
A Cascaded Machine Learning Approach
to Interpreting Temporal Expressions

David Ahn Joris van Rantwijk Maarten de Rijke
ISLA, University of Amsterdam

Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{ahn, rantwijk, mdr }@science.uva.nl

Abstract

A new architecture for identifying and in-
terpreting temporal expressions is intro-
duced, in which the large set of com-
plex hand-crafted rules standard in sys-
tems for this task is replaced by a series
of machine learned classifiers and a much
smaller set of context-independent seman-
tic composition rules. Experiments with
the TERN 2004 data set demonstrate that
overall system performance is comparable
to the state-of-the-art, and that normaliza-
tion performance is particularly good.

1 Introduction

In order to fully understand a piece of text, we
must understand its temporal structure. The first
step toward such an understanding is identifying ex-
plicit references to time. We focus on the task of
automatically annotating temporal expressions (or
timexes)—both identifying them in text and inter-
preting them to determine what times they refer to.
Timex annotation is more than normalizing date ex-
pressions. First, time consists of more than calen-
dar dates and clock times—it also includes points of
finer and coarser granularity, durations, and sets of
times. Second, the expressions that refer to time are
not just full date and time expressions—they may be
underspecified, ambiguous, and anaphoric.

Building a system for the full timex identifica-
tion and interpretation task can be tedious, requiring
a great deal of manual effort. The 2004 Temporal
Expression Recognition and Normalization (TERN)
evaluation1 evaluated systems on two tasks: timex

1http://timex2.mitre.org/tern.html

recognition (identification) alone and recognition
andnormalization(interpretation) together. All the
full-task systems were rule-based systems; the top
performing full-task system uses in excess of one
thousand hand-crafted rules, which probe words and
their contexts in order to both identify timexes and
to assemble information necessary to interpret them
(Negri and Marseglia, 2004). By contrast, machine
learned systems dominated the recognition-only task
and even achieved slightly better recognition scores
than their rule-based counterparts.

We seek to demonstrate that a timex annotation
system that performs both recognition and normal-
ization need not be a tangle of rules that serve dou-
ble duty for identification and interpretation and that
mix up context-dependent and context-independent
processing. We propose a novel architecture that
clearly separates syntactic, semantic, and prag-
matic processing and factors out context-dependent
from context-independent processing. Factoring
out context-dependent disambiguation into separate
classification tasks introduces the opportunity for
using machine learning, which supports our main
goal: building a portable, trainable timex annota-
tion system in which the role of hand-crafted rules
is minimized. The system we present here (avail-
able from http://ilps.science.uva.nl/
Resources/timextag/ ) achieves the goal of
making use of only a small set of hand-crafted,
context-independent rules to achieve state-of-the-art
normalization performance.

In the following section, we define what a timex
is. We give an overview of our system architecture
in §3 and describe the components in§4–7. §8 pro-
vides an evaluation of our system on the full timex
annotation task, and we conclude in§9.



2 What is a timex?

Temporal semantics receives a great deal of attention
in the semantics literature (cf. (Mani et al., 2005)),
but the focus is generally on verbal semantics (i.e.,
tense and aspect). In determining what a timex is
and how one should be normalized, we simply fol-
low the TIDES TIMEX2 standard for timex annota-
tion (Ferro et al., 2004). According to this standard,
timexes are phrases or words that refer to times,
where times may be points or durations, or sets of
points or durations. Points are more than just in-
stanteous moments in time—a point may also be a
time with some duration, as long as it spans a single
unit of some temporal granularity. Whether a timex
refers to a point or a duration is a question of per-
spective rather than of ontology. A point-referring
timex such asOctober 18, 2006refers to an interval
of one day as an atom at the granularity of a day. A
duration-referring timex such asthe whole daymay
refer to the same temporal interval, but it focuses on
the durative nature of this interval.

