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Abstract
Several classes of path constraints for semistructured data are analysed and a number of decidability and complexity
results proved for such constraints. While some of these decidability results were known before, it is believed that
the improved complexity bounds are new. Proofs are based on techniques from modal logic and automata theory.
This modal logic perspective sheds additional light on the reasons for previously known decidability and complexity
results.
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1 Introduction

In recent years, a lot of interesting work has been done to extend database techniques to
semistructured collections of data, in particular the World Wide Web or fragments of it; an
overview of this work can be found in [1]. It is generally agreed that the appropriate data
model for semistructured data is an edge-labelled graph. More specifically, the web can be
viewed as a set of objects linked by labelled edges; an object represents a page, and the
labelled edges represent hypertext links.

Query languages proposed for semistructured data and querying the web, such as WebSQL
[35], Lorel [2], and UnQL [11] are similar in spirit if not in syntax, and all include a form
of recursion (regular expressions). Making effective use of whatever information is available
about the format of data is obviously a very important issue. In the context of the web, it
is often useful to know that everything accessible by a given sequence of links is cached, or
available locally; or that the site reachable by a given sequence of links is mirrored elsewhere,
etc. To express such information, one can use so-calledpath constraints, that is: statements
about paths in the graph. It is reasonable to expect that the language of constraints forms a
well-behaved (preferably decidable) sublanguage of the query language.

In this paper we build on results in [3, 13], and embed several classes of path constraints
that have been considered in the literature into well-known modal logics. Earlier work has
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940 A ModalPerspectiveonPathConstraints

considered the modal�-calculus, but we consider variants of PDL (see [28]). Our embed-
dings into a flavour of PDL establish a number of things; they shed light on known decid-
ability results and give rise to new ones and to new complexity bounds. In some cases, the
complexity bounds obtained by translation are not the tighest possible; in such cases we pro-
vide tighter bounds by using other methods (see Theorems 5.2 and 5.3).

But perhaps more importantly, adopting a logical perspective on data modelling and de-
scription languages often yields conceptual clarity, as demonstrated, for instance by Hayes’
paper on a model-theoretic semantics for RDF and RDFs [30]. In our case, we think that the
main benefit of our modal perspective on path constraints lies in the insights it yields on the
way various constraints relate to each other. Of course, rephrasing reasoning tasks on con-
straints in terms reasoning inside a suitable logic will not always give the sharpest possible
complexity bounds: in some cases the corresponding logic simply has not been explored yet.

This paper is an extended and updated version of [4]. It is organized as follows. Section 2
provides background information on data models and query languages and it introduces sev-
eral kinds of path constraints. In Section 3 we introduce logical formalisms to capture such
constraints. In Section 4 we state our complexity and decidability results for logical problems.
In Section 5, we establish corresponding results for reasoning problems on path constraints.
We conclude in Section 6.

2 Path constraints

Semistructured data is often represented as an edge-labelled graph. In particular, the World
Wide Web can be modelled as a graph where the vertices are uniquely identified by URLs
and the labels are hypertext links between them [1]; richer structures able to deal with the
frame structure of the pages can be found in [5]. An important special class of graphs are
deterministic graphs. A graph is calleddeterministicif for every node� and label� there is
at most one node� such that�

�
��� holds. In the case of the web (unlike the case of most

object-oriented databases) it is reasonable to expect a graph to be deterministic.
In this paper, we will restrict attention torooted connectedgraphs: that is, one of the nodes

in the graph is designated as the root and every other node is accessible from the root by a
directed path of edges. Intuitively, this is because we consider the web from the point of view
of browsing, i.e. only the sites accessible from the current site (the root) really matter.

Languages for querying semistructured data use so-called path queries. These have emerged
as an important class of browsing-style queries, and in their simplest version they are of the
form ‘find all objects reachable by paths whose edge labels form a regular expression over
some given alphabet of labels.’

Let us make things more formal. Let� be a countable set of edge labels. An�-structure
� is a tuple of the form� � ��� �	� �
������ such that� is a set of nodes,�	 is a distin-
guished element of� (the root), and�
����� is a family of binary relations on� acting as
links between nodes. We say that� is finite whenever� is finite and
� is nonempty for
only finitely many labels. In that case, the size of�, written ���, is �� � � �����
��. In
other words,�-structures are rooted labelled transitions systems over the (possibly infinite)
alphabet�.

DEFINITION 2.1
Let � be a countable set of edge labels. A label� � �, the empty path� and wildcard
� arepath expressions. If �� and�� are path expressions, then so are�� � �� (sequential
composition),�� � �� (union), and�� (finite iteration).
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(a) Inclusion constraint (b) Backward constraint (c) Lollipop constraint

FIGURE 1. Constraints

Given an�-structure�, we definetransition relations	���� on� � � corresponding to the
path expressions�:

	���� � 
� for � � �

	����� is the reflexive transitive closure of	����

	���� �
�
���


�

	���� � ���� �� � � � � �

	���� � ��� � ���� �� � 	� �	�������� �� 
 	�������� ����

	���� � ��� � 	����� � 	������

As usual, given a binary relation
 on� , we write
��� to denote the set of
-successors of
�: �� � � � ��� �� � 
�.

