takes. Tools that automate the process of conducting and reporting on
experiments, such as XCheck (Chapter 5), might be useful to reduce this effort.

Another aspect of repeatability that we did not discuss in this thesis is that of
proper archiving mechanisms for ensuring the accessibility of experimental data
and results. Long-term preservation and even curation of experimental results
is another key factor of scientific proliferation. This question is actively being
addressed in other database related fields, such as Information Retrieval [Agosti
et al., 2007].

The realization of the need of serious empirical evaluation is gaining ground
in the database community, as is witnessed by the experimental studies repeata-
bility reviewing efforts at SIGMOD 2008 and 2009, by the establishment of “The
Experiments and Analyses” track at VLDB 2008 and 2009, the organization of
workshops like ExpDB 2006 and 2007, etc.. We hope that this thesis makes a
contribution to this development. Nevertheless, as indicated by the above list of
open questions, the biggest hurdles lie ahead.

Recursion in XQuery

We have proposed optimization techniques for recursion in XQuery by introduc-
ing a declarative recursive operator to XQuery. In spite of the fact that the
inflationary fixed point operator covers a large class of recursive query needs in
XQuery, some natural recursive operations cannot be expressed with it or it is
cumbersome, e.g., recursive XML construction (XML transformations) and re-
cursive aggregates. It remains an open question what set of declarative recursive
operators would be most natural to implement in the XQuery settings. This set
should: (i) cover the most useful, commonly used, recursive query needs, and
(ii) be easily implementable and susceptible to automatic optimizations.

On a more theoretical level, we made a connection between Core XPath
extended with the IFP operator (CXP+IFP) and Modal Logic extended with

218 Chapter 10. Conclusions

the IFP operator (ML+IFP). We exploited this connection and established that
CXP+IFP is highly undecidable. Several natural follow-up question have arisen.

One follow-up question is whether CXP+IFP node expressions are strictly
more expressive than ML+IFP formulas.

Another natural follow-up question is whether the undecidability result can
be strengthened to smaller fragments of CXP+IFP. Recall that in CXP+IFP,
the variables can be used both as atomic path expressions and as atomic node
expressions. The former is the most natural, but the translation we gave from
ML+IFP to CXP+IFP crucially uses the latter. Our conjecture is that the frag-
ment of CXP+IFP in which variables are only allowed as atomic path expressions
is already undecidable.

It is also natural to consider CXP+IFP expressions where the fixed point vari-
ables occur only under an even number of negations, so that the WITH-operator
computes the least fixed point of a monotone operation. Note that this fragment
is decidable, since it is contained in monadic second-order logic. Thus, further
questions like the complexity of the static analysis problems and the expressive
power of this language are open to investigation.

To wrap up, we believe that optimizing recursion in XQuery by exploring
declarative recursive operators is worthwhile investigating, it might lead to further
significant performance improvements and interesting theoretical questions.

Appendix A

LiXQuery: a Quick Syntax Reference

[1] 〈Query〉 ::= (〈FunDef〉“;”)∗〈Expr〉
[2] 〈FunDef〉 ::= “declare” “function” 〈Name〉 “(”(〈Var〉(“,”〈Var〉)∗)?“)”

::= “{”〈Expr〉“}”
[3] 〈Expr〉 ::= 〈Var〉 | 〈BuiltIn〉 | 〈IfExpr〉 | 〈ForExpr〉 | 〈LetExpr〉 | 〈Concat〉 |

::= 〈AndOr〉 | 〈ValCmp〉 | 〈NodeCmp〉 | 〈AddExpr〉 | 〈MultExpr〉 |
::= 〈Union〉 | 〈Step〉 | 〈Filter〉 | 〈Path〉 | 〈Literal〉 | 〈EmpSeq〉 |
::= 〈Constr〉 | 〈TypeSw〉 | 〈FunCall〉

[4] 〈Var〉 ::= “$”〈Name〉
[5] 〈BuiltIn〉 ::= “doc(”〈Expr〉“)” | “name(”〈Expr〉“)” | “string(”〈Expr〉“)” |

::= “xs:integer(”〈Expr〉“)” | “root(”〈Expr〉“)” |
::= “concat(”〈Expr〉, 〈Expr〉“)” | “true()” | “false()” |
::= “not(”〈Expr〉“)” | “count(”〈Expr〉“)” | “position()” | “last()”

[6] 〈IfExpr〉 ::= “if ”“(”〈Expr〉“)” “then”〈Expr〉 “else”〈Expr〉
[7] 〈ForExpr〉 ::= “for”〈Var〉(“at”〈Var〉)? “in”〈Expr〉 “return”〈Expr〉
[8] 〈LetExpr〉 ::= “let”〈Var〉“:=”〈Expr〉 “return”〈Expr〉
[9] 〈Concat〉 ::= 〈Expr〉“,”〈Expr〉
[10] 〈AndOr〉 ::= 〈Expr〉(“and” | “or”)〈Expr〉
[11] 〈ValCmp〉 ::= 〈Expr〉(“=” | “<”)〈Expr〉
[12] 〈NodeCmp〉 ::= 〈Expr〉(“is” | “<<”)〈Expr〉
[13] 〈AddExpr〉 ::= 〈Expr〉 (“+” | “-”) 〈Expr〉
[14] 〈MultExpr〉 ::= 〈Expr〉 (“*” | “idiv”) 〈Expr〉
[15] 〈Union〉 ::= 〈Expr〉“|”〈Expr〉
[16] 〈Step〉 ::= “.” | “..” | 〈Name〉 | “@”〈Name〉 | “*” | “@*” | “text()”
[17] 〈Filter〉 ::= 〈Expr〉“[”〈Expr〉“]”
[18] 〈Path〉 ::= 〈Expr〉(“/” | “//”)〈Expr〉
[19] 〈Literal〉 ::= 〈String〉 | 〈Integer〉
[20] 〈EmpSeq〉 ::= “()”
[21] 〈Constr〉 ::= “element”“{”〈Expr〉“}” “{”〈Expr〉“}” |