In addition to specifying which phrases are
timexes, the TIMEX2 standard also provides a set
of attributes for normalizing these timexes. We fo-
cus on the VAL attribute, which takes values that are
an extension of the ISO-8601 standard for represent-
ing time (ISO, 1997). TIMEX2 VAL attributes can
take one of three basic types of values:
Points are expressed as a string matching the pat-
tern dddd-dd-ddTdd:dd:dd.d+ , whered in-
dicates a digit. Such a string is to be interpreted as
year-month-dateThour:minute:seconds, and may be
truncated from the right, indicating points of coarser
granularity. Any place may be filled with a place-
holder X, which indicates an unknown or vague
value, and there are also a handful of token values
(character strings) for seasons and parts of the day
which may substitute for months and times. There is
also an alternate week-based formatdddd-Wdd-d ,
interpreted asyear-Wweek number-day of the week.
Durations are expressed as a string matching the
patternPd+u or PTd+u, whered+ indicates one or
more digits andu indicates a unit token (such asY
for years). A placeholderX may be used instead of
a number to indicate vagueness.
Vague points: past ref , present ref ,
future ref .
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Figure 1: Timex annotation architecture (letters for
ease of reference).

The other attribute which we address in this paper
is the boolean-valued SET attribute; a SET timex
is one that refers to a recurring time. The remain-
ing attributes are MOD, ANCHORVAL, and AN-
CHOR DIR; our system produces values for these
attributes, but we do not address them in this paper.

The TIMEX2 annotation standard has been used
to create several manually annotated corpora. For
the experiments we present in this paper, we use
the corpora annotated for the TERN 2004 evalua-
tion (Ferro, 2004). These consist of a training set
of 511 documents of newswire and broadcast news
transcripts, with 5326 TIMEX2s, and a test set of
192 similar documents, with 1828 TIMEX2s.

3 Architecture

The architecture of our timex annotation system is
depicted in Fig. 1. Our system begins with parsed
documents as input. Our recognition module is a
machine learned classifier (A); it is described in§4.

Phrases that have been classified as timexes are
then sent to the semantic class classifier (B). Seman-
tic class disambiguation is the first point at which
context dependence enters into timex interpretation.
While some timexes are unambiguous with respect
to whether they refer to a point, a duration, or a
set, many timexes are semantically ambiguous and
can only be disambiguated in context. The machine
learned classifier for this task is described in§5.

Based on the class assigned by the semantic class



classifier, the semantic composition component (C)
generates (underspecified) semantic representations
using class-specific, context-independent rules. The
rules we use are simple pattern-matching rules that
map lexical items or sequences of lexical items
within a timex to semantic representations. We de-
scribe the semantic composition component in§6.

For most classes of timexes, the semantic compo-
sition component generates a semantic representa-
tion that can be directly translated into a normalized
value. Timexes that refer to specific points are the
only exception. While some point timexes are fully
qualified, and thus also directly normalizable, many
need to be anchored to another time in context in
order to be fully normalized. Thus, context depen-
dence again enters the timex interpretation process,
and now in two ways. One is obvious: these refer-
ential timexes, which need a temporal anchor, have
to find it in context. This task requires a reference
resolution process (E), which is described in§7.1.

The second ambiguity regards the relation be-
tween a referential timex and its anchor. Referen-
tial timexes, like anaphoric definites, relate to their
anchors through a bridging relation, which is deter-
mined primarily by the content of the timex—e.g.,
two years laterrefers to a point two years after its
anchor. For some referential timexes, though, the
direction of the relation (before or after the anchor)
is not specified. The machine learned classifier (D)
resolves this ambiguity; see§7.2.

For referential timexes, final normalization (F) is
a straightforward combination of semantic represen-
tation, temporal anchor, and direction class.

Not pictured in Fig. 1 is a module that recognizes
and normalizes timexes in document metadata using
a set of simple regular expressions (REs; 14 in total).
This module also determines the document time-
stamp for referential timexes by using a few heuris-
tics to choose from among multiple timestamps or a
date from the document text, if necessary.

