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1
INTRODUCTION

Search and conversational systems have become integral to daily life, and have
transformed how individuals access information, communicate, and perform tasks
[157]. Search engines like Google and conversational AI systems, such as ChatGPT,
Siri, and Alexa, facilitate seamless interactions by understanding and responding to
natural language. These systems also provide instant access to knowledge, which
enables fast decision-making and learning on an unprecedented scale: by reducing
search costs and cognitive load through efficient retrieval and summarization, they
allow users to focus on higher-level tasks rather than the mechanics of locating
information in the search space [157, 166].

Previously, information systems mainly revolved around retrieval pipelines
consisting of one or more ranking stages [108, 213]. The goal in these retrieval
pipelines is to retrieve information that is relevant to a user query and addresses
their information needs. These multi-stage pipelines can include different types
of rankers, such as initial retrievers, re-rankers, or hybrid retrieval models [108].
Moreover, retrieval models vary widely, including sparse, dense, and learned sparse
approaches, among others [70, 106, 109, 149]. The output of retrieval pipelines is
typically presented to the user as a ranked list of items.

With the advent of large language models (LLMs), there has been a shift
in information systems from purely retrieval-based towards generation-based
approaches [82, 97, 98]. However, the knowledge encoded in LLMs is static and
may quickly become outdated [129]. This may be attributed to various factors.
For instance, certain information cannot be included in LLM training because of
privacy restrictions, while other information may not yet exist at the time of training.
Furthermore, LLMs are prone to generating plausible but factually incorrect output,
commonly referred to as hallucinations [36, 72, 77, 168].

Retrieval-augmented generation (RAG) [98] has emerged as an effective solution
to overcome the limitations of generation-only approaches, by enhancing factual
accuracy, ensuring grounding in external knowledge, and maintaining up-to-date
information access [96, 129, 168]. A RAG system typically consists of a stack that
begins with a user query, followed by retrieval from a set of items (e.g., documents),
which are then used as context for generating an answer to the given user query [96,
98].

1
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However, like any other multi-stage system, each component of a RAG pipeline
(whether retrieval or generation) can fail, making their evaluation both necessary
and critical. Specifically, the widespread use of such multi-stage pipelines behind
search and conversational systems raises challenges related to algorithmic bias and
reliability in long-tail or unpredictable scenarios [104, 151, 173, 176]. Further, as
these systems grow in sophistication and ubiquity, it becomes increasingly important
to ensure their continuous and robust evaluation. Evaluation can span across
multiple dimensions, including:

• Generalizability and robustness of models to long-tail scenarios: Settings
in which search and conversational systems operate can be highly diverse
and it may be difficult to anticipate low-frequent (long-tail) events during
model development [66, 159, 195] for these systems. It is therefore important
to scrutinize the performance of the models across as many potential
scenarios as possible to ensure robust and reliable outcomes. For instance,
long-tail retrieval scenarios pose challenges that ranking models are typically
not designed to address. One such setting is retrieval with lexically rich
queries, which often arise in the query-by-example retrieval task where
documents themselves are used as queries. In Chapter 2, we investigate the
generalizability of contextualized term-based ranking models, which combine
the contextualization power of language models with the efficiency of lexical
models. This evaluation highlights whether language-model-based retrievers
can generalize effectively to scenarios where queries contain rich lexical
information and provide abundant lexical signals about user intent.
Additionally, in Chapter 3, we investigate the robustness of language
models for user satisfaction estimation in task-oriented dialogue systems.
Specifically, we examine the performance of user satisfaction estimators under
evaluation settings with different distributions of satisfactory and dissatisfactory
dialogue samples, a scenario that had not been previously explored. This
evaluation highlights whether user satisfaction estimators in task-oriented
dialogue systems can generalize to alternative evaluation settings applied to
commonly-used benchmarks of this task.

• Potential biases and trustworthiness of models: Bias in information systems
that rely on language models can arise from multiple sources [34, 124, 173,
176]. At training time, biases may be inherited from the data used for
pre-training, fine-tuning, or post-training. At inference time, biases may
also emerge from the data on which these models are applied. Moreover,
such biases can manifest across diverse use cases of language models in the
development of information systems. This thesis examines these issues in two
contexts: retrieval (Chapter 4) and generation (Chapter 5). In both chapters, we
propose evaluation metrics and methodologies for detecting and quantifying
biases in information retrieval and generation systems, with a specific focus
on retrieval and generation with language models. Studying the ways in which
language models introduce and propagate bias is critical, as these biases can
have downstream effects on real-world information systems [35, 174].

These evaluation scenarios, however, require devising task-specific experimental
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setups and/or evaluation metrics. To this aim, we use counterfactual thinking, which
enables the systematic exploration of “what-if” scenarios. This perspective helps to
ensure the comprehensivenesss and generalizability of both evaluation methods [2]
and models [1, 4, 5] by covering hypothetical conditions. Specifically, we employ
counterfactual evaluation which can be used to assess how a model’s predictions
change when a specific feature or set of features is altered while keeping everything
else constant. By simulating these scenarios, we can evaluate and enhance the
robustness of search and conversational systems by identifying potential brittleness
in ranking and generative models utilized behind these systems.

In summary, this dissertation presents four interrelated studies (in Chapters 2
through 5) that examine how modern retrieval and generative models – particularly
language models (LMs) – behave in nuanced, real-world information-seeking contexts.
As mentioned above, our investigations span multiple areas, including attributive
retrieval-augmented generation, bias/fairness in ranking, retrieval effectiveness in
query-by-example settings, and robustness in user satisfaction estimation within
task-oriented dialogue systems. Although each chapter addresses a distinct challenge,
collectively, they contribute to a deeper understanding of, and improvements in, the
robustness and fairness of AI systems under realistic and structurally challenging
conditions. They also show how evaluation frameworks can be improved to better
reflect the performance of retrieval and generative models in complex scenarios.

1.1. RESEARCH OUTLINE AND QUESTIONS
Each of the four research chapters in this dissertation addresses a specific aspect of
our overall investigation. We outline each of these chapters in detail in the following.

1.1.1. EVALUATING CONTEXTUALIZED LEXICAL MODELS IN

QUERY-BY-EXAMPLE RETRIEVAL

In Chapter 2, we investigate the generalizability of contextualized term-based ranking
to retrieval settings with lexically rich queries. Contextualized term-based ranking
has been shown to bring the power of contextualization into the efficiency of lexical
(term-based) ranking in ad hoc retrieval [210, 211]. However, having lexically rich
queries in a retrieval setting means that there is an abundance of lexical relevance
signals for a term-based ranking model such as BM25. As such, the generalizability
of the added value of contextualization to retrieval settings with lexically rich queries
remains unexplored. To study this generalizability, we evaluate the performance
of two contextualized lexical ranking models (TILDE and TILDEv2) [210, 211] in
query-by-example (QBE) retrieval tasks, where documents are used as queries to
retrieve other similar documents [122, 123, 154]. This retrieval setting is common
in domain-specific applications such as scientific literature search and legal case
retrieval, where queries are substantially longer and more semantically complex
than typical keyword-based queries. This chapter frames QBE retrieval as a distinct
and underexplored lexically rich retrieval setup and highlights the generalizability of
contextualized term-based ranking to this setup. In summary, in this chapter we
address the following research question:
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RQ1 How generalizable is contextualized term-based ranking to retrieval
settings with lexically rich queries?

1.1.2. ROBUST USER SATISFACTION ESTIMATION IN TASK-ORIENTED

DIALOGUE SYSTEMS

In Chapter 3, we look into the evaluation of user satisfaction estimation (USE)
in task-oriented dialogue (TOD) systems [33, 54, 81, 178]. USE is a critical task
for ensuring high-quality and responsive conversational agents [44, 75, 172]. A
key limitation in this area is the imbalance in existing evaluation datasets, which
are heavily skewed toward satisfactory interactions (dialogues) between users and
dialogue systems. This imbalance means that the impact of a more balanced set
of satisfaction labels on the performance of USE models remains unknown. Put
another way, it is not clear how robust and generalizable the performance of current
user satisfaction estimators is to evaluation scenarios with more dissatisfactory
dialogue samples. This type of robustness is particularly important, as its absence
prevents the reliable detection of interactions in which users are dissatisfied. This
is a capability essential for real-world deployment, especially in customer-facing or
support-oriented applications. Therefore, we address the following research question:

RQ2 How robust are user satisfaction estimators in task-oriented dialogue
systems with more dissatisfactory user experiences?

To address this question, there is a need to balance the data with more
dissatisfactory dialogue samples, which demands further dialogue collection and
human annotation, which is a costly and time-consuming task. Therefore, to address
RQ2, we first explore the use of counterfactual data augmentation as a strategy
for enriching evaluation datasets with more dissatisfactory dialogues. By using
large language models, we propose a framework for generating dialogue samples
that reflect alternative user experiences (satisfactory versus dissatisfactory) while
preserving the original task structure. This approach aims to support the creation
of more balanced test collections, which enable a more accurate evaluation of user
satisfaction estimation models.

This chapter outlines the limitations of current benchmarks, motivates the need
for more representative dialogue samples, and presents a direction for augmenting
the current benchmarks to be more representative of dialogue scenarios that could
occur between a user and a dialogue system. In doing so, it contributes to making
dialogue system evaluation more robust and reflective of real-world user behavior,
particularly in capturing negative or dissatisfactory user experiences.

1.1.3. MEASURING SOCIETAL BIAS IN RANKED LISTS OF DOCUMENTS

In Chapter 4, we study societal bias in ranked lists of documents, with a particular
focus on gender representation in ranked lists of documents [23, 146]. Document
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ranking models, often used in web search and other information retrieval systems,
can reinforce or amplify existing societal inequalities when certain groups are
systematically underrepresented or misrepresented in the retrieved results [50]. One
prominent form of this issue is gender bias, where search results disproportionately
favor content associated with one gender over another [24, 147, 205]. Prior work
has introduced fairness metrics to evaluate the extent of such bias using term-based
representations for different societal groups. The presence of group-representative
terms in a document can be used to define the association of a document
with a group, e.g., female-representative terms such as she, her, mother and
male-representative terms such as he, him, father. Existing metrics often fall short
in capturing nuanced representational disparities or in handling documents that do
not explicitly reference any gender group [2], i.e., documents that do not include
any group-representative terms. In this chapter, we investigate and propose a novel
evaluation metric for more effective detection and measurement of representational
bias in a ranked list of documents. More concretely, we study the following research
question:

RQ3 How to effectively measure the societal bias in a ranked list of documents
based on group-representative term sets?

In Chapter 4, we study RQ3 in the context of gender bias as a specific type of
societal bias. There is limited understanding of how model-internal behavior, such
as a system’s sensitivity to gendered language, relates to the observed fairness of
its output, i.e., retrieved rank list of documents. This chapter also explores how to
distinguish between bias in retrieved ranked lists and bias in the underlying model
behavior. We propose alternative perspectives for evaluating both the fairness of
ranked results and a model’s tendency to respond differently to subtle changes in
identity-related language. The overall goal is to better understand and diagnose
societal bias in document retrieval systems.

1.1.4. ATTRIBUTION SENSITIVITY AND BIAS IN RAG
In Chapter 5, we explore a key trust-related challenge in retrieval-augmented
generation (RAG) systems [80, 98, 143]: the reliability of source attribution. In
attributive RAG, large language models generate answers based on a set of retrieved
documents while attributing (citing) these sources to support the tracking of answer
provenance [61, 76, 158]. However, the extent to which these models faithfully
attribute their responses to the appropriate input documents (and the factors that
influence their attribution behavior) remains understudied. One important yet
underexplored factor in attributive RAG is the effect of metadata associated with
input documents, particularly authorship information, that is, details about who
generated or wrote the document (e.g., whether it is AI-generated or human-authored
web content). If attribution is influenced by (and thus is sensitive to) superficial
cues like authorship labels rather than content relevance, it raises concerns about
the trustworthiness, bias, and transparency of the generated output, especially in
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high-stakes domains such as law and education.
This chapter investigates how sensitive LLMs are to authorship metadata and

whether they exhibit systematic preferences or biases in source attribution: whether
there is any change in LLMs’ attribution behavior (how they attribute their generated
outputs to source documents) when they know who the authors (generators) of
the source documents are. By focusing on this problem, we aim to better
understand the conditions under which LLMs make attribution decisions. Moreover,
we investigate how these decisions may introduce implicit biases into otherwise
objective attributions (citations). More concretely, we answer the following research
question:

RQ4 How sensitive and biased are LLMs to the generators of source documents
in attributive retrieval-augmented generation?

1.2. CONTRIBUTIONS

This thesis makes the following methodological, empirical, and resource contributions:

1.2.1. METHODOLOGICAL CONTRIBUTIONS

• We introduce a data augmentation approach that uses LLMs to generate
satisfaction-focused counterfactual dialogues in task-oriented dialogue (TOD)
systems. We highlight that this approach can also serve as a systematic
methodology for enhancing training data for user satisfaction estimation
(Chapter 3).

• We propose Term Exposure-based Fairness (TExFAIR), an evaluation metric for
measuring societal bias in ranked document lists. TExFAIR explicitly defines
the association of each document to the groups based on a probabilistic
term-level association (Chapter 4).

• We propose Counterfactually-estimated Attribution Bias (CAB) and Counterfactually-
estimated Attribution Sensitivity (CAS), two evaluation metrics that can be used
for measuring, respectively, the bias and the sensitivity of retrieval-augmented
large language models toward information about who generated the source
input documents (Chapter 5).

1.2.2. EMPIRICAL CONTRIBUTIONS

• We demonstrate that two contextualized lexical models (TILDE and TILDEv2)
are less effective in Query-by-Example (QBE) retrieval than in ad hoc retrieval.
We highlight that QBE is a lexically rich retrieval setting that is structurally
different from other retrieval scenarios and requires special attention and
dedicated methodological development (Chapter 2).
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• We show that the relevance signals of contextualized term-based models can
be complementary to those of BM25, as interpolating the methods leads to
improvements in ranking effectiveness (Chapter 2).

• We demonstrate that adding information about who generated source
documents (as metadata) to source documents may lead to statistically
significant changes in the attribution quality of retrieval-augmented LLMs
(Chapter 5).

• We uncover an attribution bias in LLMs toward explicit human authorship,
providing a competing hypothesis to prior findings that suggested LLMs often
prefer LLM-generated content over human-written content (Chapter 5).

1.2.3. RESOURCE CONTRIBUTIONS

• We provide augmented evaluation test collections (MWOZ and SGD) with
counterfactual dialogue samples for user satisfaction estimation (Chapter 3).

• We provide AttriEval: an evaluation python library for assessing the performance
of retrieval-augmented LLMs with respect to how they attribute their answers
to the input source documents (Chapter 5).

1.3. THESIS ORIGINS
Here, we list the publications that have been used as the basis for each chapter in
this thesis.

Chapter 2 is based on the following paper:

• A. Abolghasemi, A. Askari, and S. Verberne. “On the Interpolation
of Contextualized Term-based Ranking with BM25 for Query-by-Example
Retrieval”. In: Proceedings of the 2022 ACM SIGIR International Conference on
Theory of Information Retrieval. 2022, pp. 161–170

AA*1: Conceptualization, Investigation, Validation, Software, Methodology,
Writing – Original Draft, Writing – Review & Editing. AA: Conceptualization,
Methodology, Writing – Review & Editing. SV: Supervision, Conceptualization,
Writing – Review & Editing, Funding Acquisition.

Chapter 3 is based on the following paper:

• A. Abolghasemi, Z. Ren, A. Askari, M. Aliannejadi, M. Rijke, and S. Verberne.
“CAUSE: Counterfactual Assessment of User Satisfaction Estimation in Task-
Oriented Dialogue Systems”. In: Findings of the Association for Computational
Linguistics ACL 2024. Bangkok, Thailand and virtual meeting: Association for
Computational Linguistics, Aug. 2024, pp. 14623–14635
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2
CONTEXTUALIZED TERM-BASED

RANKING

Term-based ranking with pre-trained transformer-based language models has recently
gained attention as they bring the contextualization power of transformer models
into the highly efficient term-based retrieval. In this chapter, we examine the
generalizability of two of these deep contextualized term-based models in the context
of query-by-example (QBE) retrieval in which a seed document acts as the query
to find relevant documents. In this setting — where queries are much longer than
common keyword queries — BERT inference at query time is problematic as it
involves quadratic complexity. We investigate TILDE and TILDEv2, both of which
leverage BERT tokenizer as their query encoder. With this approach, there is no need
for BERT inference at query time, and also the query can be of any length. Our
extensive evaluation on the four QBE tasks of SciDocs benchmark shows that in a
query-by-example retrieval setting TILDE and TILDEv2 are still less effective than a
cross-encoder BERT ranker. However, we observe that BM25 shows a competitive
ranking quality compared to TILDE and TILDEv2, which contradicts the findings
about the relative performance of these three models on retrieval for short queries
reported in prior work. This result raises the question about the use of contextualized
term-based ranking models being beneficial in QBE setting. Furthermore, we study
the score interpolation between the relevance score from TILDE (TILDEv2) and BM25.
We find that these two contextualized term-based ranking models capture different
relevance signals than BM25 and combining the different term-based rankers results
in statistically significant improvements in QBE retrieval. This chapter sheds light on
the challenges of retrieval settings different from the common evaluation benchmarks.
It could be of value as future work to study other contextualized term-based ranking
models in QBE settings.
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2.1. INTRODUCTION
Query-by-Example (QBE) retrieval is an Information Retrieval (IR) setting in which
a seed document1 acts as the query to represent the user’s information need and
the retrieval engine searches over a collection of the same type of documents [7,
122, 123, 154]. This retrieval setup is typical in professional, domain-specific tasks
such as legal case law retrieval [7, 10], patent prior art search [57, 137, 138], and
scientific literature search [7, 122, 123]. While using a document as a query could
become challenging due to its length and complex semantic structure, prior work
has shown that traditional term-based retrieval models like BM25 [148] are highly
effective when used in QBE retrieval [7, 10, 150].

Recently, deep contextualized term-based retrieval models have gained attention
as they bring the contextualization power of the pre-trained transformer-based
language models into the highly efficient term-based retrieval. Examples of such
models are DeepImpact [113], SPLADE [56], SPLADEv2 [55], TILDE [211], TILDEv2
[210], COIL [59], and uniCOIL [106]. Here, we specifically investigate TILDE, which
is a term independent likelihood model, and its successor TILDEv2, which is a deep
contextualized lexical exact matching model.

TILDE and TILDEv2, which are introduced as term-based re-ranking models, follow
a recent paradigm in term-based retrieval where term importance is pre-computed
with scalar term weights. Besides, to predict the relevance score, both of these
models use the BERT tokenizer as their query encoder, which means that they do not
need to perform any BERT inference at query time to encode the query. However,
leveraging tokenizer-based encoding of the query trades off the query representation
and therefore effectiveness with higher efficiency at inference time [210]. While the
effectiveness of these models is evaluated on tasks and benchmarks where we have
short queries, e.g., MSMARCO Passage Ranking [125] and the TREC DL Track [41],
in this chapter, we evaluate them in the aforementioned QBE retrieval setting where
queries are much longer than common keyword queries. In this regard, we address
the following research questions:

Q1 How effective are TILDE and TILDEv2 in query-by-example retrieval?

A specific direction in answering Q1 is to investigate the ranking quality of TILDE
and TILDEv2 in comparison with the effective cross-encoder BERT ranker [7, 126],
which is described in section 2.2.4. We are interested in this direction for two
reasons. First, the cross-encoder BERT ranker exhibits quadratic complexity in both
space and time with respect to the input length [108] and this is aggravated in
QBE where we have long queries. TILDE and TILDEv2, however, do not need any
BERT inference at query time. Second, due to the maximum input length of BERT,
cross-encoder BERT ranker, which uses the concatenation of the query and the
document, might not cover the whole query and document tokens in a QBE setting,
whereas in TILDE and TILDEv2, the query can be of any length and documents are
covered up to the maximum length of BERT.

Additionally, since TILDEv2 pre-computes the term weights only for those tokens
existing in the documents, one risk is that it might aggravate the vocabulary

1Throughout this chapter, we use the term “document” to refer to a unit of retrieval [108].
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mismatch problem. A typical approach to address this issue is to use document
expansion methods. Zhuang and Zuccon (2021) use TILDE as their document
expansion model for TILDEv2. We adopt that approach for our task and further
investigate the impact of token-based document expansion with TILDE on the
ranking quality of TILDEv2 in a QBE retrieval setting.

Apart from comparing TILDE and TILDEv2 to the cross-encoder BERT ranker,
we also make a comparison to traditional lexical matching models (BM25 and
Probabilistic Language models), which have been shown as strong baselines on QBE
tasks in prior work [10, 150]:

Q2 What is the effectiveness of traditional lexical matching models with varying
tokenization strategies in comparison to TILDE and TILDEv2?

To answer Q2 we will investigate the effect of using the BERT tokenizer [45] as
pre-processing for traditional term-based retrieval models. By doing so, we are
aligning the index vocabulary of traditional models with that of TILDE and TILDEv2,
which could make our comparison more fair.

We will see in the Section 2.4 that BM25 shows a competitive ranking quality
in comparison to TILDE and TILDEv2 in our QBE benchmark. Because of the
similar quality on average, we are interested to see if the relevance signals of TILDE
and TILDEv2 are different from that of BM25, to find out if the methods are
complementary to each other. To this aim, we will investigate the following research
question:

Q3 To what extent do TILDE and TILDEv2 encode a different relevance signal
from BM25?

To address the question above, as it is described in details in Section 2.3.3, we
will analyze the effect of the interpolation of the scores of TILDE and TILDEv2 with
BM25.

Since TILDE and TILDEv2 are introduced as re-ranking models, we use four
different tasks from the SciDocs evaluation benchmark [39] as a domain-specific
QBE benchmark. This benchmark uses scientific paper abstracts as the query and
documents. The retrieval setting in these tasks suits as a re-ranking setup because of
the number of documents to be ranked for each query. Since that we are working
in a domain-specific evaluation setting, we will also address the following research
question:

Q4 To what extent does a highly tailored domain-specific pre-trained BERT model
affect the effectiveness of TILDE and TILDEv2 in comparison to a BERTbase

model?

In summary, our main contributions in this chapter are three-fold:

• We show that two recent transformer-based lexical models (TILDE and
TILDEv2) are less effective in Query-by-Example retrieval than was expected
based on results reported for ad hoc retrieval. This indicates that QBE retrieval
is structurally different from other IR settings and requires special attention for
methods development;
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• We show that the relevance signals of TILDE and TILDEv2 can be
complementary to that of BM25 as interpolation of the methods leads to an
improvement in ranking effectiveness;

• We also investigate interpolations of BM25 with TILDE and TILDEv2 in an
ideal setting where the optimal interpolation weight is known a priori, and by
doing so, we show that more stratified approaches for the interpolation could
result in higher gains from the interpolation of BM25 with TILDE and TILDEv2.

In section 2.2 we describe the retrieval models used in this chapter. In section
2.3 we provide details about our methods and experiments and in section 2.4 we
analyze the results and discuss the answers to our research questions. Section 2.5 is
dedicated to to further analysis of the results, and finally, in Section 2.6 we provide
the conclusion.

2.2. BACKGROUND: RETRIEVAL MODELS
In this section, we briefly introduce the retrieval models that we implement and
evaluate in our experiments.

2.2.1. TRADITIONAL LEXICAL MATCHING MODELS

BM25. For BM25 [148], we use the implementation by Elasticsearch2 with the
parameters k = 2.75, and b = 1, which was tuned over the validation set.

Probabilistic Language Models. For language modeling (LM) based retrieval [20, 69,
139], we use the built-in similarity functions of Elasticsearch for the implementation
of language model with Jelinek Mercer (JM) smoothing [206].

2.2.2. TERM INDEPENDENT LIKELIHOOD MODEL: TILDE
TILDE is a tokenizer-based term-based retrieval model which follows a term
independence assumption and formulates the likelihood of a query as follows:

TILDE-QL(q |d) =
|q |∑
i

l og (Pθ(qi |d)), (2.1)

in which q is the query, and d is the document. As Figure 2.1 shows, to compute
the relevance score, the text of a document d is fed as the input for BERT and
the log probability for each token is estimated by using a language modeling head
on top of the BERT [CLS] token output. In other words, we are pre-computing
the term weights over the complete BERT vocabulary. During both training and
inference time, the query text is tokenized by using a BERT tokenizer and the
resulting token IDs are used to look up the corresponding log probability from the
likelihood distribution predicted in the output of the language modeling head. It is
worth mentioning that the document likelihood can be computed in a similar way

2https://github.com/elastic/elasticsearch

https://github.com/elastic/elasticsearch
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Figure 2.1: Model architectures. Left: TILDE [211]. Right: TILDEv2 [210]. Both TILDE
and TILDEv2 leverage the BERT tokenizer as their query encoder. ti stands for the
i th token of the document. The densevector and spar sevector have the same
length as the BERT vocabulary size.

by swapping the query and document; however, we only use the query likelihood
(Equation 2.1) in our experiments.

For TILDE, we use the implementation from the authors’ code repository.3

We report results for the TILDE model with different initial checkpoints as the
BERT encoder for our fine-tuning procedure. TILDEBERT uses bert-base-uncased,
TILDESciBERT uses SciBERT, and TILDEMSMARCO uses a TILDE which is already
fine-tuned on MSMARCO; we use TILDEMSMARCO in a zero-shot setting on our data.