::= “attribute”“{”〈Expr〉“}” “{”〈Expr〉“}” |
::= “text”“{”〈Expr〉“}” | “document”“{”〈Expr〉“}”

[22] 〈TypeSw〉 ::= “typeswitch ”“(”〈Expr〉“)” (“case” 〈Type〉 “return”〈Expr〉)+
::= “default” “return”〈Expr〉

[23] 〈Type〉 ::= “xs:boolean” | “xs:integer” | “xs:string” | “element()” |
::= “attribute()” | “text()” | “document-node()”

[24] 〈FunCall〉 ::= 〈Name〉“(”(〈Expr〉(“,”〈Expr〉)∗)?“)”

Figure A.1: The syntax of LiXQuery [Hidders et al., 2004] presented in the Ex-
tended Backus-Naur Form (EBNF) notation.

219

Bibliography

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases . Addison
Wesley.

ACM (2008). SIGMOD/PODS Conference. http://www.sigmod08.org/.

Afanasiev, L. and Marx, M. J. (2006). An analysis of the current XQuery bench-
marks. In Proceedings of the 1st International Workshop on Performance and
Evaluation of Data Management Systems (ExpDB 2006), Chicago, Illinois,
USA. ACM Press.

Afanasiev, L. and Marx, M. J. (2008). An analysis of XQuery benchmarks. Infor-
mation Systems, Special Issue ”Performance Evaluation of Data Management
Systems”, 33(2), 155–181.

Afanasiev, L. and ten Cate, B. (2009). On Core XPath with Inflationary Fixed
Points. In Proceedings of the 6th Workshop on Fixed Points in Computer Sci-
ence (FICS 2009), Coimbra, Portugal.

Afanasiev, L., Manolescu, I., and Michiels, P. (2005a). MemBeR: a micro-
benchmark repository for XQuery. In Proceedings of the 3rd International
XML Database Symposium (XSym 2005), number 3671 in LNCS, pages 144–
161. Springer.

Afanasiev, L., Blackburn, P., Dimitriou, I., Gaiffe, B., Goris, E., Marx, M., and
de Rijke, M. (2005b). PDL for Ordered Trees. Journal of Applied Non-Classical
Logic, 15(2), 115–135.

Afanasiev, L., Franceschet, M., Marx, M. J., and Zimuel, E. (2006). XCheck:
a Platform for Benchmarking XQuery Engines. In Proceedings of the 32nd
International Conference on Very Large Data Bases (VLDB 2006), pages 1247–
1250, Seoul, Korea. ACM Press.

221

http://www.sigmod08.org/

222 BIBLIOGRAPHY

Afanasiev, L., ten Cate, B., and Marx, M. J. (2007). Lekker bomen. Nieuwsbrief
van de NVTI , 11, 38–52.

Afanasiev, L., Grust, T., Marx, M. J., Rittinger, J., and Teubner, J. (2008).
An Inflationary Fixed Point Operator in XQuery. In Proceedings of the 24th
International Conference on Data Engineering (ICDE 2008), pages 1504–1506,
Cancun, Mexico.

Afanasiev, L., Grust, T., Marx, M. J., Rittinger, J., and Teubner, J. (2009).
Recursion in XQuery: Put Your distributivity Safety Belt On. In Proceedings
of the 12th International Conference on Extending Database Technology (EDBT
2009), pages 345–356, Saint Petersburg, Russia. ACM.

Agosti, M., Nunzio, G. M. D., and Ferro, N. (2007). Scientific Data of an Eval-
uation Campaign: Do We Properly Deal with Them? In Evaluation of Mul-
tilingual and Multi-modal Information Retrieval , volume Volume 4730/2007 of
Lecture Notes in Computer Science, pages 11–20. Springer Berlin / Heidelberg.

Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., and Srivastava,
D. (2002). Structural Joins: A Primitive for Efficient XML Query Pattern
Matching. In Proceedings of the 18th International Conference on Data Engi-
neering (ICDE 2002), San Jose, CA, USA.

Altinel, M. and Franklin, M. J. (2000). Efficient Filtering of XML Documents
for Selective Dissemination of Information. In Proceedings of the 26th Inter-
national Conference on Very Large Data Bases (VLDB 2000), pages 53–64,
Cairo, Egypt.

Axyana Software (2006). Qizx/Open version 1.0 : An open-source Java imple-
mentation of XQuery. http://www.axyana.com/qizxopen.

Axyana Software (2009). Qizx/Open version 3.0: An open-source Java imple-
mentation of XQuery. http://www.xmlmind.com/qizx/.

