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Prof. dr. M. Lovrić McMaster University
Prof. dr. M. Welling Universiteit van Amsterdam
Prof. dr. C. Sánchez Gutiérrez Universiteit van Amsterdam
Dr. F. P. Santos Universiteit van Amsterdam

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research was supported by the Netherlands Organisation for Scientific
Research under project number 652.001.003, the Partnership on AI, and Ahold
Delhaize.

Copyright © 2022 Ana Lucic, Amsterdam, The Netherlands
Cover by Off Page, Amsterdam
Printed by Off Page, Amsterdam

ISBN: 978-94-93278-21-9



The more I see, the less I know.

– Anthony Kiedis
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koja me je “dva puta rodila” i cuvala od malenog. Ja vas obozavam, i ovo je za vas.

Ana Lucic
Amsterdam

July 2022





Table of Contents

1 Introduction 1
1.1 Research Outline and Questions . . . . . . . . . . . . . . . . . . . 3

1.1.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 Pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Algorithms 9

2 Counterfactual Explanations for Tree Ensembles 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Counterfactual Explanations . . . . . . . . . . . . . . . . 13
2.2.2 Algorithmic Recourse . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Adversarial Examples . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Differentiable Tree-based Models . . . . . . . . . . . . . . 14

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Method: FOCUS . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Loss Function Definitions . . . . . . . . . . . . . . . . . . 15
2.4.2 Tree-based Models . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Approximations of Tree-based Models . . . . . . . . . . . 17
2.4.4 Our Method: FOCUS . . . . . . . . . . . . . . . . . . . . 18
2.4.5 Effects of Hyperparameters . . . . . . . . . . . . . . . . . 18

2.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5.3 Distance Functions . . . . . . . . . . . . . . . . . . . . . . 19
2.5.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Experiment 1: FOCUS vs. FT . . . . . . . . . . . . . . . . . . . 20
2.6.1 Baseline: Feature Tweaking . . . . . . . . . . . . . . . . . 20
2.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.7 Experiment 2: FOCUS vs. DACE . . . . . . . . . . . . . . . . . 23
2.7.1 Baseline: DACE . . . . . . . . . . . . . . . . . . . . . . . 23

vii



Table of Contents

2.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.8 Discussion and Analysis . . . . . . . . . . . . . . . . . . . . . . . 24

2.8.1 Case Study: Credit Risk . . . . . . . . . . . . . . . . . . . 25
2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Counterfactual Explanations for Graph Neural Networks 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 GNN Explainability . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Counterfactual Explanations . . . . . . . . . . . . . . . . 32
3.2.3 Adversarial Attacks . . . . . . . . . . . . . . . . . . . . . 32

3.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Graph Neural Networks . . . . . . . . . . . . . . . . . . . 32
3.3.2 Matrix Sparsification . . . . . . . . . . . . . . . . . . . . . 33

3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Method: CF-GNNExplainer . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Adjacency Matrix Perturbation . . . . . . . . . . . . . . . 34
3.5.2 Counterfactual Generating Model . . . . . . . . . . . . . . 35
3.5.3 Loss Function Optimization . . . . . . . . . . . . . . . . . 35
3.5.4 CF-GNNExplainer . . . . . . . . . . . . . . . . . . . . . . 36
3.5.5 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6.1 Datasets and Models . . . . . . . . . . . . . . . . . . . . . 37
3.6.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6.4 Hyperparameter Search . . . . . . . . . . . . . . . . . . . 39

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . 40
3.7.2 Comparison to GNNExplainer . . . . . . . . . . . . . . 41
3.7.3 Summary of Results . . . . . . . . . . . . . . . . . . . . . 41

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

II Users 45

4 Contrastive Explanations for Forecasting Errors 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Local Explanations for Tree Ensembles . . . . . . . . . . . 50
4.2.2 Feature Importance Explanations . . . . . . . . . . . . . . 50
4.2.3 Contrastive Explanations . . . . . . . . . . . . . . . . . . 51
4.2.4 Outlier Detection . . . . . . . . . . . . . . . . . . . . . . . 51

4.3 Method: MC-BRP . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4.1 Dataset and Model . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 Comparison to LIME . . . . . . . . . . . . . . . . . . . . 55

viii



Table of Contents

4.4.3 User Study Design . . . . . . . . . . . . . . . . . . . . . . 55
4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.1 Objective Questions . . . . . . . . . . . . . . . . . . . . . 58
4.5.2 Subjective Questions . . . . . . . . . . . . . . . . . . . . . 59

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6.1 Comparing Attitudes Conditioned on Background . . . . 60
4.6.2 Comparing Attitudes in the Treatment Group . . . . . . . 61
4.6.3 User Study Limitations . . . . . . . . . . . . . . . . . . . 62

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

III Pedagogy 65

5 Teaching Responsible AI through Reproducibility 67
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2.1 Characterizing Responsible AI Courses . . . . . . . . . . . 69
5.2.2 Similar Responsible AI Courses . . . . . . . . . . . . . . . 70

5.3 Reproducibility in ML Research . . . . . . . . . . . . . . . . . . . 71
5.4 Learning Objectives . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Course Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.5.1 Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5.2 Paper Discussions . . . . . . . . . . . . . . . . . . . . . . 73
5.5.3 Group Project . . . . . . . . . . . . . . . . . . . . . . . . 74
5.5.4 Online Course Format . . . . . . . . . . . . . . . . . . . . 75

5.6 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6.1 Feedback from Students . . . . . . . . . . . . . . . . . . . 76
5.6.2 Feedback from the ML Reproducibility Challenge . . . . . 78

5.7 Factors Contributing to a Successful Course . . . . . . . . . . . . 78
5.7.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.2 Concerning FACT-AI . . . . . . . . . . . . . . . . . . . . 79
5.7.3 Concerning Reproducibility . . . . . . . . . . . . . . . . . 80

5.8 Areas of Improvement . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.8.2 Concerning FACT-AI . . . . . . . . . . . . . . . . . . . . 80
5.8.3 Concerning Reproducibility . . . . . . . . . . . . . . . . . 81

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusions 83
6.1 Main Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.2 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.1.3 Pedagogy . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix





Chapter 1

Introduction

Machine learning (ML) is the study of algorithms that learn models directly
from data [94]. Such algorithms are typically self-improving – their parameters
are updated iteratively based on the data they receive, thereby learning a model
that is representative of the data. Once an ML model is trained, it is usually
evaluated on unseen data in order to test its generalization capabilities. The
ability to generalize to new situations is one of the most important aspects
of ML models, and is perhaps the reason such models are often referred to as
“intelligent” [131]. In other words, ML models use information from the past (i.e.,
historical data) to make predictions about the future (i.e., unseen data).

The field of ML has enjoyed great success in the last decade primarily due
to the increased availability of data and computational resources [4]. As ML
models have become more prominent in decision-making scenarios [22], there has
been an increased demand for ensuring such models are (i) fair, (ii) accountable,
(iii) confidential, and (iv) transparent [99].1 However, ML models can be
difficult to interpret due to their complex architectures and the large numbers of
parameters involved, effectively deeming them “black-boxes” [20]. In this thesis,
we primarily focus on developing methods to increase transparency, which we
define as mechanisms that provide insight into an ML model. This knowledge is
typically presented to a user in the form of an explanation.

Recently, the artificial intelligence (AI) research community has embarked
on the development of explainable artificial intelligence (XAI): a relatively new
subfield of AI where the aim is to explain predictions from complex ML models
[47]. Explanations can be used to make ML models more accountable to various
stakeholders involved in the pipeline by providing insight into not only how the
model arrived at its decision, but also how to change or contest the decision, if
necessary [141]. We distinguish between two main types of explanations:

• Behavior-based explanations: provide insight into how an ML model
makes predictions from an algorithmic or mathematical perspective. For
example, ranking the most important features [86, 107], identifying influential
[69, 116] or prototypical [73, 129] training samples, or generating counterfac-
tual perturbations [122, 139, 141]. Behavior-based explanations are important
for understanding the internal processes of ML models.

1Although confidentiality and transparency may seem like contradictory objectives, confi-
dentiality typically refers to preserving the privacy of individuals within a training dataset,
while transparency refers to the ML model and the process that went into deploying it.
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1. Introduction

• Process-based explanations: provide insight into the ML modeling pipeline.
For example, detailing how the data were collected and preprocessed [39], or
reporting on how the model was trained and evaluated [91]. Process-based
explanations are important for ensuring that ML research is conducted in a
responsible and reproducible manner.

This thesis has three parts: the first focuses on algorithms, the second focuses
on users, and the third focuses on pedagogy. In the first two parts of this thesis,
we develop methods for generating behavior-based explanations, which is what
the majority of existing XAI methods produce. Guidotti et al. [47] develop a
taxonomy for classifying XAI methods using four main criteria, we slightly adapt
their taxonomy as follows:2

• Problem: the type of explanation we want to generate.

(i) Global explanations: interpret ML model behavior in general, i.e., how
it makes predictions across data points.

(ii) Local explanations: interpret individual ML model predictions.
(iii) Inspection: interpret model behavior through visual representations

(globally or locally).
(iv) Transparent design: model is inherently interpretable (globally or lo-

cally).

• Model: the dependence on model class.

(i) Model-specific: requires full access to the model’s inner workings, where
the model can be a neural network, tree ensemble, support vector
machine, etc.

(ii) Model-agnostic: treats model as a “black-box” and is therefore not
dependent on its inner workings.

• Explanator: the mechanism used to generate explanations, e.g., decision
rules, feature attributions, sensitivity analysis, prototype selection, etc.

• Data: the type of data being explained, e.g., tabular, image, text, graph, etc.

In Chapters 2 and 3, we develop and investigate local, model-specific explanation
methods. We focus on local explanations methods because they are a natural
precursor to global explanations [137]. We focus on model-specific explanations
because in many practical scenarios, we have full access to the ML model and
can therefore make use of its inner workings when generating explanations. The
algorithm proposed in Chapter 2 is specific to tree ensembles and operates on
tabular data, while the algorithm proposed in Chapter 3 is specific to graph
neural networks (GNNs) and operates on graph data.

2We refer to explanations as “global” or “local” since this aligns more closely with standard
terms recently in the literature. We also introduce the distinction between “model-specific”
and “model-agnostic”.
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1.1. Research Outline and Questions

In general, we take the position that treating the model as a “black-box” in
order to interpret its predictions is a somewhat contradictory statement; how
can we understand what a model is doing if do not have access to its internal
processes? However, there exist use cases where we need explanations but we do
not have full access to the model, such as auditing [105]. To accommodate such
scenarios, we propose a method in Chapter 4 that is model-agnostic in principle,
but we evaluate it in a model-specific manner.

In the third and final part of the thesis, we shift from investigating behavior-
based explanations for explaining individual predictions to investigating process-
based explanations for explaining the ML modeling pipeline. We do so from a
pedagogical point of view. We use reproducibility as a mechanism for teaching
about responsible AI concepts: fairness, accountability, confidentiality, and
transparency in a graduate-level course at the University of Amsterdam. In
Chapter 5, we report on our experiences and lessons learned after teaching the
course over two academic years.

1.1 Research Outline and Questions
This thesis focuses on explaining for ML models in three different contexts:
algorithms (Chapters 2 and 3), users (Chapter 4), and pedagogy (Chapter 5).
Below, we describe the main research questions for each chapter.

1.1.1 Algorithms
In the first part of the thesis, we focus on the algorithmic component of generat-
ing explanations for ML predictions. Based on existing work from the philosophy,
cognitive science and social psychology disciplines, Miller [90] identifies various
aspects of explainability that AI researchers should pay attention to when gen-
erating explanations for ML models. One of the main recommendations is that
explanations should be contrastive: they should allow the user to compare and
contrast between the original instance (i.e., data point) and a counterfactual
case.3 Counterfactual explanations are defined as the minimal perturbations
to the input data that such that the prediction changes [141]. Counterfactual
explanations have been identified as explanations that can “provide informa-
tion to the data subject that is both easily digestible and practically useful for
understanding the reasons for a decision, challenging them, and altering future
behavior for a better result” [141].

In the first chapter in this part of the thesis, we develop and evaluate a method
for generating counterfactual explanations specific to tree ensembles. We focus
on tree ensembles because the majority of existing research on counterfactual
explanations is either (i) model-agnostic or (ii) specific to deep learning [61],
even though tree ensembles perform well on tabular data and are widely used in

3There has recently been discussion on the differences between contrastive and counterfactual
explanations [61, 122]. For the purposes of this thesis, we use these terms interchangeably.

3



1. Introduction

industrial settings [118]. In this chapter, we aim to answer the following research
question:
RQ1 Can we generate counterfactual explanations for tree-based models using

gradient-based optimization?
To answer RQ1, we propose a method that introduces differentiable approx-
imations into the optimization framework, which allows us to use standard
gradient-based optimization techniques to generate counterfactual explanations.
We find that, unlike existing approaches, our method (i) produces counterfactual
examples for all instances in a dataset, (ii) produces counterfactual examples
that are closer to the original instances compared to existing approaches, and
(iii) can handle larger model sizes.

Although there exist many methods for generating counterfactual explana-
tions for tabular, text, and image data (see surveys by Verma et al. [139], Karimi
et al. [63], and Stepin et al. [122]), there are relatively few for graph data.4 In
the second chapter in this part of the thesis, we investigate the following research
question:

RQ2 Can we extend our counterfactual explanation method for tree-based
models to graph-based models?

To answer RQ2, we formalize the problem of counterfactual explanations for
graph neural networks (GNNs) and propose a method for generating them
by iteratively removing entries in the adjacency matrix, which corresponds
to removing edges in the graph. We also propose an experimental setup for
evaluating counterfactual explanations for GNNs and find that our explanation
method is able to generate counterfactual explanations that are more minimal
and more accurate in comparison to the baselines.

1.1.2 Users
Given that explanations are created in order to be consumed by users, it is a
natural next step to think about incorporating a more user-centric perspective
into the development of XAI methods [31]. In this part of the thesis, we
investigate generating explanations that are situated and evaluated within a
particular deployment context. We ask the following research question:

RQ3 Given a real-world use case, can we create an explanation method based
on this use case and evaluate it in a context-specific manner?

To answer RQ3, we first identify a use case where users want to see explanations
for ML models: explaining errors in forecasting predictions. We propose a
method for generating explanations based on the specifics of this use case and
design a user study to evaluate how interpretable and actionable our explanation
are. We also test users’ subjective attitudes towards the explanations generated
by our method.

4At the time of writing [85], there were no existing methods for generating counterfactual
explanations for graph data.
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1.2. Main Contributions

1.1.3 Pedagogy
In the final part of this thesis, we transition from explaining ML predictions
to explaining best practices for conducting ML research. We ask the following
research question:

RQ4 How can we teach about responsible AI topics to a technical, research-
oriented audience?

To answer RQ4, we design a graduate-level course about fairness, accountability,
confidentiality, and transparency in AI. We describe how we structured the course
around a reproducibility project and report in detail on the insights gained from
teaching the course over two academic years. We emphasize that conducting
research in a responsible and reproducible manner is not only important for
individual ML researchers, but is also essential for scientific progress in general.

1.2 Main Contributions
In this section, we summarize the main contributions of this thesis.

Theoretical contributions
1. A formalization of the counterfactual explanation problem for GNNs

(Chapter 3).

2. An experimental setup for evaluating counterfactual explanations for GNNs
(Chapter 3).

3. A user study framework for evaluating the effectiveness of contrastive
explanations (Chapter 4).

4. An analysis on the difference in attitudes towards explanations between
different types of stakeholders (Chapter 4).

Algorithmic contributions
5. Flexible Optimizable CoUnterfactual Explanations for Tree EnsembleS

(FOCUS): an algorithm for generating counterfactual explanations for tree
ensembles (Chapter 2).

6. CF-GNNExplainer: an algorithm for generating counterfactual explana-
tions for GNNs (Chapter 3).

7. Monte Carlo Bounds for Reasonable Predictions (MC-BRP): an algo-
rithm for generating explanations about errors in forecasting predictions
(Chapter 4).
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1. Introduction

Pedagogical contributions
8. A teaching setup for a course about responsible AI with a focus on re-

producibility (Chapter 5), including a set of guidelines for implementing
similar courses in the future based on our insights.

1.3 Thesis Overview
This thesis is organized into three parts, each part can be read independently.

The first part focuses on proposing new algorithms for explaining predictions
from ML models. Specifically, we propose methods for generating counterfactual
explanations for tree-based models (Chapter 2), and for graph-based models
(Chapter 3). These methods can be applied on any tree- or graph-based model,
respectively.

The second part focuses on the interaction between ML explanations and
the users who consume them. We propose a method for explaining errors in
forecasting predictions (Chapter 4). To evaluate our method, we propose a user
study with both objective and subjective components, where we contrast and
compare the results between two types of users: researchers and practitioners.

In the third part of the thesis, we shift our focus from translating knowledge
about individual predictions to transferring knowledge to the next generation of
researchers. We propose a course setup for teaching about responsible AI topics to
a graduate-level audience and reflect on our learnings from past implementations
of the course at the University of Amsterdam (Chapter 5).

1.4 Origins
Below we list the publications that are the origins of each chapter.

Chapter 1 is based in part on the following paper:

• Ana Lucic, Madhulika Srikumar, Umang Bhatt, Alice Xiang, Ankur
Taly, Q. Vera Liao, and Maarten de Rijke. A Multistakeholder Ap-
proach Towards Evaluating AI Transparency Mechanisms. CHI Work-
shop on Operationalizing Human-Centered Perspectives in Explainable
AI, 2021.

AL designed the framework during a research fellowship at the Partnership
on AI, based on discussions with all authors. All authors contributed to
providing feedback, AL did most of the writing.

Chapter 2 is based on the following paper:

• Ana Lucic, Harrie Oosterhuis, Hinda Haned, and Maarten de Rijke.
FOCUS: Flexible Optimizable Counterfactual Explanations for Tree
Ensembles. AAAI Conference on Artificial Intelligence, 2022.
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AL and HO designed the method. AL ran the experiments. All authors
contributed to the writing, AL did most of the writing.

Chapter 3 is based on the following paper:

• Ana Lucic, Maartje ter Hoeve, Gabriele Tolomei, Maarten de Rijke,
and Fabrizio Silvestri. CF-GNNExplainer: Counterfactual Expla-
nations for Graph Neural Networks. International Conference on
Artificial Intelligence and Statistics, 2022.

AL designed the method and ran the experiments. All authors contributed
to the writing, AL did most of the writing.

Chapter 4 is based on the following paper:

• Ana Lucic, Hinda Haned, and Maarten de Rijke. Why Does My Model
Fail? Contrastive Local Explanations for Retail Forecasting. ACM
Conference on Fairness, Accountability, and Transparency, 2020.

AL designed the method and ran the experiments. All authors contributed
to the writing, AL did most of the writing.

Chapter 5 is based on the following paper:

• Ana Lucic, Maurits Bleeker, Sami Jullien, Samarth Bhargav, and
Maarten de Rijke. Reproducibility as a Mechanism for Teaching Fair-
ness, Accountability, Confidentiality, and Transparency in Artificial
Intelligence. AAAI Symposium on Educational Advances in Artificial
Intelligence, 2022.

AL and MB designed the course and implemented it together with MdR.
All authors contributed to the writing, AL did most of the writing.

The writing of this thesis also benefited from work on the following publications:

• Ana Lucic, Hinda Haned, and Maarten de Rijke. Explaining Predictions
from Tree-based Boosting Ensembles. SIGIR Workshop on Fairness,
Accountability, Confidentiality, and Transparency in Information Retrieval,
2019.

• Ana Lucic, Maurits Bleeker, Maarten de Rijke, Koustuv Sinha, Sami
Jullien, and Robert Stojnic. Towards Reproducible Machine Learning
Research in Information Retrieval. SIGIR Tutorial on Reproducibility,
2022.

• Ana Lucic, Maurits Bleeker, Samarth Bhargav, Jessica Zosa Forde, Kous-
tuv Sinha, Jesse Dodge, Sasha Luccioni, and Robert Stojnic. Towards
Reproducible Machine Learning Research in Natural Language Processing.
ACL Tutorial on Reproducibility, 2022.
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• Ana Lucic, Sheeraz Ahmad, Amanda Furtado Brinhosa, Q. Vera Liao,
Himani Agrawal, Umang Bhatt, Krishnaram Kenthapadi, Alice Xiang,
Maarten de Rijke, and Nicholas Drabowski. Towards the Use of Saliency
Maps for Explaining Low-Quality Electrocardiograms to End Users. IJCAI
Workshop on Explainable AI, 2022.

• Kim de Bie, Ana Lucic, and Hinda Haned. To Trust or Not to Trust
a Regressor: Estimating and Explaining Trustworthiness of Regression
Predictions. ICML Workshop on Human in the Loop Learning, 2021.

• Michael Neely, Stefan Schouten, Maurits Bleeker, and Ana Lucic. A Song
of (Dis)agreement: Evaluating the Evaluation of Explainable Artificial
Intelligence in Natural Language Processing. International Conference on
Hybrid Human-Artificial Intelligence, 2022.