2.2.3. LEXICAL EXACT MATCHING: TILDEV2
TILDE has a drawback in which it expands each document to the size of the
BERT tokenizer vocabulary. To tackle this problem, the authors proposed TILDEv2.
TILDEv2, which builds upon uniCOIL [106] and TILDE, follows a recent paradigm
in contextualized lexical exact matching in which BERT is used to output a scalar
importance weight for document tokens [106, 210]. As it is shown in Figure 2.1,
in TILDEv2, the token representation is downsized into a scalar weight and the
relevance score between a query and a document pair is computed by a sum over
the contextualized term weights for all terms appearing in both query and document:

s(q,d) = ∑
qi∈q

max
qi=d j

(
c(qi )× vd

j

)
. (2.2)

Here, q and d are the query and the document respectively; d j is the j th token of
the document; vd

j is the term importance weight for the j th token of d , and c(qi )

is the count of the i -th unique token which is achieved by using the BERT tokenizer

3https://github.com/ielab/TILDE

https://github.com/ielab/TILDE
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as the query encoder. In this equation, vd
j is computed using the same method as

in Lin and Ma (2021) in which a RELU function is used on the projection layer to
force the model to map the token representations into a positive scalar weight:

vd
j = ReLU (W 1×n

pr o j BERT (d j )+b), (2.3)

in which d j is the j th token in document d and b is the learnable bias parameter of
the projection layer Wpr o j . Lin and Ma (2021) show that using a scalar weight as term
importance (uniCOIL [106]) instead of a vector representation (COIL [59]) results in
a decrease in the effectiveness; however, by using query expansion, uniCOIL can
achieve higher effectiveness. Following the method proposed by Zhuang and Zuccon
(2021) for query expansion with TILDE, we will show how TILDEv2 will act when we
expand documents with TILDE. For TILDEv2, we use the implementation from the
authors’ code repository.4

2.2.4. CROSS-ENCODER BERT RANKER

The state-of-the-art results on SciDocs is reported by Abolghasemi, Verberne, and
Azzopardi (2022) where they use a multi-task optimized cross-encoder BERT ranker
[126]. The cross-encoder BERT ranker uses the concatenation of query and the
document as the input to a BERT encoder. The BERT encoder is then followed by a
projection layer Wpr o j on top of its [C LS] token to compute the relevance score:

s(q,d)=BERT ([C LS]q[SEP ]d [SEP ])[C LS] ∗Wpr o j . (2.4)

In this equation, q and d represent the query and the document respectively and
[C LS] as well as [SEP ] are special BERT tokens [45].

2.3. METHODS AND EXPERIMENTAL SETTINGS
In this section, we provide details and preliminaries about our methods and
experimental settings.

2.3.1. EVALUATION BENCHMARK

We run our experiments on the SciDocs benchmark [39]. This dataset was originally
introduced as a benchmark for representation learning tasks. Later, several works,
including [7, 122] used the tasks of {co-view, co-read, citation, co-citation}-prediction
from this benchmark as a query-by-example retrieval setting. As Figure 2.2 depicts,
in this setting, given a query document, the goal is to retrieve and rank the most
relevant documents out of a collection. The evaluation dataset for each of these
four tasks includes approximately 30K total papers from a held-out pool of papers,
consisting of 1K query papers and a candidate set of up to 5 positive papers and 25
negative papers [39].

To make our results comparable, we follow prior work on SciDocs to prepare the
same training data [7]. To this aim, we take the validation set of each of tasks

4https://github.com/ielab/TILDE/tree/main/TILDEv2

https://github.com/ielab/TILDE/tree/main/TILDEv2
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[...] and adapts them to RDF graphs used for
building content-based recommender system.
We generate sequences by leveraging local
information from graph sub-structures and
learn latent numerical representations of
entities in RDF graphs. Our evaluation on [...]

[...] a number of research directions in
which the recommender systems can
improve their quality, by moving beyond
the assumptions of linearity and
independence that are traditionally made.
These assumptions, while producing
effective and meaningful [...]

[...] such implicit feedback, or one-class
collaborative filtering (OC-CF), problems is
SLIM, which makes recommendations based
on a learned item-item similarity matrix.
While SLIM has been shown to perform well
on implicit feedback tasks, we argue that it is
hindered by two limitations [...]

[...] based on the observed user purchase
or recommendation activities. Recently, it
has been noticed that side information that
describes the items can be produced from
auxiliary sources and help to improve the
performance of top-N recommendation
systems [...]

Figure 2.2: In the Query-by-Example retrieval setting, given a document (in its
meaning as a unit of retrieval [108]) as the query q , the goal is to retrieve
and rank the top-k relevant documents {d1,d2, ...,dk } out of a collection of
documents. We use the four QBE tasks from SciDocs [39] benchmark including
{ci te,coci te,cor ead ,covi ew}, each of which has its own relevance criterion [39].

and use 85% of them as training and 15% of them as the validation. Thus, each
query in the train set has 5 relevant documents and 25 non-relevant documents.
While TILDE is trained over relevant query-document pairs [211], TILDEv2 needs
triplets in the format of (query, positive document, negative document). To prepare
these triplets we pick two non-relevant documents per relevant document. By doing
so, we create 10 triplets out of 30 training samples for each query. It should be
noted that following Cohan, Feldman, Beltagy, Downey, and Weld (2020) we use a
concatenation of abstract and title of the papers as documents.

2.3.2. BERT-BASED TOKENIZATION IN TRADITIONAL MODELS

In order to address Q2, we will examine the effects of transformer-based tokenizers
as text pre-processor for traditional retrieval models. Doing so aligns the index
vocabulary of traditional models with that of TILDE and TILDEv2, which in
turn makes our comparison more fair. Transformers use different tokenization
mechanisms e.g., WordPiece [187], which result in different query and document
representations compared to common word-based tokenization approaches that are
sometimes combined with normalization steps such as stemming and lemmatizing.
Kamps, Kondylidis, and Rau (2020) show that using the BERT tokenizer as a
pre-processor for BM25 results in a higher efficiency at the cost of a small decrease
in effectiveness on the TREC 2020 Deep Learning Track [40]. QBE retrieval, however,
has the challenge of long queries. In this chapter, we investigate whether the same
effect applies to a QBE retrieval setting. To this aim, we use the BERTbase tokenizer
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as a pre-processor for LM and BM25.
In addition, we use the SciBERT tokenizer, which is a domain-specific BERT

tokenizer, to find out if a domain-specific tokenizer would have a different effect in
comparison to the BERTbase tokenizer. We use three different pre-processing setups
in Elasticsearch to compare with our two transformer-based tokenizers:

• Elasticsearch Standard Analyzer (SA)

• Lowercase token filter, Porter Stemmer, Whitespace tokenizer (STM1)

• Lowercase token filter, Porter Stemmer, Standard tokenizer (STM2)

In Table 2.2, models corresponding to these setups respectively have SA, STM1,
and STM2 as their subscript. BERT-Token and SciBERT-Token as subscripts stand for
using BERT and SciBERT tokenizers as the text pre-processors.

2.3.3. INTERPOLATION BETWEEN BM25 AND TILDE ( TILDEV2)
SCORES

To answer Q3 about the difference between BM25 and TILDE (as well as TILDEv2)
in terms of their relevance signals, following Wang, Zhuang, and Zuccon (2021), we
evaluate the effect of the interpolation between the relevance scores from BM25 and
from the contextualized term-based ranking models TILDE and TILDEv2. To this
aim the interpolated score is computed as following:

s(q,d) =α∗ sB M25(q,d)+ (1−α)∗ scontextual i zed (q,d). (2.5)

Here, sB M25 stands for the BM25 score for query q , and document d , and
scontextual i zed refers to the relevance score from TILDE or TILDEv2. Also, α is the
hyperparameter that controls the impact of the scores from BM25 and TILDE (or
TILDEv2). Prior to the interpolation both of the relevance scores are normalized
using z-scaling (subtracting the mean and dividing by the standard deviation). We
optimize α on the validation set.

Additionally, to further investigate the impact of interpolation, we do a per-query
oracle interpolation in which we assume the best interpolation setting, i.e., optimal
α, could be predicted per query, and thus we can explore how much effectiveness is
reachable by the interpolation of the scores. In the remaining of the chapter, “oracle
interpolation” refers to this latter interpolation setup and “non-oracle interpolation”
refers to the vanilla interpolation, i.e., one α for all queries that is optimized on the
validation set.

2.3.4. DOCUMENT EXPANSION WITH TILDE
The Average token count of SciDocs documents (abstract+title) is 219 and 208 for
BERT and SciBERT respectively. Their 90% token count quantiles are 341 and 385.
Comparing these numbers to the maximum input length of BERT models, i.e., 512
tokens, we can see a capacity for the expansion of the documents. To further
investigate Q1, following recent works which use document expansion to alleviate the
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vocabulary mismatch in contextualized term-based retrieval [106, 210], we evaluate
the impact of retrieval on documents which are expanded at indexing time.

To this aim, we use TILDE in the same way as the original paper [210]. TILDE
is at an advantage where it is more efficient than doc2query [127]. In this chapter,
using TILDESciBERT of which we found it performs the best compared to other
TILDE models (Table 2.1), we generate m = 200, and m = 300 expansion terms for
TILDEv2SciBERT. It is noteworthy that similar to the original paper [210] not all
expansion terms are added to a document, but only new expansion terms — that
are not yet present in the document — are added.

2.3.5. DOMAIN-SPECIFIC BERT IN TILDE AND TILDEV2
To answer Q1, and Q4, we will investigate the power that can be brought by
domain-specific pre-training to term-based ranking models. To do so, we evaluate
the models’ ranking quality in three settings: a) using BERTbase as encoder, b)
zero-shot utilization of TILDE and TILDEv2 models which are already fine-tuned
on MSMARCO, and c) using a domain-specific pre-trained BERT as their encoder.
Specifically, we use SciBERT [18] since our evaluation benchmark is from the
scientific domain.

2.3.6. IMPLEMENTATION DETAILS

We run our experiments on NVIDIA RTX 3090 GPU machines with 24GB GPU
memory. For BERTbase, and SciBERT we use the pre-trained models available on
Huggingface. All BERT-based models are trained for 5 epochs. We use the Adam
optimizer [93] with a learning rate of 2×10−5 for TILDE, and the AdamW optimizer
with a learning rate of 5×10−6 for TILDEv2. In addition, we relax the maximum
document length to the maximum input length of BERT during indexing.

2.4. RESULTS

Q1. How effective are TILDE and TILDEv2 in query-by-example retrieval? and Q4 To
what extent does a highly tailored domain-specific pre-trained BERT model affect the
effectiveness of TILDE and TILDEv2 in comparison to when we use a BERTbase model?

As Table 2.1 shows, TILDE and TILDEv2 are less effective than a cross-encoder
BERT ranker in QBE retrieval despite having longer queries. This could be due to the
fact that the cross-encoder BERT ranker applies all-to-all attention across tokens in
both the query and the document [108] and thus, query terms and document terms
are highly contextualized for the estimation of the relevance score. In addition, we
see that TILDEv2BERT outperforms TILDEBERT despite TILDEv2 being highly prune to
the vocabulary mismatch problem. One hypothesis for this observation could be that
in a domain-specific retrieval setup like ours, TILDEv2 with the BERTbase encoder
predicts more effective document term weights than the term weights predicted for
all tokens in the BERT vocabulary by TILDE with the BERTbase encoder.

In addition, using SciBERT as our domain-specific pre-trained BERT model
unsurprisingly improves the ranking quality of both TILDE and TILDEv2; however,
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Model

Co-view Co-read Co-cite Cite

MAP nDCG MAP nDCG MAP nDCG MAP nDCG

a) BM25STM2 80.8%bcd f − j 0.9032cd f g j 81.31%d f g 0.9112cd g 81.53%bcd f g 0.9171cd f g 79.74%bd g 0.9085d g

b) BM25SciBERT-Token 80.08%cd f g 0.8992cd g 80.97%d f g 0.9105d g 80.83%cd f g 0.9141cd g 79.03%d g 0.9051d g

c) TILDEBERT 76.74%d 0.8761d 80.57%d g 0.8983d 79.7%d g 0.8999d 82.15%abd g 0.914d g

d) TILDEMSMARCO 68.22% 0.8261 66.75% 0.8206 65.21% 0.8145 65.29% 0.8186

e) TILDESciBERT 82.6%a−d f − j 0.9115bcd f − j 85.03%a−d f − j 0.9256a−d f − j 86.38%a−d f − j 0.9375a−d f − j 87.74%a−d f − j 0.9431a−d f g h j

f) TILDEv2BERT 79.17%cd g 0.8948cd 80.16%d g 0.9051d g 80.22%d g 0.9103d g 82.54%abd g 0.9230abd g

g) TILDEv2MSMARCO 77.84%cd 0.8876d 78.53%d 0.8959d 78.17%d 0.9006d 75.62%d 0.8866d

h) TILDEv2SciBERT 79.59%cd g 0.8961cd g 80.74%d g 0.9080d g 80.94%cd f g 0.9123d g 84.18%a−d f g 0.9314a−d f g

TILDEv2SciBERT

i) expansion w/ m=200 80.06%cd f g j 0.8985cd g 81.29%d f g h 0.9096d g 81.62%cd f g 0.9153cd g 86.42%a−d f g h j 0.9412a−d f g h j

j) expansion w/ m=300 79.38%cd g 0.8942cd 81.17%d f g 0.9099d g 81.93%bcd f g h 0.9165cd g 84.4%a−d f g 0.9319a−d f g

k) Cross-EncoderSciBERT 85.2%a− j 0.925a− j 87.5%a− j 0.940a− j 89.7%a− j 0.955a− j 94.0%a− j 0.975a− j

l) Cross-EncoderMTFT-SciBERT 86.2%a− j 0.930a− j 87.7%a− j 0.940a− j 91.0%a− j 0.961a− j 94.2%a− j 0.976a− j

Table 2.1: Ranking quality on the four SciDocs benchmark tasks using contextualized
term-based ranking and cross-encoder BERT. “BERT” and “SciBERT” refers to the
pre-trained model used as the encoder. “MSMARCO" indicates the utilization of
TILDE or TILDEv2 which are already fine-tuned on MSMARCO. Rows i and j refer
to the experiments on expanded documents with m terms using TILDESciBERT as
described in section 2.3.4. Statistical significance improvements are according to
paired t-test (p<0.05) with Bonferroni correction for multiple testing. Rows a and b
are included from Table 2.2 for ease of comparison.

Model

Co-view Co-read Co-cite Cite

MAP nDCG MAP nDCG MAP nDCG MAP nDCG

a) LMSA 74.78% 0.8724 74.32%b 0.8750 74.64% 0.8812 71.30% 0.8653

b) LMSTM1 74.82% 0.8737 73.51% 0.8694 74.60% 0.8810 70.98% 0.8636

c) LMSTM2 75.74%abde 0.8786abe 74.90%ab 0.8771b 75.80%abde 0.8873ab 72.15%abe 0.8696b

d) LMBERT-Token 74.9% 0.8734 74.76%b 0.8778b 74.95% 0.8829 72.04%abe 0.8694

e) LMSciBERT-Token 74.74% 0.8717 74.69%b 0.8771b 74.81% 0.8827 71.46% 0.8666

f) BM25SA 77.86%a−e 0.8876a−e 78.03%a−e 0.8949a−e 77.95%a−e 0.8994a−e 76.12%a−e 0.8892a−e

g) BM25STM1 80.21%a− f 0.9002a− f 80.52%a− f 0.9074a− f 80.85%a− f 0.9137a− f 79.03%a− f 0.9048a− f

h) BM25STM2 80.8%a−g i j 0.9032a−g i 81.31%a−g i 0.9112a−g 81.53%a−g i j 0.9171a−g 79.74%a−g i j 0.9085a−g

i) BM25BERT-Token 79.76%a− f 0.8974a− f 80.61%a− f 0.9088a− f 80.5%a− f 0.9125a− f 79.19a− f % 0.9057a− f

j) BM25SciBERT-Token 80.08%a− f 0.8992a− f 80.97%a−g i 0.9105a− f 80.83%a− f i 0.9141a− f 79.03%a− f 0.9051a− f

Table 2.2: Ranking quality of traditional retrieval models on the four SciDocs
benchmark tasks with different tokenization approaches. SA, STM1, STM2,
BERT-Token, and SciBERT-Token refer to the pre-processing setting as described in
section 2.3.2. Statistical significance improvements are according to paired t-test
(p<0.05) with Bonferroni correction for multiple testing.

this improvement is higher between TILDEBERT and TILDESciBERT than between
TILDEv2BERT and TILDEv2SciBERT to an extent where TILDESciBERT even outperforms
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Model

Co-view Co-read Co-cite Cite

MAP nDCG MAP nDCG MAP nDCG MAP nDCG

a) BM25STM2 80.8%c 0.9032c 81.31% 0.9112 81.53% 0.9171 79.74% 0.9085

b) TILDESciBERT 82.6%ac 0.9115c 85.03%ace 0.9256ac 86.38%ace 0.9375ace 87.74%ace 0.9431ace

c) TILDEv2SciBERT 79.59% 0.8961 80.74% 0.9080 80.94% 0.9123 84.18%a 0.9314a

d) BM25STM2 + TILDESciBERT 85.29%abce 0.9214abce 86.52%abce 0.9395abce 88.32%abce 0.9494abce 88.46%abce 0.9496abce

e) BM25STM2 + TILDEv2SciBERT 81.56%ac 0.9032c 82.63%ac 0.9183ac 83.06%ac 0.9242ac 84.18%a 0.9318a

Table 2.3: Results for non-oracle interpolation (the interpolation parameter α

is optimized on the validation set) between BM25ST M2, TILDESci BERT , and
TILDEv2Sci BERT . Statistical significance improvements are according to paired t-test
(p<0.05) with Bonferroni correction for multiple testing. Rows a, b, and c are
included from Table 2.1 for ease of comparison.

both TILDEv2BERT and TILDEv2SciBERT. This observation could be due to the
fact that the vocabulary mismatch problem caused by exact matching limits the
TILDEv2 ranking quality, even if we use a highly tailored domain-specific BERT
as its encoder. In this respect, we investigate the impact of token-based query
expansion (see section 2.3.4) with TILDE on the ranking quality of TILDEv2 in our
QBE retrieval setting. Lines i , and j in Table 2.1 are the ranking results on the
documents that are expanded using TILDE with the method introduced by Zhuang
and Zuccon (2021). Here, we are interested to find out if using document expansion
is able to compensate for the gap in the ranking quality between TILDESciBERT, and
TILDEv2SciBERT.

As shown in Table 2.1, TILDEv2SciBERT with m = {200,300} expansion terms, is still
less effective than TILDESciBERT. Furthermore, the table shows that the ranking
quality of BM25ST M2 on the original documents (line a) is still comparable with
the ranking quality of TILDEv2SciBERT on the expanded documents (lines i and j ).
It is noteworthy that to make sure we are expanding the documents with enough
tokens we investigate the average number of tokens added to the documents by the
expansion with TILDESciBERT. By doing so, we find that for m = 200, and m = 300,
approximately 49 and 128 new tokens are appended to the documents on average.
Additionally, we find that using m = 100 results in roughly 2.6 new tokens on average.
These numbers beside the statistics of the tokens in SciDocs benchmark, provided in
Section 2.3.4, indicate that m should be tuned in order to take advantage from the
document expansion with TILDE in QBE retrieval setting. Finally, we see that the
zero-shot utilization of TILDEMSMARCO and TILDEv2MSMARCO does not show superior
performance over the fine-tuned TILDE and TILDEv2 with both BERT and SciBERT
encoders. It should be noted that taking models which are already fine-tuned on
general domain (like TILDEMSMARCO and TILDEv2MSMARCO) and further fine-tuning
them on the task domain is a typical approach which could result in improvement
in their ranking quality; however, we leave this item as a direction to be explored in
future work.

Q2. What is the effectiveness of traditional lexical matching models with varying
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Figure 2.3: Results for TILDE and TILDEv2 with varying values of interpolation
parameter α. The lines in blue and orange represent the effectiveness based on the
non-oracle and oracle interpolations respectively. α= 0.0 represents the TILDE- or
TILDEv2-only setting; α= 1.0 represents the BM25-only setting.

tokenization strategies in comparison to TILDE and TILDEv2

Table 2.2 shows that leveraging BERT and SciBERT tokenizers results in competitive
ranking quality in both probabilistic language model based retrieval and BM25 in
comparison to the three traditional pre-processing setups introduced in section 2.3.2.

Moreover, as the results of Table 2.1 shows, the ranking quality of BM25ST M2

not only outperforms LM and BM25 with different traditional and BERT-based
pre-processing approaches, but also it could even outperform TILDEBERT , and
TILDEv2BERT in most of the tasks. In fact, we do not see a large gap between
BM25 compared to TILDEv2 as was shown for retrieval based on short queries in
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the experiments on MSMARCO and TREC DL Track benchmarks [210]. This finding
is important as (1) it sheds light on the challenges of retrieval settings different from
the common evaluation benchmarks including MSMARCO and the TREC DL Track;
(2) raises the question how effective other contextualized term-based ranking models
would be in those settings.

Q3. To what extent do TILDE and TILDEv2 encode a different relevance signal from
BM25?

The blue lines in Figure 2.3 show the ranking quality for TILDESciBERT and
TILDEv2SciBERT when their scores are interpolated with the BM25 score over varying
values of interpolation parameter α with the step of 0.1. Besides, Table 2.3 shows
the ranking quality for the interpolations with the α that is tuned over the validation
set. We can see that an optimal interpolation between the scores from BM25 and
the contextualized term-based ranking models TILDE and TILDEv2 could provide
significant improvements for almost all tasks over the individual rankers participating
in the interpolation. The only exceptions are in the co-view, and cite tasks. To be
specific, there is no improvement over BM25 in the nDCG metric in the co-view (line
e vs. line a in Table 2.3). Besides, in the cite task the improvement over TILDEv2
(line e vs. line c in Table 2.3) is not significant for the nDCG metric, and there is no
improvement for the MAP metric. Nevertheless, the improvements obtained by the
interpolation for almost all tasks and metrics indicates that TILDE and TILDEv2 are
capturing different relevance signals compared to BM25.

To further investigate the impact of the score interpolation with BM25 scores,
we perform an oracle interpolation in which we assume the optimal interpolation
hyperparameter α is known for each individual query. This query-specific optimal
value is selected over varying values of α with the step of 0.1. Table 2.4 as well
as orange lines in Figure 2.3 show the results for the oracle interpolation. We can
see that the oracle interpolation would result in a substantial improvement for both
TILDE and TILDEv2.

Moreover, we can see in Table 2.4 that there is a subset of queries for which
the BM25 ranking alone is better than the interpolation (queries with optimal α=1).
This number is lower for the interpolation with TILDE than for the interpolation
with TILDEv2. One hypothesis for this observation could be that the interpolation
with TILDE is likely to be more helpful for BM25 since TILDE could bring more
contextualization power for BM25 as it incorporates the term importance for all
tokens in the query. In other words, since TILDEv2 pre-computes term weights only
for the tokens of the document (whereas TILDE pre-computes the term importance
weight for all the tokens in the BERT vocabulary per document), due to the chance
of vocabulary mismatch in TILDEv2, it could incorporate less query-dependent
contextualization than TILDE.

In addition, we see that the margin between the oracle interpolation results and
both non-interpolated scores as well as non-oracle interpolation scores (Table 2.3)
is substantial, which demonstrates that more complex aggregation methods could
benefit more from the relevance signals from TILDE, TILDEv2 and BM25.
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Model

Co-view Co-read Co-cite Cite

MAP nDCG MAP nDCG MAP nDCG MAP nDCG

BM25 +or acl e TILDESci BERT

ranking quality 88.04%ae 0.9428ae 89.76%ae 0.9534ae 90.96%ae 0.9629ae 91.24%ae 0.9631ae

αaverage 0.1265 0.1294 0.1048 0.1053 0.1044 0.1048 0.0839 0.0857

#queries with optimal α=0 537 533 563 557 550 552 624 619

#queries with optimal α=1 19 21 6 5 14 13 4 4

IQR of the optimal α over queries 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

BM25 +or acl e TILDEv2Sci BERT

ranking quality 84.10%ah 0.9223ah 85.54 %ah 0.9345ah 85.81 %ah 0.9388ah 87.00 %ah 0.9456ah

αaverage 0.3169 0.3205 0.3040 0.3048 0.3337 0.3339 0.2073 0.2083

#queries with optimal α=0 467 463 446 447 419 420 575 573

#queries with optimal α=1 84 84 71 72 92 94 33 33

IQR of the optimal α over queries 0.7 0.7 0.6 0.6 0.6 0.6 0.4 0.4

Table 2.4: Results for oracle interpolation (optimal α per query) between BM25ST M2,
TILDESci BERT , and TILDEv2Sci BERT . Statistical significance with paired t-test (p<0.05)
is reported only with respect to non-interpolated scores (α=0) of these three models
in Table 2.1 (row a, e and h). αaverage represents the mean of the optimal α values
picked per query. The number of queries with optimal α=0 stands for the number of
queries for which the interpolation does not improve their effectiveness compared
to TILDE or TILDEv2 only.

2.5. DISCUSSION

In this section, we further analyze the interpolation between BM25 and TILDE
(TILDEv2) in terms of the interpolation effectiveness and the interpolation weight α.

