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1 Introduction

Nearly a decade ago, Schild [23] observed and exploiteddise correspondence between description
logics and modal languages. He used it as a bridge to tracafieplexity results and axiomatizations
from modal logics to description logics but noticed that tieerespondence can only be established
at the level oftoncept satisfiability Basic modal logic is not expressive enough to account foeei
A-Box reasoning or inference in the presence of definitiorm{empty T-Boxes). Also, some very
expressive description languages include constructiongdilding complex roles such as intersec-
tion, converse, and even transitive closure. By lifting therespondence to Converse Propositional
Dynamic Logic (CPDL) [9], Schild accounted for these constions and for inference from non-
empty T-Boxes. De Giacomo and Lenzerini [8] extended theselts by encoding A-Box reasoning
in CPDL. While embeddings of description logics into CPDlvéag@roved useful, they have two im-
portant disadvantages. Complexity-wise, the local sabifty problem of CPDL (i.e., the problem
of finding, given a CPDL formul&, a modelM and a staten such thatM, m I+ ¢) is already EXP-
TIME-complete, and this prohibits sharp complexity resulMoreover, with respect to expressive
power, the model theory of CPDL is complex, because the Kestar (and hence a weak notion of
induction) needs to be taken into consideration.

In this paper, we replace CPDL by hybrid languages and inthisimprove on the issues above.
As we will see below, the connection between descriptionteyimid logics is very tight. The main
aim of the paper is to establish this connection, using tserifgion logic ALC as our starting point,
and to give an impression of its benefits in terms of result€a@mplexity, expressive power, and
meta-logical properties like interpolation and Beth ddfility.

We start by providing some background. We then recall refewark by Schild, and De Giacomo
and Lenzerini. After that we set up the link between hybrid dascription logics, and exploit it.

§1.1 Description Logic. Description logics (DLs) are a family of formal languageshna clearly
specified semantics, usually in terms of first-order modelgether with inference mechanisms to
account for knowledge classification. One of the main aim® iglentify fragments of first-order
logic that are able to capture the features needed for remiiag a particular problem domain, and
which still admit efficient reasoning algorithms.



Constructor Syntax Semantics

concept name C ct

top T AT

negation €) -C AT\ C*

conjunction C1MCy ctnc?t

disjunction (/) C1UCo ctuct

universal quant. YR.C {d1 | Vd2€ AT (R (d1,d2) — d2 € CF)}
existential quant.q) 3R.C {dy | 3d2 € AT.(R*(d1,ds) Ado € CT)}
one-of V) {a1,...,an} | {d|d = af for somea;}

role filler (B) 3R.{a} {d | R*(d,a®)}

role name R RT

role conjunction R) RiM Ry R¥ N R}

inverse roles?) R {(d1,d2) | R*(d2,d1)}

Table 1. Common operators of description logics.

Let CON = {C},(%, ...} be a countable set @tomic conceptsROL = {R;, R», ...} a count-
able set ofatomic roles andIND = {aq,aq,...} a countable set ahdividuals For CON, ROL,
IND, all pairwise disjoint,S = (CON, ROL, IND) is asignature An interpretationZ for S is a
tupleZ = (A%, 1), whereAZ is a non-empty set, and assigns elements’ € AZ to constants
ai, subsetC? C A7 to atomic concept€’;, and relations?? C AT x AT to atomic rolesR;. The
atomic symbols in a DL signature can be combined by meam®meptandrole constructors to
form complex expressions. Table 1 defines the construabottd DLs we will discuss, together with
their semantics. It is customary to define systems by pastfitie names of some basic description
languages liked £ or F £ with the names of the added operators from Table 1. In thistpage will be
interested in languages having full Boolean expressivity lzence focus ol LC and its extensions.

In DLs we want to perform inferences given certain backgdkmowledge. Le be any descrip-
tion logic, aknowledge bas& in £ is a pair¥ = (T, A) such thatl" is the T(erminological)-Box: a
finite, possibly empty, set of expressions of the fattnC Cs, whereCy, Cy € CON(L) (Cy = Cy
is short forC; C Cy andCsy E (). Formulas inT" are callederminological axiomsIn addition, A
is the A(ssertional)-Box: a finite, possibly empty, set opessions of the forms: C or (a,b) : R
whereC'is in CON(L), R is in ROL(£) anda, b are individuals. Formulas iAd are calledassertions
Our definitions of terminological axioms and assertionsaanengst the most general in the literature
(and we will generalize them even further below).

LetZ be an interpretation angla terminological axiom or assertion. Th&émmodelsg (notation,
Tk ¢if¢=0C CCyandCF € CyF, orp = a:C anda® € C%, 0or ¢ = (a,b) : R and
(a®,b%) € RE.If ¥ = (T, A) is a knowledge base arddan interpretation, thed modelsY. (notation:
T EY)ifforall ¢ € TUAZ E ¢. Given a knowledge base and a terminological axiom or
assertiory, we writeX = ¢ if for all modelsZ of ¥ we haveZ = ¢. All standard description logic
reasoning tasks (like subsumption or instance checkingpeadefined in terms of this relation.