In the absence of information about the format of data, evaluating queries with regular
expressions can be very inefficient. A natural way to express useful information about the
data represented as a graph is to impose constraints on possible paths in the graph, such as
‘all objects reachable by a path� are also reachable by a path�,’ where� and� are sequences
of labels, possibly involving regular expressions. Examples of constraints which may be
useful for query optimization in the context of the web are constraints saying that everything
accessible by such-and-such sequence of labels is also accessible locally; that the answer to
such-and-such query is cached; that such-and-such site is mirrored elsewhere, and so on. All
these examples can be expressed by means of path inclusion constraints as defined in [3] (see
below).

The motivation of the work in [13] is more database-related than the work in [3]. Indeed,
one important difference between the constraints considered in [3] and those studied in [13]
is that the former correspond to unary properties and are evaluated relative to a node. The
latter are closed sentences and can be evaluated anywhere and don’t have to mention the root;
the motivation for the latter is much more database-related than the work in [3]. Another
difference is that the constraints from [3] can contain regular expressions, while those in [13]
are strictly first-order definable.

DEFINITION 2.2
Let � and� be two path expressions. Apath inclusion constraintis a statement of the form
� �� �. Let� be an�-structure. A path inclusion constraint� �� � is true at�, written
� �� � �� �, if 	������	� � 	������	�: every node� reachable from�	 by a path whose
labels form a word described by� (i.e. a�-path), is reachable from�	 by a path whose labels
form a word described by� (i.e. a�-path). See Figure 1(a).

The path inclusion constraints defined above are sometimes referred to asforwardconstraints.
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942 A ModalPerspectiveonPathConstraints

In [13], backwardconstraints are introduced. We generalize their definition to a language
containing regular expressions.

DEFINITION 2.3
Let � and� be two path expressions. Abackwardpath constraint is a statement of the form
� �� �. Let� be an�-structure. A backward path constraint� � � � is true at�, written
� �� � �� �, if 	������	� � �	���������	� where�� denotes the converse operator on binary
relations. See Figure 1(b).

Notice that a backward constraint can be rewritten as an inclusion constraint, and vice versa,
by rewriting the regular expressions involved in the presence of the converse operator.

A standard path constraint(notation:� � �) is either a forward constraint or a backward
constraint. The next class of constraints is a generalization of path constraints as defined in
[13] to a language containing regular expressions.

DEFINITION 2.4
Let �, �, and� be path expressions. Alollipop path constraintis an expression of the form
� � � � �. Let� � ��� �	� �
������ be an�-structure. A lollipop path constraint� � � �
� is true at�, written� �� � � � � �, if for every
 � 	������	�, ��� 
� �
������ �� � � �.
See Figure 1 (c).

Obviously, a forward constraint� �� � is a lollilop path constraint� � � �� � with � � �.
In the sequel, a lollipop path constraint will simply be called a path constraint.

Our syntax for talking about path constraints is obviously much more abstract than, for
example, the XPath syntax [45, 29], which was designed to describe paths in XML trees.
XPath involves predicates specific to attributes and names, and it allows navigation along
the sibling axis. However, many constraints which are formulated using XPath expressions
are very similar to the path constraints we are interested in. Consider the following example
(taken from [15]):

������������	
�� ��
�	���

�����	�������

��� �	��
�� ���� �� �� ����	����� �	��
�� �
�� ��

�� ��� �������
�

������	�������

���	��� ��	
��� ��
������	����

������� ��	
��� ��
���	��
�����

���
�� ���
�����	��
����� �� ���� !�

��"
������������� !���

���������

����	����

�������������	
���

This is the same as the following path inclusion constraint:

�	
��
�� ���	��
���� �� ���	��
�� �����

A further exploration of the formal logical aspects of XPath is beyond the scope of this paper;
we refer the reader to [25, 37].

Now that we have formulated path constraints, we take a closer look at important reasoning
tasks involving them.
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 Thequery evaluationproblem for a class� of path constraints is defined as follows:
instance: a finite�-structure� and a constraint� in �;
question: � �� �?


 A more difficult problem is thecontainmentproblem for the class� of path constraints.
It is defined as follows:
instance: constraints��� � � � � ����, � � �, in �;
question: is it the case that for every�-structure�, � �� �� and . . . and� �� �� imply
� �� ����? (If so, we write��� � � � � �� � ����.)

Variants of the above problems can be defined by considering only (finite, deterministic,. . . )
�-structures or/and by distinguishing the class of constraints for� �, . . . , �� and� separately
(if applicable).

In the sequel we investigate the decidability and complexity issues of the problems we have
just introduced, mostly from a modal logic point of view.

3 Capturing path constraints by modal means

To determine the computational costs of reasoning tasks on path constraints, we recast them
as model checking, validity, and satisfiability tasks in some logic. The logic used for this
purpose should be such that it can easily encode problems on path constraints, especially the
containment problem for the class of standard path constraints. Moreover, we wish to reduce
the complexity gap between problems on path constraints and logical problems. In this way,
a model checker or a theorem prover for such a logic will allow us to solve problems on path
constraints in an efficient manner.

