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From Description to Hybrid Logics,
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CARLOS ARECES AND MAARTEN DE RIJKE

ABSTRACT. Building on work by Schild, De Giacomo and Lenz-
erini, we establish a tight connection between description logics
and hybrid logics. The main aim of the paper is to provide a modal
perspective on some of the distinguishing features of description
logic. In particular, by working in a hybrid logic setting we are
able to develop a model-theoretic understanding of both asser-
tional and terminological information. We also show how to use
the connection between description and hybrid logics to transfer
results on complexity and expressive power from one to the other.

1 Introduction

Nearly a decade ago, Schild (1991) observed and exploited the close cor-
respondence between description logics and modal languages. He used
it as a bridge to transfer complexity results and axiomatizations from
modal logics to description logics, but noticed that the correspondence
can only be established at the level of concept satisfiability. Basic modal
logic is not expressive enough to account for either A-Box reasoning or
inference in the presence of definitions (non-empty T-Boxes). Also, some
very expressive description languages include constructions for building
complex roles such as intersection, converse, and even transitive clo-
sure. By lifting the correspondence to Converse Propositional Dynamic
Logic (CPDL, Fischer and Ladner 1979), Schild accounted for these con-
structions and for inference from non-empty T-Boxes. De Giacomo and
Lenzerini (1994) extended these results by encoding A-Box reasoning in
CPDL. While embeddings of description logics into CPDL have proved
useful, they have two important disadvantages. Complexity-wise, the lo-
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Constructor Syntax Semantics

concept name C cZ

top T AT

negation (C) -C AT\ CT

conjunction C1MCsy Clz [l CQI

disjunction (U) C1UCs ctuct

universal quant. VR.C {d1 | Vd2 € AT.(R%(d1,d2) — d2 € CT)}
existential quant. (£) | 3R.C {dy | Id2 € AT.(RT(d1,d2) Ada € CT)}
one-of (O) {a1,...,an} | {d|d=a? for some a;}

role filler (B) AR {a} {d | R*(d,a®)}

role name R RT

inverse roles (Z) R! {(d1,d2) | RT(d2,d1)}

TABLE 1 Common operators of description logics.

cal satisfiability problem of CPDL (i.e., the problem of finding, given a
CPDL formula ¢, a model M and a state m such that M, m I ¢) is al-
ready EXPTIME-complete, and this prohibits sharp complexity results.
And perhaps more crucially if our main aim is to understand the general
behavior of description logics, the model theory of CPDL is complex, be-
cause the Kleene star (and hence a weak notion of induction) needs to
be taken into consideration.

In this paper, we replace CPDL by hybrid languages and in this way
shed new light on the issues above. Our main aim is to establish a very
tight connection between description and hybrid logics, and to show
how it provides a modal perspective on description logics, by means of
a number of transparent model-theoretic ideas. We also indicate some
possible uses of this connection in terms of results on complexity, ex-
pressive power, and meta-logical properties like interpolation and Beth
definability.

We start by providing some background. We then recall relevant work
by Schild, and De Giacomo and Lenzerini. After that we set up the link
between hybrid and description logics, and exploit it.

1.1 Description Logic

Description logics (DLs) are a family of formal languages with a clearly
specified semantics, usually in terms of first-order models, together with
inference mechanisms to account for knowledge classification. One of the
main aims of the field is to identify fragments of first-order logic that are
able to capture the features needed for representing a particular problem
domain, and which still admit efficient reasoning algorithms.

Let CON = {C1,C5,...} be a countable set of atomic concepts,
ROL = {Ri, Rs,...} a countable set of atomic roles, and IND = {aq,
as, ...} a countable set of individuals. For CON, ROL, IND, all pairwise
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disjoint, S = (CON, ROL, IND) is a signature. An interpretation Z for
S is a tuple Z = (AT,.T), where A7 is a non-empty set, and - assigns
elements af € A7 to constants a;, subsets C¥ C AT to atomic concepts
C;, and relations R? C AT x AT to atomic roles R;. The atomic symbols
in a DL signature can be combined by means of concept and role con-
structors, to form complex expressions. Table 1 defines the constructors
for the DLs we will discuss, together with their semantics. It is custom-
ary to define systems by postfixing the names of some basic description
languages like AL or FL with the names of the added operators from
Table 1. In this paper, we will be interested in languages having full
Boolean expressivity and hence focus on ALC and its extensions. The
most expressive language we will deal with is ALCOZ, that is ALC ex-
tended with the “one-of” operator and converse roles (this language can
trivially encode the “role-filler” operator B).