§1.2 Hybrid Logic. Modal formulas are evaluated at a giv&atein a model, and their truth values
depend on the value of formulas at some relatates Yet, nothing in modal syntax gets to grips with
the statesthemselves. Hybrid languages are modal languages whigh #uk “reference problem”
by introducing special symbols, calle@minals to explicitly name the states in a model.

The basic hybrid language &y, basic modal logic extended with nominals. Further exten-
sions are named by listing the added operators. The mosessipe system we will discuss is
Hn((R™1), E, @), the basic hybrid language extended with the converse)(@astexistential modal-
ities, and the@ operator. More precisely, IREL = {R;, R»,...} be a countable set aélation



symbols PROP = {pi1,ps,...} a countable set gbroposition lettersandNOM = {iy,io,...} @
countable set ofiominals ATOM = PROP U NOM is the set ofatoms The formulas of the hybrid
languageHn ((R~1), E, @) in the signaturéREL, PROP,NOM) are

FORMS := T |a| ¢ | ¢1 Ao | (R)¢ | (R | E | Q;0,

wherea € ATOM, R € REL, i € NOM, and¢, ¢1, ¢o € FORMS.

A hybrid modelM is a triple M = (M, {R;}, V) whereM is a non-empty se{ R;} is a set of
binary relations onV/, andV : PROP U NOM — Pow(M) is such that for all nominals € NOM,
V(i) is a singleton subset df/. Let M = (M,{R;},V) be a model and» € M. The interesting
cases of thesatisfiability relationare as follows:M,m I a iff m € V(a), a € ATOM; M, m I+
(R)g iff Im/ (R(m,m') & M,m/ IF ¢); M,m IF (R~Y¢ iff Im’ (R(m',m) & M,m’ I+ ¢);
M, m - Egiff I3m’ (M, m/ |- ¢); and M, m I+ @Q;¢ iff M, m' I ¢, whereV (i) = {m'},i € NOM.

We write M I+ ¢ iff for all m € M, M, m I ¢. This notion extends to sets of formulas in the
standard way. A formula is satisfiableif there is a mode/M and a worldm € M with M, m IF ¢.
A formula ¢ is valid if for all models M, M I ¢. ¢ is alocal consequencef a set of formulas’
(notation,T" "¢ ¢), if for all models.M and pointsn € M, M,m |- T impliesM,m I+ ¢; ¢ is a
global consequencef a set of formulag” (notation, T’ =% ¢), if for all models M, M |- T implies
M IF ¢. WhenT is the empty set, we havg =9° ¢ iff {} E"° ¢, and simply write= ¢.

2 Schild’s Terminologies

It is straightforward to map concepts #LC into formulas of CPDL, while preserving satisfiability
— actually, basic poly-modal logic is enough. Just definetthaslation-! by putting (C;)! = p;,
for C; an atomic concept(—C)! = —(C*); (C N D)t = C* A D%; and (3R.C)"! = (R)C*. It

is clear that! preserves satisfiability. But we need further expressiwegpdo account for T-Box
and A-Box reasoning. The standard notion of bisimulationhgps us prove this claim. Consider
the signatureS = ({C1,Cs}, {R}, {a}) and the interpretation; = ({mi,ms},7t) andZy =
({ms, m4,ms}, 72) whereCE = {m;}, CI* = {m1,ma}, RT* = {}, a®* = my; andCT2{my},
C3* = {mz}, R®> = {}, a® = m5.

Clearly,Z; models bothC; C Cy anda : C; while Z; models neither. On the other hand, when we
considerZ; andZ, as modal models, the relatidrims, ms)} is a bisimulation. But we should take
care:Cy C (3 anda: C areglobal notions, they are true of an element of a model if and onlyaj/th
are true of all elements. On the other hand, basic modal fiasrarelocal, the point of evaluation
is relevant for their truth. Let’s go through our argumerking special care of this issue. If a modal
formula¢ is equivalent ta”; C Cs then it would also behave globally, ang C C5 being true ofZ;
would imply ¢ being true ofn,. By bisimulationg would also be true af.3 and by “global behavior”
of Z,. But itisn’t. We can give a similar argument fer C';. This switch between a local and a global
perspective is one of the main differences between modatiascription languages. Because of this,
we have incorporated the existential modaktyn our hybrid languages. L& be the dual ok, i.e.,
Ay« =E—), thenM I+ ¢ iff M, m IF —=E—¢ for somem € M. In other wordsE lets us talk about
globality from a local perspective.