While our architecture is novel, we are not the first
to modularize timex annotation systems. Even thor-
oughly rule-based systems (Negri and Marseglia,
2004; Saquete et al., 2002), separate temporal an-
chor tracking from the rest of the normalization pro-
cess. The system of Mani and Wilson (2000) goes
further in using separate sets of hand-crafted rules
for recognition and normalization and in separating

out several disambiguation tasks. Ahn et al. (2005b)
decouple recognition from normalization—even us-
ing machine learning for recognition—and handle
several disambiguation tasks separately. In none of
these systems, though, are context-independent and
context-dependent processing thoroughly separated,
as here, and in all these systems, it is the rules that
drive the processing—in both Mani et al. and Ahn
et al.’s systems, sets of rules are used to determine
which timexes need to be disambiguated.

4 Component A: Recognizing timexes

Systems that perform both recognition and nor-
malization tend to take a rule-based approach to
recognition (Mani and Wilson, 2000; Saquete et
al., 2002; Schilder, 2004; Negri and Marseglia,
2004). Recognition-only systems are often based on
machine learned classifiers (Hacioglu et al., 2005;
Bethard and Martin, 2006), although some do use
finite-state methods (Boguraev and Ando, 2005).
Ahn et al. (2005a) find a benefit to decoupling recog-
nition from normalization, and since our goal is
to build a modular, trainable system, we take a
machine-learning approach to recognition that is in-
dependent of our normalization components.

Generally, machine learned timex recognition
systems reduce the task of identifying a timex
phraseto one of classifying individualwordsby us-
ing (some variant of) B-I-O tagging, in which each
word is tagged as (B)eginning, (I)nside, or (O)utside
a timex phrase. Such a tagging scheme is not in-
herently sensitive to syntactic constituency and not
well-suited to identifying nested timexes (but cf.
(Hacioglu et al., 2005)). Considering that syntactic
parsers are readily available, we have explored sev-
eral ways of leveraging parse information in recog-
nition, although we describe here only the method
we use for experiments later in this paper.

We treat timex recognition as a binaryphrase
classification task: syntactic constituents are clas-
sified as timexes or non-timexes. We restrict clas-
sification to the following phrase types and lexical
categories (based on (Ferro et al., 2004,§5)): NP,
ADVP, ADJP, NN, NNP, JJ, CD, RB, and PP.2 In
order to identify candidate phrases and to extract

2We include PPs despite the TIDES guidelines, which ex-
plicitly exclude temporal PPs such asbefore Thursdaybecause
of prepositional modifiers such asaroundandabout.



Identification Exact match
prec rec F prec rec F

TEXT 0.912 0.786 0.844 0.850 0.732 0.787
DOC 0.929 0.813 0.867 0.878 0.769 0.819
BRO 0.973 0.891 0.930 0.905 0.829 0.865
BFT 0.976 0.880 0.926 0.885 0.798 0.839

Table 1: Recognition results: Identification.

parse-based features, we parse theTEXT elements
of our documents with the Charniak parser (Char-
niak, 2000). Because of both parser and annotator
errors, only 90.2% of the timexes in the training data
align exactly with a parse, which gives an estimated
upper-bound on recall using this method.

We use support vector machines for classification,
in particular, the LIBSVM linear kernel implemen-
tation (Chang and Lin, 2001). The features we ex-
tract include character type patterns, lexical features
such as weekday name and numeric year, a context
window of two words to the left, and several parse-
based features: the phrase type, the phrase head and
initial word (and POS tag), and the dependency par-
ent (and corresponding relation) of the head.

As with all our experiments in this paper, we
train on the TERN training corpus and test on the
test corpus. Our scores (precision, recall and F-
measure for both identification (i.e., overlap) and
exact-match) are given in Table 1, along with the
scores of the best recognition-only (BRO) and full-
task (BFT) TERN 2004 systems. Since our phrase
classification method is only applied within docu-
mentTEXT elements, we also present results using
both our RE-based document metadata tagger and
our phrase classifier for full documents (DOC). Only
these scores can be compared with the TERN scores.

Our scores using this method approach those of
the best systems, but there is still a gap, which, as
we see in§8, affects our overall task performance.

5 Component B: Semantic classification

Timexes may refer to points, durations, or recur-
rences. While some timexes refer unambiguously to
one of these, many timexes are ambiguous between
two or even three of these (see (Hitzeman, 1993) for
a theoretical semantic perspective on this ambigu-
ity). Timexes may also refer generically or vaguely,
which is another source of ambiguity.