3.1 Choosing a logic

A modal flavour
Which logic (or logics) should we use for capturing path constraints? Many formalisms have
been proposed for reasoning about graphs. As we will see below, many decidable classes
of constraints can be defined in terms of suitable modal logics, while constraints that lack
a modal flavour (such as the ones studied in [13]) are generally undecidable. Rather than
the presence or absence of regular expressions or even the need for two vs. three variables
to express a constraint, the ‘modal flavour’ of constraints seems to be important. By this
we mean the fact that modal formulas can only express local properties and the fact that the
quantification implicit in modal formulas is ‘guarded’ [6]. We opt for Propositional Dynamic
Logics (PDL, [28]) here since these are modal logics that incorporate regular expressions.
Thus, we translate constraints into formulas of a flavour of PDL and reformulate reasoning
tasks for constraints as reasoning tasks within this flavour of PDL.

PDL-like features
The language of PDL has two kinds of primitive symbols: propositional symbols and atomic
transitions. Propositional symbols stand for properties that are true or false of a node in
a graph; we only need three propositional symbols:� (tautology),� (falsum), and���	
(to denote the root of the graph). Atomic transitions are used to label edges; we include a
distinguished label� to denote the diagonal relation. Compound transition terms correspond
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944 A ModalPerspectiveonPathConstraints

to path expressions and are built from atomic ones using�, � and�. We indifferently use
‘path expression’, ‘transition term’ and ‘relational term’ as synonyms.

In addition to these traditional ingredients of PDL, we add awildcard � and aconverse
operator �����: � is a transition term, and if	 is a transition term, then so is�	���. For
instance, the satisfaction of the forward constraint� � � �� � at �	 in the�-structure�
will be expressed as�� �	 �� �������������	. The node�	 is the only node� in � satisfying
��� �� ���	. Hence, our symbol���	 is an example of a so-callednominal(a proposition
letter that is true of at most a single node of a model). PDL with converse is calledconverse
PDL (CPDL). We obtainCPDL with nominals(see [20]) by extending CPDL with nominals.

3.2 Defining the logic PDL����

The logic PDL���� we study is a fragment of CPDL with nominals augmented with the
wildcard�. Here’s a more precise definition.

DEFINITION 3.1 (PDL����)
The path expressions of PDL���� considered are those introduced in Definition 2.1 with the
inclusion of the converse operator�����; they are denoted by�, � and also by	. Formulas of
PDL���� are typically denoted by�:

� ��� � � � � ���	 � �� � � 
 � � �	�� � �	���

Given a formula�, define���, the lengthof �, as the number of symbols in�. A formula
�	�� is read as ‘after some transition	, � holds,’ or, more precisely, as ‘there is a sequence of
labels which forms a word in a regular language defined by	 and it leads to a node where�
holds.’ Dually,�	�� is definable as��	��� and means ‘after every transition	, � holds,’ that
is: ‘if labels of a path form a word in	, then at the end of the path� holds.’

To give an example,��������� means that after 0 or finitely many� links one can reach a
node which has no outgoing links labelled�.

DEFINITION 3.2 (Semantics)
PDL���� is interpreted on�-structures. We now define truth of a formula� at a node� in a
structure� (notation:��� �� �). For atomic propositional symbols,� is true at all nodes,
� is false at all nodes, and���	 is true only at the root of the graph. Further,�� is true if�
is false, and� 
 � is true if both� and� are true. For modalities, we shall use the transition
relations	����. We just need to extend	���� such that	�������� � ���� �� � ��� �� � 	�����.

We say that� is accessiblefrom � by a transition	 if ��� �� � 	��	�. Then, for modal
formulas,�	�� is true at a node� if there exists a node� accessible from� by 	 such that
� is true at�. Dually, �	�� is true at� if for every � accessible from� by 	, � is true. A
PDL���� formula� is true on an�-structure� if it is true at the root of�. A PDL����

formula� is satisfiableif it is true on some�-structure�. A formula is valid if it is true on
all �-structures.

Roughly speaking,�-structures equipped with	��	� for every relational term	 in PDL����

can (almost) be viewed as PDL-models with a unique proposition letter interpreted by a
singleton. This is not quite true because of the presence of�, but we will show below that it
is correct when nondeterministic�-structures are considered (see the proof of Theorem 4.3).
Hence, modulo the presence of�, PDL���� can be viewed as a fragment of CPDL with
nominals [20] or as a fragment of the hybrid�-calculus [43]. Furthermore, the constructive
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�-calculus introduced in [5] also contains nominals (i.e. proposition letters interpreted by
singletons) as well as a form of recursion. We don’t need the full expressive power of the
�-calculus, however: we are interested in path queries, and regular expressions from PDL are
sufficient to express standard path constraints.

Just like the modal logic HML [33], PDL���� has no proposition letters except the truth
constant� and the unique nominal���	. Indeed, PDL���� is designed to reason about rela-
tions.

A final comment: one of our main aims is to reduce as much as possible the complexity
gaps between problems on path constraints and logical problems. We will show that PDL����

is well-designed in this respect.

