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Abstract recognition (identification) alone and recognition
andnormalization(interpretation) together. All the
full-task systems were rule-based systems; the top
performing full-task system uses in excess of one
thousand hand-crafted rules, which probe words and
their contexts in order to both identify timexes and
to assemble information necessary to interpret them
(Negri and Marseglia, 2004). By contrast, machine
learned systems dominated the recognition-only task
and even achieved slightly better recognition scores
than their rule-based counterparts.

A new architecture for identifying and in-
terpreting temporal expressions is intro-
duced, in which the large set of com-
plex hand-crafted rules standard in sys-
tems for this task is replaced by a series
of machine learned classifiers and a much
smaller set of context-independent seman-
tic composition rules. Experiments with
the TERN 2004 data set demonstrate that

overall system performance is comparable ) )
to the state-of-the-art. and that normaliza- We seek to demonstrate that a timex annotation

tion performance is particularly good. _sys'Fem that performs both recognition and normal-
ization need not be a tangle of rules that serve dou-
ble duty for identification and interpretation and that
mix up context-dependent and context-independent
In order to fully understand a piece of text, weprocessing. We propose a novel architecture that
must understand its temporal structure. The firstlearly separates syntactic, semantic, and prag-
step toward such an understanding is identifying exnatic processing and factors out context-dependent
plicit references to time. We focus on the task ofrom context-independent processing. Factoring
automatically annotating temporal expressions (asut context-dependent disambiguation into separate
timexey—both identifying them in text and inter- classification tasks introduces the opportunity for
preting them to determine what times they refer tausing machine learning, which supports our main
Timex annotation is more than normalizing date exgoal: building a portable, trainable timex annota-
pressions. First, time consists of more than calenion system in which the role of hand-crafted rules
dar dates and clock times—it also includes points a6 minimized. The system we present here (avail-
finer and coarser granularity, durations, and sets able from http://ilps.science.uva.nl/
times. Second, the expressions that refer to time aResources/timextag/ ) achieves the goal of
not just full date and time expressions—they may bmaking use of only a small set of hand-crafted,
underspecified, ambiguous, and anaphoric. context-independent rules to achieve state-of-the-art
Building a system for the full timex identifica- normalization performance.
tion and interpretation task can be tedious, requiring | the following section, we define what a timex
a great deal of manual effort. The 2004 Temporgk \ye give an overview of our system architecture
Expres;ion Recognition and Normalization (TE.RN)n §3 and describe the componentsiih-7. §8 pro-
evaluatiot evaluated systems on two tasks: timeX;ijes an evaluation of our system on the full timex

http://timex2.mitre.org/tern.html annotation task, and we conclude§ii

1 Introduction
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phrases —»| P | fimexes —p| Semantic
. . . Parsed classifier classifier
Temporal semantics receives a great deal of attentio| document
in the semantics literature (cf. (Mani et al., 2005)),
but the focus is generally on verbal semantics (i.e. o e oQé"Q\% &
tense and aspect). In determining what a timex is L T eS8
and how one should be normalized, we simply fol- < Semantic composition rules 5(:
. (class-specific) D
low the TIDES TIMEX2 standard for timex annota-
. . . lized - -
tion (Ferro et al., 2004). According to this standard, honpoins Pnte | Drecton
timexes are phrases or words that refer to times ore-norm
. . . Ti -
where times may be points or durations, or sets 0/ amotates points widir

document

points or durations. Points are more than just in- F P E
stanteous moments in time—a point may also be ¢ normggf:tg :ﬁi'r: &

time with some duration, as long as it spans a single

unit of some temporal granularity. Whether a timeXrigure 1: Timex annotation architecture (letters for
refers to a point or a duration is a question of perease of reference).