While the TIMEX2 standard does not explicitly

specify semantic classes in its annotations, the se-
mantic classes we distinguish for our normalization
system can be easily inferred from the form of the
values of the attributes that are annotated, as follows:
Recurrence (recur): SET attribute set to true
Generic or vague duration (gendur): VAL begins
with PX or PTX
Duration : VAL begins with P[0-9] or PT[0-9]
Generic or vague point (genpoint): Three possi-
bilities: time-of-day w/o associated date expression
(VAL begins with T[0-9]); general reference to past,
present, or future (VAL is one of the vague tokens);
date expression with unspecified high-order position
(i.e., millennium position is X)
Point: Date expression with specified high-order
position (may be precise or not—i.e., may include X
at other positions—also may be of any granularity,
from millennium down to hundredths of a second).

Resolving semantic class ambiguities is a context-
dependent task that can be easily factored out of se-
mantic interpretation, reducing the burden on the se-
mantic interpretation rules. The classification task is
straightforward: each timex must be classified into
one of the five classes described above or into the
null class (for timexes that have no VAL). Since the
TERN data is not explicitly annotated for semantic
class, we use the class definitions above to derive the
semantic class of a timex from its VAL attribute.

We again use the LIBSVM linear kernel for clas-
sification, with the same features as for recogni-
tion. Even though some timexes are unambiguous
with respect to semantic class, we train the classi-
fier over all timexes, in the expectation that the con-
texts of unambiguous timexes will be similar enough
to those of ambiguous timexes of the same class to
help in classification. We compare the performance
of our machine learned classifier to a heuristic base-
line classifier that uses the head of the timex and the
presence of numbers, names, and certain modifiers
within the timex to decide how to classify it.

Table 2 gives the error rates, per class and overall,
for the baseline and learned classifiers over phrase-
aligned gold-standard timexes. The machine learned
classifier halves the error rate of the baseline, mostly
as a result of better performance on the duration and
point classes. In§8, we see how this improvement
in classification affects end-to-end performance.

Mani and Wilson (2000) and Ahn et al. (2005b)



classifier overall null duration . . .
BL 0.2085 1.0000 0.2534 . . .

SVM 0.1078 0.4143 0.1507 . . .
class dist 1290 70 146 . . .

. . . gendur genpoint point recur

. . . 0.0204 0.1462 0.1322 0.6087

. . . 0.1020 0.1462 0.0496 0.2174

. . . 49 253 726 46

Table 2: Error rates: semantic class.

also perform limited semantic class disambiguation.
Both use machine learned classifiers to distinguish
specific and generic uses oftoday, and Ahn et al.
also use a machine learned classifier to disambiguate
timexes between a point and a duration reading.
Their error rate for this task is 27%, but since a set
of heuristics is first used to select just ambiguous
timexes, this score cannot be compared to ours.

6 Component C: Semantic composition

The semantic composition module uses context-
independent, class-specific rules to compute for each
timex an underspecified representation—a typed
feature structure that depends on the timex’s seman-
tic class (features include unit and value for dura-
tions, year, month, date, and referential class for
points; cf. (Dale and Mazur, 2006)). As the rules are
not responsible for identification or class or direc-
tion disambiguation, they are fewer in number and
simpler than in other systems (cf. 1000+ in (Negri
and Marseglia, 2004)). Each rule consists of an RE-
pattern, which may refer to a small lexicon of names,
units, and numeric words, and is applied using a cus-
tom transducer. In total, there are 89 rules; Table 3
gives the distribution of rules and an example rule
for each class. Tokens inALLCAPSindicate lexical
classes; tokens inMixedCase indicate other rules;
and tokens inlowercase indicate lexical items.