Instead of usindg, Schild [23] accounts for terminological axioms by using tiollapsed model
property of CPDL (any satisfiable CPDL formula is satisfiable connected model) and the avail-
ability of the Kleene star. Due to the former, we can ignoegest which are not reachable by a finite
sequence of backwards and forwards transitions. Thankset&leene star we can “step over” all
these transitions in one step. Formally, extenty putting (C C D)! = (C* — D). And for a
finite set of terminological axiom®, let T* be A\ ¢, where¢; € T. Now, letT U {¢} be a finite



set of terminological axioms, and &, ... , R, be all the roles il" U {¢}. Then(T, {}) = ¢ iff
E[(RiUR'U---UR, UR T — ¢

As Schild remarks, this translation would not work for annité 7. On the one hand[" might
contain an infinite number of roles, but even in the case of igefgignature, PDL is not compact
(see [12, Theorem 2.15]), hence inference from infinite de&s not coincide with inference in terms
of finite sets. But more importantly, lack of compactnessassiking effect on the complexity of the
consequence problem, which becomes highly undecidabladaation that PDL is not computation-
ally well behaved. The computational problems caused bikbene star have been well investigated
both in the modal and description logic community [17, 11,23); and authors like Sattler, and Hor-
rocks and Gough have argued that in many cases the abiligfitoeda role as transitive is all what is
needed in applications, instead of the full power of travesitlosure.

It pays off to look carefully at the local vs. global issue.flily appreciate the subtleties here, we
will do so in the following section.

3 Global and Local Consequence

In Section 1 we introduced two notions of consequence forilyanguages, cal one and ajlobal
one. The two notions of consequence are different becaube oflativization to worlds. Perhaps itis
simpler to discuss consequence in first-order terms, eapeifiwe think of the first-order translation
of hybrid or description formulas. The two notions of consence are always available when we deal
with formulas instead of sentences. Given a set of formulaislwmight contain free variables, the
way we define the quantification over models and first-ordgigasments becomes meaningful.

The global consequence relation is the one familiar front-&rder logic, but it is always defined
for sentencesWhen we consider formulas instead, the local definitiorobess interesting. Because
modal and hybrid formulas may contain free variables whendiated into a first-order language, it
is important to understand the connection between thesadtions of consequence.

Proposition 3.1 ([5], Lemma 2.33)For T' a set of modal formulas (in a basic mono-modal lan-
guage), IetBOXED(T) = {O%) | v» € T andi > 0}, whereO%) is the formula obtained from
¢ by prefixing a string of length, of O operators. Then, for any st U {¢} of modal formulas,

T % ¢ iff BOXED(T') "¢ ¢.

The proof uses the fact that the collapsed model properigshior the basic modal language. The
extension to multi-modal languages is trivial, just redefBOXED to include all possible boxed
prefixes in the multi-modal signature. For languages witllb@E operator, the proof boils down to
finding suitable notions of the collapsed model propertghdf language does contdi the relation
between=2 and="* is straightforward:

TE"¢iff {Ay [ ¢ € T} E™ ¢. (1)

Goranko and Passy [10] study properties of languages cimgaihe existential modality, and prove
that global properties of a logi€ correspond to the local properties of the logfe which arises from
L by addingE. In particular, for basic modal logics, global decidapijliglobal finite model property,
and global completeness of a logicare equivalent to their local versions f6F. This result can be
extended to many hybrid languages; before stating it, wabésh a normal form for hybrid formulas.

Proposition 3.2 Let ¢ be a hybrid formula, thew is equivalent to a formula’ where subformulas
of the formE+ and @, (if any) occur only at modal depth In particular, ¢’ can be taken to be

Nier (VmeM Ap(im) V EarV Vienom(g) Qv V Tl) ;
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for some (possibly empty) index séts M, wherep ,,, o1, v;; and 7; contain neitherk nor Q.
Furthermore,|¢’| is polynomial in|¢|.

Proof. We start by translating into negation normal form. Then we use the following equinaks
to “push out” thek andA operators from inside the other modalities

[Ri]AY —  [R]LVAY QAY — AP

[Ri]EY « [R]LVEY Q.Eyp < Ey
[Ri)(0VAY) « [Ri]0V A Q0 VAY) « QVAY
[Ri)(0VEY) < [Ri]60VEy Q0 VEY) < Q@fVEY
[Ril(0 AAY) < [Ri]0 A [Ri]EY Q0 ANAY) — Qb NEY
[R](ONEY) «  [Ri]LV([R]OA[R]EY) | Qg0 AEY) < Q.0 AE).

Similar equivalences hold for the dual modalitigs;) (Q is self dual). For pushing odt we have

[Ri]Q¢p « [Ri]L V@ Q;Qp «~ Q)
[Ri)(0V Qip) — [Ri]OV Q) Q 0V Qp) — Q0VQup
[RZ](H A\ @ﬂb) — [RZ]H A [RZ]@Z’L/J @5(9 A @ﬂb) A @59 A @Z’L/J

And similarly for the@ operators appearing undéR;). Now, it only remains to use propositional
equivalences to obtain the normal form far -

Theorem 3.3 Let the propertyP be either decidability, finite model property, or axiomatamplete-
ness, and let be any sublanguage &fy((R~'), @). Then’ hasP globally iff LE has P locally.