Bancilhon, F. and Ramakrishnan, R. (1986). An Amateur’s Introduction to Re-
cursive Query Processing Strategies. In Proceedings of the ACM SIGMOD
International Conference on Management of Data (SIGMOD 1986), Washing-
ton, D.C., USA.

Barbosa, D., Mendelzon, A. O., Keenleyside, J., and Lyons, K. A. (2002). ToX-
gene: An extensible template-based data generator for XML. In Proceedings
of the 5th International Workshop on the Web and Databases (WebDB 2002),
pages 49–54, Madison, Wisconsin, USA.

Berkeley XML DB (2009). http://www.oracle.com/database/berkeley-db/

xml/index.html.

http://www.axyana.com/qizxopen
http://www.xmlmind.com/qizx/
http://www.oracle.com/database/berkeley-db/xml/index.html
http://www.oracle.com/database/berkeley-db/xml/index.html

BIBLIOGRAPHY 223

Beyer, K., Cochrane, R. J., Josifovski, V., Kleewein, J., Lapis, G., Lohman, G.,
Lyle, B., Özcan, F., Pirahesh, H., Seemann, N., Truong, T., Van der Linden,
B., Vickery, B., and Zhang, C. (2005). System RX: One Part Relational, One
Part XML. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD 2005), pages 347–358, New York, NY, USA.
ACM.

Blackburn, P., de Rijke, M., and Venema, Y. (2002). Modal Logic. Cambridge
University Press.

Böhme, T. and Rahm, E. (2001). XMach-1: A benchmark for XML data manage-
ment. In Proceedings of Datenbanksysteme in Büro, Technik und Wissenschaft
(BTW 2001), Oldenburg, Germany.

Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., and Teuber, J.
(2006a). MonetDB/XQuery: a fast XQuery processor powered by a relational
engine. In Proceedings of the 25th ACM SIGMOD International Conference on
Management of Data (SIGMOD 2006), pages 479–490, Chicago, Illinois, USA.

Boncz, P., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., and Teuber, J.
(2006b). MonetDB/XQuery. An XQuery Implementation. http://monetdb.

cwi.nl/XQuery.

Börger, E., Grädel, E., and Gurevich, Y. (1997). The Classical Decision Problem.
Springer, Berlin.

Bosak, J. (1999). Shakespeare. http://www.ibiblio.org/xml/examples/

shakespeare/.

Bressan, S., Lee, M. L., Li, Y. G., Wadhwa, B., Lacroix, Z., Nambiar, U., and
Dobbie, G. (2001a). The X007 Benchmark. http://www.comp.nus.edu.sg/

~ebh/XOO7.html.

Bressan, S., Dobbie, G., Lacroix, Z., Lee, M., Li, Y., Nambiar, U., and Wad-
hwa, B. (2001b). X007: Applying 007 benchmark to XML query processing
tool. In Proceedings of the 10th International Conference on Information and
Knowledge Management (CIKM 2001), pages 167–174, Atlanta, Georgia, USA.

Brundage, M. (2004). XQuery: The XML Query Language. Addison-Wesley
Professional.

BumbleBee (2006). BumbleBee: An XQuery Test Harnest. http://www.xquery.
com/bumblebee/.

Carey, M. J., DeWitt, D. J., and Naughton, J. F. (1993). The 007 benchmark. In
Proceedings of the ACM SIGMOD International Conference on Management
of Data (SIGMOD 1993), pages 12–21, Washington, D.C., USA. ACM.

http://monetdb.cwi.nl/XQuery
http://monetdb.cwi.nl/XQuery
http://www.ibiblio.org/xml/examples/shakespeare/
http://www.ibiblio.org/xml/examples/shakespeare/
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.comp.nus.edu.sg/~ebh/XOO7.html
http://www.xquery.com/bumblebee/
http://www.xquery.com/bumblebee/

224 BIBLIOGRAPHY

Chamberlin, D., Robie, J., and Florescu, D. (2000). Quilt: An XML Query
Language for Heterogeneous Data Sources. In Proceedings of the 3rd Inter-
national Workshop on the Web and Databases (WebDB 2000), LNCS, pages
53–62, Dallas, Texas, USA. Springer-Verlag.

Cohen, P. R. (1995). Empirical Methods for Artificial Intelligence. Bradford
Books.

Dawar, A., Grädel, E., and Kreutzer, S. (2004). Inflationary Fixed Points in
Modal Logic. ACM Transations on Computational Logic, 5, 282–315.

Diaz, A. L. and Lovell, D. (1999). IBM Alpha Works XML Generator. http:

//www.alphaworks.ibm.com/tech/xmlgeneratorhp.

EXSLT (2006). EXSLT: Extensions to XSLT. http://www.exslt.org/.

Fan, W., Qeerts, F., Jia, X., and Kementsietsidis, A. (2006). SMOQE: A System
for Providing Secure Access to XML. In Proceedings of the 28th International
Conference on Very Large Dada Bases (VLDB 2006), pages 1227–1230, Seoul,
Korea.

Fan, W., Geerts, F., Jia, X., and Kementsietsidis, A. (2007). Rewriting Regular
XPath Queries on XML Views. In Proceedings of the 23rd International Con-
ference on Data Engineering (ICDE 2007), pages 666–675, Istanbul, Turkey.

