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1 Introduction

Nearly a decade ago, Schild [23] observed and exploited the close correspondence between description
logics and modal languages. He used it as a bridge to transfercomplexity results and axiomatizations
from modal logics to description logics but noticed that thecorrespondence can only be established
at the level ofconcept satisfiability. Basic modal logic is not expressive enough to account for either
A-Box reasoning or inference in the presence of definitions (non-empty T-Boxes). Also, some very
expressive description languages include constructions for building complex roles such as intersec-
tion, converse, and even transitive closure. By lifting thecorrespondence to Converse Propositional
Dynamic Logic (CPDL) [9], Schild accounted for these constructions and for inference from non-
empty T-Boxes. De Giacomo and Lenzerini [8] extended these results by encoding A-Box reasoning
in CPDL. While embeddings of description logics into CPDL have proved useful, they have two im-
portant disadvantages. Complexity-wise, the local satisfiability problem of CPDL (i.e., the problem
of finding, given a CPDL formulaφ, a modelM and a statem such thatM,m  φ) is already EXP-
TIME-complete, and this prohibits sharp complexity results. Moreover, with respect to expressive
power, the model theory of CPDL is complex, because the Kleene star (and hence a weak notion of
induction) needs to be taken into consideration.

In this paper, we replace CPDL by hybrid languages and in thisway improve on the issues above.
As we will see below, the connection between description andhybrid logics is very tight. The main
aim of the paper is to establish this connection, using the description logicALC as our starting point,
and to give an impression of its benefits in terms of results oncomplexity, expressive power, and
meta-logical properties like interpolation and Beth definability.

We start by providing some background. We then recall relevant work by Schild, and De Giacomo
and Lenzerini. After that we set up the link between hybrid and description logics, and exploit it.

§1.1 Description Logic. Description logics (DLs) are a family of formal languages with a clearly
specified semantics, usually in terms of first-order models,together with inference mechanisms to
account for knowledge classification. One of the main aims isto identify fragments of first-order
logic that are able to capture the features needed for representing a particular problem domain, and
which still admit efficient reasoning algorithms.
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Constructor Syntax Semantics

concept name C CI

top > ∆I

negation (C) ¬C ∆I \ CI

conjunction C1 u C2 CI

1 ∩ CI

2

disjunction (U) C1 t C2 CI

1 ∪ CI

2

universal quant. ∀R.C {d1 | ∀d2∈∆I .(RI(d1, d2) → d2 ∈ CI)}
existential quant. (E ) ∃R.C {d1 | ∃d2∈∆I .(RI(d1, d2) ∧ d2 ∈ CI)}
one-of (O) {a1, . . . , an} {d | d = aI

i for someai}
role filler (B) ∃R.{a} {d | RI(d, aI)}

role name R RI

role conjunction (R) R1 u R2 RI

1 ∩ RI

2

inverse roles (I) R−1 {(d1, d2) | RI(d2, d1)}

Table 1: Common operators of description logics.

Let CON = {C1, C2, . . .} be a countable set ofatomic concepts, ROL = {R1, R2, . . .} a count-
able set ofatomic roles, and IND = {a1, a2, . . .} a countable set ofindividuals. For CON, ROL,
IND, all pairwise disjoint,S = 〈CON, ROL, IND〉 is a signature. An interpretationI for S is a
tuple I = 〈∆I , ·I〉, where∆I is a non-empty set, and·I assigns elementsaIi ∈ ∆I to constants
ai, subsetsCI

i ⊆ ∆I to atomic conceptsCi, and relationsRI
i ⊆ ∆I × ∆I to atomic rolesRi. The

atomic symbols in a DL signature can be combined by means ofconceptand role constructors, to
form complex expressions. Table 1 defines the constructors for the DLs we will discuss, together with
their semantics. It is customary to define systems by postfixing the names of some basic description
languages likeAL orFL with the names of the added operators from Table 1. In this paper, we will be
interested in languages having full Boolean expressivity and hence focus onALC and its extensions.

In DLs we want to perform inferences given certain background knowledge. LetL be any descrip-
tion logic, aknowledge baseΣ in L is a pairΣ = 〈T,A〉 such thatT is the T(erminological)-Box: a
finite, possibly empty, set of expressions of the formC1 v C2, whereC1, C2 ∈ CON(L) (C1

.
= C2

is short forC1 v C2 andC2 v C1). Formulas inT are calledterminological axioms. In addition,A
is the A(ssertional)-Box: a finite, possibly empty, set of expressions of the formsa : C or (a, b) :R
whereC is in CON(L),R is in ROL(L) anda, b are individuals. Formulas inA are calledassertions.
Our definitions of terminological axioms and assertions areamongst the most general in the literature
(and we will generalize them even further below).

Let I be an interpretation andφ a terminological axiom or assertion. ThenI modelsφ (notation,
I |= φ) if φ = C1 v C2 andCI

1 ⊆ C2
I , or φ = a : C andaI ∈ CI , or φ = (a, b) : R and

(aI , bI) ∈ RI . If Σ = 〈T,A〉 is a knowledge base andI an interpretation, thenI modelsΣ (notation:
I |= Σ) if for all φ ∈ T ∪ A,I |= φ. Given a knowledge baseΣ and a terminological axiom or
assertionφ, we writeΣ |= φ if for all modelsI of Σ we haveI |= φ. All standard description logic
reasoning tasks (like subsumption or instance checking) can be defined in terms of this relation.