spective rather than of ontology. A point-referring

tl;nex S(L;Ch aPctober 18, 2: O@efersl to_ an |fnte(;val The other attribute which we address in this paper
3 ong ay]:';\s gn a'Fom att (;gLanu ﬁlrlltyg a aay. fé the boolean-valued SET attribute; a SET timex
uration-referring timex such as€ whole 0aynay s one that refers to a recurring time. The remain-
refer to the same temporal interval, but it focuses Ofﬁg attributes are MOD. ANCHOR/AL . and AN-
the duratwg hature of th_'s _mtervaI: CHORDIR; our system produces values for these
_In addition to specifying which phrases areuiptes, but we do not address them in this paper.
timexes, the TIMEX2 standard also provides a set The TIMEX2 annotation standard has been used
of attributes for normalizing these timexes. We o3, ..cate several manually annotated corpora. For
cus on the VAL attribute, which takes values that arg o experiments we present in this paper, we use

an extension of the ISO-8601 standard for represenj; corpora annotated for the TERN 2004 evalua-
'ni time (I??{ 19%7)'_ TIMEXZfVAII‘ att'nbutes €an tion (Ferro, 2004). These consist of a training set
@a 'e one ofthree basic typesq values: ) of 511 documents of newswire and broadcast news
Points are expressed as a string matching the pafranscripts, with 5326 TIMEX2s, and a test set of

tern dddd-dd-ddTdd:dd:dd.d+ ~, whered in- 195 gimjlar documents, with 1828 TIMEX2s.
dicates a digit. Such a string is to be interpreted as

yearmonthdateéThourminutesecondsand may be 3 Architecture

truncated from the right, indicating points of coarser

granularity. Any place may be filled with a place-The architecture of our timex annotation system is
holder X, which indicates an unknown or vaguedepicted in Fig. 1. Our system begins with parsed
value, and there are also a handful of token valuetocuments as input. Our recognition module is a
(character strings) for seasons and parts of the dayachine learned classifier (A); it is describedh
which may substitute for months and times. There is Phrases that have been classified as timexes are
also an alternate week-based formddtid-Wdd-d ,  then sent to the semantic class classifier (B). Seman-
interpreted agearWweek numbeday of the week tic class disambiguation is the first point at which
Durations are expressed as a string matching theontext dependence enters into timex interpretation.
patternPd+u or PTd+u, whered+ indicates one or While some timexes are unambiguous with respect
more digits andl indicates a unit token (such & to whether they refer to a point, a duration, or a
for years). A placeholdeX may be used instead of set, many timexes are semantically ambiguous and
a number to indicate vagueness. can only be disambiguated in context. The machine
Vague points past _ref , present _ref , learned classifier for this task is describedn

future _ref . Based on the class assigned by the semantic class



classifier, the semantic composition component (Q)ut several disambiguation tasks. Ahn et al. (2005b)
generates (underspecified) semantic representatiaiecouple recognition from normalization—even us-
using class-specific, context-independent rules. Theg machine learning for recognition—and handle
rules we use are simple pattern-matching rules thaeveral disambiguation tasks separately. In none of
map lexical items or sequences of lexical itemshese systems, though, are context-independent and
within a timex to semantic representations. We dezontext-dependent processing thoroughly separated,
scribe the semantic composition componerfién  as here, and in all these systems, it is the rules that

For most classes of timexes, the semantic compdrive the processing—in both Mani et al. and Ahn
sition component generates a semantic represent-al.’s systems, sets of rules are used to determine
tion that can be directly translated into a normalize#vhich timexes need to be disambiguated.

value. Timexes that refer to specific points are the _ o )
only exception. While some point timexes are fullyy Component A: Recognizing timexes