Fernández, M., Siméon, J., Chen, C., Choi, B., Gapeyev, V., Marian, A., Michiels,
P., Onose, N., Petkanics, D., Ré, C., Stark, M., Sur, G., Vyas, A., and Wadler,
P. (2006). Galax: An implementation of XQuery. http://www.galaxquery.

org.

Fiebig, T., Helmer, S., Kanne, C.-C., Moerkotte, G., Neumann, J., Schiele, R.,
and Westmann, T. (2002). Anatomy of a Native XML Base Management
System. The VLDB Journal , 11(4), 292–314.

Galindo-Legaria, C. and Joshi, M. (2001). Orthogonal Optimization of Subqueries
and Aggregation. In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD 2001), pages 571–581, New York, NY,
USA. ACM.

Georgetown Protein Information Resource (2001). Protein Sequence Database.
http://www.cs.washington.edu/research/xmldatasets/.

Gottlob, G. and Koch, C. (2002). Monadic Queries over Tree-Structured Data. In
Proceedings of the 17th IEEE Symposium on Logic in Computer Science (LICS
2002), pages 189–202.

http://www.alphaworks.ibm.com/tech/xmlgeneratorhp
http://www.alphaworks.ibm.com/tech/xmlgeneratorhp
http://www.exslt.org/
http://www.galaxquery.org
http://www.galaxquery.org
http://www.cs.washington.edu/research/xmldatasets/

BIBLIOGRAPHY 225

Gottlob, G., Koch, C., and Pichler, R. (2005). Efficient Algorithms for Processing
XPath Queries. ACM Transactions on Database Systems (TODS), 30(2), 444–
491.

Gou, G. and Chirkova, R. (2007). Efficiently Querying Large XML Data Repos-
itories: A Survey. IEEE Transactions on Knowledge and Data Engineering ,
19(10), 1381–1403.

Grinev, M. and Lizorkin, D. (2004). XQuery Function Inlining for Optimizing
XQuery Queries. In Proceedings of the 8th East-European Conference on Ad-
vances in Databases and Information Systems (ADBIS 2004).

Grust, T., van Keulen, M., and Teubner, J. (2003). Staircase Join: Teach a Rela-
tional DBMS to Watch its (Axis) Steps. In Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB 2003), Berlin, Germany.

Grust, T., Sakr, S., and Teubner, J. (2004). XQuery on SQL Hosts. In Proceedings
of the 30th International Conference on Very Large Data Bases (VLDB 2004),
pages 252–263.

Gulutzan, P. and Pelzer, T. (1999). SQL-99 Complete, Really . CMP Books.

Güntzer, U., Kieüling, W., and Bayer, R. (1987). On the Evaluation of Recursion
in (Deductive) Database Systems by Efficient Differential Fixpoint Iteration.
In Proceedings of the 3rd International Conference on Data Engineering (ICDE
1987), pages 120–129.

Han, J., Qadah, G. Z., and Chaou, C. (1988). The Processing and Evaluation of
Transitive Closure Queries. In Proceedings of the 1st International Conference
on Extending Database Technology (EDBT 1988), pages 49–75.

Hidders, J., Paredaens, J., Vercammen, R., and Demeyer, S. (2004). A Light but
Formal Introduction to XQuery. In Proceedings of the 2nd International XML
Database Symposium (XSym 2004), pages 5–20.

Ioannidis, Y. E. (1986). On the Computation of the Transitive Closure of Rela-
tional Operators. In Proceedings of the 12th International Conference on Very
Large Data Bases (VLDB 1986), pages 403–411.

Jagadish, H. V., Lakshmanan, L. V. S., Srivastava, D., and Thompson, K. (2001).
TAX: A Tree Algebra for XML. In Proceedings 8th International Workshop on
Database Programming Languages (DBPL 2001), pages 149–164.

Jagadish, H. V., Al-Khalifa, S., Chapman, A., Lakshmanan, L. V. S., Nierman,
A., Paparizos, S., Patel, J. M., Srivastava, D., Wiwatwattana, N., Wu, Y., and
Yu, C. (2002). TIMBER: A native XML database. The VLDB Journal , 11(4),
274–291.

226 BIBLIOGRAPHY

Jain, R. K. (1991). The Art of Computer Systems Performance Analysis: Tech-
niques for Experimental Design, Measurement, Simulation, and Modeling . Wi-
ley Publishing.

Janin, D. and Walukiewicz, I. (1996). On the Expressive Completeness of the
Propositional mu-Calculus with Respect to Monadic Second Order Logic. In
Proceedings of the 7th International Conference on Concurrency Theory (CON-
CUR 1996), pages 263–277.

Kay, M. H. (2009). SaxonB. An XSLT and XQuery processor. http://saxon.

sourceforge.net.

Keppel, G. (1973). Design and Analysis . Prentice-Hall, Inc., Englewood Cliffs,
NJ.

Kepser, S. (2004). A simple proof of the Turing-completeness of XSLT and
XQuery. In Proceedings of the Extreme Markup Languages Conference,
Montréal, Canada.

Koch, C. (2004). XML TaskForce XPath. http://www.xmltaskforce.com.

Koch, C. (2006). Arb: A highly scalable query engine for expressive node-selecting
queries on (XML) trees. http://www.infosys.uni-sb.de/~koch/projects/

arb/.