3.3 Standard logical reasoning tasks

For the purposes of this paper, the following logical reasoning tasks (involving PDL����) are
important:


 Themodel checkingproblem for PDL���� is:
instance: a finite�-structure� and a formula�;
question: Is � true at�?


 Thevalidity problem for PDL���� is defined as follows:
instance: a formula�;
question: Is it the case that for every�-structure�, � is true at�?


 Thesatisfiability problemis defined accordingly in the usual way.

Before we explore the computational costs of the above reasoning tasks for PDL���� we will
show that PDL���� suffices for expressing the reasoning tasks on the standard path constraints
that we defined earlier.

3.4 From path constraints to PDL���� and back

Given a forward constraint� � � �� � (or a backward constraint� � � �� �), we write�� to
denote the formula�������������	 (or ���������	, respectively). Lemma 3.3 relates reasoning
with path constraints to reasoning tasks with PDL����.

LEMMA 3.3
1. Let� be an�-structure and� � � � � a standard path constraint. Then� �� � iff � � is

true at�.

2. Let ��, . . . , ���� be standard path constraints. Then��� � � � � �� � ���� iff ���� 
 � � � 

����� ����� is PDL���� valid.

The proof of Lemma 3.3 is by an easy verification.
By contrast, there is no way to express (lollipop) path constraints� � � � � by PDL����

formulas in a similar fashion since the containment problem for the class of (lollipop) path
constraints is undecidable [13] and PDL���� validity is decidable, as we will see below. As
an aside, (lollipop) path constraints can be expressed in modal logics with reference pointers
(see [24]), but the validity problem of such logics is usually undecidable.

By using Lemma 3.3, one can easily establish the following results.
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946 A ModalPerspectiveonPathConstraints

LEMMA 3.4
Let� be either the full class of�-structures or the class of deterministic�-structures.

1. The query evaluation problem for standard path constraints is LOGSPACE reducible to
the model checking problem for PDL����.

2. The containment problem for forward constraints restricted to�-structures in� is
LOGSPACE reducible to the validity problem for PDL���� restricted to�-structures in�.

3. The containment problem for backward constraints restricted to�-structures in� is
LOGSPACE reducible to the validity problem for PDL���� without converse and re-
stricted to�-structures in�.

To conclude this section, we will briefly contrast our modal formalization of path constraints
with others in the literature. In [37], a fragment of the Computation Tree Logic CTL is shown
to be equivalent to� ��	�	

, a tree pattern language; more precisely, the authors prove equiva-
lence between the implication problem in this fragment of CTL and the containment problem
for � ��	�	

. In addition, in [25], Core XPath is translated into full CTL. It is important to
notice that, unlike the authors of the papers just quoted, we consider graph structures — and
not just tree structures.

In [16], a spatial logic is introduced for reasoning about labelled directed graphs; the logic
is closely related to monadic second-order logic (MSO) for graphs (see [19]), and its main
use is in querying structures from the semistructured data model. Both logics have a model
checking problem in PSPACE, whereas satisfisability for MSO is undecidable. By contrast,
our logic PDL���� is better attuned to the reasoning tasks about path constraints and we do
not actually need the full power of MSO-like formalisms, especially if we wish to deduce
complexity upper bounds of problems on path constraints from translations into logical prob-
lems.

4 The complexity of reasoning with PDL����

We now consider complexity and decidability results for PDL���� problems. In the next sec-
tion we will use these results, together with Lemma 3.4, to derive complexity and decidability
results for path constraints.

4.1 The model checking problem

The model checking problem for PDL���� is no more expensive than for PDL.

THEOREM 4.1
Let� � ��� �	� �
������ be an�-structure,� � � , and� a PDL���� formula. Checking
whether��� �� � can be done in time����� � ����.

PROOF. There is a simple linear reduction of the model checking problem for PDL���� to the
model checking problem for PDL. The latter problem is in time����� � ����. This follows
from the fact that model checking for the alternation-free modal�-calculus is in linear time
[18].

The linear time reduction works as follows. First, given�, we construct a new�-structure
��. �� has the same vertices and root, and contains all the edges which� has plus, for every
edge�

�
��� in � we add three more edges to��:

�
�
���, �

�����

�� �, and�
�����

���.
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The construction of�� is obviously linear in the size of�. Second, we rewrite� so that all
occurrences of����� are on the atomic labels. This can be done in linear time by using the
following standard equivalences:

��� ���� � ����� � �����

�� � ���� � ����� � �����

������ � ��������

��������� � ��

Note that the resulting formula�� is linear in the size of�. Finally, it is easy to show that
��� ���	
���� � iff ��� � ���	
 �

�.

COROLLARY 4.2
The model checking problem for PDL���� is P-complete.

The polynomial upper bound is a consequence of Theorem 4.1 and the polynomial lower
bound can easily be obtained by a reduction from the P-complete problem SAM2CVP (syn-
chronous alternating monotone fanout 2 circuit value problem; see [26, p. 123]), as has been
done to show the P-hardness of CTL model-checking restricted to�� and	�, a folklore
result in model checking. The proof for CTL can easily be adapted to the model-checking
problem for PDL���� restricted to deterministic�-structures, as soon as��� � �.