§1.2 Hybrid Logic. Modal formulas are evaluated at a givenstatein a model, and their truth values
depend on the value of formulas at some relatedstates. Yet, nothing in modal syntax gets to grips with
thestatesthemselves. Hybrid languages are modal languages which solve this “reference problem”
by introducing special symbols, callednominals, to explicitly name the states in a model.

The basic hybrid language isHN, basic modal logic extended with nominals. Further exten-
sions are named by listing the added operators. The most expressive system we will discuss is
HN(〈R−1〉,E,@), the basic hybrid language extended with the converse (past) and existential modal-
ities, and the@ operator. More precisely, letREL = {R1, R2, . . .} be a countable set ofrelation
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symbols, PROP = {p1, p2, . . .} a countable set ofproposition letters, andNOM = {i1, i2, . . .} a
countable set ofnominals. ATOM = PROP ∪ NOM is the set ofatoms. The formulas of the hybrid
languageHN(〈R−1〉,E,@) in the signature〈REL,PROP,NOM〉 are

FORMS := > | a | ¬φ | φ1 ∧ φ2 | 〈R〉φ | 〈R−1〉φ | Eφ | @iφ,

wherea ∈ ATOM, R ∈ REL, i ∈ NOM, andφ, φ1, φ2 ∈ FORMS.
A hybrid modelM is a tripleM = 〈M, {Ri}, V 〉 whereM is a non-empty set,{Ri} is a set of

binary relations onM , andV : PROP ∪ NOM → Pow(M) is such that for all nominalsi ∈ NOM,
V (i) is a singleton subset ofM . Let M = 〈M, {Ri}, V 〉 be a model andm ∈ M . The interesting
cases of thesatisfiability relationare as follows:M,m  a iff m ∈ V (a), a ∈ ATOM; M,m 

〈R〉φ iff ∃m′ (R(m,m′) & M,m′  φ); M,m  〈R−1〉φ iff ∃m′ (R(m′,m) & M,m′  φ);
M,m  Eφ iff ∃m′ (M,m′  φ); andM,m  @iφ iff M,m′  φ, whereV (i) = {m′}, i ∈ NOM.

We writeM  φ iff for all m ∈ M , M,m  φ. This notion extends to sets of formulas in the
standard way. A formulaφ is satisfiableif there is a modelM and a worldm ∈ M with M,m  φ.
A formula φ is valid if for all modelsM, M  φ. φ is a local consequenceof a set of formulasT
(notation,T |=loc φ), if for all modelsM and pointsm ∈ M , M,m  T impliesM,m  φ; φ is a
global consequenceof a set of formulasT (notation,T |=glo φ), if for all modelsM, M  T implies
M  φ. WhenT is the empty set, we have{} |=glo φ iff {} |=loc φ, and simply write|= φ.

2 Schild’s Terminologies

It is straightforward to map concepts inALC into formulas of CPDL, while preserving satisfiability
— actually, basic poly-modal logic is enough. Just define thetranslation·t by putting (Ci)

t = pi,
for Ci an atomic concept;(¬C)t = ¬(Ct); (C u D)t = Ct ∧ Dt; and (∃R.C)t = 〈R〉Ct. It
is clear that·t preserves satisfiability. But we need further expressive power to account for T-Box
and A-Box reasoning. The standard notion of bisimulation [6] helps us prove this claim. Consider
the signatureS = 〈{C1, C2}, {R}, {a}〉 and the interpretationsI1 = 〈{m1,m2}, ·

I1〉 andI2 =
〈{m3,m4,m5}, ·

I2〉 whereCI1

1 = {m1}, CI1

2 = {m1,m2}, RI1 = {}, aI1 = m1; andCI2

1 {m4},
CI2

2 = {m3}, RI2 = {}, aI2 = m5.
Clearly,I1 models bothC1 v C2 anda :C1 while I2 models neither. On the other hand, when we

considerI1 andI2 as modal models, the relation{(m2,m3)} is a bisimulation. But we should take
care:C1 v C2 anda :C1 areglobal notions, they are true of an element of a model if and only if they
are true of all elements. On the other hand, basic modal formulas arelocal, the point of evaluation
is relevant for their truth. Let’s go through our argument taking special care of this issue. If a modal
formulaφ is equivalent toC1 v C2 then it would also behave globally, andC1 v C2 being true ofI1

would implyφ being true ofm2. By bisimulationφwould also be true ofm3 and by “global behavior”
of I2. But it isn’t. We can give a similar argument fora :C1. This switch between a local and a global
perspective is one of the main differences between modal anddescription languages. Because of this,
we have incorporated the existential modalityE in our hybrid languages. LetA be the dual ofE, i.e.,
Aψ ↔ ¬E¬ψ, thenM  φ iff M,m  ¬E¬φ for somem ∈M . In other words,E lets us talk about
globality from a local perspective.

Instead of usingE, Schild [23] accounts for terminological axioms by using the collapsed model
property of CPDL (any satisfiable CPDL formula is satisfiablein a connected model) and the avail-
ability of the Kleene star. Due to the former, we can ignore states which are not reachable by a finite
sequence of backwards and forwards transitions. Thanks to the Kleene star we can “step over” all
these transitions in one step. Formally, extend·t by putting (C v D)t = (Ct → Dt). And for a
finite set of terminological axiomsT , let T t be

∧

φti, whereφi ∈ T . Now, letT ∪ {φ} be a finite
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set of terminological axioms, and letR1, . . . , Rn be all the roles inT ∪ {φ}. Then〈T, {}〉 |= φ iff
|= [(R1 ∪R

−1
1 ∪ · · · ∪Rn ∪R

−1
n )∗]T t → φt.