Krishnamurthy, R., Kaushik, R., and Naughton, J. F. (2003). XML-SQL Query
Translation Literature: The State of the Art and Open Problems. In Proceed-
ings of the 1st International XML Database Symposium (XSym 2003), pages
1–18.

Lei, H. and Ross, K. A. (1998). Faster Joins, Self-Joins, and Multi-Way Joins
Using Join Indices. Data and Knowledge Engineering , 28(3), 277–298.

Manegold, S. (2008). An Empirical Evaluation of XQuery Processors. Information
Systems , 33(2), 203–220.

Manolescu, I. and Manegold, S. (2007). Performance Evaluation and Experimen-
tal Assessment—Conscience or Curse of Database Research? In Proceedings
of the 33rd International Conference on Very Large Data Bases (VLDB 2007),
pages 1441–1442, Vienna, Austria.

Manolescu, I. and Manegold, S. (2008). Performance Evaluation in Database
Research: Principles and Experience. In Proceedings of the IEEE International
Conference on Data Engineering (ICDE 2008), Cancun, Mexico.

http://saxon.sourceforge.net
http://saxon.sourceforge.net
http://www.xmltaskforce.com
http://www.infosys.uni-sb.de/~koch/projects/arb/
http://www.infosys.uni-sb.de/~koch/projects/arb/

BIBLIOGRAPHY 227

Manolescu, I., Afanasiev, L., Arion, A., Dittrich, J., Manegold, S., Polyzotis,
N., Schnaitter, K., Senellart, P., Zoupanos, S., and Shasha, D. (2008a). The
repeatability experiment of SIGMOD 2008. SIGMOD Record , 37(1), 39–45.

Manolescu, I., Miachon, C., and Michiels, P. (2008b). Towards micro-
benchmarking XQuery. Information Systems , 33(2), 182–202.

Marx, M. (2004). XPath with Conditional Axis Relations. In Proceedings of the
9th International Conference on Extending Database Technology (EDBT 2004),
pages 477–494.

Meier, W. (2006). eXist. Open Source Native XML Database. http://exist.

sourceforge.net.

Melton, J. and Simon, A. R. (2002). SQL: 1999 - Understanding Relational
Language Components . Morgan Kaufmann.

Michael Ley (2006). DBLP XML Records. http://dblp.uni-trier.de/xml/.

Miklau, G. and Suciu, D. (2002). Containment and Equivalence for an XPath
Fragment. In Proceedings of the 21st ACM Symposium on Principles of
Database Systems (PODS 2002), pages 65–76.

Mishra, P. and Eich, M. H. (1992). Join Processing in Relational Databases.
ACM Computing Surveys , 24(1), 63–113.

Murthy, R., Liu, Z. H., Krishnaprasad, M., Chandrasekar, S., Tran, A.-T., Sedlar,
E., Florescu, D., Kotsovolos, S., Agarwal, N., Arora, V., and Krishnamurthy,
V. (2005). Towards an Enterprise XML Architecture. In Proceedings of the
ACM SIGMOD International Conference on Management of Data (SIGMOD
2005), pages 953–957.

NASA (2001). NASA XML Project. http://www.cs.washington.edu/

research/xmldatasets/www/repository.html#nasa.

Nentwich, C., Capra, L., Emmerich, W., and Finkelstein, A. (2002). xlinkit: A
Consistency Checking and Smart Link Generation Service. ACM Transactions
on Internet Technology , 2(2), 151–185.

Nicola, M. and van der Linden, B. (2005). Native XML Support in DB2 Universal
Database. In Proceedings of the 31st International Conference on Very Large
Data Bases (VLDB 2005), pages 1164–1174.

Nicola, M., Kogan, I., and Schiefer, B. (2007). An XML transaction processing
benchmark. In Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD 2007), pages 937–948.

http://exist.sourceforge.net
http://exist.sourceforge.net
http://dblp.uni-trier.de/xml/
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#nasa
http://www.cs.washington.edu/research/xmldatasets/www/repository.html#nasa

228 BIBLIOGRAPHY

Pal, S., Cseri, I., Seeliger, O., Rys, M., Schaller, G., Yu, W., Tomic, D., Baras,
A., Berg, B., Churin, D., and Kogan, E. (2005). XQuery Implementation
in a Relational Database System. In Proceedings of the 31st International
Conference on Very Large Data Bases (VLDB 2005), pages 1175–1186.

Paparizos, S., Wu, Y., Lakshmanan, L., and Jagadish, H. (2004). Tree Logi-
cal Classes for Efficient Evaluation of XQuery. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD 2004),
Paris, France.

Park, C., Min, J., and Chung, C. (2002). Structural Function Inlining Techniques
for Structurally Recursive XML Queries. In Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases (VLDB 2002), pages 83–94, Hong
Kong, China.

Qexo (2006). Qexo - The GNU Kawa implementation of XQuery. http://www.

gnu.org/software/qexo/.

Runapongsa, K., Patel, J., Jagadish, H., Chen, Y., and Al-Khalifa, S. (2002). The
Michigan Benchmark: A Microbenchmark for XML Query Processing Systems.
In Proceedings of the 1st International Workshop on Efficiency and Effective-
ness of XML Tools and Techniques(EEXTT 2002), pages 160–161.