• Michael Neely, Stefan Schouten, Maurits Bleeker, and Ana Lucic. Order
in the Court: Explainable AI Methods Prone to Disagreement. ICML
Workshop on Theoretic Foundation, Criticism, and Application Trend of
Explainable AI, 2021.

• Surya Karunagaran, Ana Lucic, and Christine Custis. XAI Toolsheets: An
Evaluation Framework for XAI Tools. IJCAI Workshop on Explainable
AI, 2022.
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Algorithms
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Chapter 2

Counterfactual Explanations for
Tree Ensembles

In the first part of this thesis, we explore creating algorithms for explaining
predictions from various types of machine learning (ML) models. In this chapter,
we address the following research question:

RQ1: Can we generate counterfactual explanations for tree-based models using
gradient-based optimization?

Existing methods for generating counterfactual explanations for tree-based
models are either based on heuristics [132] or on integer linear programming
techniques [58]. The former do not necessarily converge to an optimal solution,
while the latter can be extremely computationally intensive.

The answer to RQ1 is yes: we can achieve this by generating probabilistic
approximations of tree-based models, which are differentiable and can there-
fore be used within a standard gradient-based optimization framework. Our
experimental results show that our proposed algorithm can generate minimal
counterfactual explanations in a more efficient and reliable manner in comparison
to the baselines.

2.1 Introduction
As ML models are prominently applied and their outcomes have a substantial
effect on the general population, there is an increased demand for understanding
what contributes to their predictions [29]. For an individual who is affected by the
predictions of these models, it would be useful to have an actionable explanation
– one that provides insight into how these decisions can be changed. The General
Data Protection Regulation (GDPR) is an example of recently enforced regulation
in Europe which gives an individual the right to an explanation for algorithmic
decisions, making the interpretability problem a crucial one for organizations
that wish to adopt more data-driven decision-making processes [32].

Counterfactual explanations are a natural solution to this problem since they
frame the explanation in terms of what input (feature) changes are required
to change the output (prediction). For instance, a user may be denied a loan

This chapter was published at the AAAI Conference on Artificial Intelligence (AAAI
2022) under the title “FOCUS: Flexible Optimizable Counterfactual Explanations for Tree
Ensembles” [84].
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based on the prediction of an ML model used by their bank. A counterfactual
explanation could be: “Had your income been e1000 higher, you would have been
approved for the loan.” We focus on finding optimal counterfactual explanations:
the minimal changes to the input required to change the outcome.

Counterfactual explanations are based on counterfactual examples: generated
instances that are close to an existing instance but have an alternative prediction.
The difference between the original instance and the counterfactual example
is the counterfactual explanation. Wachter et al. [141] propose framing the
problem as an optimization task, but their work assumes that the underlying
machine learning models are differentiable, which excludes an important class
of widely applied and highly effective non-differentiable models: tree ensembles.
We propose a method that relaxes this assumption and builds upon the work of
Wachter et al. by introducing differentiable approximations of tree ensembles that
can be used in such an optimization framework. Alternative non-optimization
approaches for generating counterfactual explanations for tree ensembles involve
an extensive search over many possible paths in the ensemble that could lead to
an alternative prediction [132].

Given a trained tree-based model f , we probabilistically approximate f
by replacing each split in each tree with a sigmoid function centred at the
splitting threshold. If f is an ensemble of trees, then we also replace the
maximum operator with a softmax. This approximation allows us to generate a
counterfactual example x̄ for an instance x based on the minimal perturbation
of x such that the prediction changes: yx ̸= yx̄, where yx and yx̄ are the labels
f assigns to x and x̄, respectively. This leads us to our main research question
in this chapter:

Are counterfactual examples generated by our method closer to the
original input instances than those generated by existing heuristic
methods?

Our main findings are that our proposed method is (i) a more effective counter-
factual explanation method for tree ensembles than previous approaches since it
manages to produce counterfactual examples that are closer to the original input
instances than existing approaches; (ii) a more efficient counterfactual expla-
nation method for tree ensembles since it is able to handle larger models than
existing approaches; and (iii) a more reliable counterfactual explanation method
for tree ensembles since it is able to generate counterfactual explanations for all
instances in a dataset, unlike existing approaches specific to tree ensembles.

In the following sections, we examine existing work related to ours (Sec-
tion 2.2) and formalize the counterfactual explanation problem (Section 2.3). We
then describe the details of our method, Flexible Optimizable CoUnterfactual
Explanations for Tree EnsembleS (FOCUS), in Section 2.4. In Section 2.5, we ex-
plain the experimental setup, followed by the experimental results in Sections 2.6
and 2.7. We analyze our findings in Section 2.8 and conclude in Section 2.9.
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2.2 Related Work
Based on the taxonomy described in Chapter 1, our setting in this chapter is a
local explanation problem for tree ensembles. We use sensitivity analysis, specifi-
cally counterfactual perturbations, on tabular data to generate our explanations.
Our work is related to counterfactual explanations in general (Section 2.2.1),
algorithmic recourse (Section 2.2.2), adversarial examples (Section 2.2.3), and
differentiable tree-based models (Section 2.2.4).

2.2.1 Counterfactual Explanations
Counterfactual examples have been used in a variety of ML areas, such as
reinforcement learning [89], deep learning [3], and XAI. Previous XAI methods
for generating counterfactual examples are either model-agnostic [60, 70, 93, 104,
138] or model-specific [27, 42, 58, 109, 132, 141]. Model-agnostic approaches
treat the original model as a “black-box” and only assume query access to the
model, whereas model-specific approaches typically do not make this assumption
and can therefore make use of its inner workings (see Chapter 1).

Our work is a model-specific approach for generating counterfactual examples
through optimization. Previous model-specific work for generating counterfactual
examples through optimization has solely been conducted on differentiable models
[27, 42, 141].

2.2.2 Algorithmic Recourse
Algorithmic recourse is a line of research that is closely related to counterfactual
explanations, except that methods for algorithmic recourse include the additional
restriction that the resulting explanation must be actionable [57, 62, 63, 136].
This is done by selecting a subset of the features to which perturbations can
be applied in order to avoid explanations that suggest impossible or unrealistic
changes to the feature values (i.e., change age from 50→ 25). Although this work
has produced impressive theoretical results, it is unclear how realistic they are
in practice, especially for complex ML models such as tree ensembles. Existing
algorithmic recourse methods cannot solve our task because they (i) are either
restricted to solely linear [136] or differentiable [57] models, or (ii) require access
to causal information [62, 63], which is rarely available in real world settings.

2.2.3 Adversarial Examples
Adversarial examples are a type of counterfactual example with the additional
constraint that the minimal perturbation results in an alternative prediction
that is incorrect. There are a variety of methods for generating adversarial
examples [16, 41, 125, 128]; a more complete overview can be found in the work
of [13]. The main difference between adversarial examples and counterfactual
examples is in the intent: adversarial examples are meant to fool the model,
whereas counterfactual examples are meant to explain the model.
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2. Counterfactual Explanations for Tree Ensembles

2.2.4 Differentiable Tree-based Models
Part of our contribution involves constructing differentiable versions of tree
ensembles by replacing each splitting threshold with a sigmoid function. This
can be seen as using a (small) neural network to obtain a smooth approximation
of each tree. Neural decision trees [7, 144] are also differentiable versions of trees,
which use a full neural network instead of a simple sigmoid. However, these do
not optimize for approximating an already trained model. Therefore, unlike our
method, they are not an obvious choice for finding counterfactual examples for
an existing model. Soft decision trees [54] are another example of differentiable
trees, which instead approximate a neural network with a decision tree. This
can be seen as the inverse of our task.

2.3 Problem Formulation
A counterfactual explanation for an instance x and a model f , ∆x, is a minimal
perturbation of x that changes the prediction of f . f is a probabilistic classifier,
where f(y | x) is the probability of x belonging to class y according to f . The
prediction of f for x is the most probable class label yx = arg maxy f(y | x), and
a perturbation x̄ is a counterfactual example for x if, and only if, yx ̸= yx̄, that
is:

arg max
y

f(y | x) ̸= arg max
y′

f(y′ | x̄). (2.1)

In addition to changing the prediction, the distance between x and x̄ should
also be minimized. We therefore define an optimal counterfactual example x̄∗ as:

x̄∗ := arg min
x̄

d(x, x̄) such that yx ̸= yx̄, (2.2)

where d(x, x̄) is a differentiable distance function. The corresponding optimal
counterfactual explanation ∆∗

x is:

∆∗
x = x̄∗ − x. (2.3)

This definition aligns with previous ML work on counterfactual explanations
[60, 70, 132]. We note that this notion of optimality is purely from an algorithmic
perspective and does not necessarily translate to optimal changes in the real
world, since the latter are dependent on the context in which they are applied.
It should be noted that if the loss space is non-convex, it is possible that more
than one optimal counterfactual explanation exists.

Minimizing the distance between x and x̄ should ensure that x̄ is as close to the
decision boundary as possible. This distance indicates the effort it takes to apply
the perturbation in practice, and an optimal counterfactual explanation shows
how a prediction can be changed with the least amount of effort. An optimal
explanation provides the user with interpretable and potentially actionable
feedback related to understanding the predictions of model f .
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Wachter et al. [141] recognized that counterfactual examples can be found
through gradient descent if the task is cast as an optimization problem. Specif-
ically, they use a loss consisting of two components: (i) a prediction loss to
change the prediction of f : Lpred(x, x̄ | f), and (ii) a distance loss to minimize
the distance d: Ldist(x, x̄ | d). The complete loss is a linear combination of these
two parts, with a weight β ∈ R>0:

L(x, x̄ | f, d) = Lpred(x, x̄ | f) + βLdist(x, x̄ | d). (2.4)

The assumption here is that an optimal counterfactual example x̄∗ can be found
by minimizing the overall loss:

x̄∗ = arg min
x̄
L(x, x̄ | f, d). (2.5)

Wachter et al. [141] propose a prediction loss Lpred based on the mean-squared-
error. A clear limitation of this approach is that it assumes f is differentiable.
This excludes many commonly used ML models, including tree-based models,
which we focus on in this work.

2.4 Method: FOCUS
To mimic many real-world scenarios, we assume there exists a trained model
f that we need to explain. The goal here is not to create a new, inherently
interpretable tree-based model, but rather to explain a model that already exists.

2.4.1 Loss Function Definitions
We use a hinge-loss since we assume a classification task:

Lpred(x, x̄ | f) = 1

[
arg max

y
f(y | x) = arg max

y′
f(y′ | x̄)

]
· f(y′ | x̄). (2.6)

Allowing for flexibility in the choice of distance function allows us to tailor the
explanations to the end-users’ needs. We make the preferred notion of minimality
explicit through the choice of distance function. Given a differentiable distance
function d, the distance loss is:

Ldist(x, x̄) = d(x, x̄). (2.7)

Building off of Wachter et al. [141], we propose incorporating differentiable
approximations of non-differentiable models to use in the gradient-based opti-
mization framework. Since the approximation f̃ is derived from the original
model f , it should match f closely: f̃(y | x) ≈ f(y | x). We define the
approximate prediction loss as follows:

L̃pred(x, x̄ | f, f̃) = 1

[
arg max

y
f(y | x) = arg max

y′
f(y′ | x̄)

]
· f̃(y′ | x̄). (2.8)
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Figure 2.1: Left: A decision tree T and node activations for a single instance.
Right: a differentiable approximation of the same tree T̃ and activations for the
same instance.

This loss is based both on the original model f and the approximation f̃ : the
loss is active as long as the prediction according to f has not changed, but
its gradient is based on the differentiable f̃ . This prediction loss encourages
the perturbation to have a different prediction than the original instance by
penalizing an unchanged instance. The approximation of the complete loss
becomes:

L̃(x, x̄ | f, f̃ , d) = L̃pred(x, x̄ | f, f̃) + β · Ldist(x, x̄ | d). (2.9)

Since we assume that it approximates the complete loss,

L̃(x, x̄ | f, f̃ , d) ≈ L(x, x̄ | f, d), (2.10)

we also assume that an optimal counterfactual example can be found by mini-
mizing it:

x̄∗ ≈ arg min
x̄
L̃(x, x̄ | f, f̃ , d). (2.11)

2.4.2 Tree-based Models

To obtain the differentiable approximation f̃ of f , we construct a probabilistic
approximation of the original tree ensemble f . Tree ensembles are based on
decision trees; a single decision tree T uses a binary-tree structure to make
predictions about an instance x based on its features. Figure 2.1 shows a simple
decision tree consisting of five nodes. A node j is activated if its parent node pj

is activated and feature xfj
is on the correct side of the threshold θj ; which side

is the correct side depends on whether j is a left or right child. The root note is
an exception, it is always activated. Let tj(x) indicate if node j is activated:

tj(x) =


1, if j is the root,
tpj

(x) · 1[xfj
> θj ], if j is a left child,

tpj
(x) · 1[xfj

≤ θj ], if j is a right child.

(2.12)

∀x, t0(x) = 1. Nodes that have no children are called leaf nodes; an instance x
always ends up in a single leaf node. Every leaf node j has its own predicted
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distribution T (y | j); the prediction of the full tree is given by its activated leaf
node. Let Tleaf be the set of leaf nodes in T , then:

(j ∈ Tleaf ∧ tj(x) = 1)→ T (y | x) = T (y | j). (2.13)

Alternatively, we can reformulate this as a sum over leaves:

T (y | x) =
∑

j∈Tleaf

tj(x) · T (y | j). (2.14)

Generally, tree ensembles are deterministic; let f be an ensemble of M many
trees with weights ωm ∈ R, then:

f(y | x) = arg max
y′

M∑
m=1

ωm · Tm(y′ | x). (2.15)

2.4.3 Approximations of Tree-based Models
If f is not differentiable, we are unable to calculate its gradient with respect
to the input x. However, the non-differentiable operations in our formulation
are (i) the indicator function, and (ii) a maximum operation, both of which
can be approximated by differentiable functions. First, we introduce the t̃j(x)
function that approximates the activation of node j: t̃j(x) ≈ tj(x), using a
sigmoid function with parameter σ ∈ R>0: sig(z) = (1 + exp(σ · z))−1 and

t̃j(x) =


1, if j is the root,
t̃pj (x) · sig(θj−xfj ), if j is left child,

t̃pj (x) · sig(xfj−θj), if j is right child.

(2.16)

As σ increases, t̃j approximates tj more closely. Next, we introduce a tree
approximation:

T̃ (y | x) =
∑

j∈Tleaf

t̃j(x) · T (y | j). (2.17)

The approximation T̃ uses the same tree structure and thresholds as T . However,
its activations are no longer deterministic but instead are dependent on the
distance between the feature values xfj and the thresholds θj . Lastly, we replace
the maximum operation of f by a softmax with temperature τ ∈ R>0, resulting
in:

f̃(y | x) =
exp

(
τ ·

∑M
m=1 ωm · T̃m(y | x)

)
∑

y′ exp
(

τ ·
∑M

m=1 ωm · T̃m(y′ | x)
) . (2.18)

The approximation f̃ is based on the original model f and the parameters σ
and τ . This approximation is applicable to any tree-based model, and how well
f̃ approximates f depends on the choice of σ and τ . The approximation is
potentially perfect since

lim
σ,τ→∞

f̃(y | x) = f(y | x). (2.19)
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2.4.4 Our Method: FOCUS
We call our method FOCUS: Flexible Optimizable CounterfactUal Explanations
for Tree EnsembleS. It takes as input an instance x, a tree-based classifier f ,
and two hyperparameters: σ and τ , which we use to create the approximation f̃ .
Following Equation 2.11, FOCUS outputs the optimal counterfactual example
x̄∗, from which we derive the optimal counterfactual explanation ∆∗

x = x̄∗ − x.

2.4.5 Effects of Hyperparameters

Increasing σ in f̃ eventually leads to exact approximations of the indicator
functions, while increasing τ in f̃ leads to a completely unimodal softmax
distribution. It should be noted that our approximation f̃ is not intended to
replace the original model f but rather to create a differentiable version of f
from which we can generate counterfactual examples through optimization. In
practice, the original model f would still be used to make predictions and the
approximation would solely be used to generate counterfactual examples.

2.5 Experimental Setup
We consider 42 experimental settings to find the best counterfactual explanations
using FOCUS. We jointly tune the hyperparameters of FOCUS (σ, τ, β, α) using
Adam [67] for 1,000 iterations. We choose the hyperparameters that produce
(i) a valid counterfactual example for every instance in the dataset, and (ii) the
smallest mean distance between corresponding pairs (x, x̄).

We evaluate FOCUS on four binary classification datasets and three types
of tree-based models for each dataset. We compare against two baselines that
generate counterfactual examples for tree ensembles based on the inner workings
of the model: Feature Tweaking (FT) by Tolomei et al. [132] and Distribution-
Aware Counterfactual Explanations (DACE) by Kanamori et al. [58].

2.5.1 Datasets
We evaluate FOCUS on four binary classification tasks using the following
datasets:

• The Wine Quality dataset [134] has 4,898 instances and 11 features.
The task is about predicting the quality of white wine on a 0–10 scale. We
adapt this to a binary classification setting by labelling the wine as “high
quality” if the quality is ≥ 7.

• The HELOC dataset [34] has 10,459 instances and 23 features. The task
is from the Explainable Machine Learning Challenge at NeurIPS 2017,
where the task is to predict whether or not a customer will default on their
loan.
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• The COMPAS dataset [98] has 6,172 instances and 6 features. It is used
for detecting bias in ML systems, where the task is predicting whether or
not a criminal defendant will reoffend upon release.

• The Shopping dataset [135] has 12,330 instances and 9 features. The
task entails predicting whether or not an online website visit results in a
purchase.

We scale all features such that their values are in the range [0, 1] and remove
categorical features.

2.5.2 Models
We train three types of tree-based models on 70% of each dataset: decision trees
(DTs), random forests (RFs), and adaptive boosting (AB) with DTs as the base
learners. We use the remaining 30% to find counterfactual examples for this test
set. In total we have 12 models (4 datasets × 3 tree-based models).

2.5.3 Distance Functions
In our experiments, we generate different types of counterfactual explanations
using different types of distance functions. We note that the flexibility of FOCUS
allows for the use of any differentiable distance function. Euclidean distance
measures the geometric displacement:

dEuclidean(x, x̄) =
√∑

i

(xi − x̄i)2. (2.20)

Cosine distance measures the angle by which x̄ deviates from x – whether x̄
preserves the relationship between features in x:

dCosine(x, x̄) = 1−
∑

i (xi · x̄i)
∥x∥ ∥x̄∥

. (2.21)

Manhattan distance (i.e., L1-norm) measures per feature differences, minimizing
the number of features perturbed and therefore inducing sparsity:

dManhattan(x, x̄) =
∑

i

|xi − x̄i|. (2.22)

When comparing against DACE [58], we use the Mahalanobis distance, since
this is the distance function used in their novel cost function (see Equation 2.27):

dMahalanobis(x, x̄|C) =
√

(x− x̄)C−1(x− x̄). (2.23)

C is the covariance matrix of x and x̄, which allows us to account for correlations
between features. When all features are uncorrelated, the Mahalanobis distance
is equal to the Euclidean distance.
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2.5.4 Evaluation Metrics
We evaluate the counterfactual examples produced by FOCUS based on how
close they are to the original input using three metrics, in terms of four distance
functions (see Section 2.5.3). The first evaluation metric is distance from the
original input averaged over all examples, dmean . Let X be the set of N original
instances and X̄ be the corresponding set of N generated counterfactual examples.
The mean distance is defined as:

dmean(X, X̄) = 1
N

N∑
n=1

d(x(n), x̄(n)). (2.24)

The second evaluation metric is mean relative distance from the original input,
dRmean. This metric helps us interpret individual improvements over the base-
lines; if dRmean < 1, FOCUS’s counterfactual examples are on average closer to
the original input compared to the baseline. Let X̄ be the set of counterfactual
examples produced by FOCUS and let X̄ ′ be the set of counterfactual examples
produced by a baseline. Then the mean relative distance is defined as:

dRmean(X̄, X̄ ′) = 1
N

N∑
n=1

d(x(n), x̄(n))
d(x(n), x̄′(n)) . (2.25)

The third evaluation metric is the proportion of FOCUS’s counterfactual exam-
ples that are closer to the original input in comparison to the baselines. For d
we consider Euclidean, Cosine, Manhattan, and Mahalanobis distance.

2.6 Experiment 1: FOCUS vs. FT
We compare FOCUS to the Feature Tweaking (FT) method by Tolomei et al.
[132] in terms of the evaluation metrics in Section 2.5.4. We consider 36 experi-
mental settings (4 datasets × 3 tree-based models × 3 distance functions) when
comparing FOCUS to FT. The results are listed in Table 2.1.