As Schild remarks, this translation would not work for an infinite T . On the one hand,T might
contain an infinite number of roles, but even in the case of a finite signature, PDL is not compact
(see [12, Theorem 2.15]), hence inference from infinite setsdoes not coincide with inference in terms
of finite sets. But more importantly, lack of compactness hasa striking effect on the complexity of the
consequence problem, which becomes highly undecidable, anindication that PDL is not computation-
ally well behaved. The computational problems caused by theKleene star have been well investigated
both in the modal and description logic community [17, 11, 22, 13]; and authors like Sattler, and Hor-
rocks and Gough have argued that in many cases the ability to define a role as transitive is all what is
needed in applications, instead of the full power of transitive closure.

It pays off to look carefully at the local vs. global issue. Tofully appreciate the subtleties here, we
will do so in the following section.

3 Global and Local Consequence

In Section 1 we introduced two notions of consequence for hybrid languages, alocal one and aglobal
one. The two notions of consequence are different because ofthe relativization to worlds. Perhaps it is
simpler to discuss consequence in first-order terms, especially if we think of the first-order translation
of hybrid or description formulas. The two notions of consequence are always available when we deal
with formulas instead of sentences. Given a set of formulas which might contain free variables, the
way we define the quantification over models and first-order assignments becomes meaningful.

The global consequence relation is the one familiar from first-order logic, but it is always defined
for sentences. When we consider formulas instead, the local definition becomes interesting. Because
modal and hybrid formulas may contain free variables when translated into a first-order language, it
is important to understand the connection between these twonotions of consequence.

Proposition 3.1 ([5], Lemma 2.33)For T a set of modal formulas (in a basic mono-modal lan-
guage), letBOXED(T ) = {2iψ | ψ ∈ T andi ≥ 0}, where2

iψ is the formula obtained from
ψ by prefixing a string of lengthi, of 2 operators. Then, for any setT ∪ {φ} of modal formulas,
T |=glo φ iff BOXED(T ) |=loc φ.

The proof uses the fact that the collapsed model property holds for the basic modal language. The
extension to multi-modal languages is trivial, just redefine BOXED to include all possible boxed
prefixes in the multi-modal signature. For languages without theE operator, the proof boils down to
finding suitable notions of the collapsed model property. Ifthe language does containE, the relation
between|=glo and|=loc is straightforward:

T |=glo φ iff {Aψ | ψ ∈ T} |=loc φ. (1)

Goranko and Passy [10] study properties of languages containing the existential modality, and prove
that global properties of a logicL correspond to the local properties of the logicLE which arises from
L by addingE. In particular, for basic modal logics, global decidability, global finite model property,
and global completeness of a logicL are equivalent to their local versions forLE. This result can be
extended to many hybrid languages; before stating it, we establish a normal form for hybrid formulas.

Proposition 3.2 Letφ be a hybrid formula, thenφ is equivalent to a formulaφ′ where subformulas
of the formEψ and@iψ (if any) occur only at modal depth0. In particular,φ′ can be taken to be

∧

l∈L

(

∨

m∈M Aρ(l,m) ∨ Eσl ∨
∨

i∈NOM(φ) @iν(l,i) ∨ τl
)

,
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for some (possibly empty) index setsL, M , whereρ(l,m), σl, νl,i and τl contain neitherE nor @.
Furthermore,|φ′| is polynomial in|φ|.

Proof. We start by translatingφ into negation normal form. Then we use the following equivalences
to “push out” theE andA operators from inside the other modalities

[Ri]Aψ ↔ [Ri]⊥ ∨ Aψ @sAψ ↔ Aψ

[Ri]Eψ ↔ [Ri]⊥ ∨ Eψ @sEψ ↔ Eψ

[Ri](θ ∨ Aψ) ↔ [Ri]θ ∨ Aψ @s(θ ∨ Aψ) ↔ @sθ ∨ Aψ

[Ri](θ ∨ Eψ) ↔ [Ri]θ ∨ Eψ @s(θ ∨ Eψ) ↔ @sθ ∨ Eψ

[Ri](θ ∧ Aψ) ↔ [Ri]θ ∧ [Ri]Eψ @s(θ ∧ Aψ) ↔ @sθ ∧ Eψ

[Ri](θ ∧ Eψ) ↔ [Ri]⊥ ∨ ([Ri]θ ∧ [Ri]Eψ) @s(θ ∧ Eψ) ↔ @sθ ∧ Eψ.

Similar equivalences hold for the dual modalities〈Ri〉 (@ is self dual). For pushing out@ we have

[Ri]@iψ ↔ [Ri]⊥ ∨ @iψ @s@iψ ↔ @iψ

[Ri](θ ∨ @iψ) ↔ [Ri]θ ∨ @iψ @s(θ ∨ @iψ) ↔ @sθ ∨ @iψ

[Ri](θ ∧ @iψ) ↔ [Ri]θ ∧ [Ri]@iψ @s(θ ∧ @iψ) ↔ @sθ ∧ @iψ.