qualified, and thus also directly normalizable, mangystems that perform both recognition and nor-
need to be anchored to another time in context ifalization tend to take a rule-based approach to
order to be fully normalized. Thus, context depenrecognition (Mani and Wilson, 2000; Saquete et
dence again enters the timex interpretation procesg, 2002; Schilder, 2004; Negri and Marseglia,
and now in two ways. One is obvious: these referz0p4). Recognition-only systems are often based on
ential timexes, which need a temporal anchor, hav@achine learned classifiers (Hacioglu et al., 2005;
to find it in context. This task requires a referenc@ethard and Martin, 2006), although some do use
resolution process (E), which is describedl.  finite-state methods (Boguraev and Ando, 2005).
The second ambiguity regards the relation beann et al. (2005a) find a benefit to decoupling recog-
tween a referential timex and its anchor. Referemition from normalization, and since our goal is
tial timexes, like anaphoric definites, relate to theifg puild a modular, trainable system, we take a
anchors through a bridging relation, which is detemachine-learning approach to recognition that is in-
mined primarily by the content of the timex—e.g..dependent of our normalization components.
two years laterefers to a point two years after its  Generally, machine learned timex recognition
anchor. For some referential timexes, though, thgstems reduce the task of identifying a timex
direction of the relation (before or after the anchorhhraseto one of classifying individuavordsby us-
is not spec?fied. The_ machine learned classifier (Qhg (some variant of) B-I-O tagging, in which each
resolves this ambiguity; seg.2. word is tagged as (B)eginning, (I)nside, or (O)utside
For referential timexeS, final normalization (F) iSa timex phrase. Such a tagg|ng scheme is not in-
a straightforward combination of semantic represerherently sensitive to syntactic constituency and not
tation, temporal anchor, and direction class. ~ well-suited to identifying nested timexes (but cf.
Not pictured in Fig. 1 is a module that recognizegHacioglu et al., 2005)). Considering that syntactic
and normalizes timexes in document metadata usingrsers are readily available, we have explored sev-
a set of simple regular expressions (REs; 14 in totalgra| ways of leveraging parse information in recog-
This module also determines the document timeition, although we describe here only the method
Stamp for referential timexes by USing a few heuriS\Ne use for experiments later in this paper.
tics to choose from among multiple timestamps or a \we treat timex recognition as a binaphrase
date from the document text, if necessary. classification task: syntactic constituents are clas-
While our architecture is nOVEI, we are not the flrsgmed as timexes or non-timexes. We restrict clas-
to modularize timex annotation systems. Even thokification to the following phrase types and lexical
oughly rule-based systems (Negri and Marsegligategories (based on (Ferro et al., 20§8)): NP,
2004; Saquete et al., 2002), separate temporal agpvp, ADJP, NN, NNP, JJ, CD, RB, and BRn
chor tracking from the rest of the normalization proprder to identify candidate phrases and to extract
cess. The system of Mani and Wilson (2000) goes——— _ . _
We include PPs despite the TIDES guidelines, which ex-

further in L.J.Slng separate s_ets_ of hand_'crafted ﬂ_]l%ﬁcitly exclude temporal PPs such bsfore Thursdaypecause
for recognition and normalization and in separatingf prepositional modifiers such asoundandabout



prec'derr‘teigca“og precExagcmatChF specify semantic classes in its annotations, the se-
TEXT 09121 0.786| 0.8441 0.850| 0.732| 0.787 mantic classes we distinguish for our normalization
Doc || 0.929 | 0.813 | 0.867 || 0.878 | 0.769 | 0.819  system can be easily inferred from the form of the
5RO 8:8;2 8:33(1) 8:822 8:ggg 8:%2 8:328 values of the attributes that are annotated, as follows:
Recurrence (recur) SET attribute set to true
Table 1: Recognition results: Identification.  Generic or vague duration (gendur) VAL begins
with PX or PTX

parse-based features, we parse TEXT elements Duration: VAL begins with P[0-9] or PT[0-9]
Generic or vague point (genpoint) Three possi-

of our documents with the Charniak parser (Charﬁilities: time-of-day w/o associated date expression

niak, 2000). Because of .bOth parser and_ ?””Otat rAL begins with T[0-9]); general reference to past,
errors, only 90.2% of the timexes in the training dat resent, or future (VAL is one of the vague tokens):
align exactly with & parse, Whlc.h gives an estlmategate expression with unspecified high-order position
upper-bound on recall using this method. rge millennium position is X)

We use support vector machines for classificatior}, ., . ; - .
. . . . oint: Date expression with specified high-order
in particular, the LIBSVM linear kernel implemen-

tation (Chang and Lin, 2001). The features we efOSItlon (may be precise or not—i.e., may include X

tract include character type patterns, lexical featur(% other positions—also may be of any granularity,