2.6.1 Baseline: Feature Tweaking
FT identifies the leaf nodes where the prediction of the leaf nodes do not
match the original prediction yx: it recognizes the set of leaves that if activated,
tj(x̄) = 1, would change the prediction of a tree T :

Tchange =
{

j | j ∈ Tleaf ∧ yx ̸= arg max
y

T (y | j)
}

. (2.26)

For every T in f , FT generates a perturbed example per node in Tchange so
that it is activated with at least an ϵ difference per threshold, and then selects
the most optimal example (i.e., the one closest to the original instance). For
every feature threshold θj involved, the corresponding feature is perturbed
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Figure 2.2: An example of how the FT baseline method (explained in Sec-
tion 2.6.1) and our method handle an adaptive boosting ensemble with three
trees. Left: decision boundary of the ensemble. Middle: three positive leaves that
form the decision boundary, an example instance, and the perturbed examples
suggested by FT. Right: approximated loss L̃pred and its gradient w.r.t. x̄.
The FT perturbed examples do not change the prediction of the forest, whereas
the gradient of the differentiable approximation leads toward the true decision
boundary.

accordingly: x̄fj
= θj ± ϵ. The result is a perturbed example that was changed

minimally to activate a leaf node in Tchange. In our experiments, we test
ϵ ∈ {0.001, 0.005, 0.01, 0.1}, and choose the ϵ that minimizes the mean distance
to the original input, while maximizing the number of counterfactual examples
generated.

The main problem with FT is that the perturbed examples are not necessarily
counterfactual examples, since changing the prediction of a single tree T does
not guarantee a change in the prediction of the full ensemble f . Figure 2.2 shows
all three perturbed examples generated by FT for a single instance. In this case,
none of the generated examples change the model prediction and therefore none
are valid counterfactual examples.

Figure 2.2 shows how FOCUS and FT handle an adaptive boosting ensemble
using a two-feature ensemble with three trees. On the left is the decision
boundary for a standard tree ensemble; the middle visualizes the positive leaf
nodes that form the decision boundary; on the right is the approximated loss
L̃pred and its gradient w.r.t. x̄. The gradients push features close to thresholds
harder and in the direction of the decision boundary if L̃ is convex.

2.6.2 Results
In terms of dmean , FOCUS outperforms FT in 20 settings while FT outperforms
FOCUS in 8 settings. The difference in dmean is not significant in the remaining
8 settings. In general, FOCUS outperforms FT in settings using Euclidean and
Cosine distance because in each iteration, FOCUS perturbs many of the features
by a small amount. Since FT perturbs only the features associated with an
individual leaf, we expected that it would perform better for Manhattan distance
but our results show that this is not the case. There is no clear winner between
FT and FOCUS for Manhattan distance.
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Table 2.1: Evaluation results for Experiment 1 comparing FOCUS and FT counterfactual examples. Significant improvements
and losses over the baseline (FT) are denoted by ▼ and ▲, respectively (p < 0.05, two-tailed t-test,); ◦ denotes no significant
difference; ⊗ denotes settings where the baseline cannot find a counterfactual example for every instance.

Euclidean Cosine Manhattan
Dataset Metric Method DT RF AB DT RF AB DT RF AB

dmean FT 0.269 0.174 0.267⊗ 0.030 0.017 0.034⊗ 0.269 0.223 0.382⊗

Wine FOCUS 0.268◦ 0.188▲ 0.188▼ 0.003▼ 0.008▼ 0.014▼ 0.268◦ 0.312▲ 0.360▼

Quality dRmean FOCUS/FT 0.990 1.256 0.649 0.066 0.821 0.312 0.990 1.977 0.924
%closer FOCUS <FT 100% 21.0% 87.5% 100% 80.8% 95.1% 100% 5.4% 58.6%
dmean FT 0.120 0.210 0.185 0.003 0.008 0.007 0.135 0.278 0.198

HELOC FOCUS 0.133▲ 0.186▼ 0.136▼ 0.001▼ 0.002▼ 0.001▼ 0.152▲ 0.284◦ 0.203◦

dRmean FOCUS/FT 1.169 0.942 0.907 0.303 0.285 0.421 1.252 1.144 1.364
%closer FOCUS <FT 16.6% 57.9% 71.9% 91.6% 91.5% 92.9% 51.3% 43.6% 24.2%
dmean FT 0.082 0.075 0.081 0.013 0.014 0.015 0.086 0.078 0.085

COMPAS FOCUS 0.092▲ 0.079◦ 0.076▼ 0.008▼ 0.011▼ 0.007▼ 0.093▲ 0.085◦ 0.090◦

dRmean FOCUS/FT 1.162 1.150 1.062 0.473 0.965 0.539 1.182 1.236 1.155
%closer FOCUS <FT 29.4% 22.6% 44.8% 82.7% 68.0% 84.8% 65.8% 36.2% 66.9%
dmean FT 0.119 0.028 0.126⊗ 0.050 0.027 0.131⊗ 0.121 0.030 0.142⊗

Shopping FOCUS 0.142▲ 0.025▼ 0.028▼ 0.055▲ 0.013▼ 0.006▼ 0.128◦ 0.026▼ 0.046▼

dRmean FOCUS/FT 1.051 1.053 0.218 0.795 0.482 0.074 0.944 0.796 0.312
%closer FOCUS <FT 40.2% 36.1% 99.6% 44.4% 86.1% 99.5% 55.8% 81.9% 97.1%
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2.7. Experiment 2: FOCUS vs. DACE

We also see that FOCUS usually outperforms FT in settings using random
forests and adaptive boosting, while the opposite is true for decision trees.

Overall, we find that FOCUS is effective and efficient for finding counterfac-
tual explanations for tree-based models. Unlike the FT baseline, FOCUS finds
valid counterfactual explanations for every instance across all settings. In the
majority of tested settings, FOCUS’s explanations are substantial improvements
in terms of distance to the original inputs, across all three metrics.

2.7 Experiment 2: FOCUS vs. DACE
The flexibility of FOCUS allows us to plug in our choice of differentiable distance
function. To compare against DACE [58], we use the Mahalanobis distance for
both (i) generation of FOCUS explanations, and (ii) evaluation in comparison
to DACE, since this is the distance function used in the DACE loss function
(see Equation 2.27 in Section 2.7.1).

We found two main limitations of DACE: (i) in all of our settings, it can
only generate counterfactual examples for a subset of the test set, and (ii) it is
limited by the size of the tree-based model. All hyperparameter settings are
listed in the Appendix to this chapter.

2.7.1 Baseline: DACE
DACE generates counterfactual examples that account for the underlying data
distribution through a novel cost function using Mahalanobis distance and a
local outlier factor (LOF):

dDACE(x, x̄|X, C) = dMahalanobis
2(x, x̄|C) + λqk(x, x̄|X), (2.27)

where C is the covariance matrix, qk is the k-LOF [15], X is the training set,
and λ is the trade-off parameter. The k-LOF measures the degree to which an
instance is an outlier in the context of its k-nearest neighbors.1 To generate
counterfactual examples, DACE formulates the task as a mixed-integer linear
optimization problem and uses the CPLEX Optimizer2 to solve it. We refer the
reader to the original paper for a more detailed overview of this cost function.
The qk term in the loss function penalizes counterfactual examples that are
outliers, and therefore decreasing λ results in a greater number of counterfactual
examples. In our experiments, we test λ ∈ {0.001, 0.01, 0.1, 0.5, 1.0}, and choose
the λ that minimizes the mean distance to the original input, while maximizing
the number of counterfactual examples generated.

We were only able to run DACE on 6 out of our 12 models because the
problem size is too large (i.e., there are too many model parameters for DACE)
for the remaining 6 models when using the free Python API of CPLEX (the
optimizer used in DACE). Specifically, we were unable to run DACE on the
following settings:

1We use k = 1 in our experiments, since this is the value supported in the original code.
2http://www.ibm.com/analytics/cplex-optimizer
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2. Counterfactual Explanations for Tree Ensembles

• Wine Quality AB (100 trees, max depth 4)

• Wine Quality RF (500 trees, max depth 4)

• HELOC RF (500 trees, max depth 4)

• HELOC AB (100 trees, max depth 8)

• COMPAS RF (500 trees, max depth 4)

• Shopping RF (500 trees, max depth 8).

Therefore, when comparing against DACE, we have 6 experimental settings
(6 models × 1 distance function). We note that these are not unreasonable
model sizes, and that unlike DACE, FOCUS can be applied to all 12 models
(see Table 2.1).

2.7.2 Results
Table 2 shows the results for the 6 settings we could run DACE on. We were
only able to run DACE on 6 out of our 12 models because the problem size
is too large (i.e., DACE has too many model parameters) for the remaining
6 models when using the free Python API of CPLEX (the optimizer used in
DACE). Therefore, when comparing against DACE, we have 6 experimental
settings (6 models × 1 distance function).

We found that DACE can only generate counterfactual examples for a small
subset of the test set, regardless of the λ-value, as opposed to FOCUS, which
can generate counterfactual examples for the entire test set in all cases. To
compute dmean, dRmean, and %closer , we compare FOCUS and DACE only on
the instances for which DACE was able to generate a counterfactual example.
We find that FOCUS significantly outperforms DACE in 5 out of 6 settings
in terms of all three evaluation metrics, indicating that FOCUS explanations
are indeed more minimal than those produced by DACE. FOCUS is also more
reliable since (i) it is not restricted by model size, and (ii) it can generate
counterfactual examples for all instances in the test set.

2.8 Discussion and Analysis
Figure 2.3 shows the mean Manhattan distance of the perturbed examples in
each iteration of FOCUS, along with the proportion of perturbations resulting
in valid counterfactual examples found for two datasets (we omit the others due
to space considerations). These trends are indicative of all settings: the mean
distance increases until a counterfactual example has been found for every x,
after which the mean distance starts to decrease. This seems to be a result of
the hinge-loss in FOCUS, which first prioritizes finding a valid counterfactual
example (see Equation 2.1), then decreasing the distance between x and x̄.
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2.8. Discussion and Analysis

Table 2.2: Evaluation results for Experiment 2 comparing FOCUS and DACE
counterfactual examples in terms of Mahalanobis distance. Significant improve-
ments over the baseline are denoted by ▼ (p < 0.05, two-tailed t-test,). ◦ denotes
no significant difference.

Wine HELOC COMPAS Shopping
Metric Method DT DT DT AB DT AB
dmean DACE 1.325 1.427 0.814 1.570 0.050 3.230

FOCUS 0.542▼ 0.810▼ 0.776◦ 0.636▼ 0.023▼ 0.303▼

dRmean FOCUS / 0.420 0.622 1.18 0.372 0.449 0.380DACE
%closer FOCUS < 100% 94.5% 29.9% 96.1% 99.4% 90.8%DACE
# CFs DACE 241 1342 842 700 362 448
found FOCUS 1470 3138 1852 1852 3699 3699
# obs in dataset 1470 3138 1852 1852 3699 3699

2.8.1 Case Study: Credit Risk
As a practical example, we investigate what FOCUS explanations look like for
individuals in the HELOC dataset. Here, the task is to predict whether or not
an individual will default on their loan. This has consequences for loan approval:
individuals who are predicted as defaulting will be denied a loan. For these
individuals, we want to understand how they can change their profile such that
they are approved. Given an individual who has been denied a loan from a bank,
a counterfactual explanation could be:

Your loan application has been denied. In order to have your loan
application approved, you need to (i) increase your ExternalRiskEsti-
mate score by 62, and (ii) decrease your NetFractionRevolvingBurden
by 58.

Figure 2.4 shows four counterfactual explanations generated using different
distance functions for the same individual and same model. We see that the
Manhattan explanation only requires a few changes to the individual’s profile,
but the changes are large. In contrast, the individual changes in the Euclidean
explanation are smaller but there are more of them. In settings where there
are significant dependencies between features, the Cosine explanations may
be preferred since they are based on perturbations that try to preserve the
relationship between features. For instance, in the Wine Quality dataset, it
would be difficult to change the amount of citric acid without affecting the pH
level. The Mahalanobis explanations would be useful when it is important to
take into account not only correlations between features, but also the training
data distribution. This flexibility allows users to choose what kind of explanation
is best suited for their problem.
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2. Counterfactual Explanations for Tree Ensembles

Figure 2.3: Mean distance (top) and cumulative % (bottom) of counterfactual
examples in each iteration of FOCUS for Manhattan explanations.

Different distance functions can result in different magnitudes of feature
perturbations as well as different directions. For example, the Cosine explanation
suggests increasing PercentTradesWBalance, while the Mahalanobis explanations
suggests decreasing it. This is because the loss space of the underlying RF model
is highly non-convex, and therefore there is more than one way to obtain an
alternative prediction. When using complex models such as tree ensembles,
there are no monotonicity guarantees. In this case, both options result in valid
counterfactual examples.

We examine the Manhattan explanation in more detail. We see that FO-
CUS suggests two main changes: (i) increasing the ExternalRiskEstimate, and
(ii) decreasing the NetFractionRevolvingBurden. We obtain the definitions and
expected trends from the data dictionary created by the authors of the dataset.
The ExternalRiskEstimate is a “consolidated version of risk markers” (i.e., a
credit score). A higher score is better: as one’s ExternalRiskEstimate increases,
the probability of default decreases. The NetFractionRevolvingBurden is the
“revolving balance divided by the credit limit” (i.e., utilization). A lower value is
better: as one’s NetFractionRevolvingBurden increases, the probability of default
increases. We find that the changes suggested by FOCUS are fairly consistent
with the expected trends in the data dictionary, as opposed to suggesting non-
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Figure 2.4: FOCUS explanations for the same model and same x from the
HELOC dataset based on different distance functions. Green and red indicate
increases and decreases in feature values, respectively. Perturbation values
are based on normalized feature values. Left: Euclidean explanation perturbs
several features, but only slightly. Middle Left: Cosine explanation perturbs
almost all of the features. Middle Right: Manhattan explanation perturbs two
features substantially. Right: Mahalanobis explanation perturbs almost all of
the features.

sensical changes such as increasing one’s utilization to decrease the probability
of default.

Decreasing one’s utilization is heavily dependent on the specific situation:
an individual who only supports themselves might have more control over their
spending in comparison to someone who has multiple dependents. An individual
can decrease their utilization in two ways: (i) decreasing their spending, or
(ii) increasing their credit limit (or a combination of the two). We can postulate
that (i) is more “actionable” than (ii), since (ii) is usually a decision made by a
financial institution. However, the degree to which an individual can actually
change their spending habits is completely dependent on their specific situation:
an individual who only supports themselves might have more control over their
spending than someone who has multiple dependents. In either case, we argue
that deciding what is (not) actionable is not a decision for the developer to
make, but for the individual who is affected by the decision. Counterfactual
examples should be used as part of a human-in-the-loop system and not as a
final solution.

The individual should know that utilization is an important component of
the model, even if it is not necessarily “actionable” for them. We also note
that it is unclear how exactly an individual would change their credit score
without further insight into how the score was calculated (i.e., how the risk
markers were consolidated). It should be noted that this is not a shortcoming
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of FOCUS, but rather of using features that are uninterpretable on their own,
such as credit scores. Although FOCUS explanations cannot tell a user precisely
how to increase their credit score, it is still important for the individual to know
that their credit score is an important factor in determining their probability of
getting a loan, as this empowers them to ask questions about how the score was
calculated (i.e., how the risk markers were consolidated).

2.9 Conclusion
In this chapter, we propose an explanation method for tree-based classifiers,
FOCUS, which casts the problem of finding counterfactual examples as a gradient-
based optimization task and provides a differentiable approximation of tree-based
models to be used in the optimization framework.

Given an input instance x, FOCUS generates an optimal counterfactual
example based on the minimal perturbation to the input instance x which
results in an alternative prediction from a model f . Unlike previous methods
that assume the underlying classification model is differentiable, we propose
a solution for when f is a non-differentiable, tree-based model that provides
a differentiable approximation of f , which can be used to find counterfactual
examples using gradient-based optimization techniques.

In the majority of experiments, examples generated by FOCUS are signif-
icantly closer to the original instances in terms of three different evaluation
metrics compared to those generated by the baselines. FOCUS is able to gener-
ate valid counterfactual examples for all instances across all datasets, and the
resulting explanations are flexible depending on the distance function.

This answers RQ1: we can generate counterfactual explanations for tree-
based models using gradient-based optimization if we include differentiable
approximations of tree-based models within the optimization framework. In the
following chapter, we will investigate how to extend our method to accommodate
different types of data such as graphs.

Reproducibility
To facilitate the reproducibility of this work, our code is available at https:
//github.com/a-lucic/focus.
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Chapter 3

Counterfactual Explanations for
Graph Neural Networks

In the previous chapter, we developed a method for generating counterfactual
explanations specific to tree-based models using gradient-based optimization
techniques. In this chapter, we address the following research question:

RQ2: Can we extend our counterfactual explanation method for tree-based
models to graph-based models?

Most existing methods for explaining predictions from graph neural networks
(GNNs) are based on retrieving a subgraph of the original graph that is most
relevant for the prediction. This differs from the counterfactual explanation
problem where the task is to find the minimal perturbation to the original graph
such that the prediction changes. The method we propose in this chapter is one
of the first methods for generating counterfactual explanations for GNNs.

The answer to RQ2 is yes: we first extend the counterfactual explanation
problem formalization to the graph data setting, then apply the same gradient-
based optimization techniques as in the previous chapter. Our experimental
results show that our algorithm can reliably generate minimal and accurate
counterfactual explanations for GNNs.

3.1 Introduction
Advances in machine learning (ML) have led to breakthroughs in several areas
of science and engineering, ranging from computer vision, to natural language
processing, to conversational assistants. Parallel to the increased performance of
ML systems, there is an increasing call for the “understandability” of ML models
[40]. Understanding why an ML model returns a certain output in response to a
given input is important for a variety of reasons such as model debugging, aiding
decison-making, or fulfilling legal requirements [32]. Having certified methods
for interpreting ML predictions will help enable their use across a variety of
applications [90].

Explainable artificial intelligence (XAI) refers to the set of techniques “focused
on exposing complex AI models to humans in a systematic and interpretable

This chapter was published at the International Conference on Artificial Intelligence and
Statistics (AISTATS 2022) under the title “CF-GNNExplainer: Counterfactual Explanations
for Graph Neural Networks” [85].
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Figure 3.1: Intuition of counterfactual example generation by CF-GNNExplainer.

manner” [111]. A large body of work on XAI has emerged in recent years [14,
47]. Counterfactual explanations are used to explain predictions of individual
instances in the form: “If X had been different, Y would not have occurred” [60,
114, 122]. Counterfactual explanations are based on counterfactual examples:
modified versions of the input sample that result in an alternative output (i.e.,
prediction). If the proposed modifications are also actionable, this is referred to
as achieving recourse [61, 136].

To motivate our problem, consider an ML application for computational
biology: drug discovery is a task that involves generating new molecules that
can be used for medicinal purposes [124, 143]. Given a candidate molecule, a
GNN can predict if this molecule has a certain property that would make it
effective in treating a particular disease [48, 97, 142]. If the GNN predicts it does
not have this desirable property, counterfactual explanations can help identify
the minimal change required such that the molecule is predicted to have this
property. This could help not only inform the design of a new molecule that has
this property, but also understand the molecular structures that contribute to
this property.

Although GNNs have shown state-of-the-art results on tasks involving graph
data [25, 150], existing methods for explaining the predictions of GNNs have
primarily focused on generating subgraphs that are relevant for a particular
prediction [6, 30, 74, 88, 103, 112, 140, 146, 148, 149]. However, none of
these methods are able to identify the minimal subgraph automatically – they
all require the user to specify the size of the subgraph, S, in advance. We
show that even if we adapt existing methods to the counterfactual explanation
problem, and try varying values for S, such methods are not able to produce
valid, accurate counterfactual explanations, and are therefore not well-suited to
solve the counterfactual explanation problem. To address this gap, we propose
CF-GNNExplainer, a method for generating counterfactual explanations for
GNNs.

Similar to other counterfactual methods for tabular or image data proposed
in the literature [61, 139], CF-GNNExplainer works by perturbing input data at
the instance-level. Unlike previous methods, CF-GNNExplainer can generate
counterfactual explanations for graph data. In particular, our method iteratively
removes edges from the original adjacency matrix based on matrix sparsification
techniques, keeping track of the perturbation that leads to a change in prediction,
and returning the perturbation with the smallest change w.r.t. the number of
edges.
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We evaluate CF-GNNExplainer on three public datasets for GNN expla-
nations and measure its effectiveness using four metrics: fidelity, explanation
size, sparsity, and accuracy. We find that CF-GNNExplainer is able to generate
counterfactual examples with at least 94% accuracy, while removing fewer than
3 edges on average. We make the following contributions:

(1) We formalize the problem of generating counterfactual explanations for
GNNs (Section 3.4).

(2) We propose CF-GNNExplainer, a novel method for explaining predictions
from GNNs (Section 3.5).

(3) We propose an experimental setup for holistically evaluating counterfactual
explanations for GNNs (Section 3.6).

3.2 Related Work

Based on the taxonomy described in Chapter 1, our setting in this chapter is
a local explanation problem for neural networks, specifically GNNs. We use
sensitivity analysis, specifically counterfactual perturbations, on graph data to
generate our explanations. Since our work is a counterfactual XAI approach for
GNNs, it is related to GNN explainability (Section 3.2.1) as well as counterfactual
explanations (Section 3.2.2). It is also related to adversarial attack methods
(Section 3.2.3).

3.2.1 GNN Explainability

Several GNN XAI approaches have been proposed – a recent survey of the most
relevant work is presented by Yuan et al. [148]. However, unlike our work, none
of the methods in this survey generate counterfactual explanations.