And similarly for the@ operators appearing under〈Ri〉. Now, it only remains to use propositional
equivalences to obtain the normal form forφ. a

Theorem 3.3 Let the propertyP be either decidability, finite model property, or axiomaticcomplete-
ness, and letL be any sublanguage ofHN(〈R−1〉,@). ThenL hasP globally iff LE hasP locally.

Going back to description languages, notice that if we use|=glo instead of|=loc, then basic modal
logic is enough to encode terminological axioms, as the following equivalence holds:〈T, {}〉 |=
φ iff T t |=glo φt. By using (1), in the presence ofE we can move to〈T, {}〉 |= φ iff {A(T t)} |=loc φt.
And given that the local consequence relation satisfies the deduction theorem, we end up with

〈T, {}〉 |= φ iff |= A(T t) → φt.

By Theorem 3.3, then, we can study logical properties of inference from non-empty knowledge bases
through local properties of languages containingE. If the logic is compact, we can perform this reduc-
tion even for infinite T-Boxes, but most importantly by replacing the Kleene star with the existential
modality we obtain a language with a much better behaved and understood model theory.

4 De Giacomo’s Individuals

Accounting for assertional information in CPDL is more complicated than encoding terminological
axioms. Below we present a simplified version of a translation proposed by De Giacomo and Lenz-
erini [8]; the latter enforce the unique name assumption andalso deal with complex structure on roles
(union, composition, transitive closure, etc.) which makes for the additional complexity. Here, we
only discuss the handling of individuals.

Extend the translation·t defined in Section 2 to assertions by defining(a : C)t = pa → Ct,
and((a, b) : R)t = pa → 〈R〉pb, wherepa andpb are propositional symbols. LetA be a finite set
of assertions, defineAt as

∧

φti for φi ∈ A. The problem now is that in translatingindividuals as
propositionsin CPDL we have lost the information that individuals denotea single element in the
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domain. Hence, we have to explicitly force these symbols to behave as individuals. LetΣ = 〈T,A〉
be a knowledge base,R1, . . . , Rn the roles appearing inΣ, a1, . . . , am the individuals mentioned in
Σ, and letSF(φ) be the set of all subformulas ofφ. Let [U ] stand for[(R1 ∪R

−1
1 ∪ · · · ∪Rn∪R

−1
n )∗],

and letS be a role not inΣ. Let Σt be

[S][U ](At ∧ T t) ∧
∧

1≤i≤m



〈S〉pai
∧





∧

ψ∈SF(T t∧At)

[S](〈U〉(pai
∧ ψ) → [U ](pai

→ ψ))







 .

We will prove thatΣ is consistent if and only ifΣt is satisfiable. This is enough because in sufficiently
expressive languages like the ones we consider in this paper, all standard reasoning tasks can be
reduced to knowledge base consistency.

Proposition 4.1 A knowledge baseΣ is consistent if and only ifΣt is satisfiable.

As remarked by Horrocks et al. [14], De Giacomo’s translation is probably too involved and costly to
provide effective decision methods. It is also difficult to extract theoretical results from it, except for
the general complexity results presented in [8]. As we already remarked, the model theory of CPDL
is intricate because of the inductive nature of the Kleene star, and the cryptic translation provides little
help on simplifying things out.

The main difficulty with the translation above is in forcing propositional symbols in CPDL to
behave as individuals. If we use hybrid logics instead, we can simply usenominals. In addition, given
our discussion in Section 3, theE modality gives us access to globality and we don’t need to rely on
the Kleene star. So, hybrid logic, and not CPDL, seems to be the language of choice for a modal
counterpart of description languages able to deal with fullterminological and assertional reasoning.

5 Into Hybrid Logics

Consider the following translation·h taking concepts, terminological axioms and assertions to hybrid
formulas:

(Ci)
h = pi, (Ci atomic) ({a1, . . . , an})

h = a1 ∨ · · · ∨ an

(¬C)h = ¬(Ch) (∃R.{a})h = 〈R〉a

(C uD)h = Ch ∧Dh (C v D)h = A(Ch → Dh)

(∃R.C)h = 〈R〉Ch (a :C)h = @aC
h

(∃R−1.C)h = 〈R−1〉Ch ((a, b) :R)h = @a〈R〉b.

Theorem 5.1 LetΣ = 〈T,A〉 be a knowledge base inALCOI, andφ a terminological axiom or an
assertion, then〈T,A〉 |= φ iff |= (

∧

ψ∈T ψ
h ∧

∧

ψ∈A ψ
h) → φh.

The proof is obvious (and the connection between the two languages stronger than with CPDL), as
any model of〈T,A〉 andφ can be viewed as a model of(

∧

ψ∈T ψ
h ∧

∧

ψ∈A ψ
h) → φh and vice

versa. By using additional nominals we can also account for role conjunction:(∃(R1 u R2).C)h =
〈R1〉i ∧ 〈R2〉i ∧ @iC

h, for i a new nominal, while((a, b) : R1 u R2)
h = @a〈R1〉b ∧ @a〈R2〉b.

Equivalently, we could have put(∃(R1uR2).C)h = 〈R1〉(i∧C
h)∧〈R2〉(i∧C

h), and do without@.
But this is not a linear translation and, as we will soon see, using@ and restricting the use of nominals
is more “natural” from a description logic point of view. Notice that in any case, we need to move
to an extended language to account for role conjunction (as we need new nominals) in this way. To
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remain in the spirit (and strength) of the previous translation we would do better by introducing role
conjunction into hybrid logics as investigated in [21].

