Extracting Temporal Information from Open Domain Text: A Comparative Exploration

David Ahn, Sisay Fissaha Adafre, Maarten de Rijke
Informatics Institute, University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
ahn,sfissaha,mdr@science.uva.nl

ABSTRACT: The utility of data-driven techniques in the
end-to-end problem of temporal information extraction
is unclear. Recognition of temporal expressions yields
readily to machine learning, but normalization seems to
call for a rule-based approach. We explore two aspects
of the (potential) utility of data-driven methods in the
temporal information extraction task. First, we look at
whether improving recognition beyond the rule base used
by a normalizer has an effect on normalization
performance, comparing normalizer performance when
fed by several recognition systems. We also perform an
error analysis of our normalizer’'s performance to uncover
aspects of the normalization task that might be amenable
to data-driven techniques.

Categories and Subject Descriptors
H.3.1 [Content Analysis and Indexing]: Linguistic processing

General Terms
Temporal information extraction
Reviewed and accepted 15 Dec. 2004

1.INTRODUCTION

Current Information Retrieval (IR) systems allow us to locate
documents that might contain pertinent information, but most of them
leave it to the user to extract useful information from a ranked list.
This leaves the (often unwilling) user with a relatively large amount
of text to consume. There is a need for tools that reduce the amount
of text that has to be read to obtain the desired information. To
address this need, the IR research community is currently exploring
ways of pinpointing highly relevant information. We view information
extraction [4] as one of the core technologies to help facilitate highly
focused IR. Indeed, recognizing entities and semantically meaningful
relations between those entities is key to providing focused
information access.

Temporal information extraction provides a particularly interesting
task in this respect. Temporal expressions (from now on, timexes)
are natural language phrases that refer directly to time points or
intervals. They not only convey temporal information on their own
but also serve as anchors for locating events referred to in text. For
reasons to be explained below, recognizing temporal expressions
has become a “do-able” task, even without tremendous knowledge
engineering efforts. Moreover, in recent years, the task of interpreting
temporal expressions has begun to receive attention [17, 21]. And
finally, from a user’s perspective, temporal aspects of events and
entities, and of text snippets and documents, provide a very natural
mechanism for organizing information. Specifically, Question
Answering (QA) is an area where accurate analysis (both
recognition and normalization) of temporal expressions plays an
important role. For example, answering questions like “When was
Van Gogh born?” requires accurate identification of the date of birth
of the person under consideration (recognition) and rendering of
the answer in some standard format (normalization).

The importance of the proper treatment of timexes is reflected by
the relatively large number of NLP evaluation efforts where they
play a role. Recognizing timexes, for example, is an intergral part of
many information extraction tasks (e.g., MUC-6 and 7 Named Entity
Recognition tasks, ACE-2004 Event Recognition task). There are a

number of annotation guidelines for timexes [10, 22, 20]. And
recently, a timex annotated corpus has been released with the
aim of improving the tasks related to timexes [24].

The type of timexes considered in a typical information extraction
task are limited to date and time values [19, 7]. In the 2004 Temporal
Expression Recognition and Normalization (TERN) task, however,
a wide variety of timexes are considered—which makes the task
of recognition and normalization more challenging and much more
interesting.

This is an exploratory paper, in which our main interest is in the end-
to-end timex-recognition-plus-interpretation task. Specifically, we
are interested in identifying opportunities for the use of data-driven
methods in the interpretation part of the task. On the recognition
side, rule-based systems can provide very high precision but require
significant human effort in rule development to achieve reasonable
recall. As we will see, machine learning can provide excellent results
on the recognition task with minimal human intervention, given a
tagged corpus. Furthermore, such a data-driven approach may be
preferable because of its portability and robustness.

For the interpretation task, however, machine-learning methods
based on sequence labeling seem less appropriate. For one thing,
there are a potentially unlimited number of classes (i.e., temporal
values). Another problem is that a significant proportion of timexes
require non-local context for interpretation (i.e., they are anaphoric
or deictic). Even more problematic is the fact that many timexes
require significant temporal computation with respect to contextually
given information—the connection between form and content is
mediated by both context and world knowledge.

Nevertheless, we aim to understand what the opportunities are for
using robust, “shrink-wrapped” machine-learning tools for the
interpretation task. We are interested in determining whether the
use of machine learning for recognition affects normalization
performance downstream, as well as where within the normalization
task a data-driven approach might provide some leverage. To these
ends, we present several experiments comparing recognition
performance of machine-learning and rule-based systems and also
comparing the performance of a rule-based normalizer on the output
of various recognition systems. We analyze the performance of the
rule-based normalizer, looking for places to apply machine learning.
In §2, we outline the TERN evaluation tasks of identification and
normalization. In §3, we describe our identification experiments,
comparing two rule-based systems and two runs of a machine
learning system with different feature sets. Our normalization system
is described in §4. Finally, we conclude in §5.

2. TASK DESCRIPTION

We participated in the 2004 edition of TERN, the Temporal Expression
Recognition and Normalization Evaluation (http:/timex2.mitre.org/
tern.html). The TERN evaluation is organized under the auspices of
the Automatic Content Extraction (ACE, http://www.nist.gov/speech/
tests/ace/) program, whose objective is to develop natural language
processing technology to support automatic understanding of textual
data. We submitted runs from one of the rule-based recognition
systems and from the rule-based normalization system described
below. The TERN evaluation provided specific guidelines for the
identification and normalization of timexes, as well as tagged corpora
for training and testing and evaluation software. We followed these
guidelines and used these resources for the experiments described
below.