The majority of existing GNN XAI methods provide an explanation in the
form of a subgraph of the original graph that is deemed to be important for
the prediction [6, 30, 74, 88, 103, 112, 140, 146, 148, 149]. We refer to these
as subgraph-generating methods. Such methods are analogous to popular XAI
methods such as LIME [107] or SHAP [86], which identify relevant features for
a particular prediction for tabular, image, or text data. All of these methods
require the user to specify the size of the explanation, S, in advance: the
number of features (or edges) to keep. In contrast, CF-GNNExplainer generates
counterfactual explanations, which can find the size of the explanation without
requiring input from the user. Although both types of techniques are meant for
explaining GNN predictions, they are solving fundamentally different problems:
counterfactual explanations generate the minimal perturbation such that the
prediction changes, while subgraph-retrieving methods identify a relevant (and
not necessarily minimal) subgraph that matches the original prediction.
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The work by Kang et al. [59] also generates counterfactual examples for
GNNs, but they focus on a different task: link prediction. Other GNN XAI
methods identify important node features [55] or similar examples [33]. The
works of Yuan et al. [147] and Schnake et al. [113] generate model-level (i.e.,
global) explanations for GNNs, which differs from our work since we produce
instance-level (i.e., local) explanations.

3.2.2 Counterfactual Explanations
There exists a substantial body of work on counterfactual explanations for
tabular, image, and text data [61, 122, 139]. Some methods treat the underlying
classification model as a black-box [46, 70, 78], whereas others make use of the
model’s inner workings [58, 84, 132, 136, 141]. All of these methods are based
on perturbing feature values to generate counterfactual examples – they are not
equipped to handle graph data with relationships (i.e., edges) between instances
(i.e., nodes). In contrast, CF-GNNExplainer provides counterfactual examples
specifically for graph data.

3.2.3 Adversarial Attacks
Counterfactual examples are also related to adversarial attacks [126]: they
both represent instances obtained from minimal perturbations to the input,
which induce changes in the prediction made by the learned model. One
difference between the two is in the intent: adversarial examples are meant to
fool the model, while counterfactual examples are meant to explain the prediction
[36, 84]. In the context of graph data, adversarial attack methods typically
make minimal perturbations to the overall graph with the intention of degrading
overall model performance, as opposed to attacking individual nodes. In contrast,
we are interested in generating counterfactual examples for individual nodes, as
opposed to identifying perturbations to the overall graph. We confirm that the
counterfactual examples produced by CF-GNNExplainer are informative and
not adversarial by measuring the accuracy of our method (see Section 3.6.3).

3.3 Background
In this section, we provide background information on GNNs (Section 3.3.1) and
matrix sparsification (Section 3.3.2), both of which are necessary for understand-
ing CF-GNNExplainer.

3.3.1 Graph Neural Networks
Graphs are structures that represent a set of entities (nodes) and their relations
(edges). GNNs operate on graphs to produce representations that can be used
in downstream tasks such as graph or node classification. The latter is the focus
of this work. We refer to the survey papers by Battaglia et al. [10] and Chami
et al. [21] for an overview of existing GNN methods.

32



3.4. Problem Formulation

Let f(A, X; W )→ y be any GNN, where y is the set of possible predicted
classes, A is an n× n adjacency matrix, X is an n× p feature matrix, and W is
the learned weight matrix of f . In other words, A and X are the inputs of f ,
and f is parameterized by W .

A node’s representation is learned by iteratively updating the node’s features
based on its neighbors’ features. The number of layers in f determines which
neighbors are included: if there are ℓ layers, then the node’s final representation
only includes neighbors that are at most ℓ hops away from that node in the
graph G. The rest of the nodes in G are not relevant for the computation of
the node’s final representation. We define the subgraph neighborhood of a node
v as the set of the nodes and edges relevant for the computation of f(v) (i.e.,
those in the ℓ-hop neighborhood of f), represented as a tuple: Gv = (Av, Xv),
where Av is the subgraph adjacency matrix and Xv is the node feature matrix
for nodes that are at most ℓ hops away from v. We then define a node v as a
tuple of the form v = (Av, x), where x is the feature vector for v.

3.3.2 Matrix Sparsification
CF-GNNExplainer uses matrix sparsification to generate counterfactual exam-
ples, inspired by Srinivas et al. [121], who propose a method for training sparse
neural networks. Given a weight matrix W , a binary sparsification matrix is
learned which is multiplied element-wise with W such that some of the entries
in W are zeroed out. In the work by Srinivas et al. [121], the objective is to
remove entries in the weight matrix in order to reduce the number of parameters
in the model. In our case, we want to zero out entries in the adjacency matrix
(i.e., remove edges) in order to generate counterfactual explanations for GNNs.
That is, we want to remove the important edges – those that are crucial for the
prediction.

3.4 Problem Formulation
In general, a counterfactual example x̄ for an instance x according to a trained
classifier f is found by perturbing the features of x such that f(x) ̸= f(x̄)
[141]. An optimal counterfactual example x̄∗ is one that minimizes the distance
between the original instance and the counterfactual example, according to
some distance function d. The resulting optimal counterfactual explanation is
therefore ∆∗

x = x̄∗ − x [84].
For graph data, it may not be enough to simply perturb node features,

especially since they are not always available. This is why we are interested in
generating counterfactual examples by perturbing the graph structure instead.
In other words, we want to change the relationships between instances (i..e,
nodes), rather than change the instances themselves. Therefore, a counterfactual
example for graph data has the form v̄ = (Āv, x), where x is the feature vector
and Āv is a perturbed version of Av, the adjacency matrix of the subgraph
neighborhood of a node v. Āv is obtained by removing some edges from Av,
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such that f(v) ̸= f(v̄). Following Wachter et al. [141] and Lucic et al. [84], we
generate counterfactual examples by minimizing a loss function of the form:

L = Lpred(v, v̄ | f, g) + βLdist(v, v̄ | d), (3.1)

where v is the original node, f is the original model, g is the counterfactual model
that generates v̄, and Lpred is a prediction loss that encourages f(v) ̸= f(v̄).
Ldist is a distance loss that encourages v̄ to be close to v, and β controls how
important Ldist is compared to Lpred. We want to find v̄∗ that minimizes
Equation 3.1: this is the optimal counterfactual example for v.

3.5 Method: CF-GNNExplainer

To solve the problem defined in Section 3.4, we propose CF-GNNExplainer,
which generates v̄ = (Āv, x) given a node v = (Av, x). Our method can operate
on any GNN model f . To illustrate our method and avoid cluttered notation, let
f be a standard, one-layer Graph Convolutional Network (GCN) [68] for node
classification:

f(A, X; W ) = softmax
[
D̃−1/2ÃD̃−1/2XW

]
, (3.2)

where Ã = A+ I, I is the identity matrix, D̃ii =
∑

j Ãij are entries in the degree
matrix D̃, X is the node feature matrix, and W is the weight matrix [68].

3.5.1 Adjacency Matrix Perturbation

First, we define Āv = P ⊙ Av, where P is a binary perturbation matrix that
sparsifies Av. Our aim is to find P for a given node v such that f(Av, x) ̸=
f(P ⊙Av, x). To find P , we build upon the method by Srinivas et al. [121] for
training sparse neural networks (see Section 3.3.2), where our objective is to
zero out entries in the adjacency matrix (i.e., remove edges). That is, we want
to find P that minimally perturbs Av, and use it to compute Āv = P ⊙Av. If
an element Pi,j = 0, this results in the deletion of the edge between node i and
node j. When P is a matrix of ones, this indicates that all edges in Av are used
in the forward pass.

Similar to the work by Srinivas et al. [121], we first generate an intermediate,
real-valued matrix P̂ with entries in [0, 1], apply a sigmoid transformation, then
threshold the entries to arrive at a binary P : entries greater than or equal to
0.5 become 1, while those below 0.5 become 0. In the case of undirected graphs
(i.e., those with symmetric adjacency matrices), we first generate a perturbation
vector, which we then use to populate P̂ in a symmetric manner, instead of
generating P̂ directly.
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3.5.2 Counterfactual Generating Model

We want our perturbation matrix P to only act on Av, not Ãv, in order to
preserve self-loops in the message passing of f . This is because we always want a
node representation update to include its own representation from the previous
layer. Therefore we first rewrite Equation 3.2 for our illustrative one-layer case
to isolate Av:

f(Av, Xv; W ) = softmax
[
(Dv + I)−1/2(Av + I)(Dv + I)−1/2XvW

]
. (3.3)

To generate CFs, we propose a new function g, which is based on f , but it
is parameterized by P instead of W . We update the degree matrix Dv based
on P ⊙ Av, add the identity matrix to account for self-loops (as in D̃v in
Equation 3.2), and call this D̄v:

g(Av, Xv, W ; P ) = softmax
[
D̄v

−1/2(P ⊙Av + I)D̄v
−1/2

XvW
]

. (3.4)

In other words, f learns the weight matrix while holding the data constant,
while g generates new data points (i.e., counterfactual examples) while holding
the weight matrix (i.e., model) constant. Another distinction between f and g is
that the aim of f is to find the optimal set of weights that generalizes well on an
unseen test set, while the objective of g is to generate an optimal counterfactual
example, given a particular node (i.e., v̄ is the output of g).

3.5.3 Loss Function Optimization

We generate P by minimizing Equation 3.1, adopting the negative log-likelihood
(NLL) loss for Lpred:

Lpred(v, v̄|f, g) = 1 [f(v) = f(v̄)] · LNLL(f(v), g(v̄)). (3.5)

Since we do not want f(v̄) to match f(v), we put a negative sign in front of
Lpred and include an indicator function to ensure the loss is active as long as
f(v̄) = f(v). Note that f and g have the same weight matrix W – the main
difference is that g also includes the perturbation matrix P .
Ldist can be based on any differentiable distance function. In our case, we

take d to be the element-wise difference between v and v̄, corresponding to the
difference between Av and Āv: the number of edges removed. For undirected
graphs, we divide this value by 2 to account for the symmetry in the adjacency
matrices. When updating P , we take the gradient of Equation 3.1 with respect
to the intermediate P̂ , not the binary P .
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Algorithm 3.1 CF-GNNExplainer: given a node v = (Av, x) where f(v) = y,
generate the minimal perturbation, v̄ = (Āv, x), such that f(v̄) ̸= y.

Input: node v = (Av, x), trained GNN model f , CF model g, loss function
L, learning rate α, number of iterations K, distance function d.

f(v) = y # Get GNN prediction
P̂ ← Jn # Initialization
v̄∗ = [ ]

for K iterations do
v̄ = get cf example()
L ← L(v, v̄, f, g) # Eq 3.1 & 3.5
P̂ ← P̂ + α∇P̂L # Update P̂

Function get cf example()
P ← threshold(σ(P̂ ))
Āv ← P ⊙Av

v̄cand ← (Āv, x)
if f(v) ̸= f(v̄cand) then

v̄ ← v̄cand

if not v̄∗ then
v̄∗ ← v̄ # First CF

else if d(v, v̄) ≤ d(v, v̄∗) then
v̄∗ ← v̄ # Best CF

return v̄∗

3.5.4 CF-GNNExplainer

We call our method CF-GNNExplainer and summarize its details in Algo-
rithm 3.1. Given an node in the test set v, we first obtain its original prediction
from f and initialize P̂ as a matrix of ones, Jn, to initially retain all edges. Next,
we run CF-GNNExplainer for K iterations. To find a counterfactual example,
we use Equation 3.4.

First, we compute P by thresholding P̂ (see Section 3.5.1). Then we use P to
obtain the sparsified adjacency matrix that gives us a candidate counterfactual
example, v̄cand. This example is then fed to the original GNN, f , and if f
predicts a different output than for the original node, we have found a valid
counterfactual example, v̄.

We keep track of the “best” counterfactual example (i.e., the most minimal
according to d), and return this as the optimal counterfactual example v̄∗ after
K iterations. Between iterations, we compute the loss following Equations 3.1
and 3.5, and update P̂ based on the gradient of the loss. In the end, we retrieve
the optimal counterfactual explanation ∆∗

v = v − v̄∗.
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3.5.5 Complexity
CF-GNNExplainer has time complexity O(KN2), where N is the number of
nodes in the subgraph neighbourhood and K is the number of iterations. We
note that high complexity is common for local XAI methods (i.e., SHAP [86], GN-
NExplainer [146], etc.), but in practice, one typically only generates explanations
for a subset of the dataset.

3.6 Experimental Setup
In this section, we outline our experimental setup for evaluating CF-GNNExplainer,
including the datasets and models used (Section 3.6.1), the baselines we compare
against (Section 3.6.2), the evaluation metrics (Section 3.6.3), and the hyper-
parameter search method (Section 3.6.4). In total, we run approximately 375
hours of experiments on one Nvidia TitanX Pascal GPU with access to 12GB
RAM.

3.6.1 Datasets and Models
Given the challenges associated with defining and evaluating the accuracy of
XAI methods [29], we first focus on synthetic tasks where we know the ground-
truth explanations. Although there exist real graph classification datasets with
ground-truth explanations [26], there do not exist any real node classification
datasets with ground-truth explanations, which is the task we focus on in this
chapter. Building such a dataset would be an excellent contribution, but is
outside the scope of this paper.

In our experiments, we use the tree-cycles, tree-grids, ba-shapes
datasets from the work by Ying et al. [146]. These datasets were created
specifically for the task of explaining node classification predictions from GNNs.
Each dataset consists of (i) a base graph, (ii) motifs that are attached to random
nodes of the base graph, and (iii) additional edges that are randomly added to
the overall graph. They are all undirected graphs. The classification task is
to determine whether or not the nodes are part of the motif. The purpose of
these datasets is to have a ground-truth for the “correctness” of an explanation:
for nodes in the motifs, the explanation is the motif itself [88]. The dataset
statistics are available in Table 3.1.

tree-cycles consists of a binary tree base graph with 6-cycle motifs, tree-
grids also has a binary tree as its base graph, but with 3×3 grids as the motifs.
For ba-shapes, the base graph is a Barabasi-Albert (BA) graph with house-
shaped motifs, where each motif consists of 5 nodes (one for the top of the house,
two in the middle, and two on the bottom). Here, there are four possible classes
(not in motif, in motif: top, middle, bottom). We note that compared to the
other two datasets, the ba-shapes dataset is much more densely connected – the
node degree is more than twice as high as that of the tree-cycles or tree-grid
datasets, and the average number of nodes and edges in each node’s computation
graph is order(s) of magnitude larger. We use the same experimental setup (i.e.,
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Table 3.1: Dataset statistics. The # edges in the motif indicates the size of the
ground truth (GT) explanation.

Tree Tree BA
Cycles Grid Shapes

# classes 2 2 4
# nodes in motif 6 9 5
# edges in motif (GT) 6 12 6
# nodes in total 871 1231 700
# edges in total 1950 3410 4100
Avg node degree 2.27 2.77 5.87
Avg # nodes in Av 19.12 30.69 304.40
Avg # edges in Av 18.99 33.94 1106.24

dataset splits, model architecture) as Ying et al. [146] to train a 3-layer GCN
(hidden size = 20) for each task. Our GCNs have at least 87% accuracy on the
test set.

3.6.2 Baselines
Since existing GNN XAI methods give explanations in the form of relevant
subgraphs as opposed to counterfactual examples, it is not straightforward to
identify baselines for our experiments that ensure a fair comparison between
methods. To evaluate CF-GNNExplainer, we compare against 4 baselines:
random, 1hop, rm-1hop, and GNNExplainer. The random perturbation
is meant as a sanity check. We randomly initialize the entries of P̂ ∈ [−1, 1]
and apply the same sigmoid transformation and thresholding as described in
Section 3.5.1. We repeat this K times and keep track of the most minimal
perturbation resulting in a counterfactual example. Next, we compare against
baselines that are based on the ego graph of v (i.e., its 1-hop neighbourhood):
1hop keeps all edges in the ego graph of v, while rm-1hop removes all edges in
the ego graph of v.

Our fourth baseline is based on GNNExplainer by Ying et al. [146], which
identifies the S most relevant edges for the prediction (i.e., the most relevant
subgraph of size S). To generate counterfactual explanations, we remove the
subgraph generated by GNNExplainer. We include this method in our experi-
ments in order to have a baseline based on a prominent GNN XAI method, but
we note that subgraph-retrieving methods like GNNExplainer are not meant
for generating counterfactual explanations. Unlike our method, GNNExplainer
cannot automatically find a minimal subgraph and therefore requires the user
to determine the number of edges to keep in advance (i.e., the value of S). As a
result, we cannot evaluate how minimal its counterfactual explanations are, but
we can compare it against our method in terms of (i) its ability to generate valid
counterfactual examples, and (ii) how accurate those counterfactual examples
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are. We report results on GNNExplainer for S ∈ {1, 2, 3, 4, 5, GT}, where
GT is the size of the ground truth explanation (i.e., the number of edges in the
motif, see Table 3.1).

3.6.3 Metrics

We generate a counterfactual example for each node in the graph separately and
evaluate in terms of four metrics.

Fidelity: is defined as the proportion of nodes where the original predictions
match the prediction for the explanations [92, 107]. Since we generate counter-
factual examples, we do not want the original prediction to match the prediction
for the explanation, so we want a low value for fidelity.

Explanation Size: is the number of removed edges. It corresponds to the
Ldist term in Equation 3.1: the difference between the original Av and the
counterfactual Āv. Since we want to have minimal explanations, we want
a small value for this metric. Note that we cannot evaluate this metric for
GNNExplainer.

Sparsity: measures the proportion of edges in Av that are removed [148]. A
value of 0 indicates all edges in Av were removed. Since we want minimal
explanations, we want a value close to 1. Note that we cannot evaluate this
metric for GNNExplainer.

Accuracy: is the mean proportion of explanations that are “correct”. Following
the work by Luo et al. [88], Ying et al. [146], we only compute accuracy for nodes
that are originally predicted as being part of the motifs, since accuracy can only
be computed on instances for which we know the ground truth explanations.
Given that we want minimal explanations, we consider an explanation to be
correct if it exclusively involves edges that are inside the motifs (i.e., only removes
edges that are within the motifs).

3.6.4 Hyperparameter Search

We experiment with different optimizers and hyperparameter values for the
number of iterations K, the trade-off parameter β, the learning rate α, and
the Nesterov momentum m (when applicable). We choose the setting that
produces the most counterfactual examples. We test the number of iterations
K ∈ {100, 300, 500}, the trade-off parameter β ∈ {0.1, 0.5}, the learning rate
α ∈ {0.005, 0.01, 0.1, 1}, and the Nesterov momentum m ∈ {0, 0.5, 0.7, 0.9}. We
test Adam, SGD and AdaDelta as optimizers. We find that for all three datasets,
the SGD optimizer gives the best results, with k = 500, β = 0.5, and α = 0.1.
For the tree-cycles and tree-grid datasets, we set m = 0, while for the
ba-shapes dataset, we use m = 0.9.

39



3. Counterfactual Explanations for Graph Neural Networks

3.7 Results

We evaluate CF-GNNExplainer in terms of the metrics outlined in Section 3.6.3.
The results are shown in Table 3.2 and Table 3.3. In cases where the baselines
outperform CF-GNNExplainer on a particular metric, they perform poorly on
the rest of the metrics, or on other datasets.

3.7.1 Main Findings

Fidelity: CF-GNNExplainer outperforms 1hop across all three datasets, and
outperforms rm-1hop for tree-cycles and tree-grid in terms of fidelity.
We find that random has the lowest fidelity in all cases – it is able to find
counterfactual examples for every single node. In the following subsections, we
will see that this corresponds to poor performance on the other metrics.