Like us, Blackburn and Tzakova [7] propose using hybrid languages to embed description logics,
highlighting the connection between assertional information and nominals, and the use of the exis-
tential modality to encode terminological axioms. But theyintroduce undecidable hybrid languages
for this account, arguing that the increase in expressive power of these languages is an advantage.
Instead, our translation tries to remain as faithful as possible to the original description language, and
pays special attention to decidability issues.

What kind of expressive power is needed to encode the different languages and reasoning tasks?
For example, the existential modality is required only for translating terminological axioms, while@
is only used for assertions. The following list a number of precise correspondences:

• HN(〈R−1〉,@,E), in which the full translation ofALCOI with non-empty T-Boxes and A-
Boxes can be made.

• HN(〈R−1〉,@), in which only inferences in terms of empty T-Boxes can be performed.

• H(〈R−1〉,@,@3,E), in which we only allow nominals to appear as subindices of@ and in the
construction@a〈R〉b or @a〈R

−1〉b, and hence we can translate neither the one-of operatorO
nor role fillersB.

• H(〈R−1〉,@,@3), the “local” version of the language above, where we work with empty T-
Boxes.

We have defined each of the logics above to be expressive enough to permit the encoding of certain
specific DLs. But it is also important to determine if and how we haveextendedthe expressive power
of the source language with the move into these hybrid languages. The general answer is: we have
incorporated Boolean structure into the knowledge base, and allowed explicit interaction among T-
Box definitions, A-Box assertions and concepts. Take, for example, the most expressive language
HN(〈R−1〉,@,E). Given Proposition 3.2, we can takeφ ∈ HN(〈R−1〉,@,E) to be

∧

l∈L

(

∨

m∈M

Aρ(l,m) ∨ Eσl ∨
∨

i∈NOM

@iν(l,i) ∨ τl

)

,

whereρ(l,m), σl, ν(l,i) andτl contain neitherE nor @. By allowing negations in the T-Box we can
encode validity of formulas inHN(〈R−1〉,@,E) as instance checking as follows. DefineBoolean
knowledge basesas pairsΣ = 〈T,A〉 whereT is a set of Boolean combinations of terminological
axioms, andA a set of Boolean combinations of assertions. Authors with a modal logic background
like Wolter and Zakharyachev have already considered this kind of knowledge bases [26].

For l ∈ L, define the knowledge baseΣl
φ = 〈T lφ, A

l
φ〉 to beT lφ = {¬(> v ρh

−1

(m,l)) | m ∈

M} ∪ {> v ¬σh
−1

l } andAlφ = {i :¬νh
−1

(l,i) | i ∈ NOM(φ)}, where the mapping·h
−1

is the backwards
translation from the hybrid language intoALCOI that sends Boolean and modal operators to the
corresponding description logic ones and using singleton one-of sets{i} for translating nominals.

Theorem 5.2 For any formulaφ in HN(〈R−1〉,@,E), let a 6∈ NOM(φ), thenφ is valid iff for all
l ∈ L, Σl

φ |= a :τh
−1

l .

Interestingly, even if we allow Boolean knowledge bases, wecannot recast validity of hybrid formulas
as inference in terms of auniqueknowledge base. This is because the separation between terminolog-
ical axioms, assertions and simple concepts imposes syntactic restrictions which don’t exist in hybrid
logic. Trivially, if the index setL above is a singleton, then a unique knowledge base is sufficient.
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I.e., we can precisely characterize the fragment ofHN(〈R−1〉,@,E) that captures the expressivity of
ALCOI with Boolean knowledge bases.

As we will see in Section 6, allowing the extra flexibility that Boolean knowledge bases offer
does not modify the complexity class in which the reasoning tasks fall (for the languages we are
considering), but it does increase expressive power.

6 Pay Day

The links between hybrid logics and DLs discussed in the previous sections are so strong, that we can
immediately start harvesting by interpreting results fromone field in the other. This is what we will do
now, from many different perspectives: complexity, expressive power, meta-logical properties, new
operators, etc.

§6.1 Complexity. We start by exporting complexity results for hybrid logics to DLs. We need to pay
attention to the difference between local and global notions. For a modal language, we can distinguish
between the local-Sat problem (given a formulaφ, does there exist a modelM andm ∈ M with
M,m  φ?), and the global-Sat problem (is there a modelM with M  φ?). If the logic contains
theE modality, the problems coincide, as we argued in Section 3.

First, we consider the “pure future” fragments of the hybridlanguages defined in Section 5, i.e., we
only consider formulas without the〈R−1〉 operator. The local-Sat problem forHN(@) is PSPACE-
complete [1]. This result also settles the complexity ofH(@,@3), because this language contains the
basic modal language. As a corollary of the EXPTIME-completeness of CPDL, we obtain an EXP-
TIME upper bound for the local-Sat problem forHN(@,E). It follows from Spaan’s results on the
EXPTIME-completeness of modal logics with the existentialmodality [24], that bothH(@,@3,E)
andHN(@,E) are EXPTIME-complete.

Switching to the DL perspective, the results above imply that it is the move from empty T-boxes
to full T-boxes that modifies complexity. And this does not depend on our extension to “Boolean”
knowledge bases, as the same complexity results obtain whenwe restrict ourselves to standard knowl-
edge bases. The one-of operatorO and role fillersB offer more expressivity at no cost (up to a
polynomial). At this very point the encoding of DLs into hybrid languages, instead of CPDL, works
to our advantage, since we can identify cases with a PSPACE upper bound.