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 14

The TERN evaluation consisted of two distinct tasks: recognition
and normalization. Timex recognition involves correctly detecting
and delimiting timexes in text. Normalization involves assigning
recognized timexes a fully qualified temporal value. Both tasks are
defined, for human annotators, in the TIDES TIMEX2 annotation
guidelines [10].

The TIDES guidelines introduce a type of SGML or XML element,
TIMEX2, to mark timexes in text [10]. TIMEX2 elements may contain
one or more of the following attributes: VAL, ANCHOR_DIR,
ANCHOR_VAL, MOD, SET, NON_SPECIFIC. The VAL attribute
indicates the reference of the TIMEX2; its range of values are an
extension of the ISO 8601 standard for representing time [13]. The
ANCHOR_DIR and ANCHOR_VAL attributes are for temporal
expressions (primarily durations and fuzzy references) that are
anchored to a reference time. At present, the MOD, SET, and
NON_SPECIFIC attributes are normalization attributes that our system
does not handle.

The recognition and normalization tasks are performed with respect
to corpora of transcribed broadcast news speech and news wire
texts from ACE 2002, ACE 2003, and ACE 2004, marked up in SGML
format and, for the training set, hand-annotated for TIMEX2s.

An official scorer that evaluates both recognition and normalization
performance is provided as part of the TERN evaluation. For
recognition results, the scorer computes precision, recall, and F-
measure both for TIMEX2 tags (in other words, for overlap with a
gold standard TIMEX2 element) and for extent of TIMEX2 elements
(in other words, exact match of entire timexes). For normalization,
the scorer computes precision, recall, and F-measure for each of
the normalization attributes listed above. Recall (and thus, F-
measure), however, is computed not with respect to all possible
TIMEX2 elements in the gold standard but only with respect to the
TIMEX2 elements tagged by the system. Because we are interested
in the end-to-end task, we report our results in this paper with recall
(and F-measure) computed with respect to all possible TIMEX2s.

3.RECOGNITION

The recognition task is to identify phrases that refer to time points.
The TIDES guidelines limit the set of markable timexes (which they
indicate with the TIMEX2 tag) to those phrases headed by a temporal
trigger word. The latter seem to fall into several categories. Some
refer to time units of definite duration (minute, afternoon, day, night,
week-end, month, summer, season, quarter, year, decade, century,
millennium, era, semester). Others refer to definite points in time
(January, Monday, New Year’s Eve, Washington’s Birthday,
yesterday, today, tomorrow, midnight). Still others indicate repetition
with respect to a definite period (daily, monthly, biannual, semiannual,
hourly, daily, monthly, ago). And some refer to temporal concepts
that can at least be oriented on a timeline with respect to some
definite time point (future, past, time, period, point, recent, former,
current, ago, currently, lately).

Syntactically, TIMEX2s must be one of the following: noun, noun
phrase, adjective, adverb, adjective phrase, or adverb phrase. All
premodifiers and postmodifiers of the timex must be included in the
extent of the TIMEX2 tag,e.g.,

« Premodifiers: 8 winters, the past week, four bad years,about
156 minutes, less than a week
» Postmodifiers: Nearly three years later, the week before last,
two years ago, three years in prison, Only days after his
father was assassinated, months of Israeli-Palestinian
bloodshed and Israeli blockades
Recognition can be thought of either as a partial parsing task or as
a labeling task, and rule-based methods or machine-learning systems
can be deployed, according to the perspective taken. In §3.1, we
describe a machine-learning approach to timex identification, which
is based on Conditional Random Fields, and then in §3.2, we present
our rule-based approach.

3.1 Machine learning methods

Timexes are a type of entity commonly dealt with in named entity
recognition tasks in which machine learning techniques have been
shown to provide good results. As mentioned before, though, the
type of timexes considered in TERN are quite a bit more diverse than

the ones considered in typical information extraction tasks.
Nevertheless, these timexes still have some desirable properties
from the perspective of machine learning. In particular, the core
vocabulary used for building them is restricted, so the use of lexical
features does not significantly increase the feature set used for
machine learning.

A machine learning technique that has recently been introduced to
tackle the problem of labeling and segmenting sequence data is
Conditional Random Fields (CRFs, [16]). Unlike Hidden Markov Models
[16], CRFs are based on exponential models in which probabilities
are computed based on the values of a set of features induced from
both the observation and label sequences. This enables the
incorporation of overlapping and interacting features into the model.
CRFs have been shown to perform well in a number of natural
language processing applications, such as POS tagging [16], shallow
parsing or noun chunking [23], and named entity recognition [18].
Their characteristics make CRFs ideally suited for the specific task
of recognizing timexes as they provide us with a framework for
combining evidence from different sources to maximize performance.
We used the implementation of CRFs from the minor-Third toolkit for
extracting timexes from text [8]. The training material is a tagged
corpus in which the timexes are marked by XML tags. The task,
then, is to learn from these training instances of timexes rules or
patterns to recognize new instances. In this framework, phrase
identification tasks are reduced to word labeling tasks by assigning
each word one of the labels (B)egin, (I)nside, (O)utside, according
to whether it begins a phrase of interest (in our case, a timex),
continues such a phrase, or is not part of such a phrase [14].