2.5.1. INTERPOLATION EFFECTIVENESS

The first two rows on the top of Figure 2.3 correspond to the interpolation
between TILDE and BM25 and the two rows in the bottom correspond to the
interpolation between TILDEv2 and BM25. Comparing the nDCG and MAP plots for
the interpolation between TILDE and BM25, we can see that for this combination,
α=0.1 shows the highest ranking quality for both nDCG and MAP metrics in all
tasks. Thus, a high weight for TILDE with a small weight for BM25 gives the highest
effectiveness for this combination. This observation could mean that while TILDE,
as contextualized transformer-based model, is able to outperform BM25 as an exact
matching model, it could still benefit from the strong lexical relevance scores from
BM25.

On the other hand, for the combination of TILDEv2 and BM25 we see that the
highest ranking quality is obtained with α ∈ {0.3, 0.4, 0.5, 0.6, 0.7, 0.8} depending on
the task. The exceptions are in the cite, and coview tasks as described in the answer
to Q3 in Section 2.4. Thus, in the combination of TILDEv2 and BM25, an equal
or slightly higher weight for BM25 relative to TILDEvs gives the optimal results. A
hypothesis for this observation could be that while both BM25 and TILDEv2 are
performing based on exact matching, the term weights from TILDEv2, which are
predicted through contextualization of the document terms, are not always more
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effective than the term scores from BM25; however, they can act as a complement
for each other and thus their interpolation could benefit from both.

2.5.2. INTERPOLATION WEIGHT

To further analyze the interpolation weight α, we consider the two aforementioned
settings of oracle interpolation and non-oracle interpolation.

Non-oracle interpolation. We can see in Figure 2.3 (blue lines) that for the effective
interpolations, i.e, the interpolations that result in higher effectiveness than each
individual ranker included in the interpolation, the interpolation weight α in the
combination of BM25 and TILDEv2 has a wider range than in the combination of
BM25 and TILDE. This indicates that in this experimental setting the interpolation
of BM25 and TILDEv2 could be achieved by a broader range of α values and is
therefore more robust to the choice of interpolation weight than for BM25 and
TILDE.

Oracle interpolation. As a measure of the statistical dispersion, we report the
inter-quartile range (IQR) for the oracle interpolation weight α which is shown in
Table 2.4. Taking the range of α [0.0, 1.0] into account, we can see that we have low
inter-quartile range (IQR) for the optimal values of α per query in the interpolation
with TILDE (top part of the table). On the other hand, the IQR for the optimal values
of α per query for the interpolation with TILDEv2 are much higher (bottom part of
the table), which indicates that the optimal interpolation setting for the queries are
more varied. This observation could give some sense of robustness against query
variation for TILDE in comparison to TILDEv2 in this experimental setting. In other
words, a query-dependent approach for optimizing α would be more robust against
query variation for TILDE than for TILDEv2.

2.6. CONCLUSION
In this chapter we investigated the generalizability of two contextualized term-based
ranking models TILDE and TILDEv2 for a QBE retrieval setting. In QBE, the queries
are much longer than in ad-hoc retrieval, and efficient query processing is essential.
We were specifically interested to see to what extent the relative performance
of contextualized term-based ranking models in comparison to both traditional
term-based models and the effective cross-encoder BERT ranker is generalizable to a
QBE retrieval setting.

Our results show that similar to the original papers [210, 211], TILDE and TILDEv2
are less effective than a cross-encoder BERT ranker in QBE retrieval despite the
context of longer queries. On the other hand, in the original papers, TILDE
and TILDEv2 have shown superior ranking quality in comparison to BM25 as a
traditional term-based retrieval model. We investigated if the same pattern exists in a
query-by-example retrieval setting and our results show that BM25 has a competitive
ranking quality compared to TILDE and TILDEv2. In fact, not only is it competitive,
but also in some cases it could outperform TILDE and TILDEv2.

This finding is important as (1) it sheds light on the challenges of retrieval settings
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different from the common evaluation benchmarks including MSMARCO and the
TREC DL Track; (2) raises the question how effective other contextualized term-based
ranking models would be in those settings. Our results indicate that QBE retrieval
is structurally different from other IR settings and requires special attention for
methods development.

Furthermore, we investigated the impact of the interpolation between BM25 and
TILDE as well as TILDEv2. By doing so, we find that a linear interpolation between
the score of TILDE (TILDEv2) with that of BM25 leads to an improvement in the
ranking effectiveness. This shows that the relevance signals from contextualized
ranking models TILDE and TILDEv2 are complementary to the relevance signals
from BM25. Additionally, through an analysis on the oracle interpolation between
BM25 and TILDE (TILDEv2), we show that more stratified approaches could benefit
more from the interpolation between the scores from these models.
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An important unexplored aspect in previous work on user satisfaction estimation for
Task-Oriented Dialogue (TOD) systems is their evaluation in terms of robustness for
the identification of user dissatisfaction: current benchmarks for user satisfaction
estimation in TOD systems are highly skewed towards dialogues for which the user
is satisfied. The effect of having a more balanced set of satisfaction labels on
performance is unknown. However, balancing the data with more dissatisfactory
dialogue samples requires further data collection and human annotation, which is
costly and time-consuming. In this chapter, we leverage large language models (LLMs)
and unlock their ability to generate satisfaction-focused counterfactual dialogues
to augment the set of original dialogues of a test collection. We gather human
annotations to ensure the reliability of the generated samples. We evaluate two
open-source LLMs as user satisfaction estimators on our augmented collection against
state-of-the-art fine-tuned models. Our experiments show that when used as few-shot
user satisfaction estimators, open-source LLMs show higher robustness to the increase
in the number of dissatisfaction labels in the test collection than the fine-tuned
state-of-the-art models. Our results shed light on the need for data augmentation
approaches for user satisfaction estimation in TOD systems. We release our aligned
counterfactual dialogues, which are curated by human annotation, to facilitate further
research on this topic.

27
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3.1. INTRODUCTION
Task-oriented dialogue (TOD) systems help users complete specific tasks, e.g.,
booking a hotel or restaurant, through conversations [54, 155, 178, 204]. User

No, I need it for those days. Can you try different hotel?

Please book for Sunday for 3 nights and 6 people.

Sounds good. Can you try and book that one please.

Sorry, the hotel can't accommodate you for that time
frame. Want to try a different date?

I can try for the Acorn Guest House, if you'd like.
They're on Chesterton Road.

Figure 3.1: Example dialogue (snippet) between the user and the system from the
MultiWOZ benchmark.

satisfaction estimation (USE) is a key task in TOD systems, aiming to measure the
extent to which users are satisfied with the dialogue they are having with the system
(see Figure 3.1). USE has various applications as it can be viewed as a continuous
approximation of human feedback for the quality of the dialogue. Such feedback
enables human intervention for users who are having a dissatisfactory dialogue
with the system. Furthermore, it serves as a scalable method for the automatic
evaluation of dialogue systems and helps identify and optimize a dialogue system’s
shortcomings [165, 194].

Prior work has studied user satisfaction estimation in TOD systems [44, 75,
172, 194] based on the user satisfaction simulation (USS) benchmark, which
consists of several datasets annotated with user satisfaction labels by Sun, Zhang,
Balog, Ren, Ren, Chen, and de Rijke (2021). However, the robustness of user
satisfaction estimators for the identification of user dissatisfaction is an unexplored
aspect in these works as most of the datasets are highly skewed towards the
dialogues for which the user is satisfied. Put another way, the impact of a more
balanced set of satisfaction labels on the performance of the USE models remains
unknown. Nevertheless, balancing the data with more dissatisfactory dialogue
samples demands further dialogue collection and human annotation which is costly
and time-consuming.

To begin to address the issues raised above, we aim to expand the current
imbalanced benchmarks of TOD systems with more dissatisfactory dialogues. To
this aim, we leverage large language models (LLMs) and unlock their ability to
generate counterfactual task-oriented dialogue samples. We use counterfactual
utterance generation to generate counterpart dialogue samples with an opposite
satisfaction score for a given input dialogue sample, thereby increasing the number
of dissatisfaction-labeled samples in the test collections. Following the definition
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of user satisfaction and the annotation guidelines from the original work in which
MultiWOZ [52] and SGD [142] were annotated for user satisfaction levels,1 we
conduct human annotation on the counterfactual dialogues to ensure the quality
and reliability of the generated utterances. By doing so, we introduce two augmented
versions of the test collections for MultiWOZ and SGD benchmarks.

We focus on binary satisfaction levels, i.e., dissatisfaction and satisfaction. We
argue that (i) binary labels reduce the subjectivity of annotators in labeling the
dialogue, and (ii) binary satisfaction could be more relevant in some TOD system
contexts, since in real-world use cases, e.g., post-hoc analysis of dialogue systems,
one might only look for identification of the cases where the user is dissatisfied
with the dialogue and discard the cases where the dialogue proceeds smoothly
and normally. In other words, for our purposes classifying whether a dialogue is
dissatisfactory or not is of more importance than classifying a normal (rating 3 in
a five-point scale satisfaction levels) or satisfying (rate 4) from a very satisfying
dialogue (rate 5). Table 3.1 shows both the five-point scale and the binary-level
mapping of the MultiWOZ and SGD datasets used by Sun, Zhang, Balog, Ren, Ren,
Chen, and de Rijke (2021). As Table 3.1 indicates, the current evaluation test
collections for user satisfaction estimation in TOD systems are highly imbalanced
towards the normal satisfaction label (3). In the binary-level satisfaction setting, this
imbalance results in most dialogue samples being annotated with satisfaction labels,
while the remaining samples are labeled as dissatisfaction.

Rating MultiWOZ SGD

1 12 5
2 725 769
3 11,141 11,515
4 669 1,494
5 6 50

Dissatisfaction 737 774
Satisfaction 11,816 13,059

Table 3.1: Data statistics of MultiWOZ and SGD on five-point and two-point
satisfaction scales.

Recently, Hu, Feng, Luu, Hooi, and Lipani (2023) have shown that ChatGPT’s ability
to predict user satisfaction scores is comparable to that of fine-tuned state-of-the-art
models. This comparable performance was only based on in-context few-shot
learning (i.e., without fine-tuning) [30, 119, 135, 209]. We examine to what extent
this finding on estimating user satisfaction generalizes to open-source LLMs. We
use two open-source LLMs, namely, Zephyr-7b-beta2 and Mistral-7B-Instruct3

(to which we refer as Zephyr and MistralIF, respectively), and evaluate their

1We contacted the authors of [172] in which the datasets were originally annotated with satisfaction
scores.

2https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2

https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
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performance on user satisfaction estimation on the MultiWOZ and SGD datasets.

Our experiments show that when we incorporate more dissatisfactory dialogue
samples in the test collections with our methodology for generating counterfactual
dissatisfying utterances, LLMs can significantly outperform the state-of-the-art
fine-tuned models. We argue that this discrepancy in the performance of models
across more balanced test sets is due to the imbalanced training sets with plentiful
dialogue samples with satisfaction labels.

We summarize our contributions as follows:

• We show and unlock the power of LLMs in generating satisfaction-focused
counterfactual dialogues in TOD systems, paving the way for data augmentation
in USE for TOD systems.

• We conduct human evaluations on our generated counterfactual dialogue
samples and augment the test collections of MultiWOZ and SGD benchmarks.

• Through the robustness study of USE, we find that the performance of
fine-tuned state-of-the-art estimators drastically decreases with an increase in
dissatisfaction-labeled dialogues in test collections.

• We show that open-source LLMs, when used in few-shot USE, maintain
higher robustness in identifying user dissatisfaction in TOD systems than
state-of-the-art fine-tuned estimators.

3.2. RELATED WORK

3.2.1. USER SATISFACTION ESTIMATION IN TODSS

User satisfaction estimation has been studied in the context of various
information retrieval and natural language processing tasks, including conversational
recommender systems [163, 164] and TOD systems [44, 131, 194]. In TOD systems,
the goal of the user is to complete a specific task, e.g., booking a hotel, reserving
a ticket. Depending on the flow of conversation between the user and the TOD
system, user satisfaction can vary throughout the dialogue [170]. Predicting the
extent to which the user is satisfied with the dialogue is defined as user satisfaction
estimation. Sun, Zhang, Balog, Ren, Ren, Chen, and de Rijke (2021) study user
satisfaction estimation in TOD systems and propose a benchmark for the task
consisting of several datasets. They find that the core reason for user dissatisfaction
is the system’s failure to accurately understand the user’s requests or manage their
requirements effectively. Kim and Lipani (2022) propose a multi-task framework and
show that user satisfaction estimation, action prediction, and utterance generation
tasks can benefit from each other via positive transfer across tasks. Ye, Hu, and
Yilmaz (2023) model user satisfaction across turns as an event sequence and use
the dynamics in this sequence to predict user satisfaction for a current turn in
the dialogue. Hu, Feng, Luu, Hooi, and Lipani (2023) leverage ChatGPT as a user
satisfaction estimator and use the satisfaction scores as feedback for training a
dialogue utterance generation model.
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3.2.2. COUNTERFACTUAL DATA GENERATION

Generating counterfactual data samples has been studied across various natural
language processing tasks [2, 118, 184, 207]. Specifically, there is a body of prior work
on generating counterfactual dialogues. Li, Yavuz, Hashimoto, Li, Niu, Rajani, Yan,
Zhou, and Xiong (2020) and Huang, Feng, Wu, and Du (2021) explore counterfactual
dialogue generation in the context of dialogue state tracking (DTS) task. Calderon,
Ben-David, Feder, and Reichart (2022) focus on the multi-label intent prediction of
utterances from information-seeking dialogues and produce domain-counterfactual
samples. These samples are similar to the original samples in every aspect, including
the task label, yet their domain is altered to a specified one. Ben-David, Carmeli,
and Anaby-Tavor (2021) study counterfactual data generation in the context of intent
prediction; they address counterfactual generation, not for generating a system
utterance, but for a user utterance, in contrast to the approach we take in this
chapter.

There is also prior work on counterfactual data generation using LLMs, as they
have shown to be highly capable in natural language generation tasks [9, 13]. For
instance, Li, Xu, Miao, Zhou, and Qian (2023) explore the strengths and weaknesses
of LLMs in generating counterfactual data samples. However, to the best of our
knowledge, there is no prior work on satisfaction-focused counterfactual dialogue
generation, which we study in this chapter.

Please book the Hamilton Lodge, for 6 people.

I'll be staying 2 nights starting on wednesday.
Oh, and there are 6 of us.

I'm sorry, my reservation attempt was unsuccessful.
Will another day or length of stay work?

I'd be happy to. How many nights would you like to stay?
And I'll need to know the day you would like to start your stay.

Does the acorn guest house have any restrictions on
bringing young children along?

Yes. I would like to book that for 4 people
for 4 nights staring on Wednesday.

Great, I have successfully booked the Hamilton Lodge for 6
people for 2 nights starting on Wednesday. Your reservation is
confirmed. Is there anything else you need assistance with?

Sorry, it was unavailable at that time.
Perhaps you might want another day or a shorter stay?

I'm not sure about their policy on young children.
Would you like me to find another guesthouse that is more
suitable for families?

There are no restrictions. Children are welcome to
stay there. Any other questions, or should I continue
to book it?Original System Utterance [Dissatisfaction]

Counterfactual System Utterance [Satisfaction] Counterfactual System Utterance [Dissatisfaction]

Original System Utterance [Satisfaction]

Figure 3.2: Examples of generated counterfactual system utterances. Dissatisfaction
to Satisfaction (left) and vice versa (right). See Figure 3.7 in the Appendix to this
chapter for the full dialogues corresponding to these examples.

3.3. USER SATISFACTION ESTIMATION
We formulate the task of user satisfaction estimation (USE) as follows. Given
dialogue context D with T turns as D = {(U1,R1), (U2,R2), . . . , (UT ,RT )}, where Ut

and Rt stand for the t-th user utterance and system response, respectively, the goal
is to estimate the user satisfaction s at the turn T . Therefore, the task objective is to
learn a prediction model P (sT |D), where sT is the user satisfaction at the T -th turn.
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3.4. METHODOLOGY

3.4.1. COUNTERFACTUAL UTTERANCE GENERATION

Annotated dialogues with user satisfaction labels are not necessary available upon
deploying TOD systems. Moreover, obtaining annotations with user satisfaction
labels is both expensive and labor-intensive. However, LLMs have enabled quality
text generation across various tasks [28, 171, 197, 198]. We take advantage of these
models in order to generate new dialogue samples with a presumed satisfaction
label in order to make up for the imbalance that exists in the benchmarks used for
the evaluation of user satisfaction estimation.

Utterance Generation Task Formulation. Given a dialogue context D = {(U1,R1),
(U2,R2), . . . , (UT ,RT )} with T turns, the goal is to generate R̂T in order to obtain
D̂ = {(U1,R1), (U2,R2), . . . , (UT , R̂T )}, where the user satisfaction label for the T -th
turn for dialogue D̂ is the opposite of user satisfaction label for D. Our definition
of counterfactual utterance is based on the annotation guidelines in [172], in which
MultiWOZ and SGD with user satisfaction labels are introduced.

In order to generate a counterfactual response R̂T for a given system response R,
we use few-shot in-context learning (ICL) with LLMs [30, 135]. Here, we provide the
LLM GPT-4 with an instruction regarding what a counterfactual system utterance
means. We do that both when we have a satisfaction-labeled dialogue sample or a
dissatifaction-labeled one. Figure 3.6 in the Appendix shows the prompt used for
generating counterfactual system utterances using GPT-4. Clearly, we perform the
generation in a dialogue-aware manner, i.e., the generation of counterfactual system
utterance R̂ is conditioned on the history of the dialogue between the user and the
system.

Figure 3.2 shows two samples of counterfactual utterance generation. As the
figure (left) shows, the counterfactual generation process is context-aware, meaning
that the generated counterfactual system utterance includes information from the
previous turns (i.e., context) of dialogue.

3.4.2. USER SATISFACTION ESTIMATION USING LLMS

Enabling zero-shot/few-shot (in-context learning) user satisfaction estimation could
be of great use for the development and evaluation of dialogue systems. Such an
in-context learning setup for the inference of user satisfaction labels facilitates the
deployment of such systems as zero-shot/few-shot learning and removes the need
for training samples which are costly to obtain. For instance, Hu, Feng, Luu, Hooi,
and Lipani (2023) show that ChatGPT can provide a comparable performance to
supervised methods. They employ ChatGPT as a user simulator to obtain user
feedback on the generated utterances. While Hu, Feng, Luu, Hooi, and Lipani (2023)
use zero-shot/few-shot in-context learning with a proprietary language model for
user satisfaction estimation, we evaluate the performance of open-source models.

Few-shot In-context Learning. In order to estimate user satisfaction for a given
dialogue, we use few-shot in-context learning [30, 135]. Figure 3.3 shows the prompt
used for estimating user satisfaction using few-shot in-context learning with the two
LLMs Zephyr [175] and MistralIF [84].
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Instruction:
We want to label the user satisfaction for example dialogues. The
description of 2 labels is as follows:

"Dissatisfied": The system fails to understand or fulfill user’s
request in any way.

"Satisfied": The system understands users request and either
"partially" or "fully" satisfies the request or provides information
on how the request can be fulfilled.

Example 1:
{Example Dialogue 1}
Label of Example 1 is "Satisfied".

Example 2:
{Example Dialogue 2}
Label of Example 2 is "Dissatisfied".

Example 3:
{Input Dialogue}
Label of Example 3 is:

Figure 3.3: The input used as the prompt for LLMs in order to predict the user
satisfaction label.

3.5. EXPERIMENTAL SETUP

3.5.1. BENCHMARKS

We evaluate the models on the Multi-Domain Wizard-of-Oz (MultiWOZ) [52] and
Schema Guided Dialogue (SGD) [142] benchmarks in our experimental setup.
MultiWOZ and SGD are two commonly-used multi-domain task-oriented dialogue
datasets and were initially annotated with user satisfaction scores by Sun, Zhang,
Balog, Ren, Ren, Chen, and de Rijke (2021). We leverage the data splits used in prior
work [44, 194]. Table 3.2 shows the statistics of train/validation/test splits in the
MultiWOZ and SGD benchmarks.

MultiWOZ SGD

Label Train Valid. Test Train Valid. Test

#Satisfaction 6315 775 811 6985 848 848
#Dissatisfaction 431 65 40 492 67 76

#Total 6746 840 851 7477 915 924

Table 3.2: Statistics of train/validation/test sets for the original test samples.

We also note that in this chapter we only work on turn-level satisfaction labeling.
Generating a counterfactual sample for a complete dialogue requires more stratified
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and complicated dialogue generation methods that are beyond the scope of this
chapter.

3.5.2. EVALUATION METRICS

Following [75, 172, 194], we use Accuracy, Precision (the proportion of the predicted
correct labels over the number of predicted labels), Recall (the proportion of the
predicted correct labels over the number of actual labels), and the F1-score (the
harmonic mean of precision and recall) as our evaluation metrics.

3.5.3. BASELINES

BERT. BERT [45] is a widely-used baseline as satisfaction label classifier in prior
work [44, 92, 172, 194]. BERT achieves state-of-the-art performance in [172] and Hu,
Feng, Luu, Hooi, and Lipani (2023) shows that it outperforms ChatGPT in few-shot
setting. We replicate the implementation from [172] for this baseline. In addition,
we up-sample the dissatisfaction class by orders of 10x up to 50x and include the
models with the best and the second best performance in our results.

ASAP. ASAP is our second baseline for the evaluation against LLMs for user
satisfaction estimation. Ye, Hu, and Yilmaz (2023) propose ASAP as user satisfaction
estimator in which they leverage Hawkes processes [116] to capture the dynamics of
user satisfaction across turns within a dialogue. Ye, Hu, and Yilmaz (2023) show that
ASAP achieves state-of-the-art performance over a variety of baselines. We conduct
the same aforementioned up-sampling approach of BERT for ASAP.

3.5.4. HUMAN ANNOTATION

To evaluate the quality of the generated counterfactual dialogues we conduct human
evaluation on the samples for both MultiWOZ and SGD benchmarks. We use two
human annotators (and a third in the case of disagreement) and annotate the
counterfactual dialogues in terms of “user satisfaction,” and “dialogue coherence.”

Dialogue Coherence (DC). DC refers to the degree to which a generated
counterfactual is relevant (fitting) to the previous turns in the dialogue, i.e., if the
counterfactual system utterance is coherent with the dialogue history. An example of
a non-coherent counterfactual system utterance is a case where the system answers
a request for booking a hotel in a city with a response regarding the reservation of a
restaurant in that city.

User Satisfaction Labeling. In the counterfactual dialogues, we only replace the
last system utterance with a counterfactual one. To verify the effect of this change,
we ask our annotators to label the whole dialogue in terms of user satisfaction.
In the annotation pool, we mix the counterfactual dialogues with actual dialogues
to prevent any learning bias. We use the same guidelines as Sun, Zhang, Balog,
Ren, Ren, Chen, and de Rijke (2021) with a slight difference where we exchange
the five-point scale rating with a binary-level satisfaction rating. We also note
that, following Sun, Zhang, Balog, Ren, Ren, Chen, and de Rijke (2021), we use
before-utterance (BU) prediction of user satisfaction scores [92]. In this approach,
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user satisfaction is estimated after a system utterance and before the next user
utterance. This is in contrast to after-utterance (AU) prediction [25, 31], in which the
satisfaction score prediction is conducted after each user utterance, and therefore,
user expressions in their utterance can be used as an indicator of their satisfaction
level. While being more difficult, BU prediction enables the dialogue system to
prevent potential negative user experiences by steering the conversation away from
directions that might lead to dissatisfaction [92].

3.6. EXPERIMENTAL RESULTS

3.6.1. DATA QUALITY

We first assess the quality of the data that we have collected. We measure the
inter-annotator agreement (IAA) between our annotators. Table 3.3 shows the
agreement between the annotators on the satisfaction labels measure by Cohen’s
Kappa. As for DC, most of the data falls into one category (agreement on the
coherence of the generated system utterance), making Kappa not a reliable metric.
Instead, we use Percent Agreement which is the percentage of agreement between
the two annotators.

MultiWOZ SGD

Dialogue Coherence (PA) 97.6 95.2
Satisfaction Label (κ) 0.84 0.86

Table 3.3: Inter-annotator Agreement (IAA) results between the two initial annotators.
Percent Agreement (PA) and Cohen’s Kappa (κ) are respectively used for dialogue
coherence and satisfaction labels from expert annotators.

Additionally, Table 3.4 shows the ratio of correctly flipping the satisfaction status
of the last system utterance, which we refer to as Counter Satisfaction Status
(CSS). As the overall CSS values show, not all generated system utterances are
satisfaction-focused counterfactuals of the original system utterances, i.e., 63.8
success rate for MultiWOZ and 80.3 for SGD. We only keep the samples in the CF
set that are confirmed to be counterfactual by the human annotators.

Moreover, from the user evaluation in Table 3.4 we infer that GPT-4 is better at
generating dissatisfying system utterances (the CSS values in the Satisfaction row in
Table 3.4) than at generating satisfying system utterances (the CSS values in the
Dissatisfaction row).
Based on the labeling obtained using the three annotators, Table 3.5 shows the
number of test samples for both counterfactual and non-counterfactual (i.e., original
samples) for the two classes of Satisfaction and Dissatisfaction.