Theorem 6.1
1. Instance checking for Boolean knowledge bases with emptyT-boxes is PSPACE-complete for

the languageALCROB.

2. Instance checking for Boolean knowledge bases is solvable in EXPTIME (hence EXPTIME-
complete) for the languageALCROB.

Notice that we don’t need to restrict to empty A-boxes in item1, and recall that the complexity
results for instance checking extend to all standard reasoning tasks like knowledge base consistency,
or subsumption checking.

What about the〈R−1〉 operator? Adding justone nominal to basic temporal logic moves the
complexity of the local-Sat problem from PSPACE-hard to EXPTIME-hard. The known EXPTIME
upper bound for CPDL plus nominals andE [1] also coversHN(〈R−1〉,@,E); hence, the local-Sat

problems ofHN(〈R−1〉,@), H(〈R−1〉,@,@3,E) andHN(〈R−1〉,@,E) are EXPTIME-complete.
A PSPACE upper bound forH(〈R−1〉,@,@3) is easy to establish by using the fact that@ oper-

ators need only appear at modal depth0. We give a sketch of the proof. To avoid confusion we will
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write @i〈Rr〉j asRr(i, j). Let

φ =
∧

l∈L

(

∨

i∈NOM

@iν(l,i) ∨
∨

Tl ∨ σl

)

,

where eachTl is a collection of formulas of the formRr(i, j) or¬Rr(i, j), andν(l,i), σl contain neither
@ nor nominals. As PSPACE = NPSPACE, non-deterministically choose from each conjunct ofφ the
disjunct satisfied by a model ofφ. Call such a setCHOICE. Now, for eachi, let Si = {φ | @iφ ∈
CHOICE}, and create a polynomial model satisfyingSi at the pointmi (notice that all formulas in
Si are basic temporal formulas and hence a PSPACE model can be constructed). Similarly, create
a polynomial model for all formulas inCHOICE which are not@-formulas. LetM be the disjoint
union of all these models. Finally, ifRr(i, j) ∈ CHOICE, add the pair(mi,mj) toRr. The model of
φ obtained in this way has size polynomial in|φ|.

With the translation into CPDL it would be impossible to evaluate the difference made by the
presence or absence of the〈R−1〉 operator in terms of complexity.

Theorem 6.2
1. Instance checking for Boolean knowledge bases with emptyT-Boxes is solvable in PSPACE

(hence PSPACE-complete) for the languageALCRBI.

2. Instance checking for knowledge bases with empty T- and A-boxes is EXPTIME-hard for the
languageALCIO.

3. Instance checking for Boolean knowledge bases is solvable in EXPTIME (hence EXPTIME-
complete) for the languageALCROBI.

The complexity results listed so far were based on importinghybrid logic results into DL. The
EXPTIME-hardness result forHN(〈R−1〉) (basic temporal logic with at least one nominal) contrast
sharply with the good complexity behavior ofHN(@). For example, if we move to the class of tran-
sitive models, evenHN(@,E) is PSPACE-complete (meaning that there are PSPACE algorithms even
for inference from non-empty T-Boxes), whileHN(〈R−1〉) remains obstinately in EXPTIME. Re-
sults concerning the complexity of hybrid logics in different classes of models are investigated in [2].
One of the main results in this paper implies that instance checking for Boolean knowledge bases in
ALCROBI can be solved in PSPACE if we consider only transitive trees as models.

Going in the opposite direction, known complexity results from DLs can be translated in hybrid
terms. For example, as we will discuss below, little is know about the extension of hybrid languages
with counting. Further, there is a “folklore” result which states that instance checking forALC with
T-Boxes restricted to simple and acyclic terminological axioms is PSPACE-complete; this implies
that when syntactic restrictions are imposed on the use ofE, we can avoid EXPTIME-hardness for
the local-Sat problem ofH(@,@3,E). Lutz [18, 19] provides the first detailed complexity analysis
of inference from simple, acyclic T-Boxes. Interestingly,the restriction to simple, acyclic T-Boxes
does not always preserve complexity: instance checking inALCF (ALC extended with features,
feature agreement and feature disagreement) is PSPACE-complete for empty T-Boxes, but it turns
NEXPTIME-complete even when only simple, acyclic T-Boxes are allowed.

§6.2 Expressive Power. We now consider expressive power, and we do so by taking advantage of
hybrid bisimulations. Bisimulations are binary relationson the domain of hybrid models. Kurtonina
and de Rijke [16] provide a detailed analysis of the expressive power of concept languages by means of
(bi-)simulations. But Kurtonina and de Rijke’s results only address the expressive power ofconcepts.
In this section, we will instead study the expressive power offered by full knowledge bases.
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Let M = 〈M, {RM
r }, VM〉 andN = 〈N, {RN

r }, V N 〉 be two hybrid models. Fori ∈ NOM,
let iM be the denotation ofi in M and similarly foriN . Let ∼ be a non-empty binary relation on
M ×N , and consider the following properties on∼ in addition to the conditions for bisimulation for
a basic temporal language [6]:

(@) For all nominalsi in NOM, iM ∼ iN .
(@3) Let i, j be nominals inNOM, thenRr(iM, jM) iff Rr(iN , jN ).
(E) ∼ is total and surjective.