Going back to description languages, notice that if we jz8e instead ofi="°, then basic modal
logic is enough to encode terminological axioms, as the followingivedence holds: (T, {}) =
¢ iff Tt =9° ¢'. By using (1), in the presence Bfwe can move tdT', {}) & ¢ iff {A(T?)} £ ¢t
And given that the local consequence relation satisfieseldection theorem, we end up with

(T4} Foifft =AT") — 4"

By Theorem 3.3, then, we can study logical properties ofrérfee from non-empty knowledge bases
through local properties of languages contairindf the logic is compact, we can perform this reduc-
tion even for infinite T-Boxes, but most importantly by repiey the Kleene star with the existential
modality we obtain a language with a much better behaved addratood model theory.

4 De Giacomo’s Individuals

Accounting for assertional information in CPDL is more cditgted than encoding terminological
axioms. Below we present a simplified version of a transtafiooposed by De Giacomo and Lenz-
erini [8]; the latter enforce the unique name assumptionadsal deal with complex structure on roles
(union, composition, transitive closure, etc.) which nmeakar the additional complexity. Here, we
only discuss the handling of individuals.

Extend the translatiorf defined in Section 2 to assertions by definiag: C)! = p, — C¢,
and((a,b) : R)* = p, — (R)ps, wherep, andp, are propositional symbols. Let be a finite set
of assertions, defind! as A ¢! for ¢; € A. The problem now is that in translatirigdividuals as
propositionsin CPDL we have lost the information that individuals denatsingle element in the



domain. Hence, we have to explicitly force these symbolsetwabe as individuals. Letl = (T, A)
be a knowledge bas®, ... , R, the roles appearing iR, a1, ... , a,, the individuals mentioned in
¥, and letSF(¢) be the set of all subformulas ¢f Let [U] stand for{(R; UR; 'U---UR, UR;1)*],
and letS be a role not ire. Let X! be

[SIUNA AT A N ((S>paz A ( A SO e AY) = [U)(pa; — w))) :

1<i<m YESF(TEAAL)

We will prove thaty is consistent if and only iE! is satisfiable. This is enough because in sufficiently
expressive languages like the ones we consider in this papestandard reasoning tasks can be
reduced to knowledge base consistency.

Proposition 4.1 A knowledge bask is consistent if and only ! is satisfiable.

As remarked by Horrocks et al. [14], De Giacomo’s transtatioprobably too involved and costly to
provide effective decision methods. It is also difficult tdract theoretical results from it, except for
the general complexity results presented in [8]. As we diyeamarked, the model theory of CPDL
is intricate because of the inductive nature of the Kleeag ahd the cryptic translation provides little
help on simplifying things out.

The main difficulty with the translation above is in forcingopositional symbols in CPDL to
behave as individuals. If we use hybrid logics instead, wesiaply usenominals In addition, given
our discussion in Section 3, tlemodality gives us access to globality and we don't need tpagl
the Kleene star. So, hybrid logic, and not CPDL, seems to bdahguage of choice for a modal
counterpart of description languages able to deal withtéunthinological and assertional reasoning.

5 Into Hybrid Logics

Consider the following translatioft taking concepts, terminological axioms and assertiong/oidh
formulas:

(Cz)h = p;, (C; atomic) ({al,...,an})h = a1V---Vay

e ey @R{a)" = (R
(CcnbD)yr = ChADH (CcC D! = A(C'— DM
FRC = (R)Ch (a:C)h = @,Ch
GR.0) = (R-HCh (a,b):R)" = @y (R)b.

Theorem 5.1 LetY = (T, A) be a knowledge base iALCOZ, and ¢ a terminological axiom or an
assertion, thedT, A) |= ¢ iff = (Ayep " A Nyea ¥ — 0"

The proof is obvious (and the connection between the twouagegs stronger than with CPDL), as
any model of(T’, 4) and ¢ can be viewed as a model of\ ;. YA Nyea Y — oM and vice
versa. By using additional nominals we can also accountdier conjunction:(3(R; M Ry).C)" =
(Ry)i A (Ry)i A @;C", for i a new nominal, whilg((a,b) : Ry M Ro)" = @, (R1)b A Qu(Ro)b.
Equivalently, we could have pG8(R; M Ry).C)" = (R1)(i AC™) A {Rs) (i AC?), and do withouta.
But this is not a linear translation and, as we will soon se@gf@ and restricting the use of nominals
is more “natural” from a description logic point of view. N that in any case, we need to move
to an extended language to account for role conjunction @eeed new nominals) in this way. To



remain in the spirit (and strength) of the previous traitatve would do better by introducing role
conjunction into hybrid logics as investigated in [21].

Like us, Blackburn and Tzakova [7] propose using hybrid laages to embed description logics,
highlighting the connection between assertional inforommand nominals, and the use of the exis-
tential modality to encode terminological axioms. But tlyoduce undecidable hybrid languages
for this account, arguing that the increase in expressiveepof these languages is an advantage.
Instead, our translation tries to remain as faithful asiptes$o the original description language, and
pays special attention to decidability issues.