Runapongsa, K., Patel, J., Jagadish, H., Chen, Y., and Al-Khalifa, S. (2003). The
Michigan Benchmark: Towards XML Query Performance Diagnostics. Techni-
cal report, The University of Michigan.

Sahuguet, A., Dupont, L., and Nguyen, T.-L. (2000). Kweelt: a framework to
query XML data. http://kweelt.sourceforge.net/.

Schmidt, A. R., Waas, F., Kersten, M. L., Florescu, D., Manolescu, I., Carey,
M. J., and Busse, R. (2001). The XML Benchmark Project. Technical Report
INS-R0103, CWI, Amsterdam, The Netherlands.

Schmidt, A. R., Waas, F., Kersten, M. L., Carey, M. J., Manolescu, I., and Busse,
R. (2002). XMark: A Benchmark for XML Data Management. In Proceedings
of the 28th International Conference on Very Large Data Bases (VLDB 2002),
pages 974–985, Hong Kong, China.

Swiss-Prot and TrEMBL (1998). SwissProt Protein Sequence Database. http:

//www.cs.washington.edu/research/xmldatasets.

ten Cate, B. (2006a). Regular XPath: Algebra, Logic and Automata. Unpublished
note presented at AUTOMATHA Workshop on Algebraic Theory of Automata
and Logic.

http://www.gnu.org/software/qexo/
http://www.gnu.org/software/qexo/
http://kweelt.sourceforge.net/
http://www.cs.washington.edu/research/xmldatasets
http://www.cs.washington.edu/research/xmldatasets

BIBLIOGRAPHY 229

ten Cate, B. (2006b). The Expressivity of XPath with Transitive Closure. In
Proceedings of the 25th ACM Symposium on Principles of Database Systems
(PODS 2006), pages 328–337.

ten Cate, B. and Marx, M. (2009). Axiomatizing the logical core of XPath 2.0.
Theory of Computing Systems , 44(4), 561–589.

Thomas, W. (1997). Languages, automata, and logic. In Handbook of formal
languages , volume 3: Beyond words, pages 389–455. Springer-Verlag New York,
Inc., New York, NY, USA.

TPC (2009). Transaction Processing Performance Council. http://www.tpc.

org/.

Treebank (2002). Penn Treebank: A corpus of parsed sentences. http://www.

cs.washington.edu/research/xmldatasets/data/treebank.

University of Antwerp (2006). Blixem: a LiXQuery engine. http://adrem.ua.

ac.be/~blixem/.

Williams, T., Kelley, C., Lang, R., Kotz, D., Campbell, J., Elber, G., and Woo,
A. (2008). Gnuplot: a function plotting utility. http://www.gnuplot.info/.

World Wide Web Consortium (1998). Document Object Model (DOM) Version
1.0. http://www.w3.org/DOM/.

World Wide Web Consortium (1999a). XML Path Language, Version 1.0 (XPath
1.0). http://www.w3.org/TR/xquery.

World Wide Web Consortium (1999b). XSL Transformations (XSLT) Version
1.0. http://www.w3.org/TR/xslt.

World Wide Web Consortium (2004a). XML Information Set (Second Edition).
http://www.w3.org/TR/xml-infoset/.

World Wide Web Consortium (2004b). XML Schema, Version 1.0 (Second Edi-
tion). http://www.w3.org/TR/xmlschema-0/.

World Wide Web Consortium (2006a). XQuery Test Suite, Release Version 1.0.2.
http://www.w3.org/XML/Query/test-suite/.

World Wide Web Consortium (2006b). XQuery Test Suite Result Summary.
http://www.w3.org/XML/Query/test-suite/XQTSReport.html.

World Wide Web Consortium (2007). XML Path Language (XPath) 2.0.
http://www.w3.org/TR/xpath20/.

http://www.tpc.org/
http://www.tpc.org/
http://www.cs.washington.edu/research/xmldatasets/data/treebank
http://www.cs.washington.edu/research/xmldatasets/data/treebank
http://adrem.ua.ac.be/~blixem/
http://adrem.ua.ac.be/~blixem/
http://www.gnuplot.info/
http://www.w3.org/XML/Query/test-suite/XQTSReport.html

230 BIBLIOGRAPHY

World Wide Web Consortium (2007). XQuery 1.0: An XML Query Language.
http://www.w3.org/TR/xquery.

World Wide Web Consortium (2007a). XQuery 1.0 and XPath 2.0 Data Model
(XDM). http://www.w3.org/TR/xpath-datamodel/.

World Wide Web Consortium (2007b). XQuery 1.0 and XPath 2.0 Formal Se-
mantics. http://www.w3.org/TR/xquery-semantics/.

World Wide Web Consortium (2007c). XSL Transformations (XSLT) Version 2.0.
http://www.w3.org/TR/xslt20/.

World Wide Web Consortium (2008). Extensible Markup Language (XML) 1.0
(Fifth Edition). http://www.w3.org/TR/REC-xml.

World Wide Web Consortium (2009a). XQuery and XPath Full Text 1.0. http:
//www.w3.org/TR/xpath-full-text-10/.

World Wide Web Consortium (2009b). XQuery Update Facility 1.0. http://

www.w3.org/TR/xquery-update-10/.