3.6.2. USER SATISFACTION ESTIMATION RESULTS

Table 3.6 shows the results of user satisfaction estimation using BERT and ASAP as
the state-of-the-art models [75, 194], as well as two LLMs, Zephyr and MistralIF.
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Data Partition MultiWOZ SGD

Satisfaction 64.6 86.2
Dissatisfaction 47.5 14.5
Overall 63.8 80.3

Table 3.4: Counter Satisfaction Status (CSS). CSS demonstrates the success rate of
LLMs in generating counterfactual system utterances.

MultiWOZ SGD

Label Main CF Main CF

#Satisfaction 811 19 848 11
#Dissatisfaction 40 524 76 731

#Total 851 543 924 742

Table 3.5: Statistics of original test samples (Main) and generated counterfactual
samples (CF).

BERT and ASAP models are fine-tuned using the training samples indicated in Table
3.2. The two LLMs, however, are used in a few-shot manner as described in Section
3.4.2. We evaluate these models using different test sets. The Main group of results
(at the top of Table 3.6) refers to the original test set from [172]; CF refers to the
counterfactual version of Main, which is generated as described in Section 3.4.1; and
Mix is the aggregation over both Main and CF.

As the table suggests, while on the original data (Main), which is highly imbalanced
across satisfaction and dissatisfaction labels, BERT and ASAP outperform the two
LLMs, in the rest of the test sets (CF, Mix), it is the LLMs that achieve higher
performance than BERT and ASAP by a large margin. Moreover, while we can see a
drastic drop in the performance of BERT and ASAP on CF in comparison to their
performance on the Main set, the performance of LLMs on the two sets of Main and
CF is comparable. These results show the robustness of few-shot in-context learning
for user satisfaction estimation under different distributions of labels in the test data.
In addition, we can see from the results on the CF test data that while increasing the
ratio of up-sampling dissatisfaction training samples from 10x to 20x increases the
performance of the BERT and ASAP estimators on the MultiWOZ dataset, this way of
augmenting training samples does not have the same effect on the SGD test set. This
may indicate the lack of proper training data and the necessity for augmenting the
training data for fine-tuning user satisfaction estimators. Furthermore, it highlights
the need for more sophisticated data augmentation approaches rather than simply
up-sampling the data. It is noteworthy that we also conducted our experiments
using under-sampling of the satisfactory class; however, the results corresponding to
this approach are not included since it led to a weak performance.

Robustness results. The Main and CF test collections (Table 3.5) are the two
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MultiWoZ SGD

Test Data Model Setup Acc P R F1 Acc P R F1

Main

BERT w/o up-sampling 95.30 47.65 50.00 48.80 91.34 45.87 49.76 47.74
BERT up-sampling x10 93.88 61.46 57.58 59.02 83.55 57.85 62.89 59.17
BERT up-sampling x20 92.36 54.99 54.40 54.67 89.72 58.39 54.27 55.23

ASAP w/o up-sampling 94.95 71.87 72.39 72.13 92.10 73.77 63.35 66.69
ASAP up-sampling x10 93.30 65.23 69.15 66.91 86.15 64.41 75.68 67.49
ASAP up-sampling x20 90.95 61.31 70.30 64.10 86.58 65.05 76.52 68.26

Zephyr Few-shot 73.80 51.56 56.54 48.23 84.63 52.36 52.70 52.49
MistralIF Few-shot 80.14 51.92 56.31 50.62 87.01 53.98 53.39 53.63

CF

BERT w/o up-sampling 3.50 1.75 50.00 3.38 2.83 50.75 50.68 2.83
BERT up-sampling x10 8.66 51.84 52.67 8.63 21.43 50.93 60.12 18.66
BERT up-sampling x20 12.34 51.92 54.58 12.09 4.18 50.76 51.37 4.16

ASAP w/o up-sampling 4.24 30.03 25.02 4.23 4.99 47.30 42.82 4.92
ASAP up-sampling x10 6.63 38.96 31.33 6.57 16.44 49.36 44.16 14.70
ASAP up-sampling x20 9.94 41.17 25.44 9.50 12.67 48.34 37.77 11.64

Zephyr Few-shot 88.95 61.58 91.74 65.72 83.69 54.17 91.72 53.18
MistralIF Few-shot 82.32 57.85 88.30 58.60 73.72 52.67 86.66 47.37

Mixed

BERT w/o up-sampling 59.54 29.77 50.00 37.32 51.92 61.59 50.39 35.27
BERT up-sampling x10 60.69 62.67 51.96 43.04 55.88 58.62 54.85 49.87
BERT up-sampling x20 61.19 62.44 52.89 45.56 51.62 51.26 50.17 37.03

ASAP w/o up-sampling 59.61 55.41 51.00 42.21 53.30 61.48 51.88 39.84
ASAP up-sampling x10 60.83 59.69 52.87 46.47 53.42 54.70 52.31 45.93
ASAP up-sampling x20 59.40 54.85 51.73 45.81 53.66 55.21 52.55 46.16

Zephyr Few-shot 79.70 79.47 80.57 79.46 84.21 84.88 83.99 84.06
MistralIF Few-shot 80.99 80.24 80.54 80.37 81.09 83.26 80.69 80.62

Table 3.6: User satisfaction estimation results on MultiWOZ and SGD using binary
satisfaction and dissatisfaction labels. Metrics are based on macro averaging. Main
is the original test data in the benchmarks, CF refers to the counterfactual version
of the original test data (with flipped user satisfaction labels), and Mix is the
combination of Main and CF. Few-shot refers to the few-shot in-context learning
with LLMs. For each dataset (Main, CF, Mixed) the best and second best results are
pointed out in bold and underline, respectively.

extremes in case of imbalance in the test data for the number of satisfaction and
dissatisfaction test samples. To better explore the robustness of models with varying
numbers of test samples from the two classes of Satisfaction and Dissatisfaction, we
evaluate the models using different proportions of these classes. To this aim, we start
with the Main test set with an approximate 95:5 ratio for satisfaction:dissatisfaction
labels. We then increase the number of dissatisfaction labels in the Main condition
using the dissatisfaction dialogue samples from the CF condition. We evaluate
models while increasing the dissatisfaction fraction in steps of 5%. Figure 3.4 depicts
the performance of all models on the MultiWOZ and SGD benchmarks. We see
that the performance of the fine-tuned state-of-the-art models (BERT and ASAP)
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Figure 3.4: Performance of USE models with a varying degree of imbalance in the
test set for the MultiWOZ and SGD benchmarks. The dissatisfaction ratio is the
proportion of samples with dissatisfaction labels in the test collection.

drastically drops when more Dissatisfaction samples are included in the evaluation.
Moreover, Figure 3.5 shows the sensitivity (recall) for only the Dissatisfaction class.
As we can see, few-shot in-context learning with LLMs provides an increased ability
to identify user dissatisfaction in the dialogues, which is a crucial factor in the
deployment of dialogue systems. This is particularly important as we can see
the higher performance of fine-tuned state-of-the-art models (BERT and ASAP) in
comparison to LLMs on the original test set (Main in Table 3.6), which includes
about 5% dissatisfaction samples. However, the sensitivity of these fine-tuned
state-of-the-art models (BERT and ASAP) for the identification of user dissatisfaction
is either lower than LLMs (BERT versus LLMs on MultiWOZ in Figure 3.5) or becomes
comparable with them with a slight increase in the number of Dissatisfaction
samples, e.g., change in results from 5% to 10% dissatisfaction ratio in Table 3.5.

Shared-context results. The counterfactual dialogue samples in the CF test set
differ from the corresponding original samples in the Main test set in terms of the
last system response (see Figure 3.2). To measure the success rate of estimators
in predicting the user satisfaction label for both a dialogue and its corresponding
counterfactual sample, i.e., two samples with the same context (dialogue history),
we use the Jaccard similarity index (JSI) |M∩C |

|M∪C | , where M and C are the correctly
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Figure 3.5: Sensitivity of the models in identification of user dissatisfaction on
various proportions of dissatisfaction test samples.

predicted samples of the Main and CF test collections respectively. Table 3.7 shows
the JSI for different user satisfaction estimators. The best performing BERT and
ASAP setups from Table 3.6 are selected for this purpose. As the table shows,
BERT and ASAP have a very low JSI in comparison to the LLM-based satisfaction
estimators which is in line with the result of these models on the Main and CF test
sets in Table 3.6. Furthermore, we can see that on both the MultiWOZ and SGD test
sets, Zephyr has a higher JSI than MistralIF, even though MistralIF outperforms
Zephyr on the Main test set (top-rows in Table 3.6).

Model MultiWOZ SGD

BERT 0.0419 0.1551
ASAP 0.0166 0.0512
Zephyr 0.7332 0.7538
MistralIF 0.6282 0.6638

Table 3.7: Shared-context results (Jaccard Similarity Index) of user satisfaction
estimation.

3.7. CONCLUSION
We have studied the task of user satisfaction estimation and specifically focused on the
robustness of estimators for TOD systems. We augment two previously introduced
benchmarks using satisfaction-focused counterfactual utterance generation and
conduct human evaluation on the generated dialogues. Using our augmented
test collections, we show that there is a discrepancy between the performance
of estimators on the original test sets and the test sets with a higher ratio of
dissatisfaction dialogue samples.
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Our experiments highlight an important missing aspect in previous studies: the
robustness of satisfaction estimators for the identification of user dissatisfaction.
Moreover, this chapter sheds light on the need for further research on data
augmentation for training user satisfaction estimators. We hypothesize that training
models with more balanced data is beneficial for the robustness of these models. In
this chapter, we also unlock the power of LLMs in generating quality counterfactual
dialogue samples which seems to be a promising direction for augmenting the
training set of user satisfaction estimators. In future work, we plan to leverage LLMs
for such satisfaction-oriented data augmentation in TOD systems. Furthermore,
in this chapter, we only work on turn-level satisfaction estimation and leave the
dialogue-level setting for future work as generating dialogue-level counterfactual data
requires more sophisticated methods. Finally, we have explored user satisfaction
estimation only in task-oriented dialogue systems. User satisfaction estimation has
also been studied for other tasks including conversation recommender systems [163,
172]. Also, we plan to study counterfactual utterance generation for a more broad
application of USE in dialogue systems.

LIMITATIONS
While we employ proprietary model GPT-4 for the generation of counterfactual
samples, we also point out the limitation in this approach in the sense that it still
requires to leverage of a proprietary LLM. Here, we should note that we use GPT-4
to create counterfactual data samples in order to enhance the existing benchmarks.
This is a one-off usage of proprietary models that enables future research on the
evaluation of user satisfaction estimation for task-oriented dialogue systems.

In addition, it should be noted that our current research is exclusively on datasets
in English. Therefore, we highlight the necessity of extending our experiments to
include datasets in languages other than English. This expansion is of importance to
ensure the applicability of our findings across a broader linguistic spectrum.

3.A. APPENDIX

3.A.1. COUNTERFACTUAL RESPONSE GENERATION PROMPT

Figure 3.6 shows the prompt used to generate a counterfactual system utterance for
a new input dialogue, using few-shot in-context learning with GPT-4.

3.A.2. FULL-DIALOGUE COUNTERFACTUAL EXAMPLES

Figure 3.7 illustrates two dialogue samples with both their original last system
utterance and the counterfactual last system utterance.
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You are a counterfactual utterance generator which receives a dialogue and
generates a counterfactual utterance for the ’last’ SYSTEM utterance in the
dialogue.

Here is the definition of counterfactual SYSTEM utterance: If in the
last SYSTEM utterance, SYSTEM fails to fulfill or understand the USER request in
any way, in a counterfactual SYSTEM utterance, SYSTEM understand and fulfills the
USER request.
On the contrary, if in the last SYSTEM utterance, SYSTEM understand and fulfills
the USER request, in a counterfactual SYSTEM utterance, SYSTEM fails to understand
and fulfill the USER request.

Here are two Example dialogues:

Example 1:
USER: Is it true Cambridge has the best attractions? We are looking for something
unusual to do in the centre.
SYSTEM: There is teh museum of archeology and anthropology in the centre that is
free of charge
USER: That’s perfect. Thanks so much for your help.
SYSTEM: You’re welcome. Is there anything else I can assist you with?
USER: Yes can you help me find a place to eat too?
SYSTEM: I’d be happy to help with your request, what area and what type of cuisine
are you looking for?
USER: I would like chinese.
SYSTEM: I’m afraid our restaurant system is currently down. Can I help you with
something else at this time?

Counterfactual SYSTEM last utterance for Example 1:
SYSTEM: Sure, for Chinese cuisine, I recommend the Golden Dragon located in the
city center. It’s known for its authentic flavors and has excellent reviews.
Would you like me to book a table for you?

Example 2:
USER: I need to book a train from bishops stortford to Cambridge on Saturday
arriving in Cambridge before 12:30.
SYSTEM: I have TR4594, leaving at 11:29 and arriving in 12:07. Is that OK?
USER: I actually need to leave after 20:30 on Friday. So whatever is closest to
that time will be fine.
SYSTEM: Okay. The TR4549 leaves at 21:29. Will that suit?
USER: Is there bike parking at the train station?
SYSTEM: Bike parking is available at the station. Are you still interested in a
reservation?

Counterfactual SYSTEM last utterance for Example 2:
SYSTEM: Sorry, the information regarding the Bike parking is not available.
Would you like to look for alternative transportation options?

Now, generate a counterfactual utterance for the ’last’ SYSTEM utterance in the
following dialogue:

{Input Dialogue}

Figure 3.6: The input prompt used for generating counterfactual utterance for the
last system utterance of a given dialogue.



3

42 3. CAUSE: COUNTERFACTUAL ASSESSMENT OF USER SATISFACTION ESTIMATION

Dissatisfaction → Satisfaction

USER: I need to find a guesthouse with a 3 star rating
SYSTEM: We have four such guesthouses. Do you have a preferred location?
USER: No, I don’t. I want one that includes free wifi.
SYSTEM: Bridge Gue House, Hamilton Lodge, and Hobsons House are all available if
you’d like one of those?
USER: Do you know whether they provide daily housekeeping service?
SYSTEM: The Hobsons House offers housekeeping service daily. Can I offer any
more assistance?
USER: What is the fee for staying with pets?
SYSTEM: The Hobsons House does not allow pets. May I help you with anything else?
USER: Does the Hobsons House offer WiFi for guests?
SYSTEM: Free Wifi is available at the Hobsons House. What other specifications
are you looking for?
USER: Please book the Hamilton Lodge, for 6 people.
SYSTEM: I’d be happy to. How many nights would you like to stay? And I’ll need
to know the day you would like to start your stay.
USER: I’ll be staying 2 nights starting on wednesday. Oh, and there are 6 of us.

Original System Response R [Dissatisfaction]:
SYSTEM: I’m sorry, my reservation attempt was unsuccessful. Will another day or
length of stay work?

Counterfactual System Response R̂ [Satisfaction]:
SYSTEM: Great, I have successfully booked the Hamilton Lodge for 6 people for 2
nights starting on Wednesday. Your reservation is confirmed. Is there anything
else you need assistance with?

Satisfaction → Dissatisfaction

USER: Would you be able to help me find a room that has free wifi?
SYSTEM: I certainly can. Do you have additional preferences?
USER: I’m looking for a guesthouse, and I misspoke earlier. I actually don’t care
about the internet, but I do need free parking.
SYSTEM: I have 21 guest houses, can you tell me what area you would like to be in?
USER: The area doesn’t matter.
SYSTEM: Ok. The acorn guest house is in the north part of town in the moderate
price range. Would that work?
USER: Does the Acorn provide any kind of kitchen equipment that guests can use?
SYSTEM: There is no kitchen available here. Can I still book a reservation for
you?
USER: Yes. I would like to book that for 4 people for 4 nights staring on
Wednesday.
SYSTEM: Sorry, it was unavailable at that time. Perhaps you might want another
day or a shorter stay?
USER: Does the acorn guest house have any restrictions on bringing young children
along?

Original System Response R [Satisfaction]:
SYSTEM: There are no restrictions. Children are welcome to stay there. Any
other questions, or should I continue to book it?

Counterfactual System Response R̂ [Dissatisfaction]:
SYSTEM: I’m not sure about their policy on young children. Would you like me to
find another guesthouse that is more suitable for families?

Figure 3.7: Examples of generated counterfactual system utterances. Satisfaction to
Dissatisfaction (top) and vice versa (bottom).
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MEASURING BIAS IN A RANKED LIST

USING TERM-BASED

REPRESENTATIONS

In most recent studies, gender bias in document ranking is evaluated with the NFaiRR
metric, which measures bias in a ranked list based on an aggregation over the
unbiasedness scores of each ranked document. This perspective in measuring the bias
of a ranked list has a key limitation: individual documents of a ranked list might be
biased while the ranked list as a whole balances the groups’ representations. To address
this issue, we propose a novel metric called TExFAIR (term exposure-based fairness),
which is based on two new extensions to a generic fairness evaluation framework,
attention-weighted ranking fairness (AWRF). TExFAIR assesses fairness based on the
term-based representation of groups in a ranked list: (i) an explicit definition of
associating documents to groups based on probabilistic term-level associations, and (ii)
a rank-biased discounting factor (RBDF) for counting non-representative documents
towards the measurement of the fairness of a ranked list. We assess TExFAIR on the
task of measuring gender bias in passage ranking, and study the relationship between
TExFAIR and NFaiRR. Our experiments show that there is no strong correlation
between TExFAIR and NFaiRR, which indicates that TExFAIR measures a different
dimension of fairness than NFaiRR. With TExFAIR, we extend the AWRF framework
to allow for the evaluation of fairness in settings with term-based representations of
groups in documents in a ranked list.

4.1. INTRODUCTION
Ranked result lists generated by ranking models may incorporate biased
representations across different societal groups [24, 50, 146]. Societal bias
(unfairness) may reinforce negative stereotypes and perpetuate inequities in the
representation of groups [89, 186]. A specific type of societal bias is the biased
representation of genders in ranked lists of documents. Prior work on binary gender
bias in document ranking associates each group (female, male) with a predefined
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set of gender-representative terms [23, 146, 147], and measures the inequality of
representation between the genders in the result list using these groups of terms.
While there have been efforts in optimizing rankers for mitigating gender bias [146,
156, 205], there is limited research addressing the metrics that are used for the
evaluation of this bias. The commonly used metrics for gender bias evaluation
are average rank bias (which we refer to as ARB) [147] and normalized fairness
in the ranked results (NFaiRR) [146]. These metrics have been found to result in
inconsistent fairness evaluation results [94].

There are certain characteristics of ARB and NFaiRR that limit their utility for
bias evaluation of ranked result lists: ARB provides a signed and unbounded value
for each query [147], and therefore the bias (unfairness) values are not properly
comparable across queries. NFaiRR evaluates a ranked list by aggregating over
the unbiasedness score of each ranked document. This approach may result in
problematic evaluation results. Consider Figure 4.1, which shows two rankings
for a single query where the unbiasedness score of all documents is zero (as
each document is completely biased to one group). The fairness of these two
rankings in terms of NFaiRR is zero (i.e., both have minimum fairness), while it is
intuitively clear that the ranking on the left is fairer as it provides a more balanced
representation of the two groups. There are metrics, however, that are not prone to
the kind of problematic cases shown in Figure 4.1, but are not directly applicable
to fairness evaluation based on term-based group representation off-the-shelf. In
particular, attention-weighted rank fairness (AWRF) [51, 141, 153] works based on
soft attribution of items (here, documents) to multiple groups. AWRF is a generic
metric; for a specific instantiation it requires definitions of:

(i) the association of items of a ranked list with respect to each group,

(ii) a weighting schema, which determines the weights for different rank positions,

(iii) the target distribution of groups, and

(iv) a distance function to measure the difference between the target distribution
of groups with their distribution in the ranked list.

We propose a new metric TExFAIR (term exposure-based fairness) based on the
AWRF framework for measuring fairness of the representation of different groups in
a ranked list. TExFAIR extends AWRF with two adaptations:

(i) an explicit definition of the association of documents to groups based on
probabilistic term-level associations, and

(ii) a ranked-biased discounting factor (RBDF) for counting non-representative
documents towards the measurement of the fairness of a ranked list.

Specifically, we define the concept of term exposure as the amount of attention
each term receives in a ranked list, given a query and a retrieval system. Using
term exposure of group-representative terms, we estimate the extent to which each
group is represented in a ranked result list. We then leverage the discrepancy in the
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Query: Who is the best football player

1 ... currently he plays for Ligue 1 club Paris
Saint-Germain ...

1 ... currently he plays for Ligue 1 club Paris
Saint-Germain ...

2 ... she previously played for Espanyol and Levante
...

2 ... He is Real Madrid’s all-time top goalscorer,
scoring 451 ...

3 ... She became the first player in the history of
the league ...

3 ... he was named the Ligue 1 Player of the Year,
selected to ...

4 ... he returned to Manchester United in 2021 after
12 years ...

4 ... he returned to Manchester United in 2021 after
12 years ...

Figure 4.1: Two ranked lists of retrieved results for “who is the best football player”.
Documents in blue contain only female-representative terms and documents in red
contain only male-representative terms. In terms of NFaiRR, fairness of both ranked
result lists is zero (minimum fairness).

representation of different groups to measure the degree of fairness in the ranked
result list. Moreover, we show that the estimation of fairness may be highly impacted
by whether the non-representative documents (documents that do not belong to any
of the groups) are taken into account or not. To count these documents towards the
estimation of fairness, we propose a rank-biased discounting factor (RBDF) in our
evaluation metric. Finally, we employ counterfactual data substitution (CDS) [114]
to measure the gender sensitivity of a ranking model in terms of the discrepancy
between its original rankings and the ones it provides if it performs retrieval in a
counterfactual setting, where the gender of each gendered term in the documents of
the collection is reversed, e.g., “he” → “she,” “son” → “daughter.”

In summary, our main contributions are as follows:

• We define an extension of the AWRF evaluation framework with the metric
TExFAIR, which explicitly defines the association of each document to the
groups based on a probabilistic term-level association.

• We show that non-representative documents, i.e., documents without any
representative terms, may have a high impact in the evaluation of fairness with
group-representative terms and to address this issue we define a rank-biased
discounting factor (RBDF) in our proposed metric.

• We evaluate a set of ranking models in terms of gender bias and show that
the correlation between TExFAIR and NFaiRR is not strong, indicating that
TExFAIR measures a different dimension of fairness than NFaiRR.

4.2. BACKGROUND
Fairness in rankings. Fairness is a subjective and context-specific constraint and
there is no unique definition when it comes to defining fairness for rankings [6,
68, 115, 161, 203]. The focus of this chapter is on measuring fairness in the
representation of groups in rankings [60, 120, 140, 146, 202], and, specifically,
the setting in which each group can be represented by a predefined set of
group-representative terms. We particularly investigate gender bias in document
ranking and follow prior work [22, 67, 146, 147, 205] on gender bias in the binary
setting of two groups: female and male. In this setup, each gender is defined by a
set of gender-representative terms (words), which we adopt from prior work [146].
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Previous studies on evaluating gender bias [24, 146, 147, 205] mostly use the ARB
[147] and NFaiRR [146] metrics. Since the ARB metric has undesirable properties
(e.g., being unbounded), for the purposes of this chapter we will focus on comparing
our newly proposed metric to NFaiRR as the most used and most recent of the
two metrics [146, 205]. Additionally, there is a body of prior work addressing the
evaluation of fairness based on different aspects [21, 46, 64, 161, 193, 201]. The
metrics used in these works vary in different dimensions including

(i) the goal of fairness, i.e., what does it mean to be fair,

(ii) whether the metric considers relevance score as part of the fairness evaluation,

(iii) binary or non-binary group association of each document,

(iv) the weighting decay factor for different positions, and

(v) evaluation of fairness in an individual ranked list or multiple rankings [140,
141].

In light of the sensitivity of gender fairness, which poses a constraint where
each ranked list is supposed to represent different gender groups in a ranked list
equally [24, 146, 205], we adopt attention-weighted rank fairness (AWRF) [153] as a
framework for the evaluation of group fairness in an individual ranked list with soft
attribution of documents to multiple groups.

Normalized fairness of retrieval results (NFaiRR). In the following, q is a query,
tf(t ,d) stands for the frequency of term t in document d , G is the set of N groups
where Gi is the i -th group with i ∈ {1, . . . , N }, VGi is the set of group-representative
terms for group Gi , d r

q is the retrieved document at rank r for query q , and k is the

ranking cut-off. MGi (d) represents the magnitude of group Gi , which is equal to the
frequency of Gi ’s representative terms in document d , i.e., MGi (d) =∑

t∈VGi
tf(t,d). τ

sets a threshold for considering a document as neutral based on MGi (d) of all groups
in G . Finally, JGi is the expected proportion of group Gi in a balanced representation
of groups in a document, e.g., JGi = 1

2 in equal representation for Gi ∈ {female,male}
[24, 146, 205].