7 Temporal anchors

Some point timexes are fully qualified, while others
require a reference time, or temporal anchor, to be
fully normalized.3 There are three ways in which
a temporal anchor is chosen for a timex. Some
timexes, such astoday, three years ago, and next
week, are deictic and anchored to the time of speech

3Our use of the termtemporal anchoris distinct from the
ANCHOR VAL and ANCHOR DIR attributes.

class rules example
dur 13 Numeric -? (UNIT | UNITS)

gendur 3 (UNIT | UNITS)
genpt 21 (NUM24 | NUMWORD) o ’ clock
point 31 ˆ Approx? DAYNAME? MONTHNAME

.? Num31OrRank ,? YearNum
recur 11 (every | per) Numeric UNITS
misc 10 NUMWORD ((and | -)? NUMWORD)*

Table 3: Distribution of semantic composition rules.

(for us, the document timestamp). Others, such as
two months earlierandthe next week, are anaphoric
and anchored to a salient time in discourse, just like
an anaphoric pronoun or definite. The distinction
between deictic and anaphoric timexes is not always
clear-cut, since many anaphoric timexes, in the ab-
sence of an appropriate antecedent, are anchored de-
ictically. A timex may also contain its own anchor:
e.g.,two days after May 3, whose anchor is the em-
bedded anaphoric timexMay 3.

Once a referential timex’s temporal anchor has
been determined, the value of the anchor must be
combined with the timex, which may be either an
offset or a name-like timex. Offsets, such astwo
months earlier, provide a unitu, a magnitudem,
and optionally, a direction (before or after); the value
of an offset is the point (of granularityu) that ism
u units from its anchor in the indicated direction.
Name-like timexes provide a position in a cycle,
such as a day name within a week, and optionally,
a direction. The value of a name-like timex is the
time point bearing the name within the correspond-
ing cycle of its anchor (or the immediately preceding
or succeeding cycle, depending on the direction).

For both offsets and name-like timexes, the direc-
tion indication is optional. When no direction in-
dication is given, the appropriate direction must be
determined from context, as in this initial sentence
from an article from 1998-11-28:

(1) A fundamentalist Muslim lawmaker has vowed
to stop a shopping festival planned inFebruary,
a newspaper reportedSaturday.

The first timex,February, clearly refers to the Febru-
ary following its anchor (the timestamp), while the
second timex,Saturday, seems to refer to a point
preceding its anchor (also the timestamp).

The next two sections describe our methods for
temporal anchoring and direction classification.



7.1 Component E: Temporal anchor tracking

Since temporal anchors are not annotated in the
TIMEX2 standard, our system uses a simple heuris-
tic method for temporal anchoring (cf. (Wiebe et al.,
1997), who use a more complex rule-based system
for timex anchoring in scheduling dialogues). Since
we distinguish deictic and anaphoric timexes during
semantic composition, we use a combination of two
methods: for deictic timexes, the document time-
stamp is used, and for (some) anaphoric timexes, the
most recent point timex, if it is fine-grained enough,
is used as the temporal anchor (otherwise, the docu-
ment timestamp is used). Because the documents in
our corpora are short news texts, we actually treat
anaphoric name-like points as deictic and use the
most recent timex only for anaphoric offsets.

7.2 Component D: Direction classification

The idea of separating direction classification from
the remainder of the normalization task is not new.
(Mani and Wilson, 2000) use a heuristic method
for this task, while (Ahn et al., 2005b) use a ma-
chine learned classifier. In contrast to Ahn et al.,
who use a set of heuristics to identify ambiguous
timexes and train and test only on those, we train
our classifier on all point and genpoint timexes and
apply it to all point timexes. Genpoint timexes and
many point timexes are not ambiguous w.r.t. direc-
tion, but we expect that the contexts of unambiguous
timexes will be similar enough to those of ambigu-
ous timexes of the same class to help classification.

Direction class is not annotated as part of the
TIMEX2 standard. Given a temporal anchor track-
ing method, though, it is possible to derive imperfect
direction class information from the VAL attribute.
We use our anchor tracking method to associate each
point and genpoint timex with an anchor and then
compare the VAL of the timex with that of its an-
chor to decide what its direction class should be.