A bisimulation∼ for a basic temporal language is aH(〈R−1〉,@,@3)-bisimulation if it satisfies
the conditions(@) and(@3). Further,∼ is aHN(〈R−1〉,@)-bisimulation if bisimilar states agree
on all nominals (and in this case(@3) can be derived from the others).H(〈R−1〉,@,@3,E)- and
HN(〈R−1〉,@, E)-bisimulations are obtained fromH(〈R−1〉,@,@3)- andHN(〈R−1〉, @)-bisimu-
lations, respectively, by requiring the additional condition (E).

Proposition 6.3 Let H be one ofH(〈R−1〉,@,@3), HN(〈R−1〉, @), H(〈R−1〉, @, @3, E) and
HN(〈R−1〉,@,E). Let M = 〈M, {Rr}, V 〉 and N = 〈N, {RN

r }, V N 〉, and let ∼ be anH-
bisimulation betweenM andN . Then form ∈M,n ∈ n, andφ in H,m ∼ n impliesM,m  φ iff
N , n  φ.

For two logics we writeH 4 H′ to denote that for each formulaφ in H there exists a formulaφ′

in H′ such thatφ is satisfiable if and only ifφ′ is. We writeH ≺ H′ if H 4 H′ and notH′ 4 H.
It is immediate thatH(〈R−1〉,@,@3) 4 HN(〈R−1〉,@) andH(〈R−1〉,@,@3,E) 4 HN(〈R−1〉,
@,E). More interestingly, each of the relations is actually strict, which can be shown by means of
bisimulations. In DL terms this means, for instance, that the one-of operatorO does increase the
expressive power of the language, both with full and empty T-boxes.

The relation betweenHN(〈R−1〉,@) andH(〈R−1〉,@,@3,E) is more complex. By using bisim-
ulations, we can prove both thatHN(〈R−1〉,@) 64 H(〈R−1〉,@,@3,E) andH(〈R−1〉, @,@3,E) 64
HN(〈R−1〉,@). Nevertheless,H(〈R−1〉,@,@3,E) is at least as expressive asHN(〈R−1〉,@) if we
are only interested in satisfiability (and not in the existence of an equivalent formula).

Proposition 6.4 Letφ be a formula inHN(〈R−1〉,@), then there exists a formulaφ′ ∈ H(〈R−1〉,@,
@3,E) such thatφ is satisfiable iffφ′ is satisfiable.

These expressive separation results easily translate to description languages. For two description
languagesL1 andL2, defineL1 4 L2 if for any knowledge basesΣ in L1 there is a knowledge base
Σ′ in L2 such that for all interpretationsI, I |= Σ iff I |= Σ′. Now that the formulas used to separate
the languages can easily be recast as assertions or terminological definitions, and similarly for the
translation used in the proof of Proposition 6.4.

The notions of bisimulation we have defined not only separatethe fragments of first-order logic
which corresponds to the hybrid logics we have been discussing, they alsocharacterizethem. ForH
any of our hybrid languages, we say that a first-order formulaα(x) in the first-order language over
〈REL ∪ {Pj | pj ∈ PROP},NOM, {x, y}〉 is invariant forH-bisimulationsif for all modelsM and
N , and all statesm in M, n in N , and allH-bisimulations∼ betweenM andN such thatm ∼ n,
we haveM |= α(x)[m] iff N |= α(x)[n].

Theorem 6.5 For H any ofH(〈R−1〉,@,@3), HN(〈R−1〉,@), H(〈R−1〉,@,@3, E) or HN(〈R−1〉,
@,E), a first-order formulaα(x) over the signature〈REL ∪ {Pj | pj ∈ PROP},NOM, {x, y}〉 is
invariant forH-bisimulations iff it is equivalent to the hybrid translation of a hybrid formula inH.

Results describing the classes of models that can be globally defined, can be proved for many hybrid
languages, but have to be omitted because of space limitations.
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§6.3 Interpolation and Beth Definability. In [3] results concerning the interpolation and Beth de-
finability properties for a variety of hybrid languages are provided. What is the role of these two prop-
erties in the setting of description logics? Let’s first introduce some notation. ForΣ = 〈T,A〉,Σ′ =
〈T ′, A′〉 two knowledge bases, letΣ ∪ Σ′ be〈T ∪ T ′, A ∪ A′〉, andΣ[C/D] be the knowledge base
obtained fromΣ by replacing each occurrence of the conceptC byD. Now, suppose that for a given
knowledge baseΣ the following holds,

Σ[C/D1] ∪ Σ[C/D2] |= D1
.
= D2 for someD1,D2 6∈ CON(Σ). (2)

Notice that this equation need not be true for all knowledge basesΣ and conceptsC. Actually,
(2) implies thatΣ encodes enough information concerningC to provide a complete—though not
necessarily explicit—definition. Now, if the (global) Bethdefinability property holds for the language
of Σ, then there actually exists an explicit definition ofC. I.e., there is a conceptD not involving
C such thatΣ |= C

.
= D. Given that description languages take definitions very seriously, the Beth

definability property (i.e., the capacity of the language toturn implicit definitions into explicit ones)
seems highly relevant.

There doesn’t seem to be a uniform direct way of proving or disproving Beth definability. The
standard approach to establish the property is via a detour through interpolation. In first-order and
modal languages, the (arrow) interpolation property implies the Beth definability property and the
same relation holds for hybrid languages.