What kind of expressive power is needed to encode the difféaaguages and reasoning tasks?
For example, the existential modality is required only fanslating terminological axioms, whii@
is only used for assertions. The following list a number @&gise correspondences:

e Hn((R™Y),@,E), in which the full translation ofALCOZ with non-empty T-Boxes and A-
Boxes can be made.

e Hn((R™Y), @), in which only inferences in terms of empty T-Boxes can béquared.

e H({R™!),@,@%, E), in which we only allow nominals to appear as subindicegaind in the
construction@, (R)b or @,(R~1)b, and hence we can translate neither the one-of ope¢ator
nor role fillersB.

e H((R™!),@ @), the “local” version of the language above, where we workhveimpty T-
Boxes.

We have defined each of the logics above to be expressive lertoygermit the encoding of certain
specific DLs. But it is also important to determine if and hoe laveextendedhe expressive power
of the source language with the move into these hybrid lagggiaThe general answer is: we have
incorporated Boolean structure into the knowledge basa,aflowed explicit interaction among T-
Box definitions, A-Box assertions and concepts. Take, famgle, the most expressive language
Hn((R™1), @, E). Given Proposition 3.2, we can takec Hy((R™!),@, E) to be

/\ ( \/ Ap(l,m) V Eop v \/ @iy(l,i) \/Tl> ,

leL \meM 1€ENOM

wherep ), o1, v,;) andr; contain neithele nor @. By allowing negations in the T-Box we can
encode validity of formulas i{y((R~'), @, E) as instance checking as follows. DefiBeolean
knowledge baseas pairs> = (T, A) whereT is a set of Boolean combinations of terminological
axioms, andA a set of Boolean combinations of assertions. Authors wittodahlogic background
like Wolter and Zakharyachev have already considered thid & knowledge bases [26].

Forl € L, define the knowledge base/, = (T}, A}) to beT) = {~(T C p@;;)) | m €

M}U{T C -0} }andAl = {i:~v}; | | i € NOM(g)}, where the mapping " is the backwards
translation from the hybrid language intdLCOZ that sends Boolean and modal operators to the
corresponding description logic ones and using singletenaf sets{:} for translating nominals.

Theorem 5.2 For any formulag in Hy((R™1),@,E), leta ¢ NOM(¢), then¢ is valid iff for all
leL, Eé = CLI’Tlh_l

Interestingly, even if we allow Boolean knowledge basescarot recast validity of hybrid formulas
as inference in terms ofuniqueknowledge base. This is because the separation betweenaog:
ical axioms, assertions and simple concepts imposes sintastrictions which don't exist in hybrid
logic. Trivially, if the index setL above is a singleton, then a unique knowledge base is sufficie



l.e., we can precisely characterize the fragmertgf (R~!), @, E) that captures the expressivity of
ALCOT with Boolean knowledge bases.

As we will see in Section 6, allowing the extra flexibility thBoolean knowledge bases offer
does not modify the complexity class in which the reasonasks fall (for the languages we are
considering), but it does increase expressive power.

6 Pay Day

The links between hybrid logics and DLs discussed in theipusvsections are so strong, that we can
immediately start harvesting by interpreting results frame field in the other. This is what we will do
now, from many different perspectives: complexity, expies power, meta-logical properties, new
operators, etc.

§6.1 Complexity. We start by exporting complexity results for hybrid logioLiLs. We need to pay
attention to the difference between local and global natiéfor a modal language, we can distinguish
between the locabat problem (given a formula, does there exist a modal andm € M with
M, m I+ ¢?), and the globabat problem (is there a modelt with M IF ¢?). If the logic contains
the E modality, the problems coincide, as we argued in Section 3.

First, we consider the “pure future” fragments of the hylaitguages defined in Section 5, i.e., we
only consider formulas without thg?~!) operator. The locabat problem forHy (@) is PSPACE-
complete [1]. This result also settles the complexity«fa, @<), because this language contains the
basic modal language. As a corollary of the EXPTIME-cormgriess of CPDL, we obtain an EXP-
TIME upper bound for the locabat problem forHy (@, E). It follows from Spaan’s results on the
EXPTIME-completeness of modal logics with the existentaldality [24], that botHH (@, @&, E)
andHn(@, E) are EXPTIME-complete.

Switching to the DL perspective, the results above imply this the move from empty T-boxes
to full T-boxes that modifies complexity. And this does nopeled on our extension to “Boolean”
knowledge bases, as the same complexity results obtain wheestrict ourselves to standard knowl-
edge bases. The one-of operatdrand role fillers5 offer more expressivity at no cost (up to a
polynomial). At this very point the encoding of DLs into hidfanguages, instead of CPDL, works
to our advantage, since we can identify cases with a PSPA@&r lgound.