. fom millennium down to hundredths of a second).
such as weekday name and numeric year, a contex . . o
: Resolving semantic class ambiguities is a context-
window of two words to the left, and several parse- X
dependent task that can be easily factored out of se-
based features: the phrase type, the phrase head and .. . . .
S mantic interpretation, reducing the burden on the se-
initial word (and POS tag), and the dependency par- _ .. . . e .
. ) mantic interpretation rules. The classification task is
ent (and corresponding relation) of the head. : ) . e
As with all our experiments in this paber Westralghtforward. each timex must be classified into
P Papet, one of the five classes described above or into the

train on the TERN training corpus and test on thlfwll class (for timexes that have no VAL). Since the
test corpus. Our scores (precision, recall and k=

. N . JERN data is not explicitly annotated for semantic
measure for both identification (i.e., overlap) an - )
Class, we use the class definitions above to derive the

exact-match) are given n Table 1, along with thesemantic class of a timex from its VAL attribute.
scores of the best recognition-onlgRo) and full-

: W [ he LIBSVM li k | for clas-

task 8FT) TERN 2004 systems. Since our phrase... © again yset © S inearkernet for clas-
. . . . Sification, with the same features as for recogni-
classification method is only applied within docu-

mentTEXT elements, we also present results usintion' Even though some timexes are unambiguous
' P Hith respect to semantic class, we train the classi-

both rc])ur REI'baS.fd ?oiulrlnjnt metaflat t%]gler aﬂgr over all timexes, in the expectation that the con-
our phrase classifier for full documentsgD). Only texts of unambiguous timexes will be similar enough

these scores can'be cqmpared with the TERN Scor?(?those of ambiguous timexes of the same class to
Our scores using this met_hod_approach th_ose ﬂelp in classification. We compare the performance
the besF systems, but there is still a gap, which, @t our machine learned classifier to a heuristic base-
we see irg8, affects our overall task performance. line classifier that uses the head of the timex and the
presence of numbers, names, and certain modifiers
within the timex to decide how to classify it.
Timexes may refer to points, durations, or recur- Table 2 gives the error rates, per class and overall,
rences. While some timexes refer unambiguously tor the baseline and learned classifiers over phrase-
one of these, many timexes are ambiguous betweatigned gold-standard timexes. The machine learned
two or even three of these (see (Hitzeman, 1993) falassifier halves the error rate of the baseline, mostly
a theoretical semantic perspective on this ambiguas a result of better performance on the duration and
ity). Timexes may also refer generically or vaguelypoint classes. 138, we see how this improvement
which is another source of ambiguity. in classification affects end-to-end performance.
While the TIMEX2 standard does not explicity Mani and Wilson (2000) and Ahn et al. (2005b)

5 Component B: Semantic classification



classifier || overall || null duration | ... class || rules | example
BL || 0.2085] 1.0000 | 0.2534 | ... dur 13 | Numeric -? (UNIT | UNITS)
svM || 0.1078 || 0.4143 | 0.1507 | ... gendur 3 [ (UNIT | UNITS)
class dist|| 1290 70 146 genpt 21 | (NUM24 | NUMWORD) o ' clock
gendur | genpoint| point recur point 31| ° Approx? DAYNAME? MONTHNAME
0.0204 | 0.1462 | 0.1322 | 0.6087 -2 Num310rRank ,? YearNum
0.1020 | 0.1462 | 0.0496 | 0.2174 recur 11 | (every | per) Numeric UNITS
19 253 726 16 misc 10 | NUMWORD ((and | -)? NUMWORD)
Table 2: Error rates: semantic class. Table 3: Distribution of semantic composition rules.

also perform limited semantic class disambiguatior{for us, the document timestamp). Others, such as
Both use machine learned classifiers to distinguisiivo months earlieandthe next weekare anaphoric
specific and generic uses tifday, and Ahn et al. and anchored to a salient time in discourse, just like
also use a machine learned classifier to disambiguai@ anaphoric pronoun or definite. The distinction
timexes between a point and a duration readingetween deictic and anaphoric timexes is not always
Their error rate for this task is 27%, but since a satlear-cut, since many anaphoric timexes, in the ab-
of heuristics is first used to select just ambiguousence of an appropriate antecedent, are anchored de-
timexes, this score cannot be compared to ours. ctically. A timex may also contain its own anchor:

_ N e.g.,two days after May 3whose anchor is the em-
6 Component C: Semantic composition bedded anaphoric timeMay 3

The semantic composition module uses context- Once a referential timex’s temporal anchor has

independent, class-specific rules to compute for ea&fen detérmined, the value of the anchor must be

timex an underspecified representation—a typetPmPined with the timex, which may be either an

feature structure that depends on the timex's semafi{fSet or a name-like timex. Offsets, such @o

tic class (features include unit and value for duraonths earliey provide a unitu, a magnituden,
tions, year, month, date, and referential class sgnd optionally, a direction (before or after); the value

points; cf. (Dale and Mazur, 2006)). As the rules ar@' @n offset is the point (of granularity) that ism
not responsible for identification or class or direct UNits from its anchor in the indicated direction.
tion disambiguation, they are fewer in number anil@me-like timexes provide a position in a cycle,
simpler than in other systems (cf. 1000+ in (NegrPUCh @s a day name within a week, and optionally,
and Marseglia, 2004)). Each rule consists of an RE2 direction. The value of a name-like timex is the
pattern, which may refer to a small lexicon of namediMe Point bearing the name within the correspond-
units, and numeric words, and is applied using a cuf1d cycle of its anchor (or the immediately preceding

tom transducer. In total, there are 89 rules; Table & Succeeding cycle, depending on the direction).
gives the distribution of rules and an example rule FOr both offsets and name-like timexes, the direc-

for each class. Tokens ALLCAPSindicate lexical tion indication is optional. When no direction in-
classes: tokens iNlixedCase indicate other rules; dication is given, the appropriate direction must be
and tokens inowercase indicate lexical items.  determined from context, as in this initial sentence

from an article from 1998-11-28:

7 Temporal anchors (1) Afundamentalist Muslim lawmaker has vowed

Some point timexes are fully qualified, while others 10 Stop a shopping festival plannedrebruary
require a reference time, or temporal anchor, to be & NeWspaper reporteghturday

. 3 - . . .
fully normalized” There are three ways in which The first timex February, clearly refers to the Febru-
a temporal anchor is chosen for a timex. Somgyy following its anchor (the timestamp), while the
timexes, such agday, three years agoandnext gsecond timexSaturday seems to refer to a point
week are deictic and anchored to the time of speechreceding its anchor (also the timestamp).
30ur use of the terntemporal anchoris distinct from the The next two _sections _desc_ribe Our_r_nethOdS for
ANCHOR.VAL and ANCHORDIR attributes. temporal anchoring and direction classification.



. ; classifier || overall || after before | same
7.1 Component E: Temporal anchor tracking 51745 0. 45571 50807 01652

Since temporal anchors are not annotated in the SVM | 0.2245 || 0.4404 | 0.1578 | 0.2305
. . SVM_VERB || 0.2094 || 0.3119| 0.1631| 0.2346
TIMEX2 standard, our system uses a simple heuris- gy aL || 01185 02110| 0.0989 | 0.1070
tic method for temporal anchoring (cf. (Wiebe et al., class dist|| 726 109 374 243
1997), who use a more complex rule-based system
for timex anchoring in scheduling dialogues). Since
we distinguish deictic and anaphoric timexes during
semantic composition, we use a combination of tweag (as well as any verbs directly related to this verb)
methods: for deictic timexes, the document timeas features. The second set of features compares day
stamp is used, and for (some) anaphoric timexes, tfigmes, month names, and years to the document
most recent point timex, if it is fine-grained enoughtimestamp. The comparison determines whether,
is used as the temporal anchor (otherwise, the docwithin a single cycle of the appropriate granularity
ment timestamp is used). Because the documents(ifeek for day-names and year for month-names),
our corpora are short news texts, we actually treae point named by the timex would be before, after,
anaphoric name-like points as deictic and use ther the same as the point referred to by the timestamp.