Hence, positive interpolation results for hybrid languages would translate into nice definability
properties of the corresponding description language. Unfortunately, for languages where nominals
appear free in formulas, and which do not provide a binding mechanism, failure of arrow interpolation
seems to be the norm. In particular, [3] provides counter-examples to the arrow interpolation property
for the basic modal language extended with nominals,HN(@) andHS(@). The extensions of these
languages with the〈R−1〉 operator fare no better, and adding theE operator doesn’t help either. Hence,
in all these cases, the most traded path to establish Beth definability is closed for us.

The case is different forH(@,@3) andH(〈R−1〉,@,@3). As we will now show, we can extend
the constructive method for establishing arrow interpolation presented in [15, Section 3.8], to handle
@ and@3. Again we will make use of the normal form introduced in Proposition 3.2.

Theorem 6.6 H(@,@3) andH(〈R−1〉,@,@3) have arrow interpolation.

As we said, arrow interpolation implies global Beth definability: implicit definitions inH(@,@3) can
be turned into explicit definitions. And we can attempt to transfer this property to the description logic
counterpart ofH(@,@3). We would proceed as follows, suppose a knowledge baseΣ = 〈T,A〉 in
ALC satisfies the conditions in (2). Then we can translateΣ into a theoryT of H(@,@3) (as we are
using global consequence this time we don’t needE), andT [pC/pD1

] ∪ T [pC/pD2
] |=glo pD1

↔ pD2
.

Applying Beth definability forH(@,@3) we obtain a formulaθ such thatT |=glo θ ↔ pC . Now,θ is
an explicit definition ofC, but it is in thefull languageH(@,@3), i.e., it might contain subformulas
of the form@iψ and@i3j. Because of the syntactic restrictions imposed by the division into T-
and A-Box information it will not always be possible to translate θ into a concept inALC. To see
an example, supposeθ is of the form@iν ∨ ψ. Hence we will have thatΣ |= (@iν → (pC ↔
>)) ∧ (@i¬ν → (pC ↔ ψ)). That is, we obtain a definition ofC that is conditional on assertional
information.

More generally, we first writeθ in normal form to obtain

T |=glo

(

∧

l∈L

(
∨

i∈NOM

@iν(i,l)) ∨ τl

)

↔ pC .
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Notice that for a hybrid formulaψ and@iν ∈ SF(ψ) such that@ does not appear inν, ψ is equiv-
alent to(@iν → ψ[@iν/>]) ∧ (@i¬ν → ψ[@iν/⊥]). By iterating this rewriting on the formula
(
∧

l∈L(
∨

i∈NOM
@iν(i,l)) ∨ τl) ↔ pC , we finally obtain a series of definitions ofC in terms of con-

cepts ofALC, but conditional on assertional information to be inferredfrom Σ.
There is an interesting connection between the Beth definability property and acyclic definitions

in T-Boxes. This restriction was aimed at avoiding the introduction of circular concepts, i.e., concepts
defined in terms of themselves. This kind of concepts, it was argued, called for some kind of fixed
point semantics and this kind of semantics was computationally expensive [20, 4]. But if the language
has the Beth definability property, any concept implicitly defined in a knowledge base also has an
explicit definitionwithout self reference. Hence, considering only acyclic definitions does not carry
any expressivity loss.

§6.4 Further Outcomes. It is striking how description and hybrid logics are similarand different
at the same time, like twin brothers raised separately. Because the connection between hybrid and
description logics is so tight, complexity and expressive power results can easily be moved between
the two, as we have seen. Havingtwo different perspectives also brings extra flexibility. E.g., we
can investigate meta-logical properties on the “hybrid logic side” which is presented in a format more
amenable to standard model-theoretic techniques, and these results throw light on the behavior of
description languages. We give some examples.

One possibility concernsbinders and variables. We have focused on “weak” hybrid languages
which remain close to the basic DLs. But a natural step from the hybrid point of view is to regard
nominals not as names but asvariablesover individual states, and to add quantifiers. Undecidability
quickly shows up in this setting, but syntactic restrictioncan restore decidability, while providing
interesting new concepts when introduced in a description language.

A different direction concernscounting. Graded or counting modalities〈n〉φ restrict the number
of possible successors satisfyingφ that a state has in a model. While their theory is not so well
developed, qualifying number restrictions are actively used in description formalisms, as they provide
important modeling power. Recent work by Tobies [25] provides promising new complexity results
that are worth linking to findings of the present paper.

7 Conclusion

Nearly a decade after Schild started exploring the connection between modal and description logic, we
have made an important step forwards in finding a formal logical counterpart of DLs. One of the key
points of DLs is their use of non-empty T-Boxes and A-Boxes. The former essentially concerns global
information, which lifts the complexity of the satisfiability problem to EXPTIME. With our analysis
of DLs in terms of hybrid logics, we can reason with non-emptyA-Boxes (and empty T-Boxes)
in PSPACE. Our fine-grained analysis in terms of hybrid logics allows us to capture the expressive
power offered by T-Boxes, A-Boxes, and both. Because hybridlogics offer a mathematical logical
counterpart of DLs, we can use formal logical results and techniques such as interpolation and Beth
definability to analyze DLs. Different enough to make the comparisons interesting, but similar enough
to allow for extensive traffic of results, extensions and variations, description logics and hybrid logics
are different sides of the same coin.
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