Theorem 6.1
1. Instance checking for Boolean knowledge bases with efmpoxes is PSPACE-complete for
the languagedLCROB.

2. Instance checking for Boolean knowledge bases is s@viabEXPTIME (hence EXPTIME-
complete) for the languagd LCROB.

Notice that we don't need to restrict to empty A-boxes in itémand recall that the complexity
results for instance checking extend to all standard réagdasks like knowledge base consistency,
or subsumption checking.

What about the{R~!) operator? Adding jusbne nominal to basic temporal logic moves the
complexity of the localSat problem from PSPACE-hard to EXPTIME-hard. The known EXPEM
upper bound for CPDL plus nominals aid1] also coversHy((R~!), @, E); hence, the locabat
problems ofHy((R~1), @), H((R™1),@, @<, E) andHy((R™!), @, E) are EXPTIME-complete.

A PSPACE upper bound fd((R™'), @, @) is easy to establish by using the fact titabper-
ators need only appear at modal depthNe give a sketch of the proof. To avoid confusion we will



write Q;(R,)j asR,(i, 7). Let

o=/ ( \ @iV(l,i)\/\/Tl\/UZ>a

leL \iecNOM

where eacH; is a collection of formulas of the form..(i, j) or = R..(, j), andy; ;), o; contain neither
@ nor nominals. As PSPACE = NPSPACE, non-deterministicdiiyose from each conjunct gfthe
disjunct satisfied by a model gf. Call such a se€HOICE. Now, for eachi, let S; = {¢ | @Q;¢ €
CHOICE}, and create a polynomial model satisfyifgat the pointm; (notice that all formulas in
S; are basic temporal formulas and hence a PSPACE model canns&ruatied). Similarly, create
a polynomial model for all formulas i@HOICE which are not@-formulas. LetM be the disjoint
union of all these models. Finally, . (i, j) € CHOICE, add the paifm;, m;) to R,. The model of
¢ obtained in this way has size polynomiallifi.

With the translation into CPDL it would be impossible to axate the difference made by the
presence or absence of the ') operator in terms of complexity.

Theorem 6.2
1. Instance checking for Boolean knowledge bases with emplyxes is solvable in PSPACE
(hence PSPACE-complete) for the languateCRBZ.

2. Instance checking for knowledge bases with empty T- abhdxas is EXPTIME-hard for the
languageALCZO.

3. Instance checking for Boolean knowledge bases is s@vabEXPTIME (hence EXPTIME-
complete) for the languagd LCROBZL.

The complexity results listed so far were based on imporhiggrid logic results into DL. The
EXPTIME-hardness result fdr(n((R~!)) (basic temporal logic with at least one nominal) contrast
sharply with the good complexity behavior Bfy(@). For example, if we move to the class of tran-
sitive models, eveft{y (@, E) is PSPACE-complete (meaning that there are PSPACE algusidven
for inference from non-empty T-Boxes), whiléy((R~!)) remains obstinately in EXPTIME. Re-
sults concerning the complexity of hybrid logics in diffetelasses of models are investigated in [2].
One of the main results in this paper implies that instaneeking for Boolean knowledge bases in
ALCROBI can be solved in PSPACE if we consider only transitive treamadels.

Going in the opposite direction, known complexity resuitsni DLs can be translated in hybrid
terms. For example, as we will discuss below, little is kndew the extension of hybrid languages
with counting. Further, there is a “folklore” result whictates that instance checking fdiCC with
T-Boxes restricted to simple and acyclic terminologicaioas is PSPACE-complete; this implies
that when syntactic restrictions are imposed on the udg @fe can avoid EXPTIME-hardness for
the localSat problem ofH(@, @&, E). Lutz [18, 19] provides the first detailed complexity anays
of inference from simple, acyclic T-Boxes. Interestinglye restriction to simple, acyclic T-Boxes
does not always preserve complexity: instance checking it F (ALC extended with features,
feature agreement and feature disagreement) is PSPACRletenfor empty T-Boxes, but it turns
NEXPTIME-complete even when only simple, acyclic T-Boxes allowed.

§6.2 Expressive Power. We now consider expressive power, and we do so by taking tatyarof
hybrid bisimulations. Bisimulations are binary relatiarsthe domain of hybrid models. Kurtonina
and de Rijke [16] provide a detailed analysis of the expvegsbwer of concept languages by means of
(bi-)simulations. But Kurtonina and de Rijke’s resultsyoatdress the expressive powercohcepts

In this section, we will instead study the expressive poviiared by full knowledge bases.



Let M = (M, {RM}, VM) andN = (N,{RVN}, V) be two hybrid models. Far € NOM,
let i be the denotation ofin M and similarly foriV. Let ~ be a non-empty binary relation on
M x N, and consider the following properties enin addition to the conditions for bisimulation for
a basic temporal language [6]:

(@)  For all nominalsi in NOM, iM ~ iV,

(@¢) Leti,j be nominals iMOM, thenR,.(iM, jM) iff R, V).

(E)  ~istotal and surjective.