most recent timex only for anaphoric offsets. We compare our learned classifier with a heuristic
baseline classifier which first checks for the presence
of a year or certain modifiers such @ago or nextin
The idea of separating direction classification fronihe timex; if that fails, it computes the date features
the remainder of the normalization task is not newdescribed above for each word in the timex and re-
(Mani and Wilson, 2000) use a heuristic methodurnssame if any word compares to the timestamp
for this task, while (Ahn et al., 2005b) use a maas same; if that fails, it uses the tense of the nearest
chine learned classifier. In contrast to Ahn et alverb; and finally, it defaults teame.
who use a set of heuristics to identify ambiguous Table 4 shows the results of applying our clas-
timexes and train and test only on those, we traisifiers to all phrase-aligned gold-standard point
our classifier on all point and genpoint timexes antimexes. BL is the baselinesvMm, svM_VERB, and
apply it to all point timexes. Genpoint timexes andsvM_ALL are the classifiers learned using our basic
many point timexes are not ambiguous w.r.t. direcfeature set, the basic feature set plus the verb fea-
tion, but we expect that the contexts of unambiguousires, and all the features, respectively. The learned
timexes will be similar enough to those of ambigu-classifier using all the features reduces the error rate
ous timexes of the same class to help classificatiorof the baseline classifier by about a third. Note,
Direction class is not annotated as part of thé¢hough, that the learned classifiers without the date
TIMEX2 standard. Given a temporal anchor trackeomparison features¢m andsvm_VERB) perform
ing method, though, it is possible to derive imperfecsubstantially worse than even the baseline. One rea-
direction class information from the VAL attribute. son for this becomes clear from Table 5, which gives
We use our anchor tracking method to associate eattte error rates for the classifiers restricted to timexes
point and genpoint timex with an anchor and thewgonsisting solely of a month or a day name. Unlike
compare the VAL of the timex with that of its an- points in general, these timexes are all ambiguous
chor to decide what its direction class should be. with respect to direction and are, in fact, the primary
We again use the LIBSVM linear kernel for clas-motivation for both Mani et al. and Ahn et al. to con-
sification. We add two sets of features to those usesder direction classification as a separate task.
for recognition and semantic classification. The first These results demonstrate that the date compari-
is inspired by Mani et al., who rely on the tense ofon feature is responsible for a substantial reduction
neighboring verbs to decide direction class. Sinci error rate (over 85% fromsvm to SvM_ALL) and
verb tense alone is inherently deictic, it is not suffithat for thesame class, performance is perfect. This
cient to decide the direction, but we do add both this largely due to the writing style of the documents,
closest verb (w.r.t. dependency paths) and its PG8which the current day is often referred to by name

Table 4: Error rates: direction class.

7.2 Component D: Direction classification



classifier || overall || after before | same
= 510001 0.4325 1 006 150060 (absR) as (corrVAL + corrNOVAL)/actTIMEX2
SVM 0.3647 || 0.6087 | 0.3485| 0.3086 and(corrVAL+ COI‘I‘NDVAL)/pOSSTIMEXQ, respec-
SVM_VERB || 0.3176 || 0.3478 | 0.3485| 0.2840 tively. Official precision and recall for VAL are com-
SVM_ALL 0.0529 || 0.1304 | 0.0909 | 0.0000
s it 170 >3 55 a1 puted agorrVAL/actVAL andcorrVAL/possVAL.