Depending on MGi (d) for all Gi ∈ G , document d is assigned with a neutrality
(unbiasedness) score ω(d):

ω(d) =


1, if

∑
Gi∈G

MGi (d) ≤ τ

1− ∑
Gi∈G

∣∣∣∣∣ MGi (d)∑
Gx∈G

MGx (d)
−JGi

∣∣∣∣∣, otherwise.
(4.1)

To estimate the fairness of the top-k documents retrieved for query q , first, the
neutrality score of each ranked document d r

q is discounted with its corresponding

position bias, i.e., (log(r +1))−1, and then, an aggregation over top-k documents is
applied (Eq. 4.2). The resulting score is referred to as the fairness of retrieval results
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(FaiRR) for query q :

FaiRR(q,k) =
k∑

r=1

ω(d r
q )

log(r +1)
. (4.2)

As FaiRR scores of different queries may end up in different value ranges (and
consequently are not comparable across queries), a background set of documents S
is employed to normalize the fairness scores with the ideal FaiRR (IFaiRR) of S for
query q [146]. IFaiRR(q,S) is the best possible fairness result that can be achieved
from reordering the documents in the background set S [146]. The NFaiRR score for
a query is formulated as follows:

NFaiRR(q,k,S) = FaiRR(q,k)

IFaiRR(q,S)
. (4.3)

Attention-weighted rank fairness (AWRF). Initially proposed by Sapiezynski et
al. [153], AWRF measures the unfairness of a ranked list based on the difference
between the exposure of groups and their target exposure. To this end, it first
computes a vector ELq of the accumulated exposure that a list of k documents L
retrieved for query q gives to each group:

ELq =
k∑

r=1
vr ad r

q
. (4.4)

Here, vr represents the attention weight, i.e., position bias corresponding to the rank
r , e.g., (log(r +1))−1 [51, 153], and ad r

q
∈ [0,1]|G| stands for the alignment vector of

document d r
q with respect to different groups in the set of all groups G . Each entity

in the alignment vector ad r
q

determines the association of d r
q to one group, i.e., aGi

d r
q

.

To convert ELq to a distribution, a normalization is applied:

nELq =
ELq

∥ELq ∥1
. (4.5)

Finally, a distance metric is employed to measure the difference between the desired
target distribution Ê and the nELq , the distribution of groups in the ranked list
retrieved for query q :

AWRF(Lq ) =∆(nELq , Ê). (4.6)

4.3. METHODOLOGY
As explained in Section 4.1 and 4.2, NFaiRR measures fairness based on document-
level unbiasedness scores. However, in measuring the fairness of a ranked list,
individual documents might be biased while the ranked list as a whole balances the
groups’ representations. Hence, fairness in the representation of groups in a ranked
list should not be defined as an aggregation of document-level scores.

We, therefore, propose to measure group representation for a top-k ranking
using term exposure in the ranked list as a whole. We adopt the weighting
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approach of AWRF, and explicitly define the association of documents on a
term-level. Additionally, as we show in Section 4.5, the effect of documents without
any group-representative terms, i.e., non-representative documents, could result in
under-estimating the fairness of ranked lists. To address this issue, we introduce
a rank-biased discounting factor in our metric. Other measures for group fairness
exist, and some of these measures also make use of exposure [46, 161].1 However,
these measures are not at the term-level, but at the document-level. In contrast, we
perform a finer measurement and quantify the amount of attention a term (instead
of document) receives.

Term exposure. In order to quantify the amount of attention a specific term t
receives given a ranked list of k documents retrieved for a query q , we formally
define term exposure of term t in the list of k documents Lq as follows:

TE@k(t , q,Lq ) =
k∑

r=1
po(t | d r

q ) ·po(d r
q ). (4.7)

Here, d r
q is a document ranked at rank r in the ranked result retrieved for query

q . po(t | d r
q ) is the probability of observing term t in document d r

q , and po(d r
q ) is

the probability of document d at rank r being observed by user. We can perceive
po(t | d r

q ) as the probability of term t occurring in document d r
q . Therefore, using

maximum likelihood estimation, we estimate po(t | d r
q ) with the frequency of term

t in document d r
q divided by the total number of terms in d r

q , i.e., tf(t ,d r
q ) · |d r

q |−1.
Additionally, following [115, 161], we assume that the observation probability po(d r

q )
only depends on the rank position of the document, and therefore can be estimated
using the position bias at rank r . Following [146, 161], we define the position bias as
(log(r +1))−1. Accordingly, Eq. 4.7 can be reformulated as follows:

TE@k(t , q) =
k∑

r=1

tf(t ,d r
q )

|d r
q |

log(r +1)
. (4.8)

Group representation. We leverage the term exposure (Eq. 4.8) to estimate the
representation of each group using the exposure of its representative terms as
follows:

p(Gi | q,k) =
∑

t∈VGi
TE@k(t , q)∑

Gx∈G
∑

t∈VGx
TE@k(t , q)

. (4.9)

Here, Gi represents the group i in the set of N groups indicated with G (e.g.,
G = {female,male}), and VGi stands for the set of terms representing group Gi .
The component

∑
Gx∈G

∑
t∈VGx

TE@k(t , q) can be interpreted as the total amount of

attention that users spend on the representative terms in the ranking for query q .
This formulation of the group representation corresponds to the normalization step
in AWRF (Eq. 4.5).

Term exposure-based divergence. To evaluate the fairness based on the
representation of different groups, we define a fairness criterion built upon our

1Referring to the amount of attention an item (document) receives from users in the ranking.
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term-level perspective in the representation of groups: in a fairer ranking – one that
is less biased – each group of terms receives an amount of attention proportional
to their corresponding desired target representation. Put differently, a divergence
from the target representations of groups can be used as a means to measure
the bias in the ranking. This divergence corresponds to the distance function
in Eq. 4.6. Let p̂Gi be the target group representation for each group Gi (e.g.,
p̂Gi = 1

2 for Gi ∈ {female,male} for equal representation of male and female), then
we can compute the bias in the ranked results retrieved for the query q as the
absolute divergence between the groups’ representation and their corresponding
target representation. We refer to this bias as the term exposure-based divergence
(TED) for query q :

TED(q,k) = ∑
Gi∈G

|p(Gi | q,k)− p̂Gi |. (4.10)

Rank-biased discounting factor (RBDF). With the current formulation of group
representation in Eq. 4.9, non-representative documents, i.e., the documents that do
not include any group-representative terms, will not contribute to the estimation of
bias in TED (Eq. 4.10). To address this issue, we discount the bias in Eq. 4.10
with the proportionality of those documents that count towards the bias estimation,
i.e., documents which include at least one group-representative term. To take into
account each of these documents with respect to their position in the ranked list,
we leverage their corresponding position bias, i.e., (log(1+ r ))−1 for a document at
rank r , to compute the proportionality. The resulting proportionality factor which
we refer to as rank-biased discounting factor (RBDF) is estimated as follows:

RBDF(q,k) =
∑k

r=1
1[d r

q∈SR ]

log(1+r )∑k
r=1

1
log(1+r )

. (4.11)

Here, SR stands for the set of representative documents in top-k ranked list of query
q , i.e., documents that include at least one group-representative term. Besides,
1[d r

q ∈ SR ] is equal to 1 if d r
q ∈ SR , otherwise, 0. Accordingly, we incorporate

RDBF(q,k) into Eq. 4.10 and reformulate it as:

TED(q,k) = ∑
Gi∈G

|p(Gi | q,k)− p̂Gi | ·
∑k

r=1
1[d r

q∈SR ]

log(1+r )∑k
r=1

1
log(1+r )

. (4.12)

Alternatively, as TED(q,k) is bounded, we can leverage the maximum value of TED
to quantify the fairness of the rank list of query q . We refer to this quantity as term
exposure-based fairness (TExFAIR) of query q :

TExFAIR(q,k) = max(TED)−TED(q,k). (4.13)

In the following, we use TExFAIR to refer to TExFAIR with proportionality (RBDF),
unless otherwise stated. With p̂Gi = 1

2 for Gi ∈ {female,male}, TED (Eq. 4.10 and 4.12)
falls into the range of [0,1], therefore TExFAIR(q,k) = 1−TED(q,k).
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4.4. EXPERIMENTAL SETUP

Query sets and collection. We use the MS MARCO Passage Ranking collection [17],
and evaluate the fairness on two sets of queries from prior work [24, 147, 205]:

(i) QS1 which consists of 1756 non-gendered queries [147], and

(ii) QS2 which includes 215 bias-sensitive queries [146] (see [147] and [146]
respectively for examples).

Ranking models. Following the most relevant related work [146, 205], we evaluate
a set of ranking models which work based on pre-trained language models (PLMs).
Ranking with PLMs can be classified into three main categories: sparse retrieval,
dense retrieval, and re-rankers. In our experiments we compare the following
models:

(i) two sparse retrieval models: uniCOIL[106] and DeepImpact [113];

(ii) five dense retrieval models: ANCE [192], TCT-ColBERTv1 [109], SBERT [145],
distilBERT-KD [70], and distilBERT-TASB [71];

(iii) three commonly used cross-encoder re-rankers: BERT [126], MiniLMKD [179]
and TinyBERTK D [86]. Additionally, we evaluate BM25 [149] as a widely-used
traditional lexical ranker [1, 108].

For sparse and dense retrieval models we employ the pre-built indexes, and their
corresponding query encoders provided by the Pyserini toolkit [107]. For re-rankers,
we use the pre-trained cross-encoders provided by the sentence-transformers library
[145].2 For ease of fairness evaluation in future work, we make our code publicly
available at https://github.com/aminvenv/texfair.

Evaluation details. We use the official code available for NFaiRR.3 Following
suggestions in prior work [146], we utilize the whole collection as the background
set S (Eq. 4.3) to be able to do the comparison across rankers and re-rankers
(which re-rank top-1000 passages from BM25). Since previous instantiations of AWRF
cannot be used for the evaluation of term-based fairness of group representations
out-of-the-box, we compare TExFAIR to NFaiRR.

4.5. RESULTS
Table 4.1 shows the evaluation of the rankers in terms of effectiveness (MRR
and nDCG) and fairness (NFaiRR and TExFAIR). The table shows that almost all
PLM-based rankers are significantly fairer than BM25 on both query sets at ranking
cut-off 10. In the remainder of this section we address three questions:

(i) What is the correlation between the proposed TExFAIR metric and the
commonly used NFaiRR metric?

2https://www.sbert.net/docs/pretrained-models/ce-msmarco.html
3https://github.com/CPJKU/FairnessRetrievalResults

https://www.sbert.net/docs/pretrained-models/ce-msmarco.html
https://github.com/CPJKU/FairnessRetrievalResults
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Method
QS1 QS2

MRR nDCG NFAIRR TExFAIR r MRR nDCG NFAIRR TExFAIR r

Sparse retrieval

BM25 0.1544 0.1958 0.7227 0.7475 0.4823† 0.0937 0.1252 0.8069 0.8454 0.5237†

UniCOIL 0.3276‡ 0.3892‡ 0.7819‡ 0.7629‡ 0.5166† 0.2288‡ 0.2726‡ 0.8930‡ 0.8851‡ 0.4049†

DeepImpact 0.2690‡ 0.3266‡ 0.7721‡ 0.7633‡ 0.5487† 0.1788‡ 0.2200‡ 0.8825‡ 0.8851‡ 0.4971†

Dense retrieval

ANCE 0.3056‡ 0.3640‡ 0.7989‡ 0.7725‡ 0.5181† 0.2284‡ 0.2763‡ 0.9093‡ 0.9060‡ 0.4161†

DistillBERTKD 0.2906‡ 0.3488‡ 0.7913‡ 0.7683‡ 0.5525† 0.2306‡ 0.2653‡ 0.9149‡ 0.9044‡ 0.4257†

DistillBERTTASB 0.3209‡ 0.3851‡ 0.7898‡ 0.7613‡ 0.5091† 0.2250‡ 0.2725‡ 0.9088‡ 0.8960‡ 0.4073†

TCT-ColBERTv1 0.3138‡ 0.3712‡ 0.7962‡ 0.7688‡ 0.5253† 0.2300‡ 0.2732‡ 0.9116‡ 0.9056‡ 0.4249†

SBERT 0.3104‡ 0.3693‡ 0.7880‡ 0.7637‡ 0.5217† 0.2197‡ 0.2638‡ 0.8943‡ 0.8999‡ 0.3438†

Re-rankers

BERT 0.3415‡ 0.4022‡ 0.7790‡ 0.7584‡ 0.5135† 0.2548‡ 0.2950‡ 0.8896‡ 0.8807‡ 0.4323†

MiniLMKD 0.3832‡0.4402‡ 0.7702‡ 0.7516 0.5257†0.2872‡0.3323‡ 0.8863‡ 0.8865‡ 0.3880†

TinyBERTKD 0.3482‡ 0.4093‡ 0.7799‡ 0.7645‡ 0.5437† 0.2485‡ 0.3011‡ 0.8848‡ 0.8952‡ 0.4039†

Table 4.1: Effectiveness and fairness results at ranking cut-off = 10. r denotes the
correlation between TExFAIR and NFaiRR. Higher values of TExFAIR and NFaiRR
correspond to higher fairness. † denotes statistical significance for correlations with
(p < 0.05). ‡ indicates statistically significant improvement over BM25 according to a
paired t-test (p < 0.05). Bonferroni correction is used for multiple testing.

(ii) What is the sensitivity of the metrics to the ranking cut-off?

(iii) What is the relationship between the bias in ranked result lists of rankers, and
how sensitive they are towards the concept of gender?

(i) Correlation between metrics. To investigate the correlation between the TExFAIR
and NFaiRR metrics, we employ Pearson’s correlation coefficient on the query level.
As the values in Table 4.1 indicate, the two metrics are significantly correlated,
but the relationship is not strong (0.34 < r < 0.55). This is likely due to the fact
that NFaiRR and TExFAIR are structurally different: NFaiRR is document-centric:
it estimates the fairness in the representation of groups on a document-level and
then aggregates the fairness values over top-k documents. TExFAIR, on the other
hand, is ranking-centric: each group’s representation is measured based on the
whole ranking, instead of individual documents. As a result, in a ranked list of k
documents, the occurrences of the terms from one group at rank i , with i ∈ {1, . . . ,k},
can balance and make up for the occurrences of the other group’s terms at rank
j , with j ∈ {1, . . . ,k}. This is in contrast to NFaiRR in which the occurrences of the
terms from one group at rank i , with i ∈ {1, . . . ,k}, can only balance and make up for
the occurrences of other group’s terms at rank i . Thus, TExFAIR measures a different
dimension of fairness than NFaiRR.

(ii) Sensitivity to ranking cut-off k. Figure 4.2 depicts the fairness results at various
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cut-offs using TExFAIR with and without proportionality (RBDF) as well as the
results using NFaiRR. The results using TExFAIR without proportionality show a high
sensitivity to the ranking cut-off k in comparison to the other two metrics. The
reason is that without proportionality factor RDBF, the unbiased documents with
zero group-representative term, i.e., non-representative documents, do not count
towards the fairness evaluation. As a result, regardless of the number of this kind of
unbiased documents, documents that include group-representative terms potentially
can highly affect the fairness of the ranked list. On the contrary, NFaiRR and
TExFAIR with proportionality factor are less sensitive to the ranking cut-off: the
effect of unbiased documents with zero group-representative term is addressed in
NFaiRR with a maximum neutrality for these documents (Eq. 4.1), and in TExFAIR
with proportionality factor RBDF by discounting the bias using the proportion of
documents that include group-representative terms (Eq. 4.12).

(iii) Counterfactual evaluation of gender fairness. TExFAIR and NFaiRR both
measure the fairness of ranked lists produced by ranking models. Next, we perform
an analytical evaluation to measure the extent to which a ranking model acts
indifferently (unbiasedly) towards the genders, regardless of the fairness of the ranked
list it provides. Our evaluation is related to counterfactual fairness measurements
which require that the same outcome should be achieved in the real world as in
the term-based counterfactual world [134, 188]. Here, the results of the real world
correspond to the ranked lists that are returned using the original documents, and
results of the counterfactual world correspond to the ranked lists that are returned
using counterfactual documents.

In order to construct counterfactual documents, we employ counterfactual data
substitution (CDS) [110, 114], in which we replace terms in the collection with their
counterpart in the opposite gender-representative terms, e.g., “he” → “she,” “son”
→ “daughter,” etc. For names, e.g., Elizabeth or John, we substitute them with
a name from the opposite gender name in the gender-representative terms [114].
Additionally, we utilize POS information to avoid ungrammatically assigning “her” as
a personal pronoun or possessive determiner [114]. We then measure how the ranked
result lists of a ranking model on a query set Q would diverge if a ranker performs
the retrieval on the counterfactual collection rather than the original collection.

In order to measure the divergence, we employ rank-biased overlap (RBO) [182]
as a measure to quantify the similarities between two ranked lists. We refer to this
quantity as counterfactually-estimated rank-biased overlap (CRBO). RBO ranges from
0 to 1, where 0 represents disjoint and 1 represents identical ranked lists. RBO has a
parameter 0 < p ≤ 1 which regulates the degree of top-weightedness in estimating the
similarity. From another perspective, p represents searcher patience or persistence
and larger values of p stand for more persistent searching [38]. Since we focus on
top-10 ranked results, we follow the original work [182] for a reasonable choice of p,
and set it to 0.9 (see [182] for more discussion).

Table 4.2 shows the CRBO results. While there is a substantial difference in the
fairness of ranked results between the BM25 and the PLM-based rankers, the CRBO
results of these models are highly comparable, and even BM25, as the model which
provides the most biased ranked results, is the least biased model in terms of CRBO
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Figure 4.2: Fairness results on QS1 (first row) and QS2 (second row) at different
ranking cut-off values (k).

on QS1. Additionally, among PLM-based rankers, the ones with higher TExFAIR or
NFaiRR scores do not necessarily provide higher CRBO. This discrepancy between
{NFaiRR, TExFAIR} and CRBO disentangles the bias of a model towards genders from
the bias of the ranked results it provides. However, it should be noted that we indeed
cannot come to a conclusion as to whether the bias that exists in the PLM-based
rankers (the one that is reflected by CRBO) does not contribute to their superior
fairness of ranked results (the one that is reflected by {NFaiRR, TExFAIR}). We leave
further investigation of the quantification of inherent bias of PLM-based rankers and
its relation with the bias of their ranked results for future work.

4.6. DISCUSSION

The role of non-representative documents. As explained in Section 4.3, and based
on the results in Section 4.5, discounting seems to be necessary for the evaluation
of gender fairness in document ranking with group-representative terms, due to the
effect of non-representative documents. Here, one could argue that without our
proposed proportionality discounting factor (Section 4.3), it is possible to use an
association value for d r

q to group Gi , i.e., aGi
d r

q
in the formulation of AWRF (Section
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QS1 QS2

Models CRBO TExFAIR NFaiRR CRBO TExFAIR NFaiRR

BM25 0.9733 0.8454 0.8069 0.9761 0.7475 0.7227

BERT 0.9506 0.8807 0.8896 0.9735 0.7629 0.7790

MiniLM 0.9597 0.8865 0.8863 0.9753 0.7516 0.7702

TinyBERT 0.9519 0.8952 0.8848 0.9714 0.7645 0.7799

Table 4.2: Counterfactually-estimated RBO results. For ease of comparison, TExFAIR
and NFaiRR results are included from Table 4.1.

4.2) as follows:

aGi
d r

q
=

MGi (d r
q )∑

Gx∈G MGx (d r
q )

, (4.14)

and simply assign equal association for each group, e.g., aGi
d r

q
= 1

2 for Gi ∈ {female,

male} for documents that do not contain group-representative terms, i.e., non-
representative documents. However, we argue that such formulation results in the
ignorance of the frequency of group-representative terms. For instance, intuitively, a
document which has only one mention of a female name as a female-representative
term (therefore is completely biased towards female) and is positioned at rank i ,
cannot simply compensate and balance for a document with high frequency of
male-representative names and pronouns (completely biased towards male) and is
positioned at rank i +1. However, with the formulation of document associations in
AWRF (Eq. 4.14) these two documents can roughly4 balance for each other. As such,
there is a need for a fairness estimation in which the frequency of terms is better
counted towards the final distribution of groups. Our proposed metric TExFAIR
implicitly accounts for this effect by performing the evaluation based on term-level
exposure estimation and incorporating the rank biased discounting factor RBDF.

Limitations of CRBO. While measuring gender bias with counterfactual data
substitution is widely used for natural language processing tasks [42, 63, 114,
152], we believe that our analysis falls short of thoroughly measuring the learned
stereotypical bias. We argue that through the pre-training and fine-tuning step,
specific gendered correlations could be learned in the representation space of the
ranking models [183]. For instance, the representation of the word “nurse” or
“babysitter” might already be associated with female group terms. In other words,
the learned association of each term to different groups (either female or male),
established during pre-training or fine-tuning, is a spectrum rather than binary. As
a result, these kinds of words could fall at different points of this spectrum and
therefore, simply replacing a limited number of gendered-terms (which are assumed
to be the two end point of this spectrum) with their corresponding counterpart in
the opposite gender group, might not reflect the actual inherent bias of PLM-based
rankers towards different groups of gender. Moreover, while we estimate CRBO based
on the divergence of the results on the original collection and a single counterfactual

4As they have different position bias.
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collection, more stratified counterfactual setups can be studied in future work.

Reflection on evaluation with term-based representations. We acknowledge that
evaluating fairness with term-based representations is limited in comparison to
real-world user evaluations of fairness. However, this shortcoming exists for
all natural language processing tasks where semantic evaluation from a user’s
perspective might not exactly match with the metrics that work based on term-based
evaluation. For instance, there exists a discussion over the usage of BLEU [132]
and ROUGE [105] scores in the evaluation of natural language generation [169, 208].
Nevertheless, such an imperfect evaluation method is still of great importance due to
the sensitivity of the topic of societal fairness and the impact caused by the potential
consequences of unfair ranking systems. We believe that this chapter addresses an
important aspect of evaluation in the current research in this area and plan to work
on more semantic approaches of societal fairness evaluation in the future.

4.7. CONCLUSION
In this chapter, we addressed the evaluation of societal group bias in document
ranking. We pointed out an important limitation of the most commonly used group
fairness metric NFaiRR, which measures fairness based on a fairness score of each
ranked document. Our newly proposed metric TExFAIR integrates two extensions
on top of a previously proposed generic metric AWRF: the term-based association
of documents to each group, and a rank biased discounting factor that addresses
the impact of non-representative documents in the ranked list. As it is structurally
different, our proposed metric TExFAIR measures a different aspect of the fairness of
a ranked list than NFaiRR. Hence, when fairness is taken into account in the process
of model selection, e.g., with a combinatorial metric of fairness and effectiveness
[146], the difference between the two metrics TExFAIR and NFaiRR could result in a
different choice of model.

In addition, we conducted a counterfactual evaluation, estimating the inherent
bias of ranking models towards different groups of gender. With this analysis we
show a discrepancy between the measured bias in the ranked lists (with NFaiRR or
TExFAIR) on the one hand and the inherent bias in the ranking models themselves
on the other hand. In this regard, for our future work, we plan to study more
semantic approaches of societal fairness evaluation to obtain a better understanding
of the relationship between the inherent biases of ranking models and the fairness
(unbiasedness) of the ranked lists they produce. Moreover, since measuring group
fairness with term-based representations of groups is limited (compared with the
real-world user evaluation of fairness), we intend to work on more user-oriented
methods for the measurement of societal fairness in the ranked list of documents.





5
EVALUATION OF ATTRIBUTION BIAS

IN GENERATOR-AWARE

RETRIEVAL-AUGMENTED LARGE

LANGUAGE MODELS

Attributing answers to source documents is an approach used to enhance the
verifiability of a model’s output in retrieval-augmented generation (RAG). Prior work
has mainly focused on improving and evaluating the attribution quality of large
language models (LLMs) in RAG, but this may come at the expense of inducing biases
in the attribution of answers. We define and examine two aspects in the evaluation
of LLMs in RAG pipelines, namely attribution sensitivity and bias with respect to
authorship information. We explicitly inform an LLM about the authors of source
documents, instruct it to attribute its answers, and analyze (i) how sensitive the LLM’s
output is to the author of source documents, and (ii) whether the LLM exhibits a bias
towards human-written or AI-generated source documents. We design an experimental
setup in which we use counterfactual evaluation to study three LLMs in terms of
their attribution sensitivity and bias in RAG pipelines. Our results show that adding
authorship information to source documents can significantly change the attribution
quality of LLMs by 3 to 18%. We show that LLMs can have an attribution bias
towards explicit human authorship, which can serve as a competing hypothesis for
findings of prior work that shows that LLM-generated content may be preferred over
human-written contents. Our findings indicate that metadata of source documents
can influence LLMs’ trust, and how they attribute their answers. Furthermore, our
research highlights attribution bias and sensitivity as a novel aspect of the brittleness
of LLMs.

5.1. INTRODUCTION
The goal of retrieval-augmented generation (RAG) is to generate an answer to a given
question using a set of top-k retrieved documents as context [98]. Large language
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Question

Retrieval

...

...

Generation (LLM Output)

Figure 5.1: Retrieval-augmented answer/attribution generation using two LLMs.
Together with the question, retrieval results are given to the LLMs in order to
generate the answer.

models (LLMs) have been a crucial part of RAG pipelines, mainly as the generator
component [9, 82, 97, 100]. Although the use of LLMs offers potential benefits, it
also presents considerable risks, as they are prone to generate false or hallucinated
claims [83]. This is important as such claims may misguide users, particularly when
they are being used in critical fields such as the legal or medical domain [16, 112,
191].

Enabling LLMs to attribute their answer to the source of information has
been proposed as a promising direction towards reducing the likelihood of such
potential harms [101, 102, 133]. This attribution could assist users in tracing and
understanding the basis of the information that LLMs are generating [61, 76]. There
are many prior studies on answer attribution in RAG pipelines [26, 74, 101, 117, 121,
167].