3.1.1 Experiments

The training data consists of 511 files from ACE 2002, ACE 2003 and
ACE 2004; the test data consists of 192 files. As mentioned earlier,
the temporal expressions in the training files, are marked with XML
tags. The minorThird system automatically converts from XML format
to B-I-O format. A temporal expression enclosed by <TIMEX2> tags
constitutes a span. The features in the training instances are
generated by looking at the surface forms of the tokens in the spans
and their surrounding contexts.

In order to simplify our implementation and achieve reasonably high
generalization, we use simple lexical and character features which
can easily be derived from the surface forms of words or phrases.
We used a context window of three words to the left and right. One
set of features is the lowercase form of all the tokens in the span,
with each token contributing a separate feature. The tokens in the
context window constitute another set of features. These feature
sets capture the lexical content and context of timexes. Additionally,
character types and character type patterns of tokens in the spans
are used to capture the character patterns exhibited by some of the
tokens in temporal expressions. The patterns are defined using the
symbols, A, a, X, x, and 9. A and a are used to define character type
features; X and x are used to express the character type pattern
features; and 9 is used for representing numeric tokens. For
example, the token Monday is represented by the character type
‘Aaaaaa’ and character type pattern ‘Xx+'. Character features are
extracted not only from tokens within the spans but also from the
context windows. The first and the last tokens of a span and their
corresponding character types and character type patterns are
also part of the feature set. The number of tokens in a span is yet
another feature.

3.1.2 Results

We train the system with the surface features listed previously. The
recognition results for the CRF-based system, scored using the
official TERN scorer, are given in Tables 1 and 2, row 1.

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 15

TIMEX?2
Precision | Recall F
CRF 0.980 0.842 | 0.906
CRF + extra features 0.979 0.856 | 0.914
POS-only 0.979 0.633 | 0.769
POS and chunk 0.989 0.537 | 0.696
POS-only (w/years) 0.978 0.713 | 0.825
POS and chunk (w/years) 0.987 0.617 | 0.759

Table 1 Recognition results: TIMEX2 (overlap).

Table 1 indicates the system performance on partial-match
identification of TIMEX2s, where credit is given for tagging any part
of an actual TIMEX2. Table 2 indicates the system performance on
exact-match identification, in which a system only gets credit for
the identifying the exact extent of a TIMEX2. Unsurprisingly, the
scores for the extent measure are lower than those for the TIMEX2
measure.

TEXT
Precision | Recall F
CRF 0.798 0.685 | 0.737
CRF + extra features 0.855 0.748 | 0.798
POS-only 0.795 0.514 | 0.625
POS and chunk 0.830 0.450 | 0.584
POS-only (w/years) 0.811 0.591 | 0.684
POS and chunk (w/years) 0.843 0.527 | 0.648

Table 2 Recognition results: TEXT (extent)

3.1.3 Error Analysis

An analysis of the output of the CRF system reveals errors which
can be eliminated with additional features. One set of errors relates
to spans that are too short or too long. To address this problem, we
created a dictionary of core lexical items in timexes and restricted
context information to these lexical items, which should improve
detection of timex boundaries. The list was generated from the Penn
Tree-Bank by extracting the most frequent lexical items occurring in
the constituents labeled -TMP. Furthermore, the default character
pattern for numeric tokens is the simple pattern 9+; it assigns the
same form for all numeric values, which misses an important fact
about the form of year expressions. A simple pattern which takes
into account the form of a year expression enabled the system to
extract year values more precisely. We also added a list of names
for days of the week and months of the year as separate features.
These simple additions to the default features resulted in significant
performance improvements (Tables 1 and 2, row 2).

Although the use of additional features, such as lists of names of
days, helps to improve the scores, there seems to be a limit to what
can be achieved using such shallow methods given the fact that the
training material is fixed. A deeper level of linguistic analysis needs
to be made to achieve significant improvement. Analysis of some of
the errors suggest that some knowledge of constituency, e.g., noun
chunking or dependency parsing, might help in identifying timex
boundaries. In general, the CRF-based recognizer has a tendency
to limit extents to common temporal elements, such as, for example,
Orthodox Christmas Eve —> Christmas.

3.2 Rule-based methods

Finite-state automata have been employed extensively in partial
parsing, or chunking, as well as in morphological analysis and other
natural language processing tasks [2, 15, 5]. In partial parsing, chunks
form the basic level of constituency, the non-recursive “core” of a
major phrase [1]. Chunks can be identified by regular expression
patterns over part-of-speech tags, and, in turn, regular expression
patterns over chunks can be used to form higher levels of
constituency, such as simplex clauses.

One way of looking at the timex detection task is as a partial parsing
task in which timexes form the level of interest. Apart from date and
time expressions with fixed forms (which lend themselves readily
to regular expression patterns), timexes are constrained to be natural
language phrases headed by one of a small number of trigger words
as discussed in §2. Chunks can be used to approximate these

phrases and can, if needed, be joined by appropriate patterns to
form timexes.