Table 3.2: Results comparing our method (abbreviated as CF-GNN) to random,
1hop, and rm-1hop. Below each metric, ▼ indicates a low value is desirable,
while ▲ indicates a high value is desirable.

tree-cycles tree-grid ba-shapes

Fid. Size Spar. Acc. Fid. Size Spar. Acc. Fid. Size Spar. Acc.
Method ▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲

random 0.00 4.70 0.79 0.63 0.00 9.06 0.75 0.77 0.00 503.31 0.58 0.17
1hop 0.32 15.64 0.13 0.45 0.32 29.30 0.09 0.72 0.60 504.18 0.05 0.18
rm-1hop 0.46 2.11 0.89 — 0.61 2.27 0.92 — 0.21 10.56 0.97 0.99

CF-GNN 0.21 2.09 0.90 0.94 0.07 1.47 0.94 0.96 0.39 2.39 0.99 0.96

Explanation Size: Figures 3.2 to 3.5 show histograms of the explanation size
for CF-GNNExplainer and the baselines. We see that across all three datasets,
CF-GNNExplainer has the smallest (i.e., most minimal) explanation sizes. This
is especially true when comparing to random and 1hop for the ba-shapes
dataset, where we had to use a different scale for the x-axis due to how different
the explanation sizes were. We postulate that this difference could be because
ba-shapes is a much more densely connected graph; it has fewer nodes but
more edges compared to the other two datasets, and the average number of
nodes and edges in the subgraph neighborhood is order(s) of magnitude larger
(see Table 3.1). Therefore, when performing random perturbations, there is
substantial opportunity to remove edges that do not necessarily need to be
removed, leading to much larger explanation sizes. When there are many
edges in the subgraph neighborhood, removing everything except the 1-hop
neighbourhood, as is done in 1hop, also results in large explanation sizes. In
contrast, the loss function used by CF-GNNExplainer ensures that only a few
edges are removed, which is the desirable behavior since we want minimal
explanations.
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Table 3.3: Results comparing our method to GNNExplainer. GNNExplainer
cannot find S automatically, so we try varying values of S. GT indicates the
size of the ground truth explanation for each dataset. CF-GNNExplainer finds
S automatically. Below each metric, ▼ indicates a low value is desirable, while
▲ indicates a high value is desirable.

tree-cycles tree-grid ba-shapes

Fid. Size Spars. Acc. Fid. Size Spars. Acc. Fid. Size Spars. Acc.
GNNExp ▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲ ▼ ▼ ▲ ▲

S = 1 0.65 1.00 0.92 0.61 0.69 1.00 0.96 0.79 0.90 1.00 0.94 0.52
S = 2 0.59 2.00 0.85 0.54 0.51 2.00 0.92 0.78 0.85 2.00 0.91 0.40
S = 3 0.56 3.00 0.79 0.51 0.46 3.00 0.88 0.79 0.83 3.00 0.87 0.34
S = 4 0.58 4.00 0.72 0.48 0.42 4.00 0.84 0.79 0.83 4.00 0.83 0.31
S = 5 0.57 5.00 0.66 0.46 0.40 5.00 0.80 0.79 0.81 5.00 0.81 0.27
S = GT 0.55 6.00 0.57 0.46 0.35 11.83 0.53 0.74 0.82 6.00 0.79 0.24

CF-GNN 0.21 2.09 0.90 0.94 0.07 1.47 0.94 0.96 0.39 2.39 0.99 0.96

Sparsity: CF-GNNExplainer outperforms the random, rm-1hop, 1hop base-
lines for all three datasets in terms of sparsity. We note CF-GNNExplainer
and rm-1hop perform much better on this metric in comparison to the other
methods, which aligns with the results from explanation size.

Accuracy: We observe that CF-GNNExplainer has the highest accuracy for
the tree-cycles and tree-grid datasets, whereas rm-1hop has the highest
accuracy for ba-shapes. However, we are unable to calculate the accuracy of rm-
1hop for the other two datasets since it is unable to generate any counterfactual
examples for motif nodes, contributing to the low sparsity on those datasets.
We observe accuracy levels upwards of 94% for CF-GNNExplainer across all
datasets, indicating that it is consistent in correctly removing edges that are
crucial for the initial predictions in the vast majority of cases (see Table 3.2).

3.7.2 Comparison to GNNExplainer

Table 3.3 shows the results comparing our method to GNNExplainer. We
find that our method outperforms GNNExplainer across all three datasets in
terms of both fidelity and accuracy, for all tested values of S. However, this is
not surprising since GNNExplainer is not meant for generating counterfactual
explanations, so we cannot expect it to perform well on a task it was not designed
for. We cannot compare explanation size or sparsity fairly since GNNExplainer
requires the user to input the value of S.

3.7.3 Summary of Results

Evaluating on four distinct metrics for each dataset gives us a more holistic view
of the results. We find that across all three datasets, CF-GNNExplainer can
generate counterfactual examples for the majority of nodes in the test set (i.e.,
low fidelity), while only removing a small number of edges (i.e., low explanation
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Figure 3.2: Histograms showing the proportion of counterfactual examples that
have a certain explanation size from random. Note the x-axis for ba-shapes
goes up to 1500. Left: tree-cycles, Middle: tree-grid, Right: ba-shapes.

Figure 3.3: Histograms showing the proportion of counterfactual examples that
have a certain explanation size from 1hop. Note the x-axis for ba-shapes goes
up to 1500. Left: tree-cycles, Middle: tree-grid, Right: ba-shapes.

Figure 3.4: Histograms showing the proportion of counterfactual examples that
have a certain explanation size from rm-1hop. Note the x-axis for ba-shapes
goes up to 70. Left: tree-cycles, Middle: tree-grid, Right: ba-shapes.

Figure 3.5: Histograms showing the proportion of counterfactual examples that
have a certain explanation size from CF-GNNExplainer. Note the x-axis for
ba-shapes goes up to 70. Left: tree-cycles, Middle: tree-grid, Right:
ba-shapes.
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size, high sparsity). For nodes where we know the ground truth (i.e., those in
the motifs) we achieve at least 94% accuracy.

Although random can generate counterfactual examples for every node, they
are not very minimal or accurate. The latter is also true for 1hop – in general, it
has the worst scores for explanation size, sparsity and accuracy. GNNExplainer
performs at a similar level as 1hop, indicating that although it is a prominent
GNN XAI method, it is not well-suited for solving the counterfactual explanation
problem.

rm-1hop is competitive in terms of explanation size, but it performs poorly in
terms of fidelity for the tree-cycles and tree-grid datasets, and its accuracy
on these datasets is unknown since it is unable to generate any counterfactual
examples for nodes in the motifs. These results show that our method is simple
and effective in solving the counterfactual explanation task, unlike the baselines
we test.

3.8 Conclusion
In this chapter, we propose CF-GNNExplainer, a method for generating coun-
terfactual explanations for any GNN. Our simple and effective method is able to
generate counterfactual explanations that are (i) minimal, both in terms of the
absolute number of edges removed (explanation size), as well as the proportion
of the subgraph neighborhood that is perturbed (sparsity), and (ii) accurate, in
terms of removing edges that we know to be crucial for the initial predictions.

We evaluate our method on three commonly used datasets for GNN explana-
tion tasks and find that these results hold across all three datasets. We find that
existing GNN XAI methods are not well-suited to solving the counterfactual
explanation task, while CF-GNNExplainer is able to reliably produce minimal,
accurate counterfactual explanations.

This answers RQ2: we can generate counterfactual explanations for graph-
based models by extending the problem formalization from Chapter 2 to ac-
commodate graph data. We do so by introducing a perturbation matrix that
acts on the adjacency matrix to remove edges in the graph, then applying
similar gradient-based optimization techniques as in Chapter 2 for each instance
in the dataset. In the following chapter, we will investigate how to generate
explanations that are specific to a particular real-world use case and evaluate
them on real users.

Reproducibility
To facilitate the reproducibility of the work in this chapter, our code is available
at https://github.com/a-lucic/cf-gnnexplainer.
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Chapter 4

Contrastive Explanations for
Forecasting Errors

In this second part of the thesis, we shift our focus to the consumers of explana-
tions: users. In this chapter, we address the following research question:

RQ3: Given a real-world use case, can we create an explanation method based
on this use case and evaluate it in a context-specific manner?

The answer to RQ3 is yes: we first identify a use case where users seek explana-
tions: understanding errors in sales forecasting. We then design an algorithm
that generates explanations for large errors in forecasting predictions. We evalu-
ate our method through a user study with both researchers and practitioners
to investigate the impact our explanations have on users’ (i) objective abilities
to understand the model’s predictions and (ii) subjective attitudes towards
the model. Our experimental results show that explanations generated by our
method help both types of users understand why large errors in predictions
occur, but do not have an impact on their trust or confidence in the model.

4.1 Introduction
As more and more decisions about humans are made by machines, it becomes
imperative to understand how these outputs are produced and what drives a
model to a particular prediction [108]. As a result, algorithmic interpretability
has gained significant interest and traction in the machine learning (ML) commu-
nity over the past few years [29]. However, there exists considerable skepticism
outside of the ML community due to a perceived lack of transparency behind
algorithmic predictions, especially when errors are produced [28]. We aim to
evaluate the effect of explaining model outputs, specifically large errors, on users’
attitudes towards trusting and deploying complex, automatically learned models.

Further motivation for explainable ML is provided by significant societal de-
velopments. Important examples include the recently enacted European General
Data Protection Regulation (GDPR), which specifies that individuals will have
the right to “the logic involved in any automatic personal data processing” [32].
In Canada and the United States, this right to an explanation is an integral

This chapter was published at the ACM Conference on Fairness, Accountability, and Trans-
parency (FAccT 2020) under the title “Why Does My Model Fail: Contrastive Explanations
for Retail Forecasting” [78], where it won a best paper award.
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part of financial regulations, which is why banks have not been able to use
high-performing “black-box” models to evaluate the credit-worthiness of their
customers. Instead, they have been confined to easily interpretable algorithms
such as decision trees (for segmenting populations) and logistic regression (for
building risk scorecards) [66]. At NeurIPS 2017, the Explainable ML Challenge
was launched to combat this limitation, indicating the finance industry’s interest
in exploring algorithmic explanations [34].

We use explanations as a mechanism for supporting innovation and tech-
nological development while keeping the human “in the loop” by focusing on
predictive modeling as a tool that aids individuals with a given task. Specifically,
our interest lies with interpretability in a scenario where users with varying
degrees of ML expertise are confronted with large errors in the outcome of
predictive models. We focus on explaining large errors because people tend to
be more curious about unexpected outcomes rather than ones that confirm their
prior beliefs [53].

However, Dietvorst et al. [28] show that when users are confronted with
errors in algorithmic predictions, they are less likely to use the model. Seeing
an algorithm make mistakes significantly decreases confidence in the model, and
users are more likely to choose a human forecaster instead, even after seeing the
algorithm outperform the human [28]. This indicates that prediction mistakes
have a significant impact on users’ perception of the model. By focusing on
explaining mistakes, we hope to give insight into this phenomenon of algorithm
aversion while also giving users the types of explanations they are interested in
seeing.

Our work was motivated by the needs of analysts working on sales forecasting
at Ahold Delhaize, a large retailer in the Netherlands. Current models in
production are based on simple autoregressive methods, but there is an interest
in exploring more complex techniques. However, the added complexity comes at
the expense of interpretability, which is problematic for the retailer, especially
when a complex model produces a forecast that is very different from the actual
target value. This leads us to focus on explaining errors in regression predictions
in this work. However, it should be noted that our method can be extended to
classification predictions by defining “distances” between classes or by simply
defining all errors as large errors.

We focus on two aspects of explainability in this scenario: the generation
of explanations of large errors and the corresponding effectiveness of these
explanations. Prior methods for generating explanations fail at generating
explanations for large errors because they produce similar explanations for
predictions resulting in large errors and those resulting in reasonable predictions
(see Table 4.2 in Section 4.4 for an example). We propose a method for explaining
large prediction errors, called Monte Carlo Bounds for Reasonable Predictions
(MC-BRP), that shows users:

(i) The required bounds of the most important features in order to have a
prediction resulting in a reasonable prediction.

(ii) The relationship between each of these features and the target.
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It should be noted that in this chapter, we focus on explaining errors in
hindsight, that is, we examine large errors once they have occurred and are not
predicting them in advance without having access to the ground truth. We are
also not using these explanations to improve the model, but rather examine
the effectiveness of explaining large errors via MC-BRP on users’ trust in the
model and attitudes towards deploying it, as well as their understanding of the
explanations. We test on a wide range of users, including both practitioners
and researchers, and analyze the differences in attitudes between these users.
We also reflect on the process of conducting a user study by outlining some
limitations of our study and make some recommendations for future work. We
address the following research questions:
RQ3.1: Are the contrastive explanations generated by MC-BRP about large
errors in predictions (i) interpretable, or (ii) actionable? More specifically,

(i) Can contrastive explanations about large errors give users enough infor-
mation to simulate the model’s output (forward simulation)?

(ii) Can such explanations help users understand the model such that they can
manipulate an observation’s input values in order to change the output
(counterfactual simulation)?

RQ3.2: How does providing contrastive explanations generated by MC-BRP
for large errors impact users’ perception of the model? Specifically, we want to
investigate the following:

(i) Does being provided with contrastive explanations generated by MC-BRP
impact users’ understanding of why the model produces errors?

(ii) Does it impact their willingness to deploy the model?

(iii) Does it impact their level of trust in the model?

(iv) Does it impact their confidence in the model’s performance?

Consequently, we make the following contributions:

• We contribute a method, MC-BRP, for generating contrastive explanations
specifically for large errors in regression tasks.

• We evaluate our explanations through a user study with 75 participants in
both objective and subjective terms.

• We conduct an analysis on the differences in attitudes between practitioners
and researchers.

In Section 4.2 we discuss related work and identify how our problem relates to
the current literature. In Section 4.3 we formally describe the methodology of
explanations based on MC-BRP and in Section 4.4 we describe our experimental
setup. In Section 4.5 we detail the results of the user study; we conduct further
analyses in Section 4.6. In Section 4.7 we conclude and make recommendations
for future work.
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4.2 Related Work
Based on the taxonomy described in Chapter 1, our setting in this chapter is
an local explanation problem. Our method is model-agnostic in nature, but we
evaluate it specifically on tree ensembles. We use sensitivity analysis, specifically
Monte Carlo simulations, on tabular data to generate our explanations.

4.2.1 Local Explanations for Tree Ensembles
Existing work on generating local explanations for tree ensembles involves finding
counterfactual examples [132], identifying influential training samples [116], or
identifying important features [87]. Importantly, none of these publications are
specifically about (i) explaining errors, or (ii) explaining regressions. On the
contrary, these publications are all based on binary classification tasks and the
explanations do not necessarily provide insight into prediction mistakes.

Tolomei et al. [132] propose a method for generating counterfactual examples
by identifying decision paths of interest that would result in a different prediction,
then traversing down each of these paths and perturbing the instance x such
that it satisfies the path in question. If this perturbation, x′, (i) satisfies the
decision path, and (ii) changes the prediction in the overall ensemble, then
it is a candidate transformation of x. After computing all possible candidate
transformations by traversing over all paths of interest (i.e., those leading to a
different prediction), the candidate transformation with the smallest distance
from x is selected as the counterfactual example. The explanation, then, is
the difference between x and x′. Although Tolomei et al. [132]’s method also
produces contrastive explanations, our method differs from theirs since we are
not aiming to identify one counterfactual example, but rather a range of feature
values for which the prediction would be different. Another difference is that we
do not assume full access to the original model.

Sharchilev et al. [116] also generate local explanations for tree ensembles.
Their methodology is based on finding influential training samples in order
to automatically improve the model, which differs from our work since their
explanations are not of a contrastive nature. These influential training samples
help us understand why a certain class was predicted for a given instance, but
they make no reference to the alternative class(es). It should be noted that
they include a use case on identifying harmful training examples — ones that
contributed to incorrect predictions — which can be seen as a way to explain
errors.

4.2.2 Feature Importance Explanations
Lundberg et al. [87] propose a method for determining how much each feature
contributes to a prediction and present a ranked list of the most important
features as the explanation. The approach is based on the computationally
intensive Shapley values [86], for which the authors develop a tree-specific
approximation. This differs from our method since identifying the most important
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features is only a preliminary step in our pipeline — our work extends beyond
this by including (i) feature bounds that result in reasonable predictions, and
(ii) the relationship between the features and the target as a tool to help users
inspect what goes wrong when the prediction error is large.

Ribeiro et al. [107] also propose a method for identifying local feature im-
portances and this is the one we use in our pipeline. Their method, LIME,
is model-agnostic and is based on approximating the original model locally
with a linear model. We share their objective of evaluating users’ attitudes
towards a model through local explanations but we further specify our task
as explaining instances where there are large errors in predictions. Based on
preliminary experiments, we find that LIME is insufficient for our task setting
for two reasons:

(i) For regression tasks, LIME’s approximation of the original model is not
exact. This “added” error can be quite large given that our target is
typically of order 106, and this convolutes our definition of a large error.

(ii) The features LIME deems most important are similar regardless of whether
the prediction results in a large error or not, which does not provide
any specific insight into why a large error occurs. These experiments are
detailed in Section 4.4.

4.2.3 Contrastive Explanations
Other work on contrastive explanations includes identifying features that should
be present or absent in order to justify a classification [27, 50] or model-agnostic
counterfactuals [109, 141]. These all differ from our method since they are not
specifically about explaining errors. Furthermore, the work by Dhurandhar et al.
[27] and Hendricks et al. [50] is based on the binary presence or absence of
input features, whereas our method perturbs inputs instead of removing them
altogether.

4.2.4 Outlier Detection
Our work in this chapter can also be viewed as a form of outlier detection.
However, it differs from the standard literature outlined by Pimentel et al. [102]
with respect to the objective: we are not necessarily trying to identify outliers
in terms of the training data but rather explain instances in the test set whose
errors are so large that they are considered to be anomalies.

4.3 Method: MC-BRP
The intuition behind MC-BRP is based on identifying the unusual properties of
a particular observation. We make the assumption that large errors occur due to
unusual feature values in the test set that were not common in the training set.
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Given an observation that results in a large error, MC-BRP generates a set of
bounds for each feature that would result in a reasonable prediction as opposed
to a large error. We also include the trend as part of the explanation in order to
help users understand the relationship between each feature and the target, and
how the input should be changed in order to change the output.

As pointed out previously, we consider our task of identifying and explaining
large errors somewhat similar to that of an outlier detection problem. A standard
definition of a statistical outlier is an instance that falls outside of a threshold
based on the interquartile range. A widely used version of this, called Tukey’s
fences, is defined as follows [133]:

[Q1 − 1.5(Q3 −Q1), Q3 + 1.5(Q3 −Q1)],

where Q1 and Q3 are the first and third quartiles, respectively.

Definition 4.3.1. Let x be an observation in the test set X and let t, t̂ be the
actual and predicted target values of x, respectively. Let ϵ be the corresponding
prediction error for x, and let E be the set of all errors of X. Then ϵ is a large
error iff

ϵ > Q3(E) + 1.5(Q3(E)−Q1(E)),

where Q1(E), Q3(E) are the first and third quartiles of the set of errors, respec-
tively. We denote this threshold as ϵlarge.

We can view X in Definition 4.3.1 as a disjoint union of two sets:

(i) R: the set of observations resulting in reasonable predictions, and

(ii) L: the set of observations resulting in large errors.

We determine the n most important features based on LIME Φ(x) = {ϕ(x)
j }n

j=1,
for all x ∈ X. It should be noted there exist alternative methods for determining
the most important features for a particular prediction [86], which would also
be appropriate.

Given x ∈ X, for each ϕ
(x)
j ∈ Φ(x), we determine two sets of characteristics

through Monte Carlo simulations:

(i) [a
ϕ

(x)
j

, b
ϕ

(x)
j

]: the bounds for values of ϕ
(x)
j such that x ∈ R, x ̸∈ L.

(ii) ρ
ϕ

(x)
j

: the relationship between ϕ
(x)
j and the target, t.

We perturb the feature values for l ∈ L using Monte Carlo simulations in order
to determine what feature values are required to produce a reasonable prediction.
The algorithm for determining R′, the set of Monte Carlo simulations resulting
in reasonable predictions, is detailed in Algorithm 4.1.

Given l ∈ L, we determine Tukey’s fences for each feature in Φ(l) based on
the feature values from R. This gives us the bounds from which we sample for
our feature perturbations.
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Next, we randomly sample from these bounds for each ϕ
(l)
j ∈ Φ(l) m-times to

generate mn versions of our original observation, l. We call the i-th perturbed
version l′

i, where i ∈ {1, . . . , mn}.
We then test the original model f on each l′

i, obtain a new prediction, t̂′
i,

and construct R′, the set of perturbations resulting in reasonable predictions.
Once R′ is generated, we compute the mean, standard deviation and Pearson

coefficient [127] of the top n features of l ∈ L, Φ(l), based on this set.

Algorithm 4.1 Monte Carlo simulation: creates a set of perturbed instances
resulting in reasonable predictions R′ for each large error l ∈ L

Input: instance l, set of l’s most important features Φ(l), ‘black-box’ model
f , large error threshold ϵlarge, number of MC perturbations per feature m.
R′ = ∅
for all ϕ

(l)
j in Φ(l) do

TF (ϕ(l)
j ) ← Tukeys fences(ϕ(l)

j ) # Based on R
for i in range (0, m) do

ϕ
′(l)
j ← random sample(TF (ϕ(l)

j ))
l′
i ← li.replace(ϕ(l)

j , ϕ
′(l)
j )

t̂′
i ← f(l′

i) #New prediction
if |t̂′

i − ti| < ϵlarge then
R′ ← R′ ∪ l′

i

return R′

Definition 4.3.2. The trend, ρ
ϕ

(x)
j

, of each feature is the Pearson coefficient

between each feature ϕ
(x)
j and the predictions t̂′

i based on the observations in
R′. It is a measure of linear correlation between two variables [127].

The set of bounds for each feature in Φ(x) such that t̂ results in a reasonable
prediction are based on the mean and standard deviation of each ϕ

(x)
j ∈ Φ(x).

Definition 4.3.3. The reasonable bounds for values of each feature ϕj in Φ(x),
[a

ϕ
(x)
j

, b
ϕ

(x)
j

], are

[
µ(ϕ(x)

j )− σ(ϕ(x)
j ), µ(ϕ(x)

j ) + σ(ϕ(x)
j )

]
,

where µ(ϕ(x)
j ) and σ(ϕ(x)

j ) are the mean and standard deviation of each feature,
respectively, based on R′.