As Figure 5.1 illustrates, LLMs are susceptible to making mistakes when attributing
their answers to the input documents in RAG. Moreover, enabling LLMs in RAG
to attribute their answer may come at the expense of inducing biases, as LLMs



5.1. INTRODUCTION

5

59

may carry potential biases [53, 130, 189, 212]. For instance, Tan, Sun, Yang, Wang,
Cao, and Cheng (2024) show that retrieval-augmented LLMs can be biased towards
selecting their own generated text when this kind of content is present in their input.
Inspecting these biases is of paramount importance as they can be leveraged for
both positive and negative purposes.

In this chapter, we study the performance of LLMs in terms of attribution
sensitivity and attribution bias w.r.t. authorship information. When we explicitly
inform LLMs about the authors of input documents, and instruct them to attribute
their answers to the input documents (by providing citations to these documents),
how sensitive are they to the authorship information of input documents? And
are they biased towards either human or LLM authorship of input documents?
To address these questions, we design a simulated evaluation setup in which we
measure to what extent knowing the type of author of input documents affects the
quality of attribution (citation) in LLMs.

Prior work has indicated that LLM-generated content may consistently outperform
human-authored content in search rankings, which, in turn, results in reducing the
presence and exposure of human contributions online [35, 43]. Inspired by these
studies, we compare human-written documents against LLM-generated documents.
We follow prior work in attribution generation by prompting LLMs to generate
citations to the input documents [61, 199]. Furthermore, we use counterfactual
evaluation [2, 65, 73, 78, 190] to measure both authorship sensitivity and authorship
bias of LLMs in RAG pipelines. This approach can be used more generally to
measure algorithmic sensitivity or bias in a model or method: using counterfactual
scenarios to see if changing certain characteristics leads to different outcomes.

Our experimental results show that three LLMs (Mistral, Llama3 and GPT-4) are
sensitive to authorship information that is included in the input documents prior to
the generation. Moreover, we show that these models carry a bias towards human
authorship against LLM authorship: they are more likely to attribute their answers
to documents that are explicitly labelled as having been written by humans (even if
the documents are actually generated by LLMs). We summarize our contributions as
follows:

• We define and study attribution sensitivity and bias w.r.t. authorship
information, as a novel aspect of trustworthiness and brittleness in
retrieval-augmented LLMs.

• We propose a systematic evaluation framework for measuring attribution
sensitivity and bias.

• We show that adding authorship information (as metadata) to source
documents may lead to statistically significant changes in the attribution
quality of retrieval-augmented LLMs.

• We show that LLMs may have an attribution bias towards explicit human
authorship, which can serve as a competing hypothesis for findings of prior
work that shows that LLM-generated content is preferred over human-written
content by LLMs.
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5.2. BACKGROUND
Retrieval-Augmented Generation. Given a question q and a set of top-k retrieved
documents D ={d1,d2, . . . ,dk } from a collection C , the goal of retrieval-augmented
generation (RAG) is to generate an answer for q using D as context. LLMs are
currently an important component of RAG pipelines, acting as the generator. The
generator is given q , D, and an instruction prompt on how to generate the answer
[82, 97, 100]. Using top-k retrieved documents helps LLMs to be exposed to
information that it might not have been trained/fine-tuned with during development.
These documents are commonly retrieved using an effective sparse and/or dense
retriever [98, 143].

Attributive RAG. LLMs are prone to generate hallucinated (and even factually
incorrect) answers [83, 144, 200]. Attributing answers in RAG with LLMs is an
approach taken as a step towards ensuring the veracity of the output of these
models [26, 74, 87, 90, 101]. Menick, Trebacz, Mikulik, Aslanides, Song, Chadwick,
Glaese, Young, Campbell-Gillingham, Irving, et al. (2022) teach language models to
support answers with verified quotes. Ye, Sun, Arik, and Pfister (2024) propose a
learning-based framework in which they fine-tune LLMs to generate citations, as
opposed to prompting or relying on post-hoc attribution. Stolfo (2024) analyzes
whether every generated sentence in the output of LLMs is grounded in the retrieved
documents or the LLM’s pre-training data.

5.3. METHODOLOGY
We aim to measure the attribution sensitivity and bias of LLMs in RAG settings.
We investigate to what extent the attribution quality of LLMs is affected by
authorship information. To this end, we use counterfactual evaluation [29, 62, 180].
Counterfactual evaluation has been used across various natural language processing
and information retrieval tasks [2, 5, 65, 73, 78]. This approach evaluates how a
model’s predictions change when a specific feature or set of features is altered while
keeping everything else constant. In our case, the change is to add authorship
information to the input documents of an LLM in a RAG setting. By doing so, we
can evaluate the model’s reliance on, bias towards, or sensitivity to that feature. To
this end, we first generate answers with LLMs in a RAG setting using three RAG
modes, as shown in Figure 5.3.

5.3.1. RAG MODES

Given a query q and a set of top-k retrieved documents Dq for q , we define three
modes, based on authorship information of these documents that we provide to the
answer generator LLM.

Vanilla RAG. In this mode, each document in D is given to the LLMs without
information about who the authors are. This is the plain input format for input
documents as shown in the input prompt for vanilla answer/attribution generation
in Figure 5.2.

Authorship Informed RAG. In this mode, we inform the LLM about the actual
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author of each document. We denote the authorship of either an LLM or a human
using [LLM] and [Human] tokens as shown by Figure 5.7 in the Appendix.1

Counterfactual-Authorship Informed RAG. In this mode, we assign counterfactual
authorship for each document. If a document is written by a human, the
counterfactual authorship of this document is [LLM]. In contrast, if a document is
generated by an LLM, its counterfactual authorship is [Human]. By doing so, we
can investigate to what extent being written by either human or LLM affects the
attribution quality of LLM. The prompt used for this mode is the same as the one
for Authorship Informed RAG mode.

Figure 5.3 shows the three RAG modes for a setting where the relevant documents
are LLM-written and the non-relevant documents are human-written.

Instruction: Write a concise answer for the given question (query)
based on the provided search result documents, and cite them
properly using [1][2][3] etc.

Please take these strict considerations into account during
answer generation:
1. Documents are retrieved by a search engine. As such, not all
the documents are relevant to the query. Only use and cite the
relevant documents that contain the answer.
2. Do not analyze irrelevant documents.

Search Results:

Document [1]({text of Document [1]})
Document [2]({text of Document [2]})
...
Document [10]({text of Document [10]})

Question: {query}.

Figure 5.2: Prompt used for vanilla retrieval-augmented answer generation.

5.3.2. ANSWER/ATTRIBUTION GENERATION

In order to generate answers with each of the aforementioned RAG modes, we
experiment with three LLMs: Mistral [84], Llama3 [49] and GPT-4 [128]. Figure 5.2
shows the prompt used for vanilla answer generation. Figure 5.7 in the Appendix
shows the prompt used for Authorship-Informed and Counterfactual-Authorship
Informed answer generation. We follow prior work [61] in curating our prompts for
this task.

1In Section 5.C in the Appendix, we study and provide results on replacing [Human] with a set of
actual {firstname, lastname} as authors.
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Human

LLMHumanLLM

Human

LLM LLM

Authorship Label

LLM
LLM

LLM
Human

LLM
Human

Human LLM
LLM

LLM

LLM

LLM
Human

Figure 5.3: Three RAG modes (Section 5.3.1) for the setting with LLM actual
authorship for relevant documents and Human actual authorship for non-relevant
documents. The text in a rectangle denotes the actual generator (i.e., author) of each
document. The text in the blue tags denotes the authorship label about which we
inform the answer/attribution generator LLM.

5.3.3. EVALUATION METRICS

Attribution Quality. We use precision and recall for evaluating the quality of
attribution, i.e., how well the LLMs cite the relevant input documents. Precision
of attribution for a single query is the fraction of correct citations among all
cited documents in the output of an LLM. Recall is the fraction of cited relevant
documents out of all relevant documents [47]. We use the queries that have only
one relevant document containing the ground-truth answer in their top-k retrieved
list of documents.

Attribution Sensitivity. In order to measure the sensitivity of LLMs in RAG pipelines
towards knowing authors of input documents in comparison to not knowing it, we
use counterfactual evaluation and define a metric called Counterfactually-estimated
Attribution Sensitivity (CAS):

CAS(Q) = 1

|Q|
∑

q∈Q
|M q

Informed −M q
Vanilla|. (5.1)

Here, M q represents the precision and recall metrics for query q , i.e., attribution
quality for query q . For a single query q , CAS measures the difference between
a base setup (the vanilla RAG mode) and a counterfactual setup (the authorship
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informed RAG mode) for the same set of input documents.

Attribution Bias. In order to measure the attribution bias of LLMs in RAG pipelines we
use counterfactual evaluation and define a metric called Counterfactually-estimated
Attribution Bias (CAB):

CAB(Q) = ω

|Q|
∑

q∈Q

(
M q

Informed −M q
CF-informed

)
(5.2)

ω=
1, if L f (R) = [Human],L f (N ) = [LLM]

−1, otherwise.
(5.3)

Here, M q represents the precision and recall metrics, i.e., attribution quality,
for query q , given the set of retrieved relevant documents R, and the set of
retrieved non-relevant documents N . L f (X ) stands for the authorship label of
the set of documents X in the first term of Eq. 5.2, i.e., corresponding to
M q

Informed. For example, if we use human-written version of relevant documents
(R), and LLM-written version of non-relevant document (N ), and we label them
with their actual generators (authors), i.e., we use authorship-informed RAG mode,
then L f (R) is equal to [Human], and L f (R) is equal to [LLM]. CAB measures
the difference between metric values of a base setup (the Authorship Informed
RAG mode) and a counterfactual setup (the Counterfactual-authorship Informed
RAG mode) for the same set of input documents consisting of R, and N . ω

determines the direction of bias towards either human or LLMs: if the set of relevant
documents (R) and non-relevant documents (N ) are respectively written by Human
and LLM (i.e., L f (R) = [Human], L f (N ) = [LLM]), for a single query, a positive
difference (MInformed −MCF-informed) indicates bias towards human authorship, and a
negative difference shows bias towards LLM authorship. In contrast, if the set of
relevant documents (R) and non-relevant documents (N ) are respectively written
by LLM and Human (i.e., L f (R) = [LLM], L f (N ) = [Human]), a negative difference
(MInformed −MCF-informed) indicates a bias towards human authors, and a positive
difference shows bias towards LLMs. We use ω to align these two conditions of
actual authorship of input documents.

Attribution Confidence. To better explore the performance of LLMs in attribution
generation, we analyze whether the LLMs are more confident when they attribute
to certain types of document. To this aim, we look into the average probability of
generation for attribution tokens, i.e., citation numbers (0, 1, . . . ):

AC(S ) =
∑

q∈Q
∑

ci∈Cq p(ci | q,Dq ) ·1[ci ∈S ]∣∣∣∑q∈Q
∑

ci∈Cq 1[ci ∈S ]
∣∣∣ , (5.4)

where q is a query in the set of queries Q, Dq is the top-k retrieved documents
for q , Cq stands for all attribution numbers in the answer to qi , ci ∈ {0,1, . . . ,k}, S

indicates a set of documents, e.g., the set of relevant documents for all queries,
and p(ci |q,Dq ) shows the probability of generation for the attribution token ci in
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the answer provided by LLM given query q and its top-k retrieved documents Dq .
1[ci ∈S ] equals 1 if ci ∈S .

Answer Correctness. In order to evaluate the quality of the generated answer,
we follow [61, 136] and use automatic evaluation. Following [61, 167], we use
the normalized human-generated answer in the benchmark as the ground-truth
answer and adopt Exact Match (EM) [162, 181] as the evaluation metric for answer
correctness (see example in Figure 5.16).

5.4. EXPERIMENTAL SETTINGS

Models. We use gpt-4-0314 [128], meta-llama/Meta-Llama-3-8B-Instruct,2 and
mistralai/Mistral-7B-Instruct-v0.33 as answer generator LLMs in our RAG
pipelines. We refer to these models as GPT-4, Llama3, and Mistral, respectively.
Benchmarks. We use two benchmarks in our experiments: Natural Questions (NQ)

[95] and MS MARCO Question Answering [17] (to which we refer as MS MARCO).
For each benchmark, we randomly sample 500 queries. To retrieve top-k passages
for each query in the NQ benchmark, we use BM25, a widely-used lexical matching
retrieval model. For queries in the MS MARCO benchmark, we use passages that are
extracted from relevant web documents using the state-of-the-art passage retrieval
system at Bing [17]. We note that we study the effect of different retrievers and
different number of retrieved source documents in Section 5.D and 5.E in the
Appendix, respectively.

Synthetic Collection. To construct LLM-written documents, we use Llama3 to
re-write a given document from our collections without adding/removing information
to/from the document. Specifically, we use a low temperature close to 0 as it makes
the LLM extremely restrictive, focusing only on the most probable tokens resulting
in (highly) deterministic outputs. The reason for not generating the documents from
scratch is to make sure we keep the relevance/non-relevance status of documents
w.r.t a query. To ensure the quality of synthetic passages, we conduct a number
of annotation steps using two expert annotators. This is detailed in Section 5.A
in the Appendix. Importantly, in Section 5.5, we show that even without using
LLM-generated documents (i.e., only designating [Human] and [LLM] as authors of
documents to the original input documents) findings are the same as when we use
actual LLM-generated documents.

5.5. EXPERIMENTAL RESULTS

In this section, we explore the performance of LLMs for attributing their answer
to top-k retrieved source documents using the evaluation metrics introduced in
Section 5.3. All significance tests in the result tables are according to a paired t-test
with p < 0.05.

2https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
3https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3
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Answer
generator

Relevant
documents

Non-relevant
documents

RAG
mode

Attribution quality Correctness

Precision Recall EM

NQ

Mistral

LLM Human
Vanilla 47.6 76.6 0.722
Informed 42.1 68.2 0.730
CF-informed 52.7† 77.8† 0.738

Human LLM
Vanilla 51.0 78.4 0.776
Informed 53.4† 77.8† 0.774
CF-informed 44.0 70.2 0.772

Llama3

LLM Human
Vanilla 49.2 69.2 0.742
Informed 45.4 69.6 0.730
CF-informed 57.2† 77.6† 0.748

Human LLM
Vanilla 53.5 71.0 0.766
Informed 59.9† 77.8† 0.790
CF-informed 44.8 69.2 0.762

GPT-4

LLM Human
Vanilla 63.3 68.8 0.736
Informed 59.7 64.6 0.740
CF-informed 65.9† 72.2† 0.742

Human LLM
Vanilla 64.1 68.8 0.760
Informed 66.1 72.2† 0.776
CF-informed 60.3 65.0 0.758

Table 5.1: Quality of attribution and answer correctness. The columns “Relevant
Documents” and “Non-relevant Documents” refer to the actual authorship of input
documents. Informed refers to the authorship-informed RAG and CF-informed refers
to counterfactual-authorship informed RAG (Section 5.3.1). † indicates statistically
significant improvements over the two other RAG Modes in each combination of
“Relevant” and “Non-relevant” documents.

Attribution Quality. Table 5.1 shows the results of attribution by three LLMs,
Mistral, Llama3 and GPT-4, under different settings for NQ benchmark. Besides,
Table 5.11 in the Appendix shows the same set of results for the MS MARCO
benchmark. The two columns “Relevant documents” and “Non-relevant documents”
indicate the actual generator (author) of these documents. The column “RAG mode”
indicates how we inform the answer generator LLMs about the authorship label of
relevant and non-relevant documents, as described in Section 5.3.1: in the “Vanilla”
RAG mode, no information regarding the generator (author) of the input source
documents is given to the LLM. In the “Informed” RAG mode the LLM is informed
about the actual generator of the input source documents, and in the “CF-Informed”
RAG mode the LLM is provided with counterfactual authorship information. As
Table 5.1 shows, the three LLMs (Mistral, Llama3 and GPT-4) fall short of perfectly
grounding their answers to the relevant documents of a given question, which is in
line with the findings of prior work [47, 61, 102].

Attribution Sensitivity and Bias. Table 5.3 shows the attribution bias results in
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Answer
generator

Relevant
documents

Non-relevant
documents

CAS

∆Precision ∆Recall

NQ

Mistral
LLM Human 16.2† 17.2†

Human LLM 20.1 17.0

Llama3
LLM Human 13.2† 14.8
Human LLM 17.7† 16.0†

GPT-4
LLM Human 9.7† 10.2†

Human LLM 8.7 9.0†

MS MARCO

Mistral
LLM Human 10.9 21.4†

Human LLM 12.9† 16.6

Llama3
LLM Human 12.9† 20.4†

Human LLM 17.8† 19.6†

GPT-4
LLM Human 8.2† 9.6†

Human LLM 10.9 15.8†

Table 5.2: Attribution sensitivity (CAS) results. Values range from 0 (minimum
sensitivity) to 100 (maximum sensitivity). † indicates statistically significant values.

Answer
generator

Relevant
documents

Non-relevant
documents

CAB

∆Precision ∆Recall

NQ

Mistral
LLM Human +10.6† +9.6†

Human LLM +9.4† +7.6†

Llama3
LLM Human +11.8† +8.0†

Human LLM +15.1† +8.6†

GPT-4
LLM Human +6.2† +7.6†

Human LLM +5.8† +7.2†

MS MARCO

Mistral
LLM Human +9.5† +13.8†

Human LLM +8.0† +12.4†

Llama3
LLM Human +15.6† +18.2†

Human LLM +15.1† +16.4†

GPT-4
LLM Human +6.1† +9.0†

Human LLM +5.4† +10.8†

Table 5.3: Attribution Bias (CAB) results. Values range from -100 (completely biased
towards LLM authorship) to +100 (completely biased towards human authorship). †
indicates statistically significant bias values.

terms of CAB (Eq. 5.2). All three LLMs, Mistral, Llama3, and GPT-4, carry a bias
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towards human authorship in the input documents. Moreover, on both datasets, NQ
and MS MARCO, Mistral and Llama3 have higher bias values than GPT-4. Besides,
Table 5.2 shows the attribution sensitivity results in terms of CAS (Eq. 5.1). All
three LLMs, Mistral, Llama3, and GPT-4, show sensitivity towards the inclusion of
authorship information for the input documents of LLMs. Moreover, similar to the
attribution bias values in Table 5.3, Mistral and Llama3 carry a higher attribution
sensitivity than GPT-4. We note that we conducted experiments using different
prompts and observed that the findings remained consistent across multiple runs.

Mixed RAG Mode. To better disentangle the effect of LLM generated text qualities
(e.g., a potential implicit bias of LLMs towards LLM-written documents [174]) from
the impact of authorship information, we now use the same set of documents
in the input of LLM in the RAG, and only use different authorship labels for
relevant and non-relevant documents. For this new setup, to which we refer as
the Mixed RAG mode, we evaluate both a complete set of synthetic documents
(i.e., for both relevant and non-relevant) and a complete set of human-written
documents. Figure 5.4 shows an example of Mixed RAG mode for the setting where
we have human-written documents, with different authorship labels for relevant and
non-relevant documents. The CAB (Eq. 5.2) for Mixed RAG mode is reformulated as
follows:

CAB(Q) = ω

|Q|
∑

q∈Q
M q

Informed/CF-Informed −M q
CF-Informed/Informed, (5.5)

where X and Y in M q
X /Y stand for the RAG mode for the set of relevant documents

and the set of non-relevant documents, respectively. The results of attribution
quality for Mixed-RAG modes are shown in Table 5.4.4 We see that, similar
to Table 5.1, across different settings, when the relevant documents are labeled
with human-authorship and non-relevant ones are labeled with LLM-authorship,
the attribution quality is higher than the other way around. Moreover, Table 5.5
illustrates the attribution bias for Mixed RAG modes. Similar to the results in Table
5.3, there is a bias towards human authorship in all three LLMs. This indicates the
existence of authorship bias regardless of the origin of the input documents, i.e.,
the actual author of the input documents. Furthermore, similar to the results in
Table 5.3, Mistral and Llama3 show higher rates of attribution bias than GPT-4.
Additionally, we find that when we have the same authorship label on both relevant
and non-relevant documents (rows with the same RAG mode for relevant and
non-relevant documents in Tables 5.14 and 5.15 in the Appendix), we do not see
consistent patterns as to how LLMs attribute the answers to the input documents.
Finally, we note that in Section 5.C of the Appendix, we show additional results using
real-world names as authors which further indicates the presence of attribution bias
and sensitivity in LLMs towards authorship information.

Attribution Confidence. Using Eq. 5.4, we compute the confidence of LLMs when
they attribute their answer to an input document. Table 5.6 shows the attribution
confidence of LLMs for relevant and non-relevant documents.5 Across the majority

4See Tables 5.14 and 5.15 (Appendix) for the complete set of results.
5Table 5.10 in the Appendix shows the results on MS MARCO.
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Answer
generator

Relevant
documents

Non-relevant
documents

Mixed RAG mode Attribution quality Correctness

Relevant Non-relevant Precision Recall EM

NQ

Mistral
Human Human

CF-informed Informed 44.8 71.8 0.772
Informed CF-informed 52.3† 77.2† 0.780

LLM LLM
CF-informed Informed 48.7† 74.6† 0.718
Informed CF-informed 42.9 69.4 0.742

Llama3
Human Human

CF-informed Informed 45.7 69.6 0.784
Informed CF-informed 57.4† 77.6† 0.808

LLM LLM
CF-informed Informed 59.3† 77.8† 0.744
Informed CF-informed 44.7 68.4 0.726

GPT-4
Human Human

CF-informed Informed 65.8 70.6 0.794
Informed CF-informed 69.1† 74.0† 0.784

LLM LLM
CF-informed Informed 66.1 71.2 0.730
Informed CF-informed 61.7 66.8 0.716

Table 5.4: Quality of attribution and answer correctness for Mixed RAG mode. The
columns “Relevant Documents” and “Non-relevant Documents” refer to the actual
authorship of input documents. † indicates statistically significant improvements
over the other Mixed RAG mode in each combination of relevant and non-relevant
documents.

Answer
generator

Relevant
documents

Non-relevant
documents

CAB

∆Precision ∆Recall

NQ

Mistral
Human Human +7.5† +5.4†

LLM LLM +5.8† +5.2†

Llama3
Human Human +11.7† +8.0†

LLM LLM +14.6† +9.4†

GPT-4
Human Human +3.3† +3.4†

LLM LLM +4.4† +4.4†

MS MARCO

Mistral
Human Human +8.6† +14.8†

LLM LLM +8.7† +13.8†

Llama3
Human Human +12.6† +10.4†

LLM LLM +9.7† +9.8†

GPT-4
Human Human +7.4† +9.4†

LLM LLM +5.4† +5.2†

Table 5.5: Attribution Bias (CAB) results for Mixed RAG modes. Positive values
indicate a bias towards human. † indicates statistically significant bias values. Values
range from -100 (completely biased towards LLM authorship) to +100 (completely
biased towards human authorship).
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Human

Human
LLM

Authorship Label

Human

Human Human Human

Human

Figure 5.4: Mixed RAG mode for the setting where we use original human-authored
documents. In this example, we have “Informed” mode for relevant documents and
“CF-Informed” for non-relevant documents.

of RAG modes over different origins for relevant and non-relevant documents, the
confidence of all three LLMs for attributing to relevant documents is higher than
for attributing to non-relevant ones. We can also see that authorship labels (i.e.,
using different RAG modes) do not affect this outcome. In other words, it is being
relevant or not that makes the difference here. These results indicate a promising
direction for improving attribution in LLMs: low confidence of LLMs in attributing
to a specific document might be a useful signal for the relevance of that document
to a given query.

Frequency of Attribution. In Table 5.1, across the majority of the settings, GPT-4
outperforms Mistral and Llama3 in terms of precision of results. In contrast,
in terms of recall, it is Mistral and Llama3 which outperform GPT-4. To better
explore this difference, we examine the average number of relevant citations and
total citations for the three models. Figure 5.5 shows the average number of total
citations6 for each model. In comparison to Mistral and Llama3, GPT-4 tends to
cite fewer documents as supporting documents for its generated answer. This is in
line with the previous results, where Mistral and Llama3 score higher on recall.

Answer Correctness. Table 5.1 and 5.4 show that when the relevant documents
are labeled with human-authorship and non-relevant ones are labeled with
LLM-authorship, the answer correctness is higher than in the reverse case, across
the majority of settings. Although this improvement is not significant and consistent
across all settings, similar to attribution quality, it could indicate a bias towards
human authorship. Nevertheless, we note that the automatic evaluation of answer
correctness without human evaluation is not an ideal method [27, 37, 208]. We leave
this aspect for future work as the focus of this chapter is on the performance of
LLMs in how frequently they tend to cite and attribute their output on documents
with either human or LLM authorship.

6Tables 5.12 and 5.13 in the Appendix show both the average number of relevant citations and the
total citations.
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Answer
generator

Rel.
Docs.

Non-rel.
docs.

RAG
mode

Confidence (AC)

Rel. Non-rel.