X-Hive/DB (2005). An XML Database System Management. http://www.

x-hive.com/products/db/index.html.

Xalan (2002). An implementation of XPath 1.0. http://xalan.apache.org/.

XSLTMark (2006). XSLTMark: a benchmark for XSLT. http://www.

datapower.com/xmldev/xsltmark.html.

Yao, B., Özsu, T., and Khandelwal, N. (2004). XBench Benchmark and Per-
formance Testing of XML DBMSs. In Proceedings of the 20th International
Conference on Data Engineering (ICDE 2004), pages 621–633.

Yao, B. B., Özsu, M. T., and Keenleyside, J. (2002). XBench–A Family of Bench-
marks for XML DBMSs. In Proceedings of the 1st International Workshop
on Efficiency and Effectiveness of XML Tools and Techniques(EEXTT 2002),
pages 162–164.

http://www.w3.org/TR/xpath-full-text-10/
http://www.w3.org/TR/xpath-full-text-10/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.x-hive.com/products/db/index.html
http://www.x-hive.com/products/db/index.html
http://www.datapower.com/xmldev/xsltmark.html
http://www.datapower.com/xmldev/xsltmark.html

Summary

In this thesis, we pursue two main research themes: performance evaluation and
optimization of XML query processing. Our focus is on the XQuery query lan-
guage. These themes are tightly connected, since performance evaluation is aimed
at measuring the success of optimization techniques. More specifically, we pur-
sue benchmarking as a performance evaluation technique on the one hand, and
optimization techniques for recursion in XQuery, on the other hand.

In the first part of the thesis, we develop benchmarking methodology and
tools for XQuery. We start by analyzing XQuery benchmarks published by 2006,
namely XMach-1, XMark, X007, MBench, and XBench, and survey their usage.
We analyze and compare their workloads (i.e., the data and query sets) and mea-
sures. We also execute the benchmarks on four XQuery engines and analyze
the results. Next, we discuss how to achieve the repeatability of experimental
evaluations of computer systems in the database domain. As part of setting up a
methodology for repeatability, we perform a review of articles submitted to the re-
search conference SIGMOD 2008 and measure the repeatability of the presented
experimental evaluations. Further, we address the problems and challenges of
automating the execution of performance evaluation benchmarks on many XML
query engines and comparison of their performance. We present a software tool,
XCheck, as a solution to these problems. As a result of our analysis of XQuery
benchmarks, we identify a lack of suitable tools for precise and comprehensive per-
formance evaluations. We address this problem by developing a methodology for
micro-benchmarking XML query engines, which we refer to as MemBeR. Mem-
BeR also comprises a framework for collecting and storing micro-benchmarks.
Finally, we present a MemBeR-style micro-benchmark for testing performance
of value-based joins expressed in XQuery. We evaluate the micro-benchmark by
analyzing the performance of four XQuery engines.

In the second part of the thesis, we investigate declarative means of obtain-
ing recursion in XQuery. Namely, we add an inflationary fixed point operator
to XQuery. We propose an optimization technique for processing this opera-

231

232 Summary

tor. This optimization relies on a distributivity property of XQuery expressions.
Further, we implement this technique on top of the XML database system, Mon-
etDB/XQuery, and evaluate its performance using the tools developed in the
first part of the thesis. Finally, we investigate the theoretical aspects of this
inflationary fixed point operator in the context of Core XPath, the XML tree
navigational core of XPath and XQuery. We prove that the satisfiability problem
of Core XPath extended with the inflationary fixed point operator is undecidable.

Samenvatting

In dit proefschrift houden we ons bezig met twee belangrijke onderzoeksthema’s:
prestatie-analyse en optimalisatie van XML query verwerking. De nadruk ligt op
de XQuery querytaal. Deze thema’s zijn nauw met elkaar verbonden, aangezien
prestatie-analyse is gericht op het meten van het succes van optimalisatietech-
nieken. Meer specifiek bestuderen we benchmarking als een prestatie-analyse me-
thode aan de ene kant, en optimalisatietechnieken voor recursie in XQuery, aan
de andere kant.

In het eerste deel van het proefschrift ontwikkelen we een benchmarking-
methodologie en hulpmiddelen voor XQuery. We beginnen met het analyseren
van XQuery benchmarks die in of voor 2006 gepubliceerd zijn, namelijk XMach-1,
XMark, X007, MBench, en XBench, en brengen hun gebruik in kaart. We analy-
seren en vergelijken hun werklast (d.w.z. de data en de verzamelingen queries) en
maten. We voeren de benchmarks ook uit op vier XQuery systemen en analyseren
de resultaten. Vervolgens bespreken we hoe herhaalbaarheid van experimentele
evaluaties van computersystemen kan worden bereikt in het databasedomein. In
het kader van het opzetten van een methodologie voor herhaalbaarheid, voeren
we een studie uit van ingezonden artikelen voor de onderzoeksconferentie SIG-
MOD 2008 en meten we de herhaalbaarheid van de gepresenteerde experimentele
evaluaties. Verder gaan we in op de problemen en uitdagingen van het automa-
tiseren van de uitvoering van prestatie-analyse benchmarks op veel XML query
systemen en de vergelijking van hun prestaties. We presenteren een software
tool, XCheck, als een oplossing voor deze problemen. Op basis van onze analyse
van XQuery benchmarks identificeren we een gebrek aan geschikte hulpmiddelen
voor nauwkeurige en uitgebreide evaluatie. We pakken dit probleem aan door
het ontwikkelen van een methodiek voor het micro-benchmarken van XML query
systemen, onder de naam MemBeR. MemBeR omvat ook een raamwerk voor
het verzamelen en opslaan van micro-benchmarks. Ten slotte presenteren we een
micro-benchmark in de geest van MemBeR voor het testen van de prestaties van
value-based joins uitgedrukt in XQuery. We evalueren de micro-benchmark aan