We again use the LIBSVM linear kernel for clas-
sification. We add two sets of features to those used
for recognition and semantic classification. The first
is inspired by Mani et al., who rely on the tense of
neighboring verbs to decide direction class. Since
verb tense alone is inherently deictic, it is not suffi-
cient to decide the direction, but we do add both the
closest verb (w.r.t. dependency paths) and its POS

classifier overall after before same
BL 0.1749 0.4587 0.0802 0.1934

SVM 0.2245 0.4404 0.1578 0.2305
SVM VERB 0.2094 0.3119 0.1631 0.2346

SVM ALL 0.1185 0.2110 0.0989 0.1070
class dist 726 109 374 243

Table 4: Error rates: direction class.

tag (as well as any verbs directly related to this verb)
as features. The second set of features compares day
names, month names, and years to the document
timestamp. The comparison determines whether,
within a single cycle of the appropriate granularity
(week for day-names and year for month-names),
the point named by the timex would be before, after,
or the same as the point referred to by the timestamp.

We compare our learned classifier with a heuristic
baseline classifier which first checks for the presence
of a year or certain modifiers such asagoor next in
the timex; if that fails, it computes the date features
described above for each word in the timex and re-
turnssame if any word compares to the timestamp
as same; if that fails, it uses the tense of the nearest
verb; and finally, it defaults tosame.

Table 4 shows the results of applying our clas-
sifiers to all phrase-aligned gold-standard point
timexes. BL is the baseline;SVM, SVM VERB, and
SVM ALL are the classifiers learned using our basic
feature set, the basic feature set plus the verb fea-
tures, and all the features, respectively. The learned
classifier using all the features reduces the error rate
of the baseline classifier by about a third. Note,
though, that the learned classifiers without the date
comparison features (SVM andSVM VERB) perform
substantially worse than even the baseline. One rea-
son for this becomes clear from Table 5, which gives
the error rates for the classifiers restricted to timexes
consisting solely of a month or a day name. Unlike
points in general, these timexes are all ambiguous
with respect to direction and are, in fact, the primary
motivation for both Mani et al. and Ahn et al. to con-
sider direction classification as a separate task.

These results demonstrate that the date compari-
son feature is responsible for a substantial reduction
in error rate (over 85% fromSVM to SVM ALL ) and
that for thesame class, performance is perfect. This
is largely due to the writing style of the documents,
in which the current day is often referred to by name



classifier overall after before same
BL 0.1000 0.4348 0.1061 0.0000

SVM 0.3647 0.6087 0.3485 0.3086
SVM VERB 0.3176 0.3478 0.3485 0.2840

SVM ALL 0.0529 0.1304 0.0909 0.0000
class dist 170 23 66 81

Table 5: Error rates: direction month/day.

instead of astoday, as in example (1).
Although both Mani et al. and Ahn et al. build

direction classifiers, neither provide comparable re-
sults. Mani et al. do not evaluate their direction
heuristics at all, and Ahn et al. train and test their
machine learned classifier only on timexes deter-
mined to be ambiguous by their heuristics. In any
case, their error rate is significantly higher, at 38%.

8 End-to-end performance

We now consider the performance of the entire sys-
tem and the contributions of the components. First,
though, we discuss our evaluation metrics.

8.1 Scoring

The official TERN scoring script computes precision
and recall for VAL only with respect to correctly rec-
ognized TIMEX2s with a non-null VAL. While this
may be useful in determining how far behind nor-
malization is from recognition for a given system, it
does not provide an accurate picture of end-to-end
system performance, since the recall base does not
include all possible timexes and the precision base
does not include incorrectly recognized timexes.

The scoring script provides several raw counts
that can be used to compute measures that are more
indicative of end-to-end performance:actTIMEX2
(# of actually recognized TIMEX2s);corrTIMEX2
(# of correctly recognized TIMEX2s);posVAL
(# of correctly recognized TIMEX2s with a non-
null gold VAL); corrVAL (# of correctly recog-
nized TIMEX2s with a non-null gold VAL for
which the system assigns the correct VAL); and
spurVAL (# of correctly recognized TIMEX2s with
null gold VAL for which the system assigns a
VAL). With these counts, we can definecorrNOVAL
(# of correctly recognized TIMEX2s with a null
gold VAL for which the system assigns a null
VAL), as corrTIMEX2 − posVAL − spurVAL. We
then define end-to-end precision (absP) and recall

(absR) as (corrVAL + corrNOVAL)/actTIMEX2
and(corrVAL+corrNOVAL)/possTIMEX2, respec-
tively. Official precision and recall for VAL are com-
puted ascorrVAL/actVAL andcorrVAL/possVAL.