4.2 The satisfiability problem

The satisfiability problem for PDL���� can be proved to be decidable by a reduction to the
(decidable) satisfiability problem of CPDL with nominals.

THEOREM 4.3
The satisfiability and validity problems for PDL���� are decidable in EXPTIME.

PROOF. We use the fact that CPDL with nominals is decidable [20, Theorem 49] and reduce
satisfiability in PDL���� to satisfiability in CPDL with nominals. If the set of labels� is
finite,� can be replaced by the finite union of labels from� and the reduction to CPDL with
nominals is immediate.

Suppose that� is infinite, in which case� is a nontrivial addition to the language. We
proceed as follows. Given a PDL���� formula� which uses labels���� � � � � ��� and possibly
�, we construct a CPDL formula� by replacing� with ���� � � ������� in �, and we show
that� is satisfiable (which means� is true at the root of some�-structure) iff���	 
 � is.

Suppose� � ��� �	� �
������� �	 �� �. We will define an�-structure�� and view it as
a partial description of a model for CPDL with nominals. Let� � � ��� �	� �
������� be the
�-structure defined as follows:

1. for every� � � � �,
�

�� � 
�� ;

2.
�

���� �
�
���
�.

It is easy to show that�� �	 �� � iff ��� �	 �� ���	 
 � since	���� in � is equal to	���� �
� � �� ����� in ��.

Now, suppose� � ��� �	� �
�

������� �	 �� ���	 
 � for some partial description of a
model for CPDL with nominals. Let� � ��� �	� �
������ be the�-structure defined as
follows:
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948 A ModalPerspectiveonPathConstraints

1. for every� � � � �,
�� � 

�

�� ;

2. for every� � �� � ���� � � � � ����,
� � 
����� .

It is now easy to show that��� �	 �� ���	 
 � iff �� �	 �� �.

By itself, Theorem 4.3 does not imply an analogous result for deterministic�-structures,
which remains an open problem to date. However, if the set of edge labels� is finite, deter-
ministic CPDL with nominals is decidable only if on deterministic�-structures, the satisfia-
bility problem for PDL���� is decidable.

In the nondeterministic case, we can actually do better than Theorem 4.3, and obtain match-
ing lower and upper bounds for the complexity of the satisfiability problem for PDL����.

THEOREM 4.4
The satisfiability problem for PDL���� is EXPTIME-complete whenever��� � �.

PROOF. To see that the satisfiability problem for PDL���� is decidable in exponential time,
recall that, by [20, p. 98], the satisfiability problem for CPDL with nominals is EXPTIME-
complete. The reduction of the PDL���� satisfiability problem to the satisfiability problem
for CPDL with nominals is polynomial in the size of the input formula.

As to the lower bound, we use a reduction from the global satisfiability problem for the
standard modal logic K. A formula� is globally satisfiable if there exists a model such that
� is satisfied in every state of the model. The global satisfiablity problem for K is known
to be EXPTIME-hard [17, 31]. Our reduction only uses a restricted form of the PDL����-
satisfiability problem, restricted to the modal operators���� and����

� �. We use the spy-point
technique as described in [10] by adapting the proof of [7, Theorem 2]. As part of this
technique, we introduce a node (the ‘spy point’) in the model that can see any other node,
and, therefore, universal quantification can be simulated by exploring the successors of the
spy point. The only difficulty is to use the spy-point technique and simultaneously encode
the proposition letters which occur in the K-formula.

We set out to define a map� from K-formulas into PDL����-formulas such that� is glob-
ally satisfiable iff���� is PDL���� satisfiable. In order to show the ‘only-if’ direction,
given a Kripke structure� � ���
��� such that� �� �, we construct an�-structure
� � �� �� �	� 
��� such that���� is true at� and the fact that�� � �� �� is encoded by
the existence of an edge�

����� in � where� is a node in� associated with the proposition
letter��. To simplify notation we now write��instead of

����. The structure�� �� 
���
consists of:


 a copy of���
�, that is to say, the restriction of�� �� 
��� to � is ���
�;


 an extra node�	 (the spy point) that can see any node in� (i.e. for every� � � , �	 ���
in �);


 extra nodes�� � � � � � that are used to encode the satisfaction of proposition letters� �, . . . ,
�� in such a way that�� � �� �� iff � ��� is in�;


 a chain�	�� � ��� ��� � � ��� that allows us to identify the elements of� � �� :
1. �	 is the only element� in � � such that��� �� ���	 (not related to the chain);
2. � is the only element� of � � such that�	 ��� and� ���	;
3. � � � (� � � � � � �) is the only element� in � � such that� ���, � �� �	 (just

here for the case� � �), and not�	 ���.
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Consequently, the elements of� in � are precisely the elements� in � � such that�	 ���
and not� ���	.

Let us define a family������� of PDL���� formulas encoding proposition letters.