NQ

Mistral

LLM Human
Vanilla† 0.9647 0.9284
Informed† 0.9656 0.9257
CF-informed† 0.9737 0.9401

Human LLM
Vanilla† 0.9678 0.9355
Informed† 0.9707 0.9400
CF-informed† 0.9638 0.9434

Llama3

LLM Human
Vanilla† 0.9060 0.8145
Informed† 0.8960 0.8260
CF-informed† 0.9235 0.8282

Human LLM
Vanilla† 0.9088 0.7985
Informed† 0.9163 0.8160
CF-informed† 0.8908 0.8238

GPT-4

LLM Human
Vanilla† 0.9807 0.9042
Informed† 0.9796 0.9130
CF-informed† 0.9834 0.9094

Human LLM
Vanilla† 0.9819 0.9238
Informed† 0.9778 0.9205
CF-informed† 0.9776 0.9346

Table 5.6: The attribution confidence (AC) of LLMs in relevant and non-relevant
documents for NQ dataset. † indicates a statistically significant difference between
the AC values of relevant and non-relevant documents.
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Figure 5.5: The average total number of cited documents by Mistral, Llama3, and
GPT-4 across various RAG settings on NQ and MS MARCO benchmarks.

5.6. CONCLUSION AND FUTURE WORK

In this chapter, we have defined and studied attribution sensitivity and bias with
respect to authorship information of source documents in RAG with LLMs. We have
proposed a systematic evaluation framework based on counterfactual evaluation.
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Our results indicate that by adding authorship information to source documents, the
attribution quality of LLMs may significantly change by 3% to 18%. Moreover, our
results on three LLMs indicate that they have an attribution bias towards explicit
human authorship, in contrast to previous studies that show that LLM-generated
content may consistently be preferred over human-authored content by LLMs.

As to broader implications of this chapter, while understanding the roots and
causes of the observed sensitivity and bias requires access to the implementation,
training, and fine-tuning of these models (which is beyond the scope of this
chapter), our findings highlight a critical aspect of how LLMs operate. Our results
show the brittleness of LLMs for attributing their answers. Such brittleness can be
used for both constructive and harmful purposes, e.g., one can bias the output of
an LLM towards their own content by incorporating authorship information in their
documents.

While we only focused on human versus LLM authorship as metadata in this
chapter, in future work our systematic evaluation method can be used to investigate
the sensitivity and bias towards other metadata of source documents (e.g., gender and
race of authors). Furthermore, our evaluation methodology can be incorporated in
trustworthiness benchmarks used for the evaluation of LLMs such as DecodingTrust
[176]. Finally, our proposed methodology for the evaluation of sensitivity and bias
is adaptable to other metrics for measuring the quality of attribution, i.e., metrics
other than precision and recall can be used as M in Eq. 5.1, 5.2, and 5.5.

LIMITATIONS
In this chapter we do not propose or explore solutions for mitigating the observed
bias as our focus is on uncovering the brittleness of LLMs when being used for
retrieval-augmented generation. Besides, we have evaluated three LLMs in our
experimental setup, two of which are open-source and the other closed-source.
Consequently, investigating the same attribution sensitivity and bias on other LLMs
is of interest for future studies. Furthermore, in our experiments, we used queries
that have only one relevant document containing the ground-truth answer in their
top-k retrieved list of documents. We do this to ensure the traceability of the correct
attribution. However, we acknowledge the limitation of this evaluation method in
capturing the fine-grained attribution support of input documents. Finally, it is
important to mention that our current research is limited to datasets and prompts
in English. Therefore, we point out the need to expand our evaluation and analysis
to include datasets in other languages.

APPENDIX

5.A. SYNTHETIC DOCUMENT GENERATION

Prompt. Figure 5.6 shows the prompt used for re-writing passages for the two
benchmarks of NQ and MS MARCO.
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Instruction: Please write a high-quality paraphrase for the given
passage.
Keep the length approximately the same. Do not add any new
information.

Passage: {input passage}

Figure 5.6: Prompt used for generating synthetic documents.

Data Quality. In order to ensure the quality of synthetic passages, we conduct
the following annotation steps using two expert annotators: (i) for each of the
queries in our two benchmarks, we provide the annotators the quadruple of (query
q , original relevant passage pr , synthetic relevant p̂r passage, answer a). We then
ask the annotators to determine whether the synthetic passage p̂r is still relevant
to the query and includes the answer a to the query q . (ii) In order to ensure
that non-relevant passages are still non-relevant after being rewritten by an LLM,
for each query, we provide the annotators the quadruple of (query q , original
non-relevant passage pn , synthetic non-relevant p̂n passage, answer a). We then ask
the annotators to determine whether the synthetic non-relevant passage p̂n is still
non-relevant to the query and does not include the answer a to the query q . Due
to the large number of non-relevant passages for each query, we randomly select
10% of queries, i.e., 50 queries out of 500 queries. Our annotation results indicate a
perfect performance in keeping the relevance and non-relevance status of synthetic
documents with respect to their corresponding queries.

5.B. AUTHORSHIP INFORMED ANSWER/ATTRIBUTION

GENERATION PROMPT
Figure 5.7 shows the prompt used for authorship-informed answer/attribution
generation with all three LLMs, Mistral, Llama3, and GPT-4.

5.C. EXTENDED SET OF AUTHORSHIP LABELS
So far, we have used [LLM] and [Human] as the authorship labels for the source
documents. In this section, we discuss and provide results using an extended set of
authorship labels. Specifically, we use [AI] as the label for denoting the synthetic
(LLM) authorship. For human authorship, on the other hand, we analyze the use
of real-world names to indicate the authors of documents. This reflects a more
realistic setting of authorship indication on documents. To create this set of names,
we prompt GPT-4 to randomly generate a pool of 100 (first name, last name) pairs.
Figure 5.8 shows the prompt we use for this task. We then randomly sample one
instance of (first name, last name) from this pool when labeling human authorship
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Instruction: Write a concise answer for the given question (query)
based on the provided search result documents, and cite them
properly using [1][2][3] etc.

Please take these strict considerations into account, during answer
generation:
1. Documents are retrieved by a search engine. As such, not all
the documents are relevant to the query. Only use and cite the
relevant documents that contain the answer.
2. Do not analyze irrelevant documents.
3. Some documents are authored by humans, while others are
generated by a Large Language Model (LLM). We denote this
distinction for each document.

Search Results:

Document [1]({text of Document [1]}) (written by [Author])
Document [2]({text of Document [2]}) (written by [Author])
...
Document [10]({text of Document [10]}) (written by [Author])

Question: {query}.

Figure 5.7: Prompt used for authorship-informed answer/citation generation with
LLM. [Author] is filled with one instance from either {Human, Person, Individual}
or {AI, LLM, Machine}, depending on the source of the document and the RAG
setting.

for each document in the list of top-k source documents of a query (instead of using
[Human] as the authorship label).

Instruction: Please generate a random list of 100 (first name,
last name) pairs consisting of male and female names.

Figure 5.8: Prompt used for generating a pool of 100 pairs of (first name, last name).

Table 5.7 shows the attribution sensitivity results using the extended set of
authorship labels. As we can see, all three LLMs Mistral, Llama, and GPT-4 are
sensitive to adding the authorship information similar to the attribution sensitivity
results with [Human] and [LLM] authorship labels (Table 5.2). In addition, we see
that GPT-4 shows a lower level of sensitivity than Mistral and Llama. Moreover,
Table 5.8 shows the attribution bias results using the extended set of authorship
labels. Similar to the attribution bias results with [Human] and [LLM] authorship
labels (Table 5.3), all three LLMs Mistral, Llama, and GPT-4 show an attribution
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bias towards human authorship, i.e., they are biased towards documents that are
labeled with human author names. This indicates the robustness of our analysis
against changes in labels.

Answer
generator

Relevant
documents

Non-relevant
documents

CAS

∆Precision ∆Recall

NQ

Mistral
Human Human 27.5 26.8
LLM LLM 13.3 14.4

Llama3
Human Human 15.0 12.4
LLM LLM 15.6 14.4

GPT-4
Human Human 7.4 7.0
LLM LLM 7.5 6.8

MS MARCO

Mistral
Human Human 11.0 17.2
LLM LLM 9.4 14.0

Llama3
Human Human 13.9 18.6
LLM LLM 13.3 17.4

GPT-4
Human Human 10.8 13.2
LLM LLM 9.2 10.8

Table 5.7: Attribution sensitivity (CAS) results for the RAG setting with extended set
of authorship labels. Values range from 0 (minimum sensitivity) to 100 (maximum
sensitivity). † indicates statistically significant values.

Answer
generator

Relevant
documents

Non-relevant
documents

CAB

∆Precision ∆Recall

NQ

Mistral
Human Human +13.1 +3.6
LLM LLM +4.4 +2.4

Llama3
Human Human +6.9 +1.6
LLM LLM +9.8 +8.4

GPT-4
Human Human +2.8 +3.0
LLM LLM +3.9 +2.4

MS MARCO

Mistral
Human Human +6.6 +6.0
LLM LLM +4.3 +3.6

Llama3
Human Human +9.8 +12.2
LLM LLM +8.0 +8.2

GPT-4
Human Human +5.1 +4.0
LLM LLM +6.9 +6.8

Table 5.8: Attribution Bias (CAB) results for the RAG setting with extended set of
authorship labels. Positive values indicate a bias towards human. † indicates
statistically significant bias values.
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5.D. EFFECT OF THE NUMBER OF SOURCE DOCUMENTS

To study the effect of the number of source documents, i.e., the length of the
retrieved ranked list of documents given to the answer generator LLM, we evaluate
the attribution sensitivity and bias using varying number of source documents. To
this end, we use 4 ranking cut-offs for the ranked list of source documents (k): 2, 5,
8, 10. To ensure the existence of the relevant document as the input, we randomly
put the relevant document in the top-k (k ∈ {2,5,8,10}). For this set of experiments
we use human-generated versions of both relevant and non-relevant documents.
Furthermore, we use the extended set of labels (i.e., authors with first names and last
names). Figure 5.9 shows the results of attribution sensitivity (CAS) and attribution
bias (CAB) for the three LLMs on the NQ and MS MARCO benchmarks. All three
LLMs show both attribution sensitivity and bias across varying number of source
documents (k). Moreover, we can see that no conclusion can be inferred for the
effect of k on the degree of sensitivity and bias in these LLMs.
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Figure 5.9: Attribution Sensitivity and Bias in Mistral, Llama3, and GPT-4, across
varying number of retrieved documents (top-k values) on NQ (top) and MS MARCO
benchmarks (bottom).

5.E. EFFECT OF THE RETRIEVER

In our experiments, we have used two different retrievers for NQ and MS MARCO
benchmarks: the list of source documents for NQ are retrieved using BM25, and
for MS MARCO we used the ranked list of documents in the benchmark which are
retrieved using the Bing search engine (see Section 5.4).

In order to better disentangle the effect of retrievers on the attribution sensitivity
and bias, we use two more commonly-used retrievers for our experiments:

• uniCOIL [106]: a retrieval model built upon COIL [59], which works based on
sparse learned representation of documents.
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• TCT-ColBERT [109]: a dense retrieval model trained with knowledge distillation
using ColBERT [91] as the teacher model.

For this set of experiments we use the extended set of labels. Besides, we use original
(human-generated) documents. Table 5.9 shows the results of attribution sensitivity
and bias on NQ benchmark using uniCOIL and TCT-ColBERT. As the results on
uniCOIL and TCT-ColBERT show, the three LLMs {Mistral, Llama, GPT-4} have
attribution sensitivity and bias with respect to the authorship information regardless
of the retriever that is being used to retrieve their top-k source documents. Moreover,
we see that the sensitivity and bias values across all models are lower for the answer
generation upon the source documents from uniCOIL than when TCT-ColBERT is
being used as the retriever. This finding is specifically important as it shows that the
quality of retrieved source documents can affect the quality of attribution by LLMs.

5.F. ATTRIBUTION QUALITY RESULTS
Table 5.11 shows the results of attribution by Mistral, Llama3, and GPT-4, under
different settings for the MS MARCO benchmark.

5.G. CONFIDENCE RESULTS
Table 5.10 shows the confidence results of Mistral, Llama3, and GPT-4 on MS
MARCO benchmark.

5.H. AVERAGE NUMBER OF CITED DOCUMENTS
Tables 5.12 and 5.13 show Relevant and Total number of cited documents for each
model on both benchmarks.

5.I. MIXED RAG MODE RESULTS
Tables 5.14 and 5.15 show the results for Mixed RAG mode as described in
Section 5.5.

5.J. EXAMPLES
Table 5.16 shows the results of Authorship-Informed retrieval-augmented generation
with Mistral, Llama3, and GPT-4 for the query “where was the new pete’s dragon
filmed.” Both Llama3 and GPT-4 generate the correct answer and accurately attribute
their answers to the ground-truth document [5]. However, despite providing the
correct answer and the correct attribution, Mistral attributes its generated answer
to an additional source document, i.e., document [2]. Table 5.17 shows the results
of three RAG modes with GPT-4 for the query “who won the men’s single title of
australia open on 1 february 2015.” This result corresponds to the combination of
“human-written” relevant documents and LLM-written non-relevant ones. As we
see, in all RAG models, this model makes a mistake in attributing to document [2],
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Answer
generator

Retriever ∆Precision ∆Recall

CAS

Mistral
uniCOIL 16.8 15.0
TCT-ColBERT 18.2 17.0

Llama3
uniCOIL 14.5 13.0
TCT-ColBERT 18.0 13.6

GPT-4
uniCOIL 6.6 6.6
TCT-ColBERT 8.7 8.2

CAB

Mistral
uniCOIL +6.6 +3.4
TCT-ColBERT +7.9 +5.8

Llama3
uniCOIL +8.2 +4.6
TCT-ColBERT +12.7 +8.8

GPT-4
uniCOIL +3.9 +3.8
TCT-ColBERT +5.2 +4.6

Table 5.9: Attribution sensitivity (CAS) and Bias (CAB) results across different
retrievers. Positive values of CAB indicate a bias towards human authorship.

Answer
generator

Relevant
documents

Non-relevant
documents

RAG
mode

Confidence

Relevant Non-relevant

MS MARCO

Mistral

LLM Human
Vanilla 0.9620 0.9527

Informed 0.9511 0.9470

CF-informed† 0.9746 0.9456

Human LLM
Vanilla† 0.9616 0.9446

Informed 0.9650 0.9521

CF-Informed 0.9484 0.9516

Llama3

LLM Human
Vanilla† 0.9267 0.8878

Informed† 0.9104 0.8918

CF-informed† 0.9332 0.8622

Human LLM
Vanilla 0.8888 0.8941

Informed† 0.9441 0.8736

CF-Informed† 0.906 0.889

GPT-4

LLM Human
Vanilla† 0.9749 0.9038

Informed† 0.9714 0.9165

CF-informed† 0.9757 0.9173

Human LLM
Vanilla 0.9506 0.9395

Informed† 0.9657 0.9171

CF-informed† 0.9556 0.936

Table 5.10: The attribution confidence (AC) of LLMs in attributing answers to relevant
and non-relevant documents for the MS MARCO QA benchmark. † stands for
statistically significant difference between the AC values of relevant and non-relevant
documents.

which does not contain the answer. However, in the Authorship Informed RAG mode
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Answer
generator

Relevant
documents

Non-relevant
documents

RAG
mode

Attribution quality Correctness

Precision Recall EM

MS MARCO

Mistral

LLM Human
Vanilla 23.1 76.4 0.316
Informed 22.2 65.8 0.306
CF-informed 31.7† 79.6† 0.312

Human LLM
Vanilla 22.8 72.8 0.342
Informed 28.0† 72.6† 0.384
CF-informed 20.1 60.2 0.334

Llama3

LLM Human
Vanilla 29.3 66.0 0.334
Informed 22.8 58.0 0.330
CF-informed 38.4† 76.2† 0.352

Human LLM
Vanilla 30.5 64.8 0.416
Informed 42.6† 78.0† 0.474
CF-Informed 27.5 61.6 0.422

GPT-4

LLM Human
Vanilla 38.1 55.6 0.312
Informed 35.4 52.0 0.310
CF-informed 41.5† 61.0† 0.324

Human LLM
Vanilla 37.0 53.0 0.380
Informed 38.5 59.2† 0.378
CF-informed 33.1 48.4 0.362

Table 5.11: Quality of attribution and answer correctness for MS MARCO. The
columns “Relevant Documents” and “Non-relevant Documents” refer to the actual
authorship of input documents. Informed refers to the authorship-informed RAG
and CF-informed refers to counterfactual-authorship informed RAG (Section 5.3.1).
† indicates statistically significant improvements over the two other RAG Modes in
each combination of “Relevant” and “Non-relevant” documents.

(where we inform the LLM that document [8] has human authorship), in addition
to document [2], the model also refers to the ground-truth document [8].
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Answer
generator

Relevant
documents

Non-relevant
documents

RAG
mode

#Cited docs.

Relevant Total

NQ

Mistral

LLM Human
Vanilla 0.766 2.190
Informed 0.682 2.280
CF-informed 0.778 2.050

Human LLM
Vanilla 0.784 2.114
Informed 0.778 2.080
CF-Informed 0.702 2.202

Llama3

LLM Human
Vanilla 0.692 1.718
Informed 0.696 1.906
CF-informed 0.776 1.682

Human LLM
Vanilla 0.710 1.656
Informed 0.778 1.624
CF-informed 0.692 1.952

GPT-4

LLM Human
Vanilla 0.688 1.166
Informed 0.646 1.152
CF-informed 0.722 1.162

Human LLM
Vanilla 0.688 1.122
Informed 0.722 1.168
CF-informed 0.650 1.138

Table 5.12: The average number of cited relevant documents and in total (relevant
plus non-relevant documents).

Answer
generator

Relevant
documents

Non-relevant
documents

RAG
mode

#Cited docs.

Relevant Total

MS MARCO

Mistral

LLM Human
Vanilla 0.764 4.266
Informed 0.658 3.960
CF-informed 0.796 3.586

Human LLM
Vanilla 0.728 4.084
Informed 0.726 3.560
CF-Informed 0.602 3.826

Llama3

LLM Human
Vanilla 0.66 2.91
Informed 0.58 3.274
CF-informed 0.762 2.77

Human LLM
Vanilla 0.648 2.838
Informed 0.78 2.614
CF-Informed 0.616 3.038

GPT-4

LLM Human
Vanilla 0.556 1.724
Informed 0.52 1.774
CF-informed 0.61 1.744

Human LLM
Vanilla 0.53 1.772
Informed 0.592 1.848
CF-informed 0.484 1.776

Table 5.13: The average number of cited relevant documents and in total (relevant
plus non-relevant documents).
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Answer
generator

Relevant
documents

Non-relevant
documents

Mixed RAG mode Attribution quality Correctness

Relevant Non-relevant Precision Recall EM

NQ

Mistral

Human Human

Vanilla Vanilla 50.4 77.6 0.784
Informed Informed 45.5 74.6 0.772
CF-informed Informed 44.8 71.8 0.772
Informed CF-informed 52.3 77.2 0.780
CF-informed CF-informed 46.3 73.2 0.768

LLM LLM

Vanilla Vanilla 47.0 76.8 0.724
Informed Informed 48.4 74.6 0.726
CF-informed Informed 48.7 74.6 0.718
Informed CF-informed 42.9 69.4 0.742
CF-informed CF-informed 46.0 72.6 0.740

Llama3

Human Human

Vanilla Vanilla 50.4 72.0 0.798
Informed Informed 46.6 71.0 0.796
CF-informed Informed 45.7 69.6 0.784
Informed CF-informed 57.4 77.6 0.808
CF-informed CF-informed 48.8 69.2 0.780

LLM LLM

Vanilla Vanilla 53.1 71.4 0.742
Informed Informed 50.4 68.8 0.732
CF-informed Informed 59.3 77.8 0.744
Informed CF-informed 44.7 68.4 0.726
CF-informed CF-informed 50.8 75.8 0.732

GPT-4

Human Human

Vanilla Vanilla 65.9 71.2 0.778
Informed Informed 68.1 73.2 0.786
CF-informed Informed 65.8 70.6 0.794
Informed CF-informed 69.1 74.0 0.784
CF-informed CF-informed 66.9 72.6 0.790

LLM LLM

Vanilla Vanilla 65.9 70.4 0.718
Informed Informed 65.2 69.8 0.726
CF-informed Informed 66.1 71.2 0.730
Informed CF-informed 61.7 66.8 0.716
CF-informed CF-informed 63.8 68.8 0.724

Table 5.14: Quality of attribution and answer correctness with Mixed RAG modes for
NQ benchmark. The columns “Relevant Documents” and “Non-relevant Documents”
refer to the actual authorship of input documents.
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Answer
generator

Relevant
documents

Non-relevant
documents

Mixed RAG mode Attribution quality Correctness

Relevant Non-relevant Precision Recall EM

MS MARCO QA

Mistral

Human Human

Vanilla Vanilla 22.7 75.6 0.370
Informed Informed 22.7 71.6 0.368
CF-informed Informed 19.8 62.4 0.370
Informed CF-informed 28.4 77.2 0.389
CF-informed CF-informed 24.4 71.6 0.380

LLM LLM

Vanilla Vanilla 24.0 73.6 0.298
Informed Informed 23.6 61.8 0.298
CF-informed Informed 28.9 75.6 0.296
Informed CF-informed 20.2 61.8 0.278
CF-informed CF-informed 23.3 70.8 0.276

Llama3

Human Human

Vanilla Vanilla 30.4 70.0 0.436
Informed Informed 29.9 74.4 0.430
CF-informed Informed 24.9 70.0 0.432
Informed CF-informed 37.5 80.4 0.476
CF-informed CF-informed 28.8 66.8 0.424

LLM LLM

Vanilla Vanilla 30.1 65.2 0.326
Informed Informed 31.5 65.6 0.330
CF-informed Informed 35.4 75.0 0.344
Informed CF-informed 25.7 65.2 0.338
CF-informed CF-informed 30.0 69.2 0.414

GPT-4

Human Human

Vanilla Vanilla 35.9 52.2 0.382
Informed Informed 38.1 57.0 0.392
CF-informed Informed 35.2 52.0 0.370
Informed CF-informed 42.5 61.4 0.394
CF-informed CF-informed 36.8 55.8 0.382

LLM LLM

Vanilla Vanilla 37.8 54.2 0.304
Informed Informed 36.3 53.0 0.296
CF-informed Informed 40.5 58.4 0.298
Informed CF-informed 35.2 53.2 0.294
CF-informed CF-informed 37.1 55.4 0.294

Table 5.15: Quality of attribution and answer correctness with Mixed RAG modes for
the MS MARCO benchmark. The columns “Relevant Documents” and “Non-relevant
Documents” refer to the actual authorship of input documents.
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Query
where was the new pete’s dragon filmed
Ground Truth Answer:
New Zealand
Groundtruth Document: [5]
Pete’s Dragon (2016 film). Principal photography commenced in January 2015
in New Zealand, with Lowery directing. Rehearsals began early January
2015, while news reported the beginning of the shooting on January 26, 2015,
set to last through April. Live-action filming locations included Bay of
Plenty, Taupo and Wellington, while CGI was done at Stone Street Studios.
On February 10, 2015, a press release confirmed that principal photography
had commenced. Shooting took place in and around Wellington and Rotorua,
before transferring to Tapanui, where the old Blue Mountain Lumber mill was
used as the mill in the film, and the main street became Millhaven for two
weeks. Production concluded on April 30, 2015.

Mistral Output
"The new Pete’s Dragon (2016) was filmed in various locations in
New Zealand , including the Bay of Plenty, Taupo, and Wellington [2] [5] .

The production also used the old Blue Mountain Lumber mill in Tapanui as the
film’s mill and transformed the main street into Millhaven for two weeks
[5] ."

Llama3 Output
According to Document [5] , the live-action scenes of the 2016 film "Peteś
Dragon" were shot in various locations in New Zealand , including the Bay of
Plenty, Taupo, Wellington, and Tapanui.

GPT-4 Output
The new Pete’s Dragon (2016) was filmed in various locations in New Zealand ,
including the Bay of Plenty, Taupo, Wellington, Rotorua, and Tapanui [5] .

Document [2] (wrongly cited in Mistral output)
Pete’s Dragon (2016 film). In March 2013, Walt Disney Pictures announced it
would remake Pete’s Dragon, as non-musical, dramatic film to be written by
David Lowery and Toby Halbrooks, and directed by Lowery. Disney intended
to rework the core story as a dramatic story, rather than a musical. It set
the new work in the Pacific Northwest of the early 1980s, rather than the
Northern New England of the early 1900s in the 1977 film.

Table 5.16: Answer/Attribution generated by Mistral, Llama3, and GPT-4 in
Authorship Informed RAG mode with synthetic relevant and human-written (original)
non-relevant documents.
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Query
who won the men’s single title of australia open on 1 february 2015
Ground Truth Answer:
’Novak Djokovic’, ’Djokovic’
Groundtruth Document: [8]
2015 Australian Open – Men’s Singles. Djokovic went on to win his fifth
Australian Open title by defeating Murray once again, 7–6(7–5), 6–7(4–7),
6–3, 6–0. The defeat saw Murray lose the Australian Open final for the
fourth time in his career, becoming the first man in the Open Era to achieve
four runner-up finishes in Melbourne.

Vanilla
Stan Wawrinka won the men’s singles title at the 2015 Australian Open [2] .

Informed
Stan Wawrinka won the men’s singles title at the 2014 Australian Open,

defeating the world’s top two players [2] . However, the 2015 Australian
Open men’s singles title was won by Novak Djokovic , who defeated Andy

Murray in the final [8] .

CF-Informed
Stan Wawrinka won the men’s singles title at the 2015 Australian Open [2] .