We experimented with using two levels of prior linguistic analysis to
feed our rules: part-of-speech (POS) tags and chunks. In one
experiment, we used patterns over text tagged only with POS tags;
in the other, the patterns range over chunked and POS-tagged text.
Our development efforts concentrated on the patterns involving
chunks and POS tags. We first built up patterns for word classes:
deictics (foday, yesterday, etc.), units (hour, day, etc.), days (Monday,
Tuesday, etc.), months, temporal adjectives, temporal adverbs, and
so on. We also built up complex expressions for times (e.g.,
12:24:45.69GMT) and dates (e.g., 10/31/1999). Then, in principle,
our identification patterns would simply look for chunks headed by
words from the appropriate classes. We followed this principle for
units and deictics, but for other classes, we wrote patterns that
look at more of the relevant internal structure of chunks, expecting
that this might help normalization. For example, one of our complex
date patterns is:

<NC>[Month Date Comma? Year_full]

where Month refers to the month class, Date refers to the date
class (i.e., 1-30), and Year_full refers to years from 1900-2099. In
developing rules for normalization, as described in §4, this pattern
can be interpreted directly.

For our experiment without chunks, we used the same word classes
and complex expressions for times and dates, as well as the patterns
that looked at the internal structure of chunks. We then wrote simple
noun and preposition chunk patterns to allow for head-based chunk
patterns. Thus, for noun chunks headed by units, we used the
following pattern:

(DT|CD|PP\$)? \

(GDI JJ[RS]?|RB[RS]?|VVG|VVN)* NN? Unit
where (DT|CD|PP$) matches specifiers (determiners, cardinal
numbers, and possessive pronouns), (CD | JJ[RS] ? | . . .) matches
modifiers, including adjectives, adverbs, and participles, NN matches
prenominals, and Unit matches words from the unit class.

3.2.1 Experiments

We built two rule-based systems for timex identification: the first
uses only POS tags while the second makes use of chunks and
POS tags. The first system is based on hand-built patterns over POS
tags and lexical items. For POS-tagging, we use TreeTagger [25]
and convert the output into XML. The intuition behind the use of POS
tags is that they provide some level of generalization for pattern
writing, as well as resolving some word sense ambiguities (e.g., the
ordinal number sense of second can be distinguished from other
senses (including the time unit sense) simply by virtue of being
tagged as an adjective'). While the generalization provided by POS-
tagging is merely a convenience for closed-class categories, such
as determiners, for which patterns could exhaustively list a, the,
this, etc., it is absolutely necessary for writing patterns over open-
class categories, such as adjectives and nouns.

To compile our regular expression patterns into finite-state automata,
we use flex [11], a standard scanner generator that does character-
level regular expression matching. The overall system is written in
CDuce, a higher-order functional programming language that allows
pattern matching over XML structures [6]. Since the TERN data is
accompanied by a DTD indicating which document elements may
contain TIMEX2s, a CDuce program whose type structure is derived
directly from the DTD determines which elements need to be
processed. It sends the text of these elements to be POS-tagged by
TreeTagger and then TIMEX2-tagged by the flex-generated scanner.
Finally, extraneous tags (i.e., TreeTagger output) are stripped off,

and the out-put is aligned with the initial input to restore formatting.
The second system (which was essentially the recognition
component of our submission to TERN) is based on the same hand-
built patterns as our first rule-based system but takes chunks into
account, our first rule-based system but takes chunks into account,

'Of course, the various nominal senses of second cannot be
distinguished in this way.

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 16

as well. The intuition behind the use of chunks is that they provide
ready-made approximations to phrases that just as crucially keep
out words that do not belong as include words that do. Then, as we
explain above, we can simply write patterns to look for chunks
headed by timex trigger words and, if necessary, join a timex-headed
chunk with a required complement chunk. For example, the timex 24
years after his death consists of a noun chunk 24 years and its
complement preposition chunk after his death.

As before, we use TreeTagger, but here it serves double duty, POS-
tagging and chunking the input; again, TreeTagger output is converted
into XML. Now, regular expressions for matching sequences can be
compiled into finite-state automata by a variety of tools (such as
flex), but the patterns we use for matching the hierarchically
structured TreeTagger output require compilation into tree automata.
This is where CDuce comes in: it compiles regular expressions over
hierarchical structures (in particular, XML elements) into tree
automata, using pattern ordering and a greedy matching policy [12]
to resolve conflicts. This system works exactly as the other one,
except that instead of sending the TreeTagger output to a flex-
generated scanner for TIMEX2-tagging, the CDuce program itself
does the tagging.

3.2.2 Results

We ran each of the two systems described above on the TERN test
corpus. The results, again scored using the official TERN scorer,
are given in Tables 1 and 2, in the rows labeled POS-only and POS
and chunk.

After the TERN evaluation, a preliminary error analysis revealed that
both rule-based systems lack a rule to identify years standing alone.
Adding a simple rule to identify years between 1900 and 2019
increases recall significantly for both tag and extent, with only a
very small precision penalty. The results of adding this rule are
shown in Tables 1 and 2 in rows POS-only (w/years) and POS and
chunk (w/years).

3.2.3 Error Analysis

Both rule-based systems very rarely misidentify something as a
TIMEX2. Most of these spurious TIMEX2s are non-temporal
occurrences of the words past, present, and now, which are anyhow
only weakly normalizable. The real problem with the rule-based
systems is in recall, which is largely a matter of insufficient patterns.
For example, as previously mentioned, one pattern that was
inexplicably left out of both rule-based systems is the simple year
pattern.