�� �� ����
� ��

‘�
�� ���� �� �’� �� �
�������	 
 ��

��
� ����	�

���� �� ����
� ��

��
�� ���� �� ���’� �� �
����	 
 �����

� ����	 
 ����

Encodings of proposition letters can be also found in [27, 32], but our encoding is of a dif-
ferent nature since we tailor it to the spy-point technique. The mapping� is now defined as
follows:

����� � �� for � � �

� commutes with the Boolean connectives

����� � �����

‘only true at elements of
 ’� �� �
����

� ����	 
 ��������	 
 ������

Now, let� be a K-formula. We will show that� is globally K-satisfiable iff the following
formula is PDL����-satisfiable:

�����

‘only true at elements of
 ’� �� �
����

� ����	 
 ��������	� ������

Without loss of generality, we can assume that if� distinct proposition letters occur in�,
then they are��� � � � � �� .
(‘Only-if’) Assume that� �� � for some Kripke structure� � ���
���. Let � �
�� �� �	� 
��� be the�-structure such that


 � � �� � � ��	� � ��� � � � � �� where�	 �� � � ��� � � � � �� and� � ��� � � � � �� � �;

 
�� �� 
� ���	� �� � � � � �� ���� ��� � � � � �� � �� ���� ���� �	�� ��	� ��� � ���� �� �
�� � �� ���;


 the interpretation of���	 is �	.

In Figure 2, we give a simple example of the construction. Let us show that for all� � � ,
for all � � ������ (the set of subformulas of�), �� � �� � iff ��� �� ����. For the base
case (for� � ��� � � � � ��,�� � �� �� iff ��� �� ��), one can easily show by induction on�
that�� � � � � ��� �� ��� � �� � � ��� � �� ��� � ���� �� � �� � ���.

We now turn to the case� � �� �. Observe that�� � �� ��� iff there is�� � 
���
such that�� �� �� �� iff (i) there is �� � � such that������ � 
�� , ��� ��� � 
�� ,
���� �� �� 
�� , and�� �� �� ��. Furthermore, (i) holds iff there is� � � 
����� such that
���� �� �����
����

� ����	
��������	 iff ��� �� ����. So for all� � � , we have��� ��
���� since� �� �. Moreover,
����	���� � �

� � ��� �� ����
� ����	
��������	� � � .

So,�� �	 �� �������
��
� ����	 
 ��������	 � �����.

(‘If’) Assume that�� �	 �� �������
��
� ����	 
 ��������	 � ����� for some�-structure

� � ��� �	� 
���. Define a model� � �� �� 
��� such that


 � � �� �� � � � ��	� �� � 
�� � ��� �	� �� 
���;
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��

��

� �

�	 1 2

FIGURE 2.� and�: an example


 
 is the restriction of
�� to � �;


 for every� � ��� � � � � ��,����� �� �� � � � � ��� �� ���.

Let us show that for all� � � � and for� � ������, ��� �� ���� iff �� � �� �.
The base case is obvious. We treat the case� � �� � in a bit more detail. We have��� ��
����������
��

��
� ����	
��������	� iff there is�� � 
�������

� such that���� �� �����
iff there is�� � 
��� such that�� �� �� �� iff �� � �� �. Since�� �	 �� �������

��
� ����	


��������	 � �����, we obtain�� � �� � for all � � 
����	���
�s. Since� � � 
����	�,

it follows that�� � �� � for all � � � �.

The minimal tense logic (the logic � in [41]) is a bimodal logic with modal operators����,
����

� �, and a countably infinite set of proposition letters. As a corollary to the proof of The-
orem 4.4, the minimal tense logic augmented with a single nominal but without proposition
letters has an EXPTIME-hard satisfiability problem. This improves the result in [7], which
states that the minimal tense logic with one nominaland proposition letters is EXPTIME-
hard. From the proof of Theorem 4.4, it is clear that the main ingredient for EXPTIME-
hardness is not the presence of regular expressions in PDL���� but rather the presence of a
unique nominal with future and past-time operators.

To conclude this section we summarize the results we have obtained so far, and situate
them among related results in the literature; see Table 1.

5 The complexity of reasoning with path constraints

In order to characterize the complexity of reasoning problems on path constraints, we will
either use translations into PDL���� (mainly via Lemma 3.4) or use direct methods.

5.1 The query evaluation problem

An immediate corollary to Lemma 3.4, item 1, and Theorem 4.1 is that checking whether
� �� � � � can be done in time����� � ���� � �����. The rest of this section is devoted
to showing that this tractability result can be improved significantly. We need the following
lemma.

LEMMA 5.1
The problem below is in NLOGSPACE in��� and�	�:
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TABLE 1. A summary of results on logical reasoning tasks

Model checking problem

nondeterministic graphs deterministic graphs
PDL P-complete; see e.g. [18] P-complete; see e.g. [18]
PDL���� P-complete; this P-complete; this

paper, Corollary 4.2 paper, Corollary 4.2

Satisfiability problem

nondeterministic graphs deterministic graphs
PDL EXPTIME-complete [22, 40] EXPTIME-complete [39, 9]
PDL with nominals EXPTIME-complete [23] EXPTIME-complete [23]
CPDL EXPTIME-complete [22, 40] EXPTIME-complete [44]
CPDL with nominals EXPTIME-complete [20, 7] open
PDL���� EXPTIME-complete; this open

paper, Theorem 4.4

instance: a finite�-structure�, a path expression	, and�� � � � ;

question: is ��� �� � 	��	�?