Document [2] (wrongly cited in Vanilla and CF-Informed RAG Modes)
2015 French Open – Men’s Singles. Wawrinka defeated Djokovic in the final,
4–6, 6–4, 6–3, 6–4, to win his first French Open and second Grand Slam title.
As he did when he won the 2014 Australian Open, Wawrinka defeated the world
No. 1 and world No. 2 on his way to the title.

Table 5.17: Answer/Attribution generated by GPT-4 in Vanilla, Authorship Informed,
and Counterfactual-Authorship Informed RAG modes, with human-written (original)
relevant and synthetic non-relevant documents. Reminding LLMs about the authors
(Authorship Informed RAG mode) has resulted in a correct answer and attribution.





6
CONCLUSIONS

This chapter wraps up the dissertation by highlighting the key findings and outlining
potential directions for future research. In Section 6.1, we first reflect on the research
questions we asked in Chapter 1 based on the experimental results and findings
of the previous chapters. Then, in Section 6.2, we identify potential directions for
future research that could build upon the work presented in this dissertation.

6.1. MAIN FINDINGS
In this section, we present our key findings by revisiting the research questions
introduced in Chapter 1.

RQ1 How generalizable is contextualized term-based ranking to retrieval
settings with lexically rich queries?

To answer RQ1, in Chapter 2, we studied the generalizability of two contextualized
term-based ranking models, TILDE and TILDEv2, within the query-by-example (QBE)
retrieval setting. In contrast to ad-hoc retrieval, QBE typically involves significantly
longer queries which brings more lexical richness for performing retrieval. Our
aim was to assess whether the relative performance of these models (compared to
both traditional term-based approaches and the strong cross-encoder BERT ranker)
extends to these lexically-rich contexts.

Our findings in Chapter 2 reveal that, consistent with the original studies [210,
211], the two contextualized term-based ranking models, TILDE and TILDEv2
perform worse than the BERT cross-encoder ranker in the QBE setting, despite
the presence of longer queries that could provide richer context. However, unlike
those earlier studies, where TILDE and TILDEv2 outperformed the BM25 baseline,
our evaluation shows that BM25 maintains competitive effectiveness in QBE, and,
in some instances, even surpasses the performance of the two contextualized
term-based ranking models.

This observation is significant for two main reasons: (1) it highlights the unique
challenges posed by retrieval settings that deviate from widely used benchmarks
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such as MSMARCO and the TREC DL Track, and (2) it raises important questions
about the applicability of other contextualized term-based models in such scenarios.
Overall, our results suggest that QBE retrieval, as a retrieval setup with lexical
richness, is structurally distinct from traditional IR tasks and thus requires specific
development of retrieval models/methods.

In addition, we explored the effect of interpolating BM25 scores with those of
TILDE and TILDEv2. We found that linear interpolation leads to enhanced ranking
performance, indicating that the relevance signals from these contextualized models
are complementary to those captured by BM25. Our further analysis using oracle
interpolation supports this finding, which suggests that more nuanced combination
strategies could yield even greater improvements by leveraging the strengths of both
types of models.

RQ2 How robust are user satisfaction estimators in task-oriented dialogue
systems with more dissatisfactory user experiences?

To address RQ2, in Chapter 3, we first extended two widely used benchmarks for
user satisfaction estimation in task-oriented dialogue systems, MultiWoZ [52] and
SGD [142], by incorporating a larger set of dissatisfactory dialogue samples. To
generate these dissatisfactory dialogue samples, we introduced satisfaction-oriented
counterfactual dialogue generation with LLMs: given a dialogue sample with a
specific satisfaction label (e.g., satisfactory), we generate a corresponding counterpart
(e.g., dissatisfactory), in which the user satisfaction is deliberately altered. We then
conducted human annotation on the resulting generated dialogues to ensure the
quality of satisfaction labels for these generated dialogues. Using these augmented
test collections, we demonstrated a notable discrepancy in the performance of
satisfaction estimators between the original datasets and those containing a higher
proportion of dissatisfaction cases. We examined model robustness under varying
class distributions by gradually increasing the proportion of dissatisfaction dialogue
samples in the test sets. Specifically, while fine-tuned state-of-the-art models,
BERT and ASAP [75, 194], performed strongly on the original, imbalanced test
sets, their performance dropped sharply as dissatisfaction samples increased. In
contrast, few-shot in-context learning with LLMs demonstrated greater sensitivity to
dissatisfaction: LLMs often surpassed or matched fine-tuned models as the class
distribution became more balanced, i.e., as test sets included more dissatisfactory
dialogue samples. This highlighted LLMs’ potential for reliably detecting user
dissatisfaction, a critical factor for deploying dialogue systems. Moreover, the
discrepancy in the performance of various user satisfaction estimators under
different class distributions of dialogue samples highlighted the limitations in their
generalizability and robustness across alternative evaluation setups.

In summary, our findings in Chapter 3 exposed a key gap in prior work: the lack
of attention to the robustness of satisfaction estimators, especially in identifying
user dissatisfaction. Furthermore, our results highlighted the importance of data
augmentation strategies to improve the training of such estimators. We hypothesized
that incorporating more balanced training data can enhance model robustness. In
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addition, Chapter 3 illustrated the potential of large language models in generating
high-quality counterfactual dialogue examples, which suggests a promising direction
for augmenting training data in satisfaction estimation tasks.

RQ3 How to effectively measure the societal bias in a ranked list of documents
based on group-representative term sets?

To address RQ3, in Chapter 4, we first identified a key limitation in the widely used
group fairness metric NFaiRR [146], which assesses fairness based on the individual
unbiasedness scores of documents within a ranked list. This approach to fairness
calculation results in the effects of different documents not being able to cancel
each other out. For example, if the top-ranked document is biased toward female
groups for a given query and the second-ranked document is biased toward male
groups, these opposing biases do not offset one another. To address this issue, we
introduced a new metric, TExFAIR, which extends the previously proposed AWRF
metric [51, 141, 153] by incorporating two components: (1) term-based associations,
which link documents to societal groups through predefined sets of representative
terms, with each set serving as a proxy for the presence of a particular societal group
within the retrieved content; and (2) a rank-biased discounting factor that accounts
for the reduced influence of non-representative documents (i.e., documents that
do not include any group representative terms) in the ranked list. Due to these
structural differences, TExFAIR captures a distinct dimension of fairness compared
to NFaiRR. Consequently, when fairness is considered during model selection (for
example, when a combined metric of fairness and effectiveness is used) TExFAIR
and NFaiRR may lead to different model choices.

In Chapter 4, we also carried out a counterfactual evaluation to estimate the
inherent group biases – specifically gender-related – present in ranking models.
This analysis revealed a discrepancy between the fairness observed in the ranked
outputs (as measured by NFaiRR or TExFAIR) and the underlying bias embedded
in the ranking models themselves. However, due to the limitations of term-based
fairness evaluation, exploring more semantically grounded approaches is required to
better understand the relationship between model-level biases and the fairness of
the rankings they generate. Furthermore, the limitations of relying on term-based
group representations, which may not align with real users’ perceptions of fairness,
necessitate more user-centered methodologies for assessing societal fairness in
ranked lists of documents.

RQ4 How sensitive and biased are LLMs to the generators of source documents
in attributive retrieval-augmented generation?

To address RQ4, in Chapter 5, we introduced and examined the concepts of
attribution sensitivity and bias in retrieval-augmented LLMs in relation to the
authorship metadata of their source documents. We proposed a structured evaluation
framework based on counterfactual evaluation of the effect of authorship metadata
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in source documents. Our findings in Chapter 5 showed that including authorship
information in the source documents of attributive retrieval-augmented LLMs can
significantly affect their attribution behavior: LLMs cited different documents for
their generated answers when informed about the author (generator) of the input
source documents. Additionally, experiments across three LLMs revealed a consistent
bias toward documents with explicit human authorship, which competes with prior
research suggesting that LLMs often favor AI-generated content over human-written
material.

This behavior in LLMs could be attributed to different factors such as training cues
that LLMs could pick up during their pretraining over large scale data. Also, safeguard
fine-tuning of LLMs could have an effect. However, deeper investigation into the
causes of this sensitivity and bias would require access to the implementation,
training, and fine-tuning of these models, which is beyond the scope of our work
in Chapter 5. Our results in Chapter 5 underscore an important vulnerability in
how LLMs attribute content. This brittleness in attribution can be exploited in both
beneficial and harmful ways; for instance, a user might manipulate LLM outputs in
their favor by embedding authorship cues in their documents.

6.2. FUTURE DIRECTIONS

In this section, we discuss the limitations of the research presented in this thesis
and suggest possible directions for future work.

6.2.1. EVALUATING CONTEXTUALIZED LEXICAL MODELS IN

QUERY-BY-EXAMPLE RETRIEVAL (CHAPTER 2)

In query-by-example (QBE) retrieval, the lexical richness of queries creates conditions
that differ substantially from generic ad hoc retrieval, where user queries are
typically short and less diverse in vocabulary. Our findings in Chapter 2
showed that this abundance of lexical relevance signals may diminish the added
value of contextualization for models such as BM25, raising questions about the
generalizability of contextualized approaches. However, other retrieval models,
including dense retrieval model, may still benefit from contextualization in QBE.
Future research should therefore examine the generalizability of such methods to
QBE. This is particularly important, as the long query contexts in QBE introduce
additional semantic complexities that further distinguish it from standard retrieval
tasks. Prior work [15] has already shown that developing effective QBE methods with
dense retrieval models is highly task-specific, and that ranking models cannot be
applied off the shelf to this setting. These observations underscore the need for
task-specific evaluation setups and model development tailored to scenarios with
high lexical richness.



6.2. FUTURE DIRECTIONS

6

89

6.2.2. ROBUST USER SATISFACTION ESTIMATION IN TASK-ORIENTED

DIALOGUE SYSTEMS (CHAPTER 3)
In Chapter 3, we demonstrated the potential of LLMs to generate high-quality
counterfactual dialogue samples, which we used to augment the current benchmarks
with a more balanced distribution of satisfactory and dissatisfactory dialogue
samples. However, the focus of our study was on the generation of evaluation
test samples, and we did not explore how adding the generated dialogues to the
training sets would affect the performance of user satisfaction estimators. As
such, augmenting the training data for user satisfaction estimators in task-oriented
dialogue (TOD) systems is an important direction that needs to be explored in future
studies.

Additionally, Chapter 3 exclusively focused on turn-level satisfaction estimation,
we recognize the importance of dialogue-level satisfaction estimation which requires
more advanced methods. In the meantime, we acknowledge that generating
dialogue-level counterfactuals may require more complex methods. Lastly, the scope
of our work in Chapter 3 was limited to task-oriented dialogue systems, whereas
user satisfaction estimation has also been explored in other domains, such as
conversational recommender systems [164]. One possible direction to extend our
counterfactual dialogue generation approach is to broader applications of satisfaction
estimation in various dialogue system settings.

6.2.3. MEASURING SOCIETAL BIAS IN RANKED LISTS OF DOCUMENTS

(CHAPTER 4)
In Chapter 4, we studied societal bias in a ranked list documents with a particular
focus on gender representation in ranked lists of documents using term-based group
representations. Evaluating bias with term-based group representations, however,
has clear limitations compared to real-world user evaluations. Depite this, such
evaluation is still useful given the importance of societal fairness and the risks of
unfair ranking systems. Future work should look into more semantic approaches
that better match user perceptions. Our current method using counterfactual
data substitution may also miss some learned gender biases, since some of such
association of terms to societal groups often exist along a spectrum in models.
Additionally, our Counterfactually-estimated Rank-biased Overlap (CRBO) estimation
is currently based on the divergence between results from the original collection
and a single counterfactual collection. Future research could explore more stratified
counterfactual collection setups (instead of a single counterfactual collection) to
better capture nuanced bias patterns.

6.2.4. ATTRIBUTION SENSITIVITY AND BIAS IN RAG (CHAPTER 5)
In Chapter 5, we explored attribution sensitivity and bias in retrieval-augmented
generation (RAG) systems. In that study, we examined only human versus AI
authorship as the metadata of source documents. However, the proposed systematic
evaluation approach can also be applied to assess sensitivity and bias toward other
metadata attributes, such as the author’s gender or race, or even the source from
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which a document originates. In addition, the methodology could be incorporated
into existing LLM trustworthiness benchmarks. The framework is flexible with respect
to attribution quality metrics, meaning that measures other than precision and recall
can be used in our proposed equations for quantifying attribution sensitivity and
bias.

There are also limitations to this research. We do not propose or assess
methodologies for mitigating the identified attribution bias; rather, our focus is
on revealing the brittleness of LLMs when used in attributive retrieval-augmented
generation. Our experiments were conducted with three LLMs, two of which are
open-source and one closed-source. Applying the same sensitivity and bias analysis
to a broader range of models is of interest for future work. Additionally, in our
experimental setup, we used queries where there was only one relevant document
that contains the ground-truth answer in the top-k retrieved documents. While this
design supports more precise attribution traceability, it limits the ability to measure
fine-grained attribution contributions from multiple relevant sources. Exploring more
semantic evaluation of attribution in generated answers is a promising direction for
future work. Finally, the scope of our evaluation was restricted to English-language
datasets and prompts. An obvious next step would be to extend the analysis to other
languages. In particular, it would be valuable to investigate whether similar biases
exist across other languages in LLMs.

6.2.5. FINAL THOUGHTS: TOWARDS EVALUATING AGENTIC SYSTEMS

Recently, the design and implementation of agentic solutions have gained popularity
as LLMs have shown to perform well when being employed as decision making
end points [85, 185]. At their core, these solutions delegate decision-making to
several specialized LLMs, granting them agency in determining the next action.
Applications of agentic solutions cover a broad range, from tool calling [160] to
agentic retrieval-augmented generation [48].

However, LLMs have been also shown to be prone to errors in their decision-
making processes [111]. This susceptibility has reached a point where implementing
guardrails for the actions and decisions made by LLMs has become a necessary and
integral component of agentic systems in practice.

Consequently, each new deployment of agentic solutions calls for the robust
evaluation of their performance. Robust evaluation should address a broad spectrum
of factors, from the accuracy of agents in selecting actions (i.e., making decisions) to
beyond-accuracy considerations such as their reliability, fairness and trustworthiness
[58]. Our line of research in this thesis can pave the way for designing proper
evaluation frameworks for measuring the reliability of agentic systems. Specifically,
our perspective on designing evaluation setups and exploring how a system works
in what-if scenarios can help and inspire future work on developing task-specific
experimental setups and/or evaluation metrics for agentic systems. More precisely,
the use of counterfactual thinking in this thesis (the systematic exploration of “what
if” scenarios, by considering alternative inputs and conditions) can inspire future
research on ensuring the comprehensiveness and generalizability of both agentic
systems and their evaluation.
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SUMMARY

Search and conversational systems have become central to how people access
information and perform tasks. With the emergence of large language models
(LLMs), information systems have shifted from purely retrieval-based pipelines
toward generation and retrieval-augmented generation (RAG). While these advances
bring new opportunities, they also introduce challenges such as outdated knowledge,
hallucinations, bias, and failures across multi-stage information systems. Ensuring
that such systems are robust, unbiased, and trustworthy requires systematic
evaluation across a broad range of tasks and contexts.

In this thesis, we investigate how retrieval and generative models behave
in nuanced real-world information-seeking scenarios, with a particular focus on
robustness and unbiasedness, as essential aspects of building reliable and trustworthy
systems. The research is organized around four key challenges:

Generalizability of ranking models in lexically rich retrieval settings. We evaluate
contextualized lexical ranking models in query-by-example (QBE) retrieval as an
example of a lexically rich retrieval setting. Our results show that these models, while
effective in ad hoc retrieval, perform less effectively in QBE retrieval, where BM25
remains competitive. However, interpolating contextualized lexical ranking models
with BM25 leads to improved ranking, which suggests the potential complementary
strengths of the relevance signals of contextualized lexical models and traditional
lexical models.

Robustness of user satisfaction estimation. We extend benchmarks for user
satisfaction estimation in task-oriented dialogue systems by generating counterfactual
dissatisfactory dialogues with LLMs. This generation is aimed at balancing the
satisfactory and dissatisfactory samples in the class distributions of satisfaction
labels. Using the augmented test collections, we find that fine-tuned models such
as BERT and ASAP perform well under the original, imbalanced class distributions
but their performance gradually drops as the proportion of dissatisfaction increased.
In contrast, few-shot in-context LLMs proves more robust and more sensitive to
changes in distribution.

Measuring societal bias in a ranked list of documents. We identified a limitation
of the widely used NFaiRR metric, which treats document biases independently and
does not allow opposing biases to cancel out. To address this, we propose TExFAIR,
a new fairness metric that combines (1) term-based associations linking documents
to societal groups via representative terms, and (2) a rank-biased discounting factor
that reduces the influence of non-representative documents; those that do not
contain any group-representative terms. These structural differences enable TExFAIR
to capture a distinct dimension of fairness, which can lead to different model choices
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when fairness and effectiveness are jointly considered.

Attribution sensitivity and bias in RAG. We develop two evaluation metrics,
Counterfactually-estimated Attribution Bias (CAB) and Counterfactually-estimated
Attribution Sensitivity (CAS), to quantify how retrieval-augmented LLMs respond
to authorship metadata in their source documents. Using these metrics, we find
that including metadata about whether a document was human- or AI-authored
significantly alters attribution behavior, with models consistently preferring human-
authored sources. This reveals a systematic bias that challenges prior assumptions
of LLMs favoring AI-generated content. Moreover, our findings highlight a critical
brittleness in the attribution behavior of LLMs, as such metadata sensitivity can be
exploited to manipulate outputs, which in turn raises important concerns for the
trustworthiness of RAG systems.

Our research has limitations that point toward promising directions for future
research. In QBE retrieval, our analysis focused on contextualized lexical models;
dense and hybrid retrieval approaches remain to be systematically studied under
lexically rich conditions. In satisfaction estimation, we only generated counterfactual
dialogues for evaluation and did not explore their impact on training; extending
this to dialogue-level satisfaction estimation and user satisfaction in other system
types (e.g., recommender systems) is a valuable next step. In fairness evaluation,
reliance on term-based group proxies overlooks more semantic and user-centered
perspectives on fairness; future work should develop evaluation frameworks that
better align with human judgments. For attribution in RAG, our study was limited
to authorship metadata; extending this methodology to other metadata types (e.g.,
gender, race, source) could be interesting. Our study focused on uncovering and
analyzing attribution bias rather than mitigating it; future research should investigate
strategies to address and reduce this bias in order to enhance the trustworthiness of
RAG systems.

Finally, we highlight a broader research direction: as LLMs are increasingly
deployed as agentic systems with decision-making autonomy, robust evaluation
becomes even more critical. Our use of counterfactual thinking (systematically
exploring “what-if” scenarios) offers a foundation for designing evaluation setups
that ensure the reliability, fairness, and trustworthiness of such systems.

Overall, this thesis advances the understanding of how retrieval and generative
models perform under realistic and structurally challenging conditions, while laying
out limitations and future directions that can guide the development of more robust,
unbiased, and trustworthy search and conversational systems.



SAMENVATTING

Zoekmachines en chatbots zijn centraal komen te staan in de manier waarop mensen
informatie raadplegen en taken uitvoeren. Met de opkomst van large language
models (LLM’s) zijn informatiesystemen verschoven van puur retrieval-gebaseerde
systemen naar tekstgeneratie en retrieval-augmented generation (RAG). Hoewel deze
ontwikkelingen nieuwe kansen bieden, brengen ze ook uitdagingen met zich mee,
zoals verouderde kennis, hallucinaties, bias en fouten. Het waarborgen dat dergelijke
systemen robuust, onbevooroordeeld en betrouwbaar zijn, vereist systematische
evaluatie over een breed scala aan taken en contexten.

In dit proefschrift hebben we onderzocht hoe retrieval- en generatiemodellen
zich gedragen in realistische informatiezoekscenario’s, met bijzondere aandacht
voor robuustheid en onbevooroordeeldheid als essentiële aspecten bij het bouwen
van betrouwbare systemen. Het onderzoek is gestructureerd rond vier centrale
uitdagingen:

Generaliseerbaarheid van ranking models in lexicaal rijke zoekproblemen. We
evalueren contextualized lexical ranking models in query-by-example (QBE) retrieval
als voorbeeld van een lexicaal rijk zoekprobleem. Onze resultaten tonen aan dat
deze modellen, hoewel effectief in ad hoc retrieval, minder goed presteren in
QBE rertieval, waar BM25 competitief blijft. Het interpoleren van contextualized
lexical ranking modellen met BM25 leidt echter tot verbeterde ranking, wat wijst
op complementaire kwaliteiten van relevantiesignalen uit zowel gecontextualiseerde
lexicale modellen als traditionele lexicale modellen.

Robuustheid van gebruikerstevredenheidsschatting. We hebben benchmarks voor
gebruikerstevredenheidsschatting in taakgerichte dialoogsysteemevaluatie uitgebreid
door “omgekeerde” onbevredigende dialogen te genereren met LLM’s. Deze
generatie is bedoeld om de verhouding tussen bevredigende en onbevredigende
voorbeelden in de klassenverdeling van tevredenheidslabels te balanceren. Met de
verrijkte testcollecties hebben we ontdekt dat fijn-afgestelde modellen zoals BERT en
ASAP goed presteren onder de oorspronkelijke, onevenwichtige klassenverdelingen,
maar dat hun prestaties geleidelijk afnemen naarmate het aandeel onbevredigende
dialogen toenam. In tegenstelling hiermee blijken few-shot in-context LLM’s
robuuster en gevoeliger voor distributieveranderingen.

Meten van maatschappelijke bias in een geordende documentenlijst. We
identificeren een beperking van de veelgebruikte NFaiRR-metriek, die bias
in documenten onafhankelijk behandelt en tegengestelde bias in verschillende
documenten elkaar niet laat opheffen. Om dit aan te pakken, hebben we een nieuwe
fairness-metriek voorgesteld: TExFAIR, die (1) term-gebaseerde associaties gebruikt
om documenten via representatieve termen te koppelen aan maatschappelijke
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groepen, en (2) een rank-biased discountfactor toepast die de invloed reduceert van
niet-representatieve documenten, namelijk documenten zonder groep-representatieve
termen.

Attributiegevoeligheid en bias in RAG. We hebben twee evaluatiemetrieken
ontwikkeld, Counterfactually-estimated Attribution Bias (CAB) en Counterfactually-
estimated Attribution Sensitivity (CAS), om te kwantificeren hoe retrieval-augmented
LLM’s reageren op auteursmetadata in hun brondocumenten. Met behulp van deze
metrieken hebben we ontdekt dat het opnemen van metadata over of een document
door een mens of door een AI is geschreven, het attributiegedrag significant
beïnvloedt, waarbij modellen consequent de voorkeur geven aan door mensen
geschreven bronnen. Dit onthult een systematische bias die eerdere aannames
over de voorkeur van LLM’s voor AI-gegenereerde content tegenspreekt. Bovendien
benadrukken onze bevindingen een kritieke kwetsbaarheid in het attributiegedrag
van LLM’s, aangezien dergelijke metadata-gevoeligheid kan worden misbruikt om
output te manipuleren, wat belangrijke zorgen oproept voor de betrouwbaarheid van
RAG-systemen.

Ons onderzoek kent beperkingen op basis waarvan nieuwe onderzoeksrichtingen
kunnen worden geïnitieerd. In QBE retrieval hebben we onze analyse gericht
op gecontextualiseerde lexicale modellen. Dense en hybride retrieval models
moeten nog systematisch worden onderzocht in lexicaal rijke condities. In
tevredenheidsschatting genereerden we uitsluitend omgekeerde dialogen voor
evaluatie en hebben we hun impact op training niet onderzocht; het uitbreiden
naar dialoog-niveau tevredenheidsschatting en gebruikerstevredenheid in andere
systeemtypes (bijvoorbeeld aanbevelingssystemen) vormt een waardevolle volgende
stap. In fairness-evaluatie gaat de afhankelijkheid van term-gebaseerde groepsproxies
voorbij aan meer semantische en gebruiker-gecentreerde perspectieven op fairness;
toekomstig werk moet evaluatiekaders ontwikkelen die beter aansluiten bij menselijke
oordelen. Voor attributie in RAG was onze studie beperkt tot auteursmetadata; het
uitbreiden van deze methodologie naar andere metadata (bijv. geslacht, etniciteit,
bron) zou interessant zijn. Onze studie richtte zich op het blootleggen en analyseren
van attributiebias, niet op het mitigeren ervan; toekomstig onderzoek zou strategieën
moeten ontwikkelen om deze bias te verminderen en zo de betrouwbaarheid van
RAG-systemen te vergroten.

Tot slot benadrukken we een bredere onderzoeksrichting: nu LLM’s steeds vaker
worden ingezet als agentic systems die meer zelfstandig beslissingen kunnen nemen,
wordt robuuste evaluatie nog crucialer. Ons gebruik van omgekeerd redeneren
(systematisch verkennen van “wat-als”-scenario’s) biedt een basis voor het ontwerpen
van evaluatieopzetten die de betrouwbaarheid, fairness en robuustheid van dergelijke
systemen waarborgen.

Al met al draagt dit proefschrift bij aan een beter begrip van hoe retrieval- en
generatiemodellen presteren onder realistische en structureel uitdagende condities,
terwijl het tegelijk beperkingen en toekomstperspectieven schetst die de ontwikkeling
van meer robuuste, onbevooroordeelde en betrouwbare zoekmachines en chatbots
kunnen sturen.
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