We compute the trend and the reasonable bounds for each of the n most
important features and present them to the user in a table. Table 4.1 shows
an example of an explanation generated by MC-BRP; the dataset used for this
example is detailed in Section 4.4.1.
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Table 4.1: An example of an explanation generated by MC-BRP. Here, each
of the input values is outside of the range required for a reasonable prediction,
which explains why this particular prediction results in a large error.

Input Definition Trend Value Reasonable
range

A total contract hrs As input ↑, sales ↑ 9628.0 [4140,6565]
B advertising costs As input ↑, sales ↑ 18160.7 [8290,15322]
C num transactions As input ↑, sales ↑ 97332.0 [51219,75600]
D total headcount As input ↑, sales ↑ 226.0 [95,153]
E floor surface As input ↑, sales ↑ 2013.6 [972,1725]

4.4 Experimental Setup
Current explanation methods mostly serve individuals with ML expertise [12, 47],
but they should be extended to cater to users outside of the ML community [90].
Unlike previous work, our method, MC-BRP, generates contrastive explanations
by framing the explanation around the prediction error, and aims to help users
understand (i) what contributed to the large error, and (ii) what would need
to change in order to produce a reasonable prediction. Presenting explanations
in a contrastive manner helps frame the problem and narrows the user’s focus
regarding the possible outcomes [51, 75].

Our explanations are contrastive because they display to the user what would
have needed to change in the input order to obtain an alternative outcome from
the model — in other words, why this prediction results in a large error as
opposed to a reasonable prediction.

4.4.1 Dataset and Model
Our task is predicting monthly store sales using an internal company dataset
with 45 features including financial, workforce and physical store aspects. Since
not all of our practitioners have experience with ML, using an internal dataset
with familiar features allows them to leverage some of their domain expertise.
The dataset includes 45628 observations from 563 stores, collected at four-week
intervals spanning from 2010–2015. We split the data by year (training: 2010–
2013, test: 2014–2015) to simulate a production environment, and we treat every
unique combination of store, interval and year as an independent observation.
After preprocessing, we have 21415 and 12239 observations in our training and
test sets, respectively. We train the gradient boosting regressor from scikit-learn
with the default settings and obtain an R2 of 0.96.

We verify our assumption that large errors are a result of unusual feature
values by generating MC-BRP explanations for all instances in our test set using
n = 5 features and m = 10000 Monte Carlo simulations. In our dataset, we
find that 48% of instances resulting in large errors have feature values outside
the reasonable range for all of the n = 5 most important features, compared
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Table 4.2: The top n = 5 features according to LIME for observations resulting
in large errors vs. reasonable predictions.

Large errors Reasonable Predictions
advertising costs 0.188 advertising costs 0.187
total contract hrs 0.175 total contract hrs 0.179
num transactions 0.151 num transactions 0.156
floor surface 0.124 total headcount 0.134
total headcount 0.123 floor surface 0.122
month 0.109 month 0.094
mean tenure 0.046 mean tenure 0.046
earnings index 0.033 earnings index 0.031

to only 24% of instances resulting in reasonable predictions. Although this is
not perfect, it is clear that MC-BRP produces explanations that are at least
somewhat able to distinguish between these two types of predictions.

4.4.2 Comparison to LIME
Hilton [52] states that explanations are selective – it is not necessary or even
useful to state all the possible causes that contributed to an outcome. The
significant part of an explanation is what distinguishes it from the alternative
outcome. If LIME explanations were suitable for our problem, then we would
expect to see different features deemed important for instances resulting in large
errors compared to those resulting in acceptable errors. This would help the
user understand why a particular prediction resulted in a large error.

However, when generating LIME explanations for our test set using n = 5
features, we do not see much of a distinction in the most important features
between predictions that result in large errors and those that do not. For
example, advertising costs is one of the top 5 most important features in 18.8%
of instances with large errors and 18.7% of instances with reasonable predictions.
These results are summarized in Table 4.2.

Furthermore, we originally tried to design our control group user study using
explanations from LIME, but found that test users from the retailer could not
make sense of the objective questions about prediction errors because LIME does
not provide any insight about errors specifically. Given that we could not even
ask questions about errors using LIME explanations to users without confusing
them, it is clear that LIME is inappropriate for our task.

4.4.3 User Study Design
We test our method on a real dataset with real users, both from the retailer. We
include a short tutorial about predictive modeling along with some questions to
check users’ understanding as a preliminary component of the study. This is
because our users are a diverse set of individuals with a wide range of capabilities,
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Figure 4.1: The visual description of the model shown to the users: a graph
comparing the predicted sales and actual sales based on the original model. The
red line depicts perfect predictions.

including data scientists, human resource strategists, and senior members of the
executive team. We also include participants from the University of Amsterdam
to simulate users who could one day work in this environment. In total, we have
75 participants: 44 in the treatment group and 31 in the control group.

All users are first provided with a visual description of the model: a simple
scatter plot comparing the predicted and actual sales (as shown in Figure 4.1).
We also show a pie chart depicting the proportion of predictions that result in
large errors to give users a sense of how frequently these mistakes occur. In our
case, this is 4%. Since our users are diverse, we want to make our description
of the model as accessible as possible while allowing them to form their own
opinions about how well the model performs. Participants in the treatment
group are shown MC-BRP explanations, while those in the control group are
not given any explanation.

The study contains two components, objective and subjective, corresponding
to RQ3.1 and RQ3.2, respectively. The objective component is meant to
quantitatively evaluate whether or not users understand explanations generated
by MC-BRP, while the subjective component assesses the effect of seeing the
explanation on users’ attitudes towards the model. We base the objective
component on human-grounded metrics, a framework proposed by Doshi-Velez
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and Kim [29], where the tasks conducted by users are simplified versions of the
original task. Instead of asking users to correctly predict retail sales values of
order 106, we ask them to determine whether or not a prediction will result in a
large error.

Table 4.3: Summary of tasks performed in user study for the treatment and
control groups. The subjective questions are asked twice.

Treatment Control
1. Short modeling tutorial 1. Short modeling tutorial
2. Visual model description 2. Visual model description
3. Subjective questions 3. Subjective questions
4. Objective questions 4. Dummy questions
5. Subjective questions 5. Subjective questions

Table 4.4: Summary of simulations performed in objective portion of the user
study.

Type Provide user with User’s task
Forward (1) Input values Simulate output

(2) Explanation
Counterfactual (1) Input values Manipulate input to

change output(2) Explanation
(3) Output

To answer RQ3.1, we ask users in the treatment group to perform two types
of simulations, both suggested by Doshi-Velez and Kim [29] and summarized in
Table 4.4. The first is forward simulation, where we provide participants with
the (i) input values, and (ii) explanation. We then ask them to simulate the
output — whether or not this prediction will result in a large error. The second
is counterfactual simulation, where we provide participants with the (i) input
values, (ii) explanation, and (iii) output. We then ask them what they would
have needed to change in the input in order to change the output. In other
words, we want participants to determine how the input features can be changed
(according to the trend) in order to produce a reasonable prediction as opposed
to one that results in large error. These objective questions are designed to test
whether or not a participant understands the explanations enough to predict
or manipulate the model’s output. We ask every participant in the treatment
group to perform two forward simulations and one counterfactual simulation,
and we show the same examples to all users.

For the control group, we found that we could not ask the objective questions
in the same way we did for the treatment group. This is because the objective
component involves simulating the model based on the explanations (see Ta-
ble 4.4), which is not possible if the explanations are not provided. In fact, we
initially left the objective questions in the control group study, but preliminary
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testing on some users from the retailer showed that this was confusing and
unclear, similar to when we tried using LIME explanations. We were concerned
this confusion would skew users’ perceptions of the model and therefore convolute
the results of RQ3.2. Instead, we show participants in the control group the
(i) input values, and (ii) output – whether or not the example resulted in a large
error. In this case, we ask them if they have enough information to determine
why the example does (or does not) result in a large error. This serves as a
dummy question to engage users with the task without confusing them. We
cannot ask users in the control group to simulate the model since they do not see
the explanations, but we want to mimic the conditions of the treatment group
as closely as possible. Therefore, RQ3.1, is solely evaluated on users from the
treatment group.

To answer RQ3.2, we contrast results from the treatment and control groups.
We ask both groups of users the same four subjective questions twice, once
towards the beginning of the study and once again at the end. We ask the
questions at the beginning of the study to evaluate the distribution of preliminary
attitudes towards the model, based solely on the visual description. We ask
the questions at the end of the study to evaluate the effectiveness of MC-BRP
explanations, by comparing the results from the treatment and control groups.
The questions we devised are based on the user study by ter Hoeve et al. [130].
Table 4.3 summarizes the experimental setup for the treatment and control
groups. Again, the treatment and control groups are treated exactly the same
with the exception of the objective questions – we only ask these to the treatment
group since we cannot ask users to simulate the model without giving them the
explanation.

4.5 Experimental Results
In this section, we evaluate the explanations generated by MC-BRP in terms of
(i) objective questions, and (ii) subjective questions.

4.5.1 Objective Questions
The results for users’ objective comprehension of MC-BRP explanations are
summarized in Table 4.5. We see that explanations generated by MC-BRP
are both: (i) interpretable and (ii) actionable, with an average accuracy of

Table 4.5: Results from the objective questions in the user study.
Human accuracy

Forward simulation 1 84.1%
Forward simulation 2 84.1%
Counterfactual simulation 75.0%
Average 81.1%

58



4.5. Experimental Results

Figure 4.2: Results from a within-subject study comparing answers between the
treatment (MC-BRP explanation) and control (no explanation) groups.

81.1%. This answers RQ3.1. When asked to perform forward simulations, the
proportion of correct answers was 84.1% for both questions. This indicates
that the majority of users were able to interpret the explanations in order to
simulate the model’s output (RQ3.1: interpretable). When asked to perform
counterfactual simulations, the proportion of correct answers was slightly lower
at 75.0%, but still indicates that the majority of users were able to determine
how to manipulate the model’s input in order to change the output (RQ3.1:
actionable).

4.5.2 Subjective Questions
In order to understand the impact of MC-BRP explanations on users’ attitudes
towards the model, we ask them the following subjective questions:

• SQ1: I understand why the model makes large errors in predictions.

• SQ2: I would support using this model as a forecasting tool.
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• SQ3: I trust this model.

• SQ4: In my opinion, this model produces mostly reasonable outputs.

To ensure our populations did not have different initial attitudes towards
the model, we compared their answers on the subjective questions after only
showing a visual description of the model. The visual description is a graph
comparing the predicted sales to the actual sales, which allows users to see
the distribution of errors made by the model (see Figure 4.1). We found no
statistically significant difference (χ2 test, α = 0.05) in initial attitudes towards
the model, which allows us to postulate that any difference discovered between
the two groups is a result of the treatment they were given (i.e., MC-BRP
explanation vs. no explanation).

Figure 4.2 shows the distributions of answers to the four subjective questions
in the treatment and control groups. The difference in distributions is significant
for SQ1 (χ2 = 18.2, α = 0.0001): users in the treatment group agree with the
statement more than users in the control group. However, we find no statistically
significant difference between the two groups for the remaining questions (χ2 test,
α = 0.05). That is, MC-BRP explanations help users understand why the model
makes large errors in predictions, but do not have an impact on users’ trust or
confidence in the model, or on their willingness to support its deployment.

4.6 Discussion
Since our original motivation was to provide an explanation system that can be
used by forecasting analysts, we conducted a more in-depth analysis of the results
to determine if there was a difference in attitudes between users depending on
their background (e.g., practitioners from the retailer or researchers from the
university).

4.6.1 Comparing Attitudes Conditioned on Background
Table 4.6 shows the distribution of practitioners and researchers in the treatment
and control groups. Since we have a slight imbalance in background between
the treatment and control groups, we test whether or not our results still hold
when conditioning on background and confirm that they do.

Again, we do not find statistically significant differences in initial attitudes
towards the model (χ2 test, α = 0.05). For researchers, the distribution of

Table 4.6: Distribution of practitioners and researchers in the treatment and
control groups.

Background Practitioners Researchers
Treatment 52% 48%
Control 58% 42%
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Figure 4.3: Results from a within-subject study comparing answers between
participants who are practitioners or researchers (in the treatment group).

answers between treatment and control groups is significantly different for SQ1
(χ2 = 14.2, α = 0.001), but does not differ for SQ2, SQ3, or SQ4 (χ2 test,
α = 0.05). The same holds for practitioners: the distributions are significantly
different only for SQ1 (χ2 = 6.94, α = 0.05). This is consistent with our results
in Section 4.5. In both cases, users in the treatment group agree with SQ1 more
than users in the control group, indicating that MC-BRP explanations help
users understand why the model makes large errors in predictions, regardless
of whether they are practitioners or researchers. Although the results are
statistically significant for both groups, it should be noted that the results hold
more strongly for researchers compared to those for practitioners, given the χ2

values.

4.6.2 Comparing Attitudes in the Treatment Group
Based on the users who saw the explanations, we compare the distributions of
answers between practitioners and researchers in Figure 4.3 in order to understand
the needs of different types of users. We find that there is a significant difference
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between practitioners and researchers for SQ2 (χ2 = 7.94, α = 0.05), indicating
that more researchers are in favor of using the model as a forecasting tool, and
less are against it or have a neutral attitude, in comparison to the practitioners.
We also find a significant difference for SQ3 (χ2 = 5.98, α = 0.05): a larger
proportion of researchers trust the model, while the majority of practitioners
have neutral feelings. The results for SQ4 are significant as well (χ2 = 6.86,
α = 0.05): although the majority of users in both groups believe the model
produces reasonable predictions, a larger proportion of the practitioners disagree
with this statement in comparison to the researchers.

We see no significant difference between groups for SQ1 (χ2 test, α = 0.05),
which makes sense given that we showed that MC-BRP explanations have a
similar effect on both practitioners and researchers when comparing users in the
treatment and control groups in Section 4.6.1.

Overall, these results suggest that our user study population is fairly hetero-
geneous, and that users from different backgrounds have different criteria for
deploying or trusting a model, and varying levels of confidence regarding the
accuracy of its outcomes.

4.6.3 User Study Limitations
Like any user study, ours has some limitations. It would have been preferable to
distribute users more evenly in terms of the proportion of users in the treatment
and control groups, as well as the proportion of practitioners and researchers in
each of these groups. Unfortunately, this was not possible in our case because
we recruited participants in two rounds: first for the treatment group, and
then afterwards for the control group. One option could be to discard some
practitioners in the control group in order to have a better balance in terms of
background, but we felt it was more important to have as many users as possible,
and it would not be clear how to choose which users to discard. Fortunately, we
found that our results still hold when conditioning on background as mentioned
in Section 4.6.1. In future work, we plan to recruit for both groups at the same
time to avoid issues like these.

We also acknowledge that not having a baseline method to compare to is a
limitation of our study. In our case, the main issue is that there simply does not
exist a method that is specifically for explaining errors in regression predictions,
which would make asking questions about errors (i) unfair, and (ii) confusing,
as mentioned in Sections 4.4.2 and 4.4.3. However, now that MC-BRP exists, it
can serve as a baseline for future work on erroneous predictions, which is another
contribution of this paper.

4.7 Conclusion
In this chapter, we have proposed a method, MC-BRP, that provides users with
contrastive explanations about predictions resulting in large errors based on:
(i) the set of bounds for which reasonable predictions would be expected for each
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of the most important features. (ii) the trend between each of these features
and the target.
Given a large error, MC-BRP generates a set of perturbed versions of the original
instance that result in reasonable predictions. This is done by performing Monte
Carlo simulations on each of the features deemed most important for the original
prediction. For each of these features, we determine the bounds needed for a
reasonable prediction based on the mean and standard deviation of this new
set of reasonable predictions. We also determine the relationship between each
feature and the target through the Pearson correlation, and present these to the
user as the explanation.

We evaluate MC-BRP both objectively (RQ3.1) and subjectively (RQ3.2)
by conducting a user study with 75 real users, including both researchers
and practitioners. We answer RQ3.1 by conducting two types of simulations
to quantify how (i) interpretable, and (ii) actionable our explanations are.
Through forward simulations, we show that users are able to interpret MC-BRP
explanations by simulating the model’s output with an average accuracy of 84.5%.
Through counterfactual simulations, we show that MC-BRP explanations are
actionable with an accuracy of 76.2%.

We answer RQ3.2 by conducting a between-subject experiment with sub-
jective questions. The treatment group sees MC-BRP explanations, while the
control group does not see any explanation. We find that explanations generated
by MC-BRP help users understand why models make large errors in predictions
(SQ1), but do not have a significant impact on support in deploying the model
(SQ2), trust in the model (SQ3), or perceptions of the model’s performance
(SQ4). These results still hold when conditioning on users’ background (practi-
tioners vs. researchers). We also conduct an analysis on the treatment group
to compare results between practitioners and researchers. We find significant
differences for SQ2, SQ3 and SQ4, but do not find a significant difference in
attitudes for SQ1.

The answer to RQ3 is yes: we can create an explanation method based
on a real-world use case by first identifying a use case where explanations are
required and identifying what users want in the context of this use case. We can
evaluate in a user-centric manner by conducting a user study based on the use
case, which includes both objective and subjective components.

So far, this thesis has focused on creating knowledge about responsible AI
practices, specifically on developing new methods for behavior-based explanations
(see Chapter 1), where we explain predictions from ML models. In the next and
final part of the thesis, we will focus more on process-based explanations, where
we will investigate how to translate knowledge about responsible AI practices to
the next generation of AI researchers.

Reproducibility
To facilitate the reproducibility of the work in this chapter, our code is available
at https://github.com/a-lucic/mcbrp.

63

https://github.com/a-lucic/mcbrp




Part III

Pedagogy

65





Chapter 5

Teaching Responsible AI through
Reproducibility

In this final part of the thesis, we investigate how to communicate responsible
artificial intelligence (AI) practices to the next generation of AI researchers. In
this chapter, we address the following research question:

RQ4: How can we teach about responsible AI topics to a technical, research-
oriented audience?

We answer RQ4 by designing a course that is centered on a reproducibility
project, where students work in teams to reimplement existing responsible AI
algorithms from top AI conferences and reproduce the experiments reported in
the papers. We report on our findings as we taught the course over two academic
years and share recommendations for implementing similar courses in the future.

5.1 Introduction
For several decades, the University of Amsterdam has offered a research-oriented
Master of Science (MSc) program in AI. The main focus of the program is
on the technical machine learning (ML) aspects of the major sub-fields of AI,
such as computer vision, information retrieval, natural language processing,
and reinforcement learning. One of the most recent additions to the MSc AI
curriculum is a mandatory course called Fairness, Accountability, Confidentiality
and Transparency in Artificial Intelligence (FACT-AI). This course was first
taught during the 2019–2020 academic year and focuses on teaching FACT-AI
topics through the lens of reproducibility. The main project involves students
working in groups to re-implement existing FACT-AI algorithms from papers
in top AI venues. There are approximately 150 students enrolled in the course
each year.

The motivation for the course came from the MSc AI students themselves,
who often play an important role in shaping the curriculum in order to meet
the evolving requirements of researchers in both academia and industry. As the
influence of AI on decision making is becoming increasingly prevalent in day-to-
day life, there is a growing consensus that stakeholders who take part in the design

This chapter was published at the AAAI Symposium on Educational Advances in Artificial
Intelligence (EAAI-AAAI 2022) under the title “Reproducibility as a Mechanism for Teaching
Fairness, Accountability, Confidentiality, and Transparency in Artificial Intelligence” [83].
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or implementation of AI algorithms should reflect on the ethical ramifications of
their work, including developers and researchers [19]. This is especially true in
situations where data-driven AI systems affect some demographic sub-groups
differently than others [5, 100]. As a result, our students have shown an increased
interest in the ethical issues surrounding AI systems and requested that the
university put together a new course focusing on responsible AI.

Since our MSc AI program is characterized by a strong emphasis on under-
standing, developing, and building AI algorithms, we believe that a new course
on responsible AI in this program should also have a hands-on approach. The
course is designed to address technical aspects of key areas in responsible AI:
(i) fairness, (ii) accountability, (iii) confidentiality, and (iv) transparency, which
we operationalize through a reproducibility project. We believe a strong emphasis
on reproducibility is important from both an educational point of view and from
the point of view of the AI community, since the (lack of) reproducible results
has become a major point of critique in AI [56]. Moreover, the starting point of
almost any junior AI researcher (and most AI research projects in general) is
re-implementing existing methods as baselines. The FACT-AI course is situated
at a point in the program where students have learned the basics of ML and
are ready to start experimenting with, and building on top of, state-of-the-art
algorithms. Given that our MSc AI program is fairly research-oriented, it is
important for students to experience the process of reproducing work done by
others (and how difficult this is) at an early stage in their careers. We also
believe reproducibility is a fundamental component of FACT-AI: the cornerstone
of fair, accountable, confidential and transparent AI systems is having correct
and reproducible results. Without reproducibility, it is unclear how to judge if a
decision-making algorithm adheres to any of the FACT principles.