PROOF. Without loss of generality, we can assume that	 does not contain�, since� is finite.
We write��	�	� to denote the finite state automaton obtained from� in the obvious way with
initial state� and final state�. The following facts are known:

1. constructing a finite state automaton��	� recognizing��	� (the language generated by	)
can be done in LOGSPACE in�	�;

2. constructing a product automaton� recognizing the intersection of the languages from
��	� and��	�	� can be done in LOGSPACE in���	��� ���;

3. the class of LOGSPACE transformations is closed under composition (see [8, Theorem
3.37]).

Now, note that the question whether��� �� � 	��	� is equivalent to checking whether����
is nonempty. By [8, Theorem 3.36], we get that the latter can be done in NLOGSPACE in
���.

Lemma 5.1 is an improvement of [36], which only states that the problem formulated in
Lemma 5.1 is in P.

In the proof of Lemma 5.1, if	 contains�, then we consider	 � instead of	 by replacing
every occurrence of� by ��� � � � �� ���, where either�� occurs in	 or
�� is nonempty in
�. Hence,�	�� is in����� � �	�� which guarantees that we also have an NLOGSPACE upper
bound in this case.

THEOREM 5.2
The query evaluation problem for the class of path constraints is NLOGSPACE-complete in
��� and���.

PROOF. The Graph Accessibility Problem (GAP) can easily be reduced to the query evalu-
ation problem, which provides NLOGSPACE-hardness. Indeed, let� � ���
� be a graph
and�� � � � . We have��� �� � 
� iff �� � ��� ��
�� � 
��� �� �� �� �

�

� with 
�� � 

and
�� � ���� ���.
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Now, let us establish the NLOGSPACE upper bound. Let� � � � � �� � (respec-
tively, � � � � � �� �) be a path constraint and� a finite�-structure. We provide an
NLOGSPACE algorithm to check whether� ��� �. Since NLOGSPACE = co-NLOGSPACE,
we are done. The steps are the following:

1. nondeterministically choose� and� in � ;

2. check in NLOGSPACE whether��	� �� � 	���� (see Lemma 5.1);

3. check in NLOGSPACE whether��� �� � 	���� (see Lemma 5.1);

4. check in NLOGSPACE whether��� �� �� 	���� (respectively��� �� �� 	����).

To see that the final step can also be done in NLOGSPACE, use Lemma 5.1 together with the
fact that NLOGSPACE = co-NLOGSPACE.

Notice that the proof for NLOGSPACE-hardness is actually a lower bound for forward con-
straints. Moreover (and by taking
�� � ���� ���) it can be adapted for backward constraints.
In a similar manner, the proof can be adapted for deterministic structures. Summarizing, then,
we have the following:

THEOREM 5.3
The query evaluation problems for the classes of forward constraints, backward constraints,
and path constraints� are all NLOGSPACE-complete in��� and���, for both deterministic
and nondeterministic graphs�.

As an aside, we designed the logic PDL���� in such a way that we can express reasoning prob-
lems for standard path constraints as easily as possible. We can ‘measure’ how well PDL����

fits this purpose by comparing the complexity results of reasoning in PDL���� to those of
reasoning in other logics, and hopefully getting as close as possible to the complexity of the
corresponding problem on standard path constraints. For instance, the hybrid�-calculus has
a model-checking problem in NP� co-NP; given Theorems 5.2 and 5.3 this result disquali-
fies the hybrid�-calculus as a logic that nicely fits the descriptive requirements of standard
path constraints; on the other hand, the alternation-free�-calculus would fit better.

5.2 The containment problem

Our next aim is to obtain sharp complexity results for containment problems for classes of
path constraints. We start by considering nondeterministic�-structures, and the first step is
to show the following.

THEOREM 5.4
The containment problem for forward constraints is decidable in exponential time, while it is
at least PSPACE-hard whenever��� � �.

PROOF. The EXPTIME upper bound is a corollary of Lemma 3.4(2) and Theorem 4.4. As to
the lower bound PSPACE, each relational term	 built with �� � �� over the atomic terms
��� ��� � � � can obviously be viewed as regular expressions and we write��	� to denote
the language generated by	. By [34, Theorem 2.12(c)], the problem of checking whether
������ ���

�� �� ��	�, where	 is a relational term built over���� ���, is PSPACE-complete.
The complement problem belongs to the same complexity class. One can show that for
any regular expression	� 	�, ��	� � ��	�� iff for any structure��� �� 
�� � 
���, 	��	� �
	��	��. Consequently, it is easily verified that for any relational term	 built over�� �� ���,
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����� � ���
�� � ��	� iff �� ��� � ���

� �� 	. Hence, the containment problem restricted to
two labels and without forward constraints as premisses, is already PSPACE-hard.

For backward constraints one can obtain results similar to those for forward constraints.

THEOREM 5.5
The containment problem for backward constraints is decidable in exponential time, while it
is at least PSPACE-hard whenever��� � �.