233

234 Samenvatting

de hand van een analyse van de prestaties van de vier XQuery systemen.
In het tweede deel van het proefschrift onderzoeken we declaratieve middelen

voor het uitdrukken van recursie in XQuery. We voegen een inflationaire dek-
puntsoperator toe aan XQuery. We stellen een optimalisatie techniek voor de
verwerking van de operator voor, die is gebaseerd op een distributiviteitseigen-
schap van XQuery-expressies. Verder implementeren we deze techniek bovenop
het XML-database systeem MonetDB/XQuery, en evalueren we de prestaties met
behulp van de ontwikkelde instrumenten uit het eerste deel van het proefschrift.
Tenslotte bestuderen we de theoretische aspecten van deze inflationaire dekpunts-
operator in de context van Core XPath, de kern van XPath en XQuery die geschikt
is voor het beschrijven van navigatie in XML-bomen. We bewijzen dat het vervul-
baarheidsprobleem van Core XPath uitgebreid met de IFP operator onbeslisbaar
is.

	Acknowledgments
	Introduction
	Research questions
	Main contributions
	Organization of the thesis
	Publications underlying the thesis

	Background
	The Extensible Markup Language (XML)
	The XML tree model
	XML data characteristics

	XML query languages
	XPath
	XQuery

	XML query processing
	Approaches and implementations

	Performance evaluation of XML query processors
	Benchmarking

	I Benchmarks
	Analysis of XQuery Benchmarks
	Introduction
	Summary of existing XQuery benchmarks
	Introducing the benchmarks
	Characterizing and comparing the benchmarks
	Conclusions

	Benchmark query analysis
	Language feature coverage
	Query language coverage
	Conclusions

	Survey of benchmark usage
	Correcting and standardizing the benchmark queries
	Detecting outdated syntax and errors
	Correcting the queries
	Other issues
	Conclusion

	Running the benchmarks
	Failed measurements
	Comparing the performance of different engines
	Performance on language features
	Conclusions

	Micro-benchmarking with MBench
	MBench join queries
	Evaluating Qizx/Open on the MBench join queries
	Conclusions

	Conclusions
	Recommendations and next steps

	Repeatability of Experimental Studies
	Introduction
	SIGMOD repeatability review setup
	Describing experimental studies
	Assessing repeatability

	Results
	Authors survey
	Lessons learned and conclusions

	XCheck: a Tool for Benchmarking XQuery Engines
	Introduction
	XCheck
	Architecture and workflow
	Collecting performance times

	XCheck in action
	Running XMark
	XCheck's coverage

	Related systems
	Summary and conclusion

	A Repository of Micro-Benchmarks for XQuery
	Introduction
	The MemBeR micro-benchmarking methodology
	Micro-benchmark design principles
	Micro-benchmark structure
	Micro-benchmarking methodology
	Preliminary classification of micro-benchmarks
	Data sets for micro-benchmarking

	The MemBeR repository
	An example of MemBeR micro-benchmark
	Meeting the design principles

	Conclusions

	A Micro-Benchmark for Value-Based Equi-Joins
	Introduction
	A micro-benchmark for value-based equi-joins
	Target
	Measure
	Parameters
	Documents
	Queries
	Running scenarios
	Analyzing benchmark results

	The micro-benchmark in action
	SaxonB
	Qizx/Open
	Galax
	MonetDB/XQuery
	Lining up the micro-benchmark results

	Conclusions

	II Recursion
	An Inflationary Fixed Point Operator for XQuery
	Introduction
	Defining an Inflationary Fixed Point operator for XQuery
	Using IFP to compute Transitive Closure
	Comparison with IFP in SQL:1999

	Algorithms for IFP
	Naïve
	Delta

	Distributivity for XQuery
	Defining distributivity
	Trading Naïve for Delta
	Translating TC into IFP
	Undecidability of the distributivity property

	A syntactic approximation of distributivity
	The distributivity-safe fragment of XQuery
	Distributivity-safety implies distributivity

	An algebraic approximation of distributivity
	An algebraic account of distributivity
	Algebraic vs. syntactic approximation

	Practical impact of distributivity and Delta
	Related work
	Conclusions and discussions

	Core XPath with Inflationary Fixed Points
	Introduction
	Preliminaries
	Core XPath 1.0 extended with IFP (CXP+IFP)
	Propositional Modal Logic extended with IFP (ML+IFP)

	ML+IFP vs. CXP+IFP
	CXP+IFP and ML+IFP are undecidable on finite trees
	2-Register machines
	The reduction

	Discussions and conclusions
	Remaining questions

	Conclusions
	Answering the research questions
	Outlook and further directions

	LiXQuery: a Quick Syntax Reference
	Summary
	Samenvatting