8.2 Results

Our first set of results (Table 6(Top)), which are
restricted to timexes in document TEXT elements,
compares our system (LLL ) to a version of our sys-
tem (BL) that uses the baseline classifiers for seman-
tic and direction class. It also presents a series of or-
acle results that demonstrate the effect of swapping
in perfect classification for each of the learned clas-
sifiers. The oracle runs are labeled with a three-letter
code in which the first letter ((P)erfect or (L)earned)
refers to phrase classification; the second, to seman-
tic classification; and the third, to direction classi-
fication. Note: perfect phrase classification is not
the same as perfect recognition, since it excludes
timexes that fail to align with parsed phrases.

Using the learned classifiers (LLL ), which reduce
error rates by about one-half for semantic class and
one-third for direction class over the baseline clas-
sifiers, results in a five-point improvement in abso-
lute F-measure over the baseline system (BL). We
also see from runsLLP, LPL, and LPP that further
improvement of these classifiers would substantially
improve end-to-end performance. Finally, we see
from runsPLL andPPPthat recognition performance
is a major limiting factor in our end-to-end scores.

In Table 6(Bottom), we present results over full
documents, including metadata and text.LLL and
PLL are the same as before; ITC-IRST is the sys-
tem of (Negri and Marseglia, 2004), which achieved
the highest official F-measure in the TERN 2004
evaluation. The results of our system (LLL ) are
comparable to those of ITC-irst: because we recog-
nize fewer timexes, our official F-measure is higher
(0.899 vs. 0.872) while our absolute F-measure is
lower (0.769 vs. 0.806). We see from runPLL that
our recognition module is largely to blame—with
perfect phrase classification for recognition, our nor-
malization modules produce substantially better re-
sults. With a system such as ITC-irst’s, it is not pos-
sible to separate recognition performance from nor-
malization performance, since there is a single rule
base that jointly performs the two tasks—all normal-
izable timexes are presumably already recognized.



System corrVAL corrNOVAL actTIMEX2 P R F absP absR absF
BL 859 32 1245 0.813 0.787 0.800 0.716 0.624 0.667

LLL 931 33 1245 0.882 0.853 0.867 0.774 0.676 0.722
LLP 938 33 1245 0.912 0.859 0.885 0.780 0.680 0.727
LPL 951 39 1245 0.916 0.871 0.893 0.795 0.694 0.741
LPP 987 39 1245 0.951 0.904 0.927 0.824 0.719 0.768
PLL 1008 63 1287 0.886 0.828 0.856 0.832 0.751 0.789
PPP 1097 70 1287 0.966 0.901 0.932 0.907 0.818 0.860
LLL 1285 33 1601 0.910 0.887 0.899 0.823 0.721 0.769
PLL 1362 63 1643 0.912 0.866 0.888 0.867 0.780 0.821

ITC-IRST 1365 35 1648 0.875 0.870 0.872 0.850 0.766 0.806

Table 6: Performance on VAL. (Top): TEXT-only. (Bottom): full document.

9 Conclusion

We have described a novel architecture for a timex
annotation system that eschews the complex set
of hand-crafted rules that is a hallmark of other
systems. Instead, we decouple recognition from
normalization and factor out context-dependent se-
mantic and pragmatic processing from context-
independent semantic composition. Our architec-
ture allows us to use machine learned classifiers to
make context-dependent disambiguation decisions,
which in turn allows us to use a small set of sim-
ple, context-independent rules for semantic compo-
sition. The normalization performance of this sys-
tem is competitive with the state of the art and our
overall performance is limited primarily by recog-
nition performance. Improvement in semantic and
direction classification will yield further improve-
ments in overall performance. Our other plans for
the future include experimenting with dependency
relations for semantic composition instead of lexi-
cal patterns, evaluating our temporal anchor tracking
method, and training the full system on other cor-
pora and adapting it for other languages.
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