Both rule-based systems do make a number of extent errors, though.
The vast majority of these errors (90.5% for TERN, 93.1% for flex)
result from the systems tagging too little of an expression, missing
premodifiers and arguments. In some cases, it is clear that deeper
syntactic information is needed to get the full extent—for example,
chunking is not enough to distinguish 24 years after his death from
Two years after the crash site. The first phrase is a complete timex,
since the phrase after his death is a PP, but the second expression
is not—after the crash site is the beginning of a complement clause
(. . . was discovered).

One caveat, though, regarding the use of deeper syntactic analysis:
more complicated syntactic analysis is generally less reliable. Even
the chunker, which performs relatively shallow analysis, introduces
errors. Some of the extent errors peculiar to the chunk-based system
include phrases such as we ‘re talking months, congress last week,
Palestinian leader Yasser Arafat last week, secretly indicted nine
months ago. In each of these cases, the chunker included too much
material in a noun chunk, which our patterns take as the boundary
for timexes with unit triggers, such as months.

Overall, both rule-based systems exhibit high precision and low
recall, a symptom of the development methodology and the amount
of time devoted to actual rule development. The differences between
the systems—greater precision for the chunk-based system and
greater recall for the POS-tag-based system—are not particularly
surprising. The chunk-based system requires more pieces of
information to be in place for an expression to qualify as a TIMEX2
(e.g., a date expression needs not only to contain a Month and a
Date, but it must also have been marked as a noun chunk), so false

positives are less likely. But since its source for this additional
information is less reliable (i.e., chunking is more difficult than tagging),
it is more likely to reject well-formed expressions that have been
POS-tagged correctly but chunked incorrectly. Interestingly, the use
of chunks provides only a small boost to precision at a relatively
high price for recall. Since chunking does not seem to be the right
level of linguistic analysis to solve the extent problems, it is not clear
that the additional processing they require is warranted, something
that must be kept in mind when considering how to improve the CRF-
based recognizers, as well.

3.3 Recognition: Upshot

To put these results in context, the top-performing system at the
2004 TERN evaluation—also a machine learning-based system—
scored 0.981, 0.909, 0.944 (precision, recall, F-measure) for partial-
match (TIMEX2) and 0.906, 0.840, 0.872 for exact-match (TEXT) [9].
The results of the CRF run with tuned features approaches this
level of performance (and compares well to the other TERN systems).
What is more, even the results of the CRF system using the default
feature set are considerably better than either rule-based system.
Recall is vastly improved, with only a very small precision penalty.
Despite the differences in performance in the various systems, they
shared several features: good precision, approaching good recall
on tags, and problems with extent largely stemming from not having
enough syntactic information to get arguments and modifiers right.

4. NORMALIZATION

Given the ease with which timex recognition can be performed by
an off-the-shelf machine learning system with little human
intervention, it is natural to question why one should bother with a
rule-based system at all. One possible answer is normalization.
Remember that recognition is only a part of the larger task of temporal
information extraction. For the kind of downstream application we
are interested in, it is important to interpret recognized expressions
and render them in a standard format. The most natural way to
approach this normalization problem is with a rule-based system,?
and it seems that if effort is going to be invested in rule development
for normalization, it is only natural to use those rules for recognition,
as well. After all, for a down-stream application that relies on
normalized output, recall of unnormalizable timexes is superfluous.
The questions we would like to address, then, involve the proper
role of machine learning in an end-to-end temporal information
extraction system. Is it really the case that better recognition
performance is wasted on rule-based normalization? Are there places
within the normalization task itself where data-driven approaches
can be applied?

We describe a rule-based normalization system we have built and
report on several runs of the system on the output of different timex
recognizers. A detailed error analysis of these runs reveals several
points within the normalization pipeline where using a data-driven
approach might improve performance. Furthermore, comparison of
the results indicates that, at least for a rule-based system that relies
heavily on imperfect upstream linguistic analysis components, such
as ours, better recognition performance may, in fact, improve
normalization.

4.1 Normalization method

Timex normalization is the problem of assigning a value to a
recognized timex. As we discuss in §2, the TIDES guidelines
distinguish several kinds of values; our normalization system focuses
on time points, durations, and the past, present, and future reference
tokens. Time points are expressed by three different kinds of timexes:
fully qualified, deictic, and anaphoric. Fully qualified timexes, such
as March 15. 2001, can be normalized without reference to any
other temporal entities. Deictic and anaphoric timexes, however,
must be interpreted relative to another temporal entity. Deictic timexes,
such as today, yesterday, three weeks ago, last Thursday, next
month, and so on, are interpreted with respect to the time of
utterance—for our corpus, the document time stamp. Anaphoric
timexes, such as March 15, the next week, Saturday, are interpreted

2Consider the TERN 2004 evaluation, where all recognition-only systems
were machine learning-based, while all the systems participating in the
full task were rule-based!

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 17

with respect to some reference time—a salient time point previously
evoked in the text that may shift as the text progresses. Moreover,
some anaphoric timexes (those without an explicit direction indicator
such as next or previous) also depend on the tense of the verb they
modify: with past tense, they indicate the most recent time point
prior to the reference time that matches the timex description; with
present and future tense, they indicate the opposite.