In the 2019–2020 academic year, we operationalized our learning ambitions
regarding reproducibility by publishing a public repository with selected code
implementations and corresponding reports from the group projects. In the
2020–2021 academic year, we took the projects one step further and encouraged
students to submit to the ML Reproducibility Challenge,1 a competition that so-
licits reproducibility reports for papers published in conferences such as NeurIPS,
ICML, ICLR, ACL, EMNLP, CVPR and ECCV. Although the challenge broadly
focuses on all papers submitted to these conferences, we focus exclusively on
papers covering FACT-AI topics in our course. Submitting to the challenge gives
students a chance to experience the whole AI research pipeline, from running
experiments, to writing rebuttals, to receiving the official notifications. Of the
23 papers that were accepted to the ML Reproducibility Challenge in 2021, 9
came from groups in the FACT-AI course.

In this chapter, we describe the FACT-AI course at the University of Am-
sterdam: a one month, full-time course based on examining ethical issues in
AI using reproducibility as a pedagogical tool. Students work in groups to
re-implement (and possibly extend) existing algorithms from top AI venues on
FACT-AI topics. The course also includes lectures that cover the high-level

1https://paperswithcode.com/rc2020
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principles of FACT-AI topics, as well as paper discussion sessions where students
read and digest prominent FACT-AI papers. In this chapter, we outline the
setup for the FACT-AI course and the experiences we had while running the
course during the 2019–2020 and 2020–2021 academic years at the University of
Amsterdam.

The remainder of this chapter is structured as follows. In Section 5.2,
we discuss related work, specifically other courses about responsible AI. In
Section 5.3, we detail ongoing reproducibility efforts in the AI community. In
Section 5.4, we explain the learning objectives for our course, and explain how we
realized those objectives in Section 5.5. We reflect on the feedback we received
about the course in Section 5.6, as well as what worked (Section 5.7) and what
did not (Section 5.8), before concluding in Section 5.9.

5.2 Related Work
There have been multiple calls for introducing ethics in computer science courses
in general, and in AI programs in particular [23, 45, 71, 100, 110, 119, 120].
Several surveys have investigated how existing responsible computing courses
are organized [35, 38, 101, 106].

5.2.1 Characterizing Responsible AI Courses
There are two primary approaches to integrating such components into the
curriculum: (i) stand-alone courses that focus on ethical issues such as FACT-AI
topics, and (ii) a holistic curriculum where ethical issues are introduced and
tackled in each course. In general, the latter is rare [35, 101, 110], and can
be difficult to organize due to a lack of qualified faculty or relevant expertise
[9, 106]. We opt for the first approach since our course is a new addition to an
existing study program.

Fiesler et al. [35] analyze 202 courses on “tech ethics”. Their survey examines
(i) the departments the courses are taught from, as well as the home departments
of the course instructors, (ii) the topics covered in the courses, organized into
15 categories, and (iii) the learning outcomes in the courses. In our case, both
the FACT-AI course and its instructors are from the Informatics Institute of
the Faculty of Science at the University of Amsterdam. Our learning objectives
(see Section 5.4) correspond to the following learning objectives from Fiesler
et al. [35]: “Critique”, “Spot Issues”, and “Create solutions”. According to
their content topic categorization, our course includes “AI & Algorithms” and
“Research Ethics” : the former since the course deals explicitly with AI algorithms
under the FACT-AI umbrella, and the latter due to its focus on reproducibility.

We note that “AI & Algorithms” is only the fifth-most popular topic according
to the survey, after “Law & Policy”, “Privacy & Surveillance”, “Philosophy”,
and “Inequality, Justice & Human Rights” [see Table 2, 35]). Although we
believe these topics are important, we also wanted to avoid the feeling that the
course was a “distraction from the real material” [72], especially since (i) the
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majority of our students are coming from a technical background into a technical
MSc program, and (ii) the FACT-AI course is mandatory for all students in the
MSc AI program.

5.2.2 Similar Responsible AI Courses

The two courses that are the most similar to ours are those of Lewis and
Stoyanovich [72] and Yildiz et al. [145].

Lewis and Stoyanovich [72] describe a course for responsible data science.
Similar to our course, they focus on the technical aspects of AI, involving lectures,
readings, and a final project. However, their course differs from ours since the
main project in their course is focused on examining the interpretability of an
automated decision making system, while the main project in our course is
focused on reproducibility.

Yildiz et al. [145] describe a course based on reproducing experiments from
AI papers, focusing on “low-barrier” reproducibility. Similar to our course, this
course involves replicating a paper from scratch or reproducing the experiments
using existing code, performing hyperparameter sweeps, and testing with new
data or with variant algorithms. Another similarity is that they released a public
repository of re-implemented algorithms,2 which we also did for the 2019–2020
iteration of our course (see Section 5.5.3). However, their course differs from ours
since theirs focuses on AI papers in general, while our course focuses exclusively
on FACT-AI papers.

There are several courses that focus more on the philosophical or social science
perspectives of AI ethics. Green [43] describes an undergraduate AI ethics course
that teaches computer science majors to analyse issues using different ethical
approaches and how to incorporate these into an explicit ethical agent. Shen
et al. [117] introduce a toolkit in the form of “Value Cards” to inform students
and practitioners about the social impacts of ML models through deliberation.
Green and Crotts [44] propose an approach to ethics education using “argument
schemes” that summarize key ethical considerations for specialized domains
such as healthcare or national defense. Furey and Martin [37] introduce ethics
concepts, primarily utilitarianism, into an existing AI course about autonomous
vehicles by studying several variations of the Trolley Problem. Burton et al. [17]
teach ethics through science fiction stories complemented with philosophy papers,
allowing students to reflect and debate difficult content without emotional or
personal investment since the stories are not tied to “real” issues. Skirpan et al.
[120] describe an undergraduate course on human-centred computing which
integrates ethical thinking throughout the design of computational systems.
Unlike these courses, our course focuses more on the technical aspects of ethical
AI. However, incorporating such non-technical perspectives is something we
would like to do in future iterations of our course, perhaps through one of the
mechanisms employed by some of these courses.

2https://reproducedpapers.org/
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5.3 Reproducibility in ML Research
There have been several criticisms about the lack of reproducibility in AI research.
Some have postulated that this is due to a combination of unpublished code and
high sensitivity of training parameters [56], while others believe the rapid rate
of progress in ML research results in a lack of empirical rigor [115]. Although
typically well-intentioned, some papers may disguise speculation as explanation,
obfuscate content behind math or language, and fail to attribute the correct
sources of empirical gains [76].

Several efforts have been made to investigate and increase the reproducibility
of AI research. In 2021, NeurIPS introduced a paper checklist including questions
about reproducibility, along with a template for submitting source code as sup-
plementary material [11]. The Association of Computing Machinery introduced a
badging system that indicates how reproducible a paper is [2]. Papers with Code
is an organization that provides links to official code repositories and datasets
in arXiv papers [123]. It also hosts an annual ML Reproducibility Challenge: a
community-wide effort to investigate the reproducibility of papers accepted at
top AI conferences, which we incorporated into the 2020–2021 iteration of the
FACT-AI course.

In an ideal scenario, reproducibility issues would be handled prior to pub-
lication [115], but it can be difficult to catch such shortcomings in the review
process due to the increasing number of papers submitted to AI conferences.
Therefore, we believe it is of utmost importance that the next generation of AI
researchers – including our own students – can (i) identify and (ii) avoid these
pitfalls while conducting their own work. This, in combination with the fact
that reproducibility is a fundamental component of responsible AI research, is
why we opted to teach the FACT-AI course through the lens of reproducibility.

Our course is centered around a group project where students re-implement
a recent FACT-AI algorithm from a top AI conference. This project has three
components: (i) a reproducibility report, (ii) an associated code base, and (iii) a
group presentation. In Section 5.5.3, we provide more details on the project and
the outputs it resulted in.

5.4 Learning Objectives
In the FACT-AI course, we aim to make students aware of two types of respon-
sibility: (i) towards society in terms of potential implications of their research,
and (ii) towards the research community in terms of producing reproducible
research. In this section, we outline the learning objectives for the FACT-AI
course and explain how it fits within the context of the MSc AI program at the
University of Amsterdam.

Table 5.1 shows the setup of the first year of the 2-year MSc AI program.
Each semester at the University of Amsterdam is divided into three periods:
two 8-week periods followed by one 4-week period. During an 8-week period,
students follow two courses in parallel. During the 4-week period, they only
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Table 5.1: The first year of the MSc AI program at the University of Amsterdam,
2019–2020.

Course Sem. 1 Sem. 2 EC
Computer Vision 1 ■ □ □ □ □ □ 6
Machine Learning 1 ■ □ □ □ □ □ 6
Natural Language Processing 1 □ ■ □ □ □ □ 6
Deep Learning 1 □ ■ □ □ □ □ 6
Fairness, Accountability, Confidentiality □ □ ■ □ □ □ 6
and Transparency in AI
Information Retrieval 1 □ □ □ ■ □ □ 6
Knowledge Representation and Reasoning □ □ □ ■ □ □ 6
Elective 1 □ □ □ □ ■ □ 6
Elective 2 □ □ □ □ ■ □ 6
Elective 3 □ □ □ □ □ ■ 6

follow a single course. The FACT-AI course takes place during the 4-week period
at the end of the first semester, after students have taken Computer Vision 1,
Machine Learning 1, Natural Language Processing 1 and Deep Learning 1. It is
the only course students follow during this period, so we believe it is beneficial
to have them focus on one main project – reproducing an existing FACT-AI
paper. The learning objectives for the course are as follows:

• LO #1: Understanding FACT topics. Students can explain the
major notions of fairness, accountability, confidentiality, and transparency
that have been proposed in the literature, along with their strengths and
weaknesses.

• LO #2: Understanding algorithmic harm. Students can explain,
motivate, and distinguish the main types of algorithmic harm, both in
general and in terms of concrete examples where AI is being applied.

• LO #3: Familiarity with FACT methods. Students are familiar with
recent peer-reviewed algorithmic approaches to fairness, accountability,
confidentiality, and transparency in the literature.

• LO #4: Reproducing FACT solutions. Students can assess the
degree to which recent algorithmic solutions are effective, especially with
respect to the claims made in the original papers, while understanding
their limitations and shortcomings.

5.5 Course Setup
The FACT-AI course is organized around (i) lectures, (ii) paper discussions, and
(iii) a group project. It has had two iterations so far: the 2019–2020 iteration
was taught in person, while the 2020–2021 iteration was taught online due to
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the COVID-19 pandemic. In this section, we detail how we realized the learning
objectives from Section 5.4 and describe the challenges in adapting the course
to an online format.

5.5.1 Lectures
To further the understanding of FACT-AI topics (LO1), we provide one general
lecture for each of the 4 topics, along with a lecture specifically about repro-
ducibility. Lectures are an opportunity for students to familiarize themselves
with algorithmic harm (LO2). Students are encouraged to ask questions that
lead to discussions about potential harm done by applications of AI. This was
more challenging in the second iteration of the course due to the online format,
but we hope that facilitating such discussions will be more straightforward once
we return to in-person classes.

In addition to the general lectures, we also include some guest lectures. These
are used to either discuss specific types of algorithmic harm (LO2), examine
specific FACT-AI algorithms in depth (LO3), or expand on the non-technical
aspects of FACT-AI. Some examples of guest lectures include a lecture on AI
accountability from a legal perspective by an instructor from the law department
of the University of Amsterdam, and a lecture by two former FACT-AI students
who explained how they turned their group project into an ICML 2021 workshop
paper [95].3

5.5.2 Paper Discussions
The goal of the paper discussion sessions is for students to learn about prominent
FACT-AI methods (LO3), and learn to think critically about the claims made
in the papers we discuss (LO4). Students first read a seminal FACT-AI paper
on their own while trying to answer the following questions:

• What are the main claims of the paper?

• What are the research questions?

• Does the experimental setup make sense, given the research questions?

• What are the answers to the research questions? Are these supported by
experimental evidence?

Once students have read the papers, they participate in smaller discussion
sessions with their peers about their answers to the questions above. After each
discussion session, all the groups are brought back together for a “dissection”
session, where an instructor goes over the same seminal paper, giving an overview
of the papers’ strengths and weaknesses. Each session was presented by a different
instructor to show that there is no single way of examining a research paper, and
that different researchers will bring different perspectives to their assessment of

3This was later extended to a full paper at the International Conference on Hybrid Human-
AI (HHAI 2022) [96].
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papers. The following papers were covered during the discussion sessions: Hardt
et al. [49] on fairness; Ribeiro et al. [107] on transparency; and Abadi et al. [1]
on confidentiality.

5.5.3 Group Project

Reproduction of a FACT-AI paper

The purpose of the group project is to have students investigate the claims
made by the authors of recent FACT-AI papers by diving into the details of the
methods and their implementations. Using what they have learned from the
paper discussion sessions, students work in groups to re-implement an existing
FACT-AI algorithm from a top AI conference and re-run the experiments in
the paper to determine the degree to which they are reproducible (LO4). If
the code is already available, then they must extend the method in some way.
The project consisted of three deliverables: (i) a reproducibility report, (ii) an
associated code base, and (iii) a group presentation. In order to ensure the
project is feasible, we select 10–15 papers in advance for groups to choose from.
Our criteria for including papers is as follows:

• The paper is on a FACT-AI topic.

• At least one dataset in the paper is publicly available.

• Experiments can be run on a single GPU (which we provide access to).

• It is reasonable for a group of 3–4 MSc AI students to re-implement the
paper within the timeframe of the course. In our case, students work on
this project for one-month full-time.

To ease the load for our teaching assistants (TAs), we have several groups
working on the same paper. We assign papers to TAs based on their interests by
asking them to rank the set of candidate papers in advance. We also encourage
them to suggest alternative papers provided they fit the criteria. The TAs read
the papers before the course starts in order to ensure they have a sufficient,
in-depth understanding of the work such that they can guide students through
the project. This also serves as an extra feasibility check, to ensure that the
papers are indeed a good fit for our course.

Each group writes a report about their efforts following the structure of a
standard research paper (i.e., introduction, methodology, experiments, results,
conclusion). They also include aspects specific to reproducibility such as explain-
ing the difficulties of implementing certain components, as well as describing any
communication they had with the original authors. In addition to the source
code, students provide all results in a Jupyter notebook along with a file to
install the required environment.
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First Iteration: Contributing to an Open Source Repository

In the 2019–2020 iteration of the course, we created a public repository on
GitHub, which contains a selection of the implementations done by our students:
https://github.com/uva-fact-ai-course/uva-fact-ai-course. The TAs
who assisted with the course decided which implementations to include and
cleaned up the code so it all fit into one cohesive repository. This had multiple
motivations. First, it taught students how to improve the reproducibility of their
own work by releasing the code, while also giving them a sense of contributing to
the open-source community. Second, a public repository can serve as a starting
point for personal development in their future careers; companies often ask to
see existing code or projects that prospective employees have worked on. Some
students added the project to their CVs, while others wrote blog posts about
their experiences,4 linking back to the repository.

Second Iteration: The ML Reproducibility Challenge

In the 2020–2021 iteration of the course, we formally participated in the annual
ML Reproducibility Challenge [123] in order to expose our students to the
peer-review process. This gave students something to strive towards and offered
perspectives beyond simply getting a grade for the project. Most importantly, it
gave them the opportunity to experience the full research pipeline: (i) reading a
technical paper, (ii) understanding a paper’s strength and weaknesses, (iii) im-
plementing (and perhaps also extending) the paper, (iv) writing up the findings,
(v) submitting to a venue with a deadline, (vi) obtaining feedback, (vii) writing
a rebuttal, and (viii) receiving the official notification. To encourage students to
formally submit to the ML Reproducibility Challenge, we offered a 5% boost to
their final grades if they submitted. Of the 32 groups in the FACT-AI course, 30
(94%) groups submitted their reproducibility reports to the ML Reproducibility
Challenge, of which 9 groups had their papers accepted.

5.5.4 Online Course Format
The second iteration of the course was taught in January 2021, when the
COVID-19 pandemic forced us to move classes and interactions online. Students
made use of various channels to communicate: WhatsApp, Discord, and Slack.
Canvas was the primary mode of communication between the instructors and
the students, allowing students to ask questions and instructors to communicate
various announcements.

Lectures were live, with frequent Q&A breaks to stimulate interactivity.
Paper discussion sessions were organized in different online meeting subrooms
where students discussed the papers together. This proved to be a challenge:
while some subrooms had productive discussions, others struggled to get the
conversation going.

4https://omarelb.github.io/self-explaining-neural-networks/
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The reproducibility project was more difficult to launch remotely. Since
students had done online classes for their entire first semester, some struggled
to find a group of fellow students to team up with, especially those coming from
outside the MSc AI program. Overall, while we had various communication
means, the lack of physical interaction due to COVID-19 slowed down our course
organization.

5.6 Feedback
In this section, we discuss the feedback we received about the course from
the perspective of participating students (Section 5.6.1) and from the ML
Reproducibility Challenge reviews (Section 5.6.2).

5.6.1 Feedback from Students
Both iterations of the course were evaluated using the standard evaluation
procedure provided by the University of Amsterdam. However, only 16% of
students filled out the evaluation form (23 out of 144) in the 2020–2021 iteration,
potentially because the evaluation forms were administered online instead of
in-person. According to the evaluation procedure at our university, this is not
enough for a reliable quantitative estimate of student satisfaction. Therefore, we
focus on the 2019–2020 iteration when reporting student satisfaction statistics,
since 53% of students filled out the form (79 out of 149) that year. The vast
majority of students were (very) satisfied with the course overall (67.8%). More
specifically, students expressed satisfaction with the following dimensions:

• Academic challenge: 75.2% were (very) satisfied
• Supervision: 76.9% were (very) satisfied
• Feedback: 81.3% were (very) satisfied
• Workload: 91.3% were (very) satisfied
• Level of the course: 79.7% were (very) satisfied
• Level of the report: 94.8% were (very) satisfied
• Level of the presentation: 96.6% were (very) satisfied
Table 5.2(a) shows some of the qualitative feedback we received from stu-

dents. Based on this, we believe these high scores are mostly the result of the
reproducibility project. Students enjoyed doing the project, especially due to
the intensive supervision from our experienced TAs. The dimensions where we
received the lowest scores were on the lectures and the final presentation, where
only 30.6% and 30.2% were (very) satisfied with these aspects, respectively.
This may be because we only provided four (high-level) lectures on each of the
four topics, in order to give students as much time as possible to focus on the
reproducibility project. However, it should be noted that the overall scores for
these components were not poor, but average: 3.1/5 for lectures and 3.0/5 for
the presentation.
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Table 5.2: Feedback about the course.
(a) Feedback from students
• “Reproducing an article was hard and intensive but a really good experience.”

• “Replicating another study, seeing how (poorly) other research is performed
was really eye-opening.”

• “Reproducing a paper: I believe this is a good thing to do and is an important
part of academia.”

• “Gave good insights into the trustworthiness of research papers, which is
apparently not great.”

• “I appreciate the critical view I have developed on papers as a result of this
course. Normally I would easily accept the content of a paper, but I will be
more critical from now on, as many papers are not reproducible.”

• “I think it’s really good that we get some practical insights into reproducing
results from other papers, not all papers are as good as they seem to be.”

• “I really appreciated that this was the first course where students are judging
state-of-the-art AI-models. In other words, students were able to experience
the scientific workfield of AI.”

(b) Feedback from the ML Reproducibility Challenge
• “The report reveals a lot of dark spots of the original paper.”

• “Good reviews, strong reproducibility report, provides code reimplementation
from scratch which is a strong contribution.”

• “The discussion section is a great reference point for future work.”

• “The additional experimentation is rather impressive and the report reflects
an intuitive understanding of concepts such as coverage, correctness, and
counterfactual explanations.”

• “The report provides good insights on how the experiments in the original
paper actually work, while also generating new hypothesis to be tested for
future research, which is a positive outcome.”

• “My main concern is that it remains unclear why some of the results are so
far off from the original paper? I would have expected the authors to dig
deeper on that.”

• “It doesn’t go above and beyond the reproduction and does not offer novel
insights into the workings of the original paper.”

• “The submission failed at reproducing the original results. It is unclear whether
this is due to a difference in the experimental setup or due to implementation
errors. ”
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5.6.2 Feedback from the ML Reproducibility Challenge

Of the 30 reproducibility reports submitted to the ML Reproducibility Challenge
in the 2020–2021 iteration, 9 were accepted for publication in the ReScience
Journal. In total, the ML Reproducibility Challenge accepted 23 reports, meaning
that almost 40% of the reports accepted to the challenge were from the University
of Amsterdam.5

The reviews were mostly positive, with the general consensus being that
most teams had gone beyond the general expectation of simply re-implementing
the algorithm and re-running the experiments. Our TAs encouraged students to
examine the generalizability of the work that was reproduced, either by trying
new datasets or hyperparameters, or by performing ablation studies. Multiple
reproducibility reports managed to question the results of the original papers
with experimentally-supported claims. Importantly, some reviewers emphasized
that these reproducibility studies were solid starting points for future research
projects. For the reports that were rejected, the main critiques were that (i) only
a fraction of the original work was reproduced, or (ii) no new insights were given.
Some projects also had flaws in the experimental setup. See Table 5.2(b) for
quotes from the ML Reproducibility Challenge reviews.