A bisimulation ~ for a basic temporal language iSF({R~!), @, @& )-bisimulation if it satisfies
the conditions(@) and (@<). Further,~ is aHn({R™!), @)-bisimulation if bisimilar states agree
on all nominals (and in this cagg@<) can be derived from the others}{((R~!), @, @0, E)- and
Hn((R™1), @, E)-bisimulations are obtained fro(((R~1), @, @0)- and Hy((R™1), @)-bisimu-
lations, respectively, by requiring the additional coiudit(E).

Proposition 6.3 Let H be one ofH((R™!), @, @0), HNy((R™!), @), H((R™!), @, @O, E) and
Hn((R™Y),@,E). Let M = (M,{R,},V) and N = (N,{RN}, V), and let~ be anH-
bisimulation betweeiM and . Then form € M,n € n,and¢ in H, m ~ n impliesM, m I+ ¢ iff
N,n - ¢.

For two logics we writéH < H’ to denote that for each formulain H there exists a formula’

in H’ such thatp is satisfiable if and only ity is. We writeH < H' if H < H’' and notH’ < H.

It is immediate that{((R~1),@,@0) x HN((R™Y),@) andH((R™!),@, QO E) < HN((RTY),
@, E). More interestingly, each of the relations is actuallycstrivhich can be shown by means of
bisimulations. In DL terms this means, for instance, that dhe-of operato® does increase the
expressive power of the language, both with full and emplpXes.

The relation betweehiy ((R~1), @) andH((R~1), @, @<, E) is more complex. By using bisim-
ulations, we can prove both thaty ((R™1), @) £ H((R™!),@, @0, E) andH((R™1), @, @O, E) #
Hn((R™!),@). NeverthelessH((R™!),@, @<, E) is at least as expressive & ((R!), @) if we
are only interested in satisfiability (and not in the existenf an equivalent formula).

Proposition 6.4 Let¢ be a formula inHy((R~!), @), then there exists a formutsl € H((R!), @,
@<, E) such thatp is satisfiable iffp’ is satisfiable.

These expressive separation results easily translatestyipigon languages. For two description
languagesC; and Lo, definel, < L, if for any knowledge bases in £, there is a knowledge base
¥’ in L9 such that for all interpretatiorg, Z = X iff Z = X’. Now that the formulas used to separate
the languages can easily be recast as assertions or teogicadl definitions, and similarly for the
translation used in the proof of Proposition 6.4.

The notions of bisimulation we have defined not only sepatadragments of first-order logic
which corresponds to the hybrid logics we have been disogstiey alsaharacterizethem. ForH
any of our hybrid languages, we say that a first-order formula) in the first-order language over
(RELU{P; | pj € PROP},NOM, {z,y}) is invariant for H-bisimulationsif for all models M and
N, and all statesn in M, n in A/, and allH-bisimulations~ betweenM and A such thatn ~ n,
we haveM = a(z)[m] iff N = a(x)[n].

Theorem 6.5 For H any of H((R™!), @, @0), Hy((R™1), @), H(R™!), @, @<, E) or Hn((R™1),
@, E), a first-order formulaa(x) over the signaturdREL U {P; | p; € PROP},NOM, {z,y}) is
invariant for H-bisimulations iff it is equivalent to the hybrid translati of a hybrid formula irf.

Results describing the classes of models that can be glatefiined, can be proved for many hybrid
languages, but have to be omitted because of space limiatio
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6.3 Interpolation and Beth Definability. In [3] results concerning the interpolation and Beth de-
finability properties for a variety of hybrid languages arevided. What is the role of these two prop-
erties in the setting of description logics? Let's firstautnce some notation. Far = (T, A), X' =
(T', A"y two knowledge bases, 181U X' be (T'U T", A U A’), andX[C/ D] be the knowledge base
obtained fromX by replacing each occurrence of the cona@gdty D. Now, suppose that for a given
knowledge base: the following holds,

E[C/Dl] U E[C/DQ] |: Dy = D, for someD;, Do ¢ CON(E) (2)

Notice that this equation need not be true for all knowledgeek>: and concept<”. Actually,
(2) implies thatX encodes enough information concerni@gto provide a complete—though not
necessarily explicit—definition. Now, if the (global) Bedkfinability property holds for the language
of X3, then there actually exists an explicit definition©f I.e., there is a concegd not involving

C such that = C = D. Given that description languages take definitions veripasly, the Beth
definability property (i.e., the capacity of the languageutm implicit definitions into explicit ones)
seems highly relevant.

There doesn’'t seem to be a uniform direct way of proving oprdiging Beth definability. The
standard approach to establish the property is via a detwough interpolation. In first-order and
modal languages, the (arrow) interpolation property igglihe Beth definability property and the
same relation holds for hybrid languages.