For our normalization system, fully qualified and deictic timexes are
straightforward to normalize, particularly since the documents it
processes are time-stamped. Our system finesses anaphoric timexes
in two ways. First, it simply treats them as deictics, instead of
keeping track of introduced temporal entities and trying to determine
their relative salience. Since the TERN corpus consists largely of
short news stories focused on the immediate present, this heuristic
seems reasonable. Secondly, instead of using the tense of the verb
on which an anaphoric timex is dependent, we take the tense of the
first (tensed) verb in the same sentence as an anaphoric timex.
Determining dependency relations would require additional (more
fragile) syntactic analysis, while finding tensed verbs is
straightforward given the syntactic analysis already performed.
Durations are more difficult. Even fully qualified timexes expressing
durations, i.e., those in which both the quantity and the unit are
specified, such as six months, 800 years, three long days, are
systematically ambiguous between a duration and a point reading.
Furthermore, many durations are anchored, either explicitly, as in
He will be barred from teaching for five years after that, or implicitly.
Our normalizer only normalizes fully qualified duration-like timexes,
making no attempt to anchor them. Also, in the absence of an explicit
directional indicator, such as next or ago, it assumes a duration
reference.

Our normalizer also normalizes timexes that refer generally to the
past, present, or future, such as now, recently, future. Such timexes
receive a token value, PRESENT_REF, PAST_REF, or FUTURE_REF,
as appropriate, as well as values for ANCHOR_DIR (AS_OF, BEFORE,
or AFTER) and ANCHOR_VAL (the document timestamp).

4.2 Normalization system

In this section, we give some specific examples of normalization
rules, as well as a technical overview of our system. Our
normalization rules are mostly recognition rules augmented with
pattern-matching variables to extract elements of the expression
necessary to compute normalized values and with functions to
perform the computation. For example, consider the pattern from
§3.2 for matching fully qualified dates, augmented with pattern-
matching variables:

<NC>[(Month & m) (Date & d) Comma? (Year&y)]

The function associated with this rule simply converts m to an
integer and concatenates y, m, and d to produce the value. For an
example involving computation with respect to the reference time,
consider:

<NC>[(CD & cd) _* (Unit&un)] <ADVC>[Ago]

where _ is a wildcard. The function associated with this recognition
rule subtracts c¢d un units from the reference time and takes truncates
resulting value to the appropriate granularity.

The most involved computation, requiring the examination of verb
tense, is for some of the simplest expressions:

<NC>[(Day & d)]

where Day matches Monday, Tuesday, etc. The interpretation
computation converts d into an integer; then, depending on the tense
of the sentence, computes the date for the closest d in the past or
in the future, and finally, produces a value from the year, month, and
date of the result. Finally, the rule for fully qualified durations is:

<NC>[(CD & cd) _* (Unit&un)]

where normalized versions of cd and un are concatenated (with a
leading P) to produce a duration value. Note that this rule must be
ordered after the ago-rule above and similar such rules in order to
avoid spurious matching.

Much of the work done in rule development for identification paid off
in development of the normalization system. Furthermore, on the

assumption that for normalization, the ambiguity reduction and
generalization benefits of POS tags are unnecessary, we were
able to liberalize our normalization patterns so that they ignore POS
tags. Our strategy of identifying duration timexes, however, using
patterns matching noun chunks that simply have an appropriate
head, meant that new patterns, such as the one above, had to be
developed for interpreting such timexes.

The normalizer is written in Perl and takes as input the output of our
TERN timex tagger, including not just newly added TIMEX2 tags, but
also the XML elements indicating chunks and words. XPath queries
are used to extract the document date stamp and sentences
containing TIMEX2s and to determine the tense of these sentences
(from the firstverb chunk). TIMEX2s are matched against regular
expression patterns that extract the necessary information for
normalization. Relative expressions are evaluated with respect to
the document date stamp and the tense of the sentence; the
Time::Piece Perl module is used to perform any necessary temporal
arithmetic. The output of the normalizer is simply its input with the
addition of the appropriate attributes for normalized TIMEX2s.®

4.3 Results

We ran our normalizer on the output of two different recognition
systems (the chunk-based finite-state system, with the added year
pattern, and the optimized CRF system from §3), as well as on the
gold standard for recognition output, in order to see the effects of
recognition performance on normalization performance. As we
mention above, our initial expectation was that since the rules for
normalization are more or less those of the rule-based recognizer,
any additional timexes identified by better recognition systems

Corr | Incor P R F
VAL 782 143 | 0.845 | 0.449 | 0.586
ANCHOR_DIR 63 11 | 0.851 | 0.150 | 0.255
ANCHOR_-VAL 62 12 | 0.838 | 0.148 | 0.252
(a) Rule-based recognizer.

Corr | Incor P R F

VAL 885 231 | 0.793 | 0.501 | 0.614
ANCHOR_DIR 123 13 1 0.904 | 0.294 | 0.444
ANCHOR_VAL 121 15 | 0.890 | 0.289 | 0.436
(b) CRF recognizer.

Corr | Incor P R F

VAL 955 219 | 0.812 | 0.549 | 0.655

ANCHOR_-DIR 137 14 | 0.901 | 0.327 | 0.480

ANCHOR_VAL 137 14 |1 0.901 | 0.327 | 0.480
(c) Gold standard recognition.

Table 3 Normalization results

would not be normalized anyhow.