8.2 Results

Our first set of results (Table 6(Top)), which are
. . restricted to timexes in document TEXT elements,
instead of asoday, as in example (1), compares our systeml(L ) to a version of our sys-
Although both Mani et al. and Ahn et al. build P y . e y
o . . . tem (BL) that uses the baseline classifiers for seman-
direction classifiers, neither provide comparable re: o :
. .~ 1icand direction class. It also presents a series of or-
sults. Mani et al. do not evaluate their direction )
- . .acle results that demonstrate the effect of swapping
heuristics at all, and Ahn et al. train and test their e
. - . In perfect classification for each of the learned clas-
machine learned classifier only on timexes deter-... .
) , . - sifiers. The oracle runs are labeled with a three-letter
mined to be ambiguous by their heuristics. In any, . . :
. T . ode in which the first letter gjerfect or ()earned)
case, their error rate is significantly higher, at 38%. e
refers to phrase classification; the second, to seman-
tic classification; and the third, to direction classi-
fication. Note: perfect phrase classification is not
We now consider the performance of the entire syshe same as perfect recognition, since it excludes
tem and the contributions of the components. Firstimexes that fail to align with parsed phrases.
though, we discuss our evaluation metrics. Using the learned classifiersL{ ), which reduce
error rates by about one-half for semantic class and
one-third for direction class over the baseline clas-
The official TERN scoring script computes precisiorsifiers, results in a five-point improvement in abso-
and recall for VAL only with respect to correctly rec-lute F-measure over the baseline systam)( We
ognized TIMEX2s with a non-null VAL. While this also see from runsLP, LPL, andLPP that further
may be useful in determining how far behind norimprovement of these classifiers would substantially
malization is from recognition for a given system, itimprove end-to-end performance. Finally, we see
does not provide an accurate picture of end-to-erfdom runsPLL andPpPpthat recognition performance
system performance, since the recall base does nsta major limiting factor in our end-to-end scores.
include all possible timexes and the precision base In Table 6(Bottom), we present results over full
does not include incorrectly recognized timexes. documents, including metadata and text.. and
The scoring script provides several raw countgLL are the same as before; IT@ST is the sys-
that can be used to compute measures that are moeen of (Negri and Marseglia, 2004), which achieved
indicative of end-to-end performancectTIMEX2 the highest official F-measure in the TERN 2004
(# of actually recognized TIMEX2sx:orrTIMEX2 evaluation. The results of our systemLi() are
(# of correctly recognized TIMEX2s);posVAL comparable to those of ITC-irst: because we recog-
(# of correctly recognized TIMEX2s with a non- nize fewer timexes, our official F-measure is higher
null gold VAL); corrVAL (# of correctly recog- (0.899 vs. 0.872) while our absolute F-measure is
nized TIMEX2s with a non-null gold VAL for lower (0.769 vs. 0.806). We see from renL that
which the system assigns the correct VAL); anaur recognition module is largely to blame—with
spurVAL (# of correctly recognized TIMEX2s with perfect phrase classification for recognition, our nor-
null gold VAL for which the system assigns amalization modules produce substantially better re-
VAL). With these counts, we can defirerrNOVAL  sults. With a system such as ITC-irst’s, it is not pos-
(# of correctly recognized TIMEX2s with a null sible to separate recognition performance from nor-
gold VAL for which the system assigns a nullmalization performance, since there is a single rule
VAL), as corrTIMEX2 — posVAL — spurVAL. We base thatjointly performs the two tasks—all normal-
then define end-to-end precisiombgP) and recall izable timexes are presumably already recognized.

Table 5: Error rates: direction month/day.

8 End-to-end performance

8.1 Scoring



System || corrVAL | corrNOVAL | actTIMEX2 || P R F absP | absR | absF
BL 859 32 1245 || 0.813| 0.787 | 0.800 || 0.716 | 0.624 | 0.667
LLL 931 33 1245 || 0.882| 0.853 | 0.867 || 0.774 | 0.676 | 0.722
LLP 938 33 12451 0.912] 0.859 | 0.885 ]| 0.780 | 0.680| 0.727
LPL 951 39 1245 || 0.916 | 0.871| 0.893 || 0.795 | 0.694 | 0.741
LPP 987 39 1245 || 0.951| 0.904 | 0.927 || 0.824 | 0.719 | 0.768
PLL 1008 63 1287 || 0.886 | 0.828 | 0.856 || 0.832 | 0.751| 0.789
PPP 1097 70 1287 || 0.966 | 0.901 | 0.932 || 0.907 | 0.818 | 0.860
LLL 1285 33 1601 || 0.910] 0.887] 0.899 || 0.823 | 0.721] 0.769
PLL 1362 63 1643 || 0.912| 0.866 | 0.888 || 0.867 | 0.780 | 0.821
ITC-IRST 1365 35 1648 || 0.875| 0.870 | 0.872 || 0.850 | 0.766 | 0.806

Table 6: Performance on VAL. (Top): TEXT-only. (Bottom): full document.
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