5.7 Factors Contributing to a Successful Course

Understanding and re-implementing the work of other researchers is not a trivial
task, especially for first-year MSc students. There were several aspects of the
setup that we believe were beneficial for the students, which we organize along
three dimensions: (i) general, (ii) concerning FACT-AI, and (iii) concerning
reproducibility. We believe each of these factors is important for a successful
implementation of this course, or other similar courses.

5.7.1 General

Timing of the course

It is important that students have prior knowledge of ML theory as well as some
programming experience before completing a project-based course in groups. At
the University of Amsterdam, the FACT-AI course takes place after students
have completed 4 ML-focused courses (see Table 5.1). We believe it is extremely
important that students have access to adequate preparation, especially in terms
of programming experience, before setting off to reproduce experiments from
prominent AI papers. Without this prior knowledge, we believe such a project
would not be feasible in the allotted time frame.

5https://openreview.net/group?id=ML_Reproducibility_Challenge/2020
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Regular contact with experienced TAs

The TAs are there to help with two main components: (i) understanding the
paper, and (ii) debugging the implementation process. In practice, we found that
it is extremely important for the TAs to have excellent programming experience
since this is the main aspect students need help with. We also had a dedicated
Slack workspace for the TAs and course instructors to keep in touch regularly.

Since our course is only four weeks long, we found it was important for
students to have regular contact with their TAs to ensure no one got stuck in the
process. For the first (in-person) iteration of the course, groups had one-hour
tutorials with their TAs twice per week, where all groups that were working
on the same paper (and therefore had the same TA) were in the same tutorial.
Since they were all working on the same paper, there were many overlapping
questions, and students found it beneficial to be able to share their experiences
with one another. For the second (online) iteration of the course, we thought
it would be challenging to ensure each group got the attention they needed
if everyone was in one large online tutorial, so the TAs met with each group
separately for 30 minutes, twice per week.

Early feedback on the reports

Approximately halfway through the course, we asked students to submit a draft
report to their TAs in order to get feedback. We found this significantly increased
the quality of the final reports.

5.7.2 Concerning FACT-AI

Emphasizing the technical perspective of FACT-AI

Given that the FACT-AI course is situated in the context of a technical, research-
oriented MSc, having students re-implement research papers from top AI confer-
ences was an effective way to teach FACT-AI topics for our students. Teaching
FACT-AI from a primarily technical perspective aligns well with what students
expect from the MSc AI program at the University of Amsterdam. Although
we believe a technical focus makes sense for our MSc program, we also believe
it is important to incorporate non-technical perspectives into the course – see
Section 5.8.2.

Creating resources for the FACT-AI community

We believe a significant motivating factor for students was creating concrete
output that extended beyond simply completing a project for a course: creating
resources for the FACT community. In the 2019–2020 iteration, this was done by
creating a public repository with the best FACT-AI algorithm implementations,
as selected by the TAs. In the 2020–2021 iteration, this was done by publicly
submitting their reproducibility reports about FACT-AI algorithms to the ML
Reproducibility Challenge, where the accepted reports were published in the
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ReScience Journal. In the future, we plan to continue aligning our course with
the ML Reproducibility Challenge since we found the process extremely beneficial
for our students.

5.7.3 Concerning Reproducibility

Including extension as part of reproducibility

If source code was already available for the paper – which is fortunately becoming
increasingly common for AI research papers – we asked students to think about
how to extend the paper since the implementation was already available. This
resulted in some creative and interesting ideas in the reports, and we believe
this is why our students performed well at the ML Reproducibility Challenge.

Simple grading setup

For a 4-week, project-based course, we found it was beneficial for students to focus
on one main deliverable consisting of three components: (i) the reproducibility
report, (ii) the associated code base, and (iii) the group presentation. The report
that students submitted for the course was the same one they submitted to the
ML Reproducibility Challenge. This way, participating in the ML Reproducibility
Challenge was not an extra task but rather an integral part of the course.

5.8 Areas of Improvement
Although we believe both iterations of the course went well, there are several
aspects of the setup that we believe could use some improvement and other
instructors should consider if they plan to implement a similar course.

5.8.1 General
Given that this is the first time most students are formally submitting a paper, it
is not surprising that there were some logistical issues. Some groups made minor
mistakes such as forgetting to submit their work double-blind or slightly missing
the submission deadline. We also had some groups who wrote the introduction
sections of their papers as an introduction to the FACT-AI course, rather than
an introduction to the topic they were working on. In future iterations, we will
explicitly state the standard procedures of writing and submitting a paper and
provide some examples.

5.8.2 Concerning FACT-AI
Although focusing primarily on the technical aspects of FACT-AI is an effective
way to engage our technical students in socially-relevant AI problems, we also
believe that they would benefit from additional non-technical perspectives on
FACT-AI topics. In the future, we plan to include perspective from outside of
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computer science through (i) additional guest lectures, (ii) workshop sessions
[117, 120], and (iii) broader impact statements [19] in the reproducibility reports.

5.8.3 Concerning Reproducibility
In future iterations, we believe it would be useful to show students more examples
of what a high-quality reproducibility paper looks like and explain in-depth
why it is high-quality. These could be papers that were previously accepted to
the ML Reproducibility Challenge, or papers from other reproducibility efforts
outlined in Section 5.3. We want the students to understand what makes a
paper a good (reproducibility) paper, that is, it has a set of (reproducibility)
claims, it argues for these claims, and shows evidence to support these claims.

5.9 Conclusion
In this chapter, we share our setup for the FACT-AI course at the University of
Amsterdam, which teaches FACT-AI topics through reproducibility. The course
set out to give students (i) an understanding of FACT-AI topics, (ii) an under-
standing of algorithmic harm, (iii) familiarity with recent FACT-AI methods,
and (iv) an opportunity to reproduce FACT-AI solutions, through a combination
of lectures, paper discussion sessions and a reproducibility project. Through
their projects, our students engaged with the open-source community by creating
a public code repository (in the 2019–2020 iteration), as well as with the research
community via successful submissions to the ML Reproducibility Challenge (in
the 2020–2021 iteration). We also detail how the 2020–2021 iteration brought
about its own unique set of challenges due to the COVID-19 pandemic.

In this course, we illustrate that reproducibility should be viewed as a
fundamental component of FACT-AI. We received very positive feedback on
teaching FACT-AI topics through reproducibility. We believe this was an
excellent fit for our students, which not only helped motivate them for the
duration of the course, but also helped them develop skills that will be essential
in their future research careers, whether in the private or public sector.

With this final chapter, we answer RQ4: we can use reproducibility as a
mechanism for teaching responsible AI concepts to a technical, research-oriented
audience. Structuring the course around a reproducibility project gives students
the opportunity to learn about responsible AI concepts, such as explainability, in
a hands-on manner. Since the publication of the paper on which this chapter is
based [83], we ran another iteration of the FACT-AI course in 2021–2022 under
the same setup as the previous year, where students submitted their reports
to the 2022 edition of the ML Reproducibility Challenge. 21 of the 43 papers
accepted to the ML Reproducibility Challenge in 2022 were from students in the
FACT-AI course. These also included some awards: the Best Paper Award was
awarded to a group from the FACT-AI course as well as 2 of the 4 Outstanding
Paper Awards. We believe this indicates that our course setup can serve as a
starting point for effective participation in the broader ML research community.
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Chapter 6

Conclusions

In this thesis, we have investigated explainability in ML from three viewpoints:
(i) algorithms, (ii) users, and (iii) pedagogy. In this final chapter of the thesis,
we revisit the research questions from Chapter 1, state our main findings in
Section 6.1, and identify directions for future work in Section 6.2.

6.1 Main Findings
In this section, we describe our main findings across the three parts of the thesis.

6.1.1 Algorithms
The first part of this thesis focused on investigating behavior-based explanations
in order to explain individual predictions from specific types of ML models. In
Chapter 2, we asked our first research question:

RQ1 Can we generate counterfactual explanations for tree-based models using
gradient-based optimization?

The answer to RQ1 is yes: we are able to explain predictions for tree ensembles in
a counterfactual manner by including differentiable approximations of tree-based
models within a standard gradient-based optimization framework. In the majority
of experimental settings, our method outperforms existing baselines in terms of
(i) the number of counterfactual examples produced, (ii) the average distance
between the counterfactual examples and the original examples, and (iii) the
proportion of counterfactual examples that are closer to the original examples.
Our method is flexible since it can produce different types of counterfactual
explanations depending on which distance function we choose to include in the
loss function. In practice, this allows the user to customize the explanations
depending on the use case.

We then turned to our next research question:

RQ2 Can we extend our counterfactual explanation method for tree-based
models to graph-based models?

The answer to RQ2 is yes: we can adapt our method from RQ1 to the graph
setting by introducing a binary perturbation matrix that is multiplied element-
wise with the adjacency matrix in order to remove edges from the graph. Since
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this was one of the first methods for generating counterfactual explanations for
GNNs, we also had to design a corresponding experimental setup to evaluate it.
In the majority of experimental settings, we found that our method outperformed
the baselines in terms of (i) accuracy, (ii) the number of counterfactual examples
produced, (iii) the number of edges removed, and (iv) the proportion of the
subgraph neighborhood that was perturbed.

6.1.2 Users
In the second part of this thesis, we continued our work on behavior-based
explanations, but shifted our predominantly algorithmic focus to also account for
the users who consume the explanations. We investigated the following research
question:

RQ3 Given a real-world use case, can we create an explanation method based
on this use case and evaluate it in a context-specific manner?

The answer to RQ3 is yes: we developed an explanation method based on
the needs of real-world analysts in order to help them understand large errors
in sales forecasting predictions. We designed a user study to evaluate our
method and found that for the vast majority of users, our explanations were
both interpretable and actionable. We also found that most users believed the
explanations helped them understand large errors in predictions, but they did
not have an impact on other aspects such as trust or confidence in the model.

6.1.3 Pedagogy
In the third part of this thesis, we transitioned from creating knowledge about ML
model predictions to communicating knowledge about responsible ML practices.
Process-based explanations play an important role here, specifically in the
context of documentation practices which help ensure research is conducted in a
responsible and reproducible manner. We asked our final research question:

RQ4 How can we teach about responsible AI topics to a technical, research-
oriented audience?

We answered RQ4 by developing a course that was centered on a reproducibility
project, where students worked in groups to reimplement algorithms from top-AI
conferences on responsible AI topics. We shared our experiences with teaching
the course over two academic years and suggested best practices for implementing
similar reproducibility courses in the future.

6.2 Future Directions
In this section, we describe some limitations of the methods proposed in this
thesis and identify potential avenues for future work.
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Limitations of counterfactual explanations

Researchers have raised concerns about the hidden assumptions behind the use of
counterfactual examples [8], as well as potentials for misuse [65]. When explaining
ML models using counterfactual examples, it is important to account for the
context in which the systems are deployed. Counterfactual explanations are not
a guarantee to achieving recourse [136] – changes suggested should be seen as
candidate changes, not absolute solutions, since what is pragmatically actionable
differs depending on the end user and context. While existing research from the
cognitive sciences has shown that humans are able to interpret counterfactual
explanations, the notion of what constitutes a minimal perturbation is not
clear [18]. Further research into the interpretability and cognitive efficacy of
counterfactual explanations could help the field better understand the appropriate
criteria to optimize for.

Accommodating different types of perturbations

In Chapter 3, we proposed a method for generating counterfactual explanations
for GNNs. In its current form, our method is limited to performing edge deletions
for node classification tasks. Given that many graph datasets also include node
features, future work should involve incorporating node feature perturbations
in our framework. We could also extend our method to accommodate graph
classification tasks.

Including additional criteria in loss functions

In Chapter 2, we proposed a method for generating flexible counterfactual
explanations for tree-based models using gradient optimization techniques. The
flexibility comes from varying the distance function used in the loss function,
which results in different types of counterfactual explanations depending on
which distance function is chosen. Future work could involve trying alternative
distance functions or including additional criteria in the loss function, such
as proximity to other points in the dataset or stability of the counterfactual
example. This could also be applied to the method proposed in Chapter 3.

Evaluating with users

Although the counterfactual explanations proposed in Chapters 2 and 3 perform
well on various distance metrics, we should conduct a user study to evaluate how
useful they are in practice. We could build on our existing user study design from
Chapter 4 to test how (i) varying the distance functions, and (ii) introducing new
components into the loss functions impacts user preferences for counterfactual
explanations.
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Improving trust in explanations

In Chapter 4, we proposed a method for explaining errors in forecasting pre-
dictions based on identifying unusual feature values. We find that although
explanations from our method help users understand large errors in predictions,
they do not have an impact on users’ trust, deployment support, or perception
of the model’s performance. Future work could place more emphasis on trying
to improve these aspects, for example by allowing a predictive model to abstain
from prediction when a particular instance has unusual feature values beyond a
certain threshold.

Developing robust protocols for XAI evaluation

In general, we believe it is crucial for the ML community to invest in developing
more rigorous evaluation protocols for XAI methods, both in terms of user studies
as well as formal metrics. The XAI community could pursue collaborations
with researchers from human-computer interaction to design human-centered
user studies about evaluating the utility of XAI methods in practice. To design
metrics, the XAI community could try borrowing ideas from information theory
or collaborating with ML evaluation researchers in order to ensure that the
explanations we generate are truly representative of the model’s behavior.

Teaching reproducibility as a fundamental component of ML research

Reproducibility mechanisms such as checklists and challenges can help promote
reproducible research practices, but we do not believe they alone are enough to
cause a shift in the ML community. We believe the key to fostering reproducible
research starts in the classroom. It is important to teach the next generation
of ML researchers that reproducibility is not an afterthought, but rather a
fundamental component of conducting ML research responsibly. In addition
to conducting reproducibility projects, we could also introduce reproducibility
components in programming assignments across all courses within an ML study
program.

Identifying consistent terms for explainability

Due to growing collection of XAI literature, there are many definitions for various
distinct but related concepts such as explainability, interpretability, transparency,
and intelligibility. As a community, we should make an effort to standardize
the terms we use in order to facilitate easier communication, especially with
researchers from non-ML disciplines. Developing XAI that is useful in practice
requires interdisciplinary collaboration, which is more straightforward if we can
all speak the same language. This could be achieved through a workshop-style
event with researchers working on XAI to consolidate a standardized terminology.
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Final thoughts

Overall, our main advice for future work is to continue prioritizing explainability
in the ML community, whether it is behavior-based or process-based. For both
types of explanations, we should explore developing explainability techniques
that cater to different types of users with varying levels of granularity, as well as
robust mechanisms for evaluation. As a community, we need to prioritize both
correctness and interpretability of explanations – incorrect explanations that are
interpretable do not provide the user with any concrete information, and correct
explanations that are uninterpretable are not useful to the user. To promote
correctness, we need to first identify what it means for an explanation to be
“correct” and create datasets that allow us to explore this task explicitly. To
promote interpretability, we need to approach the explainability problem from
an interdisciplinary perspective, and suggest that XAI researchers spend more
time connecting to the communities they are designing the explanations for.
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[111] Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-
Robert Müller. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning.
Springer, 2019. (Cited on page 30.)

[112] Michael Sejr Schlichtkrull, Nicola De Cao, and Ivan Titov. Interpreting Graph Neural
Networks for NLP With Differentiable Edge Masking. International Conference on
Learning Representations, 2021. (Cited on pages 30 and 31.)

[113] Thomas Schnake, Oliver Eberle, Jonas Lederer, Shinichi Nakajima, Kristof T. Schütt,
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Summary

Model explainability has become an important problem in artificial intelligence
(AI) due to the increased effect that algorithmic predictions have on humans.
Explanations can help users understand not only why AI models make certain
predictions, but also how these predictions can be changed. In the first part of
this thesis, we investigate counterfactual explanations: given a data point and
a trained model, we want to find the minimal perturbation to the input such
that the prediction changes. We frame the problem of finding counterfactual
explanations as a gradient-based optimization task and first focus on tree
ensembles. We extend previous work that could only be applied to differentiable
models by incorporating probabilistic model approximations in the optimization
framework, and find that our counterfactual examples are significantly closer
to the original instances than those produced by other methods specifically
designed for tree-based models.

We then extend our method for generating counterfactual explanations
for tree ensembles to accommodate graph neural networks (GNNs), given the
increasing promise of GNNs in real-world applications such as fake news detection
and molecular simulation. We do so by introducing a perturbation matrix that
acts on the adjacency matrix in order to iteratively remove edges from the
graph, and find that our method primarily removes edges that are crucial for
the original predictions, resulting in minimal counterfactual explanations.

In the second part of this thesis, we investigate explanations in the context of
a real-world use case: sales forecasting. We propose an algorithm that generates
explanations for large errors in forecasting predictions based on Monte Carlo
simulations. To evaluate, we conduct a user study with 75 users and find that
the majority of users are able to accurately answer objective questions about the
model’s predictions when provided with our explanations, and that users who
saw our explanations understand why the model makes large errors in predictions
significantly more than users in the control group. We also conduct an in-depth
analysis of the difference in attitudes between practitioners and researchers, and
confirm that our results hold when conditioning on the users’ background.

In the final part of the thesis, we explain the setup for a technical, graduate-
level course on responsible AI topics at the University of Amsterdam, which
teaches responsible AI concepts through the lens of reproducibility. The focal
point of the course is a group project based on reproducing existing responsible
AI algorithms from top AI conferences and writing a corresponding report.
We reflect on our experiences teaching the course over two years and propose
guidelines for incorporating reproducibility in graduate-level AI study programs.
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Samenvatting

De uitlegbaarheid van voorspellende modellen is een belangrijk probleem gewor-
den in kunstmatige intelligentie (KI) vanwege het toegenomen effect dat al-
goritmische voorspellingen hebben op mensen. Een uitleg kan gebruikers niet
alleen helpen om te begrijpen waarom KI-modellen bepaalde voorspellingen
doen, maar ook hoe deze voorspellingen bëınvloed kunnen worden. In het eerste
deel van dit proefschrift onderzoeken we contrafeitelijke verklaringen: we willen,
gegeven een datapunt en een getraind model, de minimale verandering van
de input vinden die de voorspelling verandert. We formuleren het probleem
van het vinden van contrafeitelijke verklaring als een op gradiënten gebaseerde
optimalisatietaak en richten ons eerst op tree ensembles. We bouwen voort op
eerder werk dat alleen kon worden toegepast op differentieerbare modellen, door
probabilistische modelbenaderingen op te nemen in het optimalisatiekader, en
komen tot de bevinding dat onze contrafeitelijke voorbeelden significant dichter
bij het oorspronkelijke datapunt liggen dan de voorbeelden die geproduceerd
worden door andere methoden, die specifiek zijn ontworpen voor modellen die
op bomen zijn gebaseerd.

Vervolgens breiden we onze methode voor het genereren van contrafeitelijke
verklaringen uit voor tree ensembles zodat die ook werkt voor graph neural
networks (GNNs), gezien de toenemende belofte van GNNs voor toepassingen in
de echte wereld, zoals de detectie van nepnieuws en moleculaire simulatie. We
bereiken dit door een perturbatiematrix te introduceren die de elementen uit de
bogenmatrix vermenigvuldigt om iteratief zijden van de graaf te verwijderen, en
komen tot de bevinding dat onze methode voornamelijk zijden verwijdert die
cruciaal zijn voor de oorspronkelijke voorspelling, wat resulteert in een minimale
contrafeitelijke verklaring.

In het tweede deel van dit proefschrift onderzoeken we verklaringen in de
context van een praktijkvoorbeeld: verkoopprognoses. We introduceren een
algoritme dat verklaringen genereert voor grote fouten bij het doen van re-
gressievoorspellingen op basis van Monte Carlo-simulaties. We evalueren door
middel van een gebruikersonderzoek met 75 deelnemers. We komen tot de
bevinding dat de meerderheid van de gebruikers in staat is accuraat antwoord
te geven op meerkeuzevragen over de voorspellingen van het model wanneer zij
voorzien zijn van onze uitleg. Daarnaast komen we tot de bevinding dat gebruik-
ers die onze uitleg zagen, significant vaker dan gebruikers uit de controlegroep
begrijpen waarom het model grote fouten maakt in voorspellingen. We voeren
ook een analyse uit van het verschil in attitudes tussen praktijkbeoefenaars
en onderzoekers, en bevestigen dat onze resultaten stand houden gegeven de
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achtergrond van de gebruiker.
In het laatste deel van dit proefschrift behandelen we de opzet van een

technisch vak op masterniveau over verantwoord gebruik van KI, gegeven aan
de Universiteit van Amsterdam. In dit vak worden verantwoorde KI-concepten
vanuit het oogpunt van reproduceerbaarheid gedoceerd. Het speerpunt van de
cursus is een groepsproject dat gebaseerd is op het reproduceren van bestaande
verantwoorde KI-algoritmen van vooraanstaande KI-conferenties en het schrijven
van een bijbehorend rapport. We reflecteren op onze ervaringen met het geven
van de cursus gedurende twee jaar en stellen richtlijnen voor voor het opnemen
van reproduceerbaarheid in KI-studieprogramma’s op masterniveau.
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