PROOF. Since the converse construction����� is not present in the path expressions, we can-
not simply use the proof of Theorem 5.4. However, one can easily show that for any regular
expression� built over ���� ���, (i) ����� � ����� � ���� iff (ii) for any �-structure�,
� �� � �� �� implies� �� ��� � ���

� �� ��, and from this we easily get our theorem. So
let us prove that the equivalence (i) iff (ii) holds.
(Only-if) If ����� � ����� � ����, then obviously for every�-structure�, � �� � �� ��
implies� �� ��� � ���

� �� ��.
(If) Assume that (ii) holds and suppose that there is a finite word� � ����� � ���

�� � ����
such that� � �� � � � � � �� for some� � � (� � � if � � �). Let �� � ���� � � � � � �
��� �� 
�� � 
�� � 
��� be the structure such that


 for every� � ��� ��, for all !� ! � � ��� � � � � �� ��, !
��!
� iff !� � ! � � and�� � ��;


 
�� �� ��! � �� �� � ! � ��� � � � � ��� �� � � � � � �� � �����.

So�� �� � �� �� but not� �� ��� � ���
� �� �� since��� � � �� � �
�� � 
���

� and
��� �� �� �� 
�� , a contradiction.

We now restrict attention todeterministic�-structures, which makes a substantial difference.
The containment problem with (lollipop) path constraints of the form� � � � � � restricted
to deterministic�-structures is undecidable even if� contains only two labels [12]. However,
in the lollipop constraints used in the proof, the operator� occurs in�, and this is used to
encode the word problem. Moreover by imposing restrictions of�, �, and� (for instance by
forbidding�), decidable restrictions of the containment problem on deterministic�-structures
have been found (again, see [12]). Using the results in this paper, we are able to identify a
new decidable case. By combining Lemma 3.4, item 3, and Theorem 4.3, we get

LEMMA 5.6
The containment problem for backward constraints restricted to deterministic�-structures
for finite sets of labels� is decidable in exponential time.

Lemma 5.6 above provides a positive answer to an open question from [12]. However, in spite
of Lemma 3.4 it is open whether the containment problem for forward constraints restricted
to deterministic�-structures is decidable. Similarly, the decidability of the containment prob-
lem for backward constraints restricted to deterministic�-structures (without restrictions on
�) is also open.

6 Conclusions

By moving back and forth between reasoning tasks for PDL���� and reasoning tasks for
semistructured data, we have given new and transparent decidability proofs for the forward
constraints proposed in [3] for optimizing queries on semistructured data, mostly in the con-
text of the web. In some cases we have obtained sharp upper and lower bounds that are better
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TABLE 2. A summary of results on reasoning tasks with path constraints
Query evaluation problem

nondeterministic graphs deterministic graphs
forward constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 5.3 this paper, Theorem 5.3
backward constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 5.3 this paper, Theorem 5.3
constraints NLOGSPACE-complete; NLOGSPACE-complete;

this paper, Theorem 5.2 this paper, Theorem 5.3

Containment problem

nondeterministic graphs deterministic graphs
forward constraints PSPACE-hard, in EXPTIME; open

this paper, Theorem 5.4
backward constraints PSPACE-hard, in EXPTIME; in EXPTIME (� finite);

this paper, Theorem 5.5 this paper, Lemma 5.6
constraints undecidable undecidable

[13, Theorem 3.1] [12, Theorem 6.1]

than previously known ones (see e.g. Theorem 5.2 and 5.3), and in other cases we have im-
proved known bounds (Theorems 5.4 and 5.5). Tables 1 and 2 summarize the complexity and
(un-) decidability results for the reasoning tasks considered in this paper.

It is worth observing that some of our decidability results were obtained by re-using the
results of [20]. More generally, there are many areas in computer science in which describing
and reasoning about finite graphs is a key issue. There exists a large body of work in feature
structures [42], process algebra [38], or knowledge representation [21] that can be usefully
applied in the theory of semistructured datas. But there are differences in the kind of questions
asked and in the emphasis in descriptions of linguistic structures, processes, or knowledge on
the one hand, and in descriptions of database schemas on the other hand; these differences
make the present application interesting and nontrivial.

Our modal logic perspective on standard path constraints moves many decidability and
complexity issues for semistructured data into the realm of PDL-like logics. Here are just
some of the many remaining open problems.

1. Complexity of the containment problem for the class of forward constraints (respectively
backward constraints) (we know PSPACE-hardness and the EXPTIME upper bound).
The containment problem for the class of forward constraints cannot be expressed nat-
urally by query containement between a conjunctive two-way regular path query with
constants and a tree two-way regular path query with constants, although this problem is
in PSPACE [14]. Query containment between conjunctive two-way regular path queries
with constants is roughly about the validity of questions of the form� � � � � � � �� �
�� � � � � � ��.

2. Decidability of the containment problem for forward constraints restricted to determinis-
tic �-structures.

3. Decidability of PDL���� restricted to deterministic�-structures; decidability of PDL with
converse and determinism is a long-standing open problem [43].

4. Extending our results to a richer path expressions language containing additional predi-
cates such as, for example, XPath [45].
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