In Table 3(a), (b), and (c) we give the results of these three runs on
the TERN test corpus. Remember that our recall and F-measure
scores differ from the official TERN scores; they are computed with
respect to all possible timexes rather than just those identified by
the recognizer (1741 for VAL, and 419 for both ANCHOR_DIR and
ANCHOR_VAL). According to the official TERN scorer, the recall
scores (and correspondingly, the F-measures) are higher for both
the rule-based and CRF runs (0.699 and 0.583, respectively).

To put these results in context, the best performing system at TERN
2004 had scores of 0.875, 0.784, and 0.827 for VAL; 0.833, 0.585,
0.687 for ANCHOR_DIR, and 0.683, 0.649, 0.666 for ANCHOR_VAL
(again, these scores are computed differently than the official TERN
scores).

4.3.1 Error analysis and discussion
Looking at the results across runs, it seems that, in fact, better
recognition actually does help normalization. We performed a

*We note that the normalization system we report on in this paper
differs slightly from our TERN entry in that two simple bugs
involving output format have been fixed.

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 18

preliminary comparison of the gold standard and rule-based
recognizer runs to try to determine why this might be the case. Of
course, the gold standard simply presents more actual timexes to
the normalizer than the rule-based recognizer; the question is why,
given that the normalizer patterns are the same as the rule-based
recognizer patterns, the normalizer actually attempts to normalize
any of these additional timexes.

What we found is that, for the most part, the upstream components
are to blame. In order to produce input to the normalizer for the gold
standard and CRF runs, we simply sent the recognized output through
TreeTagger. As it turns out, though, the additional presence of TIMEX2
tags affects the tagging and chunking performance in two ways.
First of all, it improves tokenization, especially of punctuation signs,
allowing more normalization patterns to match. Chunking is also
improved by the presence of TIMEX2 tags in the input. TreeTagger
has an SGML mode in which it ignores, but does not respect, markup.
Thus, it often produces chunks that cross TIMEX2 boundaries. We
had to write a post-processor to close and re-open such chunks in
the output of TreeTagger on the gold standard and CRF recognition
output in order for our normalizer to run at all (it relies on well-
formed XML). This post-process, however, creates “good” (matching)
chunks in places where no such chunks exist in the output of
TreeTagger on untagged input.

The other notable source of additional matches in the gold standard
run is our liberalization of patterns in the normalization system to
ignore POS tags. As it turns out, the lack of capitalization in the
broadcast news documents results in a large number of mistagged
day and month names which are thus missed by the rule-based
recognizer.

We have not yet compared the CRF run with the rule-based run, but
we expect that similar considerations will apply. We do note that the
overall performance of recognition + normalization using the CRF
recognizer is better than the strictly rule-based combination, so it
looks as though any significant improvements in recognition
performance, even if still imperfect, helps normalization.

We did perform a detailed error analysis of the run using the output
of the rule-based recognizer and found a number of sources of
(precision) error. The single largest source of error (42%) is an
interesting property of the corpus— unlike in ordinary conversation,
many of the documents in the corpus refer to the current day by
name rather than as today.* Our finesse of anaphoric timexes is to
blame for 17% of the errors—only one, though, actually requires
interpretation with respect to a reference time distinct from the
document time stamp; the remainder fail because of our strategy of
choosing the first tensed verb in the sentence to decide directionality
rather than looking more closely at the actual dependency relations.
Errors of misclassification account for another 15% of the errors:
the largest number of these are the result of normalizing a point
reference as a duration; the other major misclassification error is
with respect to uses of foday to mean the present rather than the
current day. A simple pattern-ordering bug results in 9% of the VAL
errors and also explains all of the ANCHOR_DIR and ANCHOR_VAL
errors. The remaining errors stem from problems with the recognizer
or the tagger and chunker.

4.4 Normalization: Upshot

We take two lessons away from these experiments. The first is
that, even from the perspective of the end-to-end task of temporal
information extraction, it seems to be worth-while to optimize
recognition and normalization of timexes independently. The second
is that data-driven approaches can help reduce the reliance on
brittle upstream linguistic processing required by rule-based
approaches. A caveat, though: as we point out in §3, it does seem
that some sort of deeper syntactic analysis may be necessary to
improve extent recognition performance, even for machine learning.
Additionally, our error analysis points to some aspects of the
normalization task that may be amenable to a data-driven approach.
Almost half of the errors our normalizer makes are the result of
incorrectly guessing whether undirected anaphoric expressions
such as Tuesday refer to the past, the present, or the future. This
“Most of these documents seem to be newswire items time-stamped
late in the day, so the problem may be that they were intended for
release on the following day.

decision, though, can be easily stated as a classification problem
for machine learning, with somewhat local relevant features (such
as parent verb tense). Additionally, given appropriate data sources,
even peculiarities of the data with regard to this decision, such as
the use of Tuesday on a Tuesday to refer to the current day rather
than the previous Tuesday, can be automatically learned. The other
major source of error is another sort of misclassification: confusing
points, durations, and fuzzy reference. This decision, again, can be
stated as a simple three-way classification problem, and, again,
many of the relevant features (such as governing prepositions) are
local. Thus, although it is not clear how to turn the general problem
of normalization into a labeling task for machine learning, there do
seem to be sub-problems that may be amenable to a data-driven
approach.