In DLs we want to perform inferences given certain background
knowledge. Let £ be any description logic, a knowledge base ¥ in L
is a pair ¥ = (T, A) such that T is the T(erminological)-Box: a fi-
nite, possibly empty, set of expressions of the form C; C Cs, where Cf,
Cy € CON(L) (Cy = Cy is short for ‘Cy C Cy and Cy E Cy’). Formulas in
T are called terminological azioms. In addition, A is the A(ssertional)-
Box: a finite, possibly empty, set of expressions of the forms a: C or
(a,b): R where C is in CON(L), R is in ROL(L) and a, b are individuals.
Formulas in A are called assertions.

Let Z be an interpretation and ¢ a terminological axiom or assertion.
Then Z models ¢ (notation: Z = ¢) if ¢ = C; £ Cy and CF C CoF, or
¢=a:C and a* € CT, or ¢ = (a,b): R and (a%,b?) € RZ. If © = (T, A)
is a knowledge base and Z an interpretation, then Z models ¥ (notation:
T EY)ifforall ¢ € TUA,Z = ¢. Given a knowledge base ¥ and a
terminological axiom or assertion ¢, we write ¥ = ¢ if for all models
T of ¥ we have Z = ¢. All standard description logic reasoning tasks
(like subsumption or instance checking) can be defined in terms of this
relation.

1.2 Hybrid Logic
Modal formulas are evaluated at a given state in a model, and their
truth values depend on the value of formulas at some related states. Yet,
nothing in modal syntax gets to grips with the states themselves. Hy-
brid languages are modal languages which solve this “reference problem”
by introducing special symbols, called nominals, to explicitly name the
states in a model.

The basic hybrid language is Hy, basic modal logic extended with
nominals. Further extensions are named by listing the added operators.
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The most expressive system we will discuss is Hy((R™1), E, @), the basic
hybrid language extended with the converse and existential modalities,
and the @ operator. More precisely, let REL = {R, Ra, ...} be a count-
able set of relation symbols, PROP = {p1,p2,...} a countable set of
proposition letters, and NOM = {i1, s, ...} a countable set of nominals.
ATOM = PROP U NOM is the set of atoms. The formulas of the hybrid
language Hy((R~1), E, @) in the signature (REL, PROP,NOM) are

FORMS :=T |a|—¢|d1 A2 | (R)p | (R )¢ | Ep | Q;,

where a € ATOM, R € REL, i € NOM, and ¢, ¢1, ¢2 € FORMS.

A hybrid model M is a triple M = (M, {R;}, V) where M is a non-
empty set, {R;} is a set of binary relations on M, and V : PROP U
NOM — Pow(M) is such that for all nominals i € NOM, V(i) is a
singleton subset of M. Let M = (M, {R;},V) be a model and m € M.
The interesting cases of the satisfiability relation are as follows: M, m I+
aiff m € V(a), a € ATOM; M, m Ik (R)¢ iff Im’ (R(m,m’) & M,m’ I+
®); M,m IF (R~H¢ iff Im’ (R(m',m) & M,m’ | ¢); M,m |- E¢ iff
Im’ (M, m’ I+ ¢); and M, m I+ @Q;¢ iff M, m’ I+ ¢, where V(i) = {m'},
i € NOM.

We write M I ¢ iff for all m € M, M, m I ¢. This notion extends
to sets of formulas in the standard way. A formula ¢ is satisfiable if
there is a model M and a state m € M with M, m IF ¢. A formula
¢ is walid if for all models M, M IF ¢. ¢ is a local consequence of a
set of formulas T' (notation: T' |="¢ ¢), if for all models M and points
m € M, M, m I+ T