Hence, positive interpolation results for hybrid languageuld translate into nice definability
properties of the corresponding description language otturfiately, for languages where nominals
appear free in formulas, and which do not provide a bindinghmgeism, failure of arrow interpolation
seems to be the norm. In particular, [3] provides countarrgdes to the arrow interpolation property
for the basic modal language extended with nomin#lg(@) andHs(@). The extensions of these
languages with théR~!) operator fare no better, and adding Eheperator doesn’t help either. Hence,
in all these cases, the most traded path to establish Betiatdily is closed for us.

The case is different fok (@, @0) andH((R™!), @, @<O). As we will now show, we can extend
the constructive method for establishing arrow interpofapresented in [15, Section 3.8], to handle
@ and@<. Again we will make use of the normal form introduced in Prsiion 3.2.

Theorem 6.6 H(@, @C) andH((R™!), @, @) have arrow interpolation.

As we said, arrow interpolation implies global Beth defitigpiimplicit definitions inH (@, @<) can
be turned into explicit definitions. And we can attempt tasfer this property to the description logic
counterpart ofH(@, @<). We would proceed as follows, suppose a knowledge hase (T, A) in
ALC satisfies the conditions in (2). Then we can transtateto a theoryI” of H(@, @) (as we are
using global consequence this time we don’t nEgdand T [pc/pp,] U T [pc/pp,] E% pp, < PD,-
Applying Beth definability forH (@, @<) we obtain a formul# such thatl’ =% 6 < pc. Now, 0 is
an explicit definition ofC, but it is in thefull languageH (@, @<), i.e., it might contain subformulas
of the form @;y and @;<j. Because of the syntactic restrictions imposed by the idivigto T-
and A-Box information it will not always be possible to tréats 6 into a concept inALC. To see
an example, suppogeis of the form@,v v ¢. Hence we will have thaE = (Q,v — (pc <
T)) A (Q,=v — (pc < 7)). Thatis, we obtain a definition @ that is conditional on assertional
information.

More generally, we first writ@ in normal form to obtain

T | </\( V Gy VT!) < pe.

leL ieNOM
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Notice that for a hybrid formula) and @, € SF(«) such that@ does not appear in, ¢ is equiv-
alent to(Q;v — ¥[@Qv/T]) A (Q;—v — [Q;rv/L]). By iterating this rewriting on the formula
(Aier Vienom @iviny) V 1) < po, we finally obtain a series of definitions 6f in terms of con-
cepts of ALC, but conditional on assertional information to be inferfienn 3.

There is an interesting connection between the Beth delfityapioperty and acyclic definitions
in T-Boxes. This restriction was aimed at avoiding the idtrction of circular concepts, i.e., concepts
defined in terms of themselves. This kind of concepts, it wgaead, called for some kind of fixed
point semantics and this kind of semantics was computdljoespensive [20, 4]. But if the language
has the Beth definability property, any concept implicitifided in a knowledge base also has an
explicit definitionwithout self referenceHence, considering only acyclic definitions does not carry
any expressivity loss.

§6.4 Further Outcomes. It is striking how description and hybrid logics are simitard different

at the same time, like twin brothers raised separately. Bec#he connection between hybrid and
description logics is so tight, complexity and expressioga/@r results can easily be moved between
the two, as we have seen. Havitwo different perspectives also brings extra flexibility. Exge
can investigate meta-logical properties on the “hybriddaide” which is presented in a format more
amenable to standard model-theoretic techniques, and tiesslts throw light on the behavior of
description languages. We give some examples.

One possibility concernbinders and variablesWe have focused on “weak” hybrid languages
which remain close to the basic DLs. But a natural step froenhtybrid point of view is to regard
nominals not as names but eariablesover individual states, and to add quantifiers. Undecidgbil
quickly shows up in this setting, but syntactic restricticam restore decidability, while providing
interesting new concepts when introduced in a descriptiaguage.

A different direction concerneounting Graded or counting modaliti€s) ¢ restrict the number
of possible successors satisfyiggthat a state has in a model. While their theory is not so well
developed, qualifying number restrictions are activelydlis description formalisms, as they provide
important modeling power. Recent work by Tobies [25] pregigoromising new complexity results
that are worth linking to findings of the present paper.

7 Conclusion

Nearly a decade after Schild started exploring the conmretitween modal and description logic, we
have made an important step forwards in finding a formal Egiounterpart of DLs. One of the key
points of DLs is their use of non-empty T-Boxes and A-Boxdse Tormer essentially concerns global
information, which lifts the complexity of the satisfialbliproblem to EXPTIME. With our analysis
of DLs in terms of hybrid logics, we can reason with non-emptBoxes (and empty T-Boxes)
in PSPACE. Our fine-grained analysis in terms of hybrid legilows us to capture the expressive
power offered by T-Boxes, A-Boxes, and both. Because hylbgits offer a mathematical logical
counterpart of DLs, we can use formal logical results antrtiegies such as interpolation and Beth
definability to analyze DLs. Different enough to make the pansons interesting, but similar enough
to allow for extensive traffic of results, extensions andatamns, description logics and hybrid logics
are different sides of the same coin.
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