5. CONCLUSION

Timex recognition is a task for which machine learning is well suited.
An off-the-shelf system can produce respectable results straight
out of the box, while a little bit of informed feature selection results
in near state-of-the-art performance. There is room for improvement,
though, particularly with respect to extent, where some sort of
syntactic analysis seems to be required.

Rule-based systems are good at identifying timexes with high
precision, while recall depends directly on effort invested. Our
experiments indicate, though, that chunking is too shallow a level of
syntactic analysis to help much with extent problems, and that, at
the same time, it is inaccurate enough to introduce problems of its
own.

With respect to normalization, we see, first of all, that better recognition
performance does seem to improve rule-based normalization, even
when the performance goes beyond that of a recognizer using the
same set of rules as the normalizer. This suggests that independent
optimization of recognition and normalization is a reasonable strategy
for optimizing the end-to-end temporal information extraction task.
Secondly, we have also uncovered some parts of the normalization
task that may be amenable to a machine-learning approach. As we
continue development of our normalizer, we proceed with ideas on
how to use data-driven techniques, as well as expert linguistic
knowledge, to improve performance.

6. ACKNOWLEDGMENTS

David Ahn was supported by the Netherlands Organization for
Scientific Research (NWO) under project number 612.066.302. Sisay
Fissaha Adafre was supported by NWO under project number 220-
80-001. Maarten de Rijke was supported by grants from NWO, under
project numbers 365-20-005, 612.069.006, 220-80-001, 612.000.106,
612.000.207, 612.066.302, 264-70-050, and 017.001.190.

7.REFERENCES
[1] S. Abney (1991). Parsing by chunks. In: Principle-Based Parsing.
Kluwer Academic Publishers.

[2] S. Abney (1996). Partial parsing via finite-state cascades. Natural
Language Engineering.

[3] D. Ahn, V. Jijkoun, J. Kamps, G. Mishne, K. Miiller, M. de Rijke, S.
Schlobach (2004). The University of Amsterdam at TREC 2004./n:
TREC 2004 Conference Notebook, Gaithersburg, Maryland USA.

[4] D. Appelt, D. Israel (1999). Introduction to information extraction
technology: IJCAI-99 tutorial, http://www.ai.sri.com/~appelt/ie-tutorial/

[5] K. Beesley, L. Karttunen (2003). Finite-State Morphology. CSLI
Publications.

[6] V. Benzaken, G. Castagna, A. Frisch (2003). CDuce: An XML-
centric general-purpose language. In: Proceedings of the ACM
International Conference on Functional Programming.

[7] N. Chinchor (1997). MUC-7 named entity task definition,
September 1997. http://www.itl.nist.gov/iaui/894.02/related_proj
ects/muc/proceedings/ne_task.html

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 19

[8] W. Cohen (2004). Methods for identifying names and ontological
relations in text using heuristics for inducing regularities from data,
2004. http://minorthird.sourceforge.net

[9] L. Ferro (2004). Annotating the tern corpus, 2004. http://
timex2.mitre.org/tern_2004/ferro2_TERN2004_annotation_sanitized.pdf

[10] L. Ferro, L. Gerber, I. Mani, G. Wilson (2004). TIDES 2003
Standard for the Annotation of Temporal Expressions. MITRE, April
2004.

[11] Flex, http://www.gnu.org/software/flex

[12] A. Frisch, L. Cardelli (2004). Greedy regular expression
matching. In: Proceedings of 1C ALP.

[13] ISO 8601 (1997). Information interchange - representation of
dates and times.

[14] D. Jurafsky, J. Martin (2000). Speech and Language Processing.
Prentice-Hall.

[15] L. Karttunen, J.-P. Chanod, G. Grefenstette, A. Schiller (1997).
Regular expressions for language engineering. Natural Language
Engineering.

[16] J. Lafferty, F. Pereira, A. McCallum (2001). Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data. In: Proceedings of the International Conference on Machine
Learning.

[17] I. Mani, G. Wilson. R (2000). Obust temporal processing of

news. In: Proceedings of the 38th ACL, 2000.

[18] A. McCallum W. Li (2003). Early results for Named Entity
Recognition with conditional random fields, feature induction and
web-enhanced lexicons. In: Proceedings of the 7th CoNLL.

[19] MUC-6 named entity task definition (1995). May 1995. http://
www.cs.nyu.edu/cs/faculty/grishman/NEtask20.book_1.html.

[20] J. Pustejovsky, J. Castano, R, Ingria, R, Saurif R, Gaizauskas, A.
Setzer, G. Katz. (2003). TimeML: Robust specification of event and
temporal expressions in text. In: Proceedings of the AAAI Spring
Symposium.

[21] F. Schilder, C. Habel (2001). From temporal expressions to
temporal information: Semantic tagging of news messages./n:
Proceedings of the ACL-2001 Workshop on Temporal and Spatial
Information Processing.

[22] A. Setzer, R. Gaizauskas (2000). Annotating events and temporal
information in newswire texts. In: Proceedings of LREC.

[23] F. Sha, F. Pereira (2003). Shallow parsing with conditional random
fields. In: Proceedings of Human Language Technology-NAACL.

[24] TimeBank. http://www.cs.brandeis.edu/~jamesp/
arda/time/timebank.html

[25] TreeTagger. http://www.ims.uni-stuttgart.de/
projekte/corplex/TreeTagger/

Journal of Digital Information Management

1 Volume 3 Number 1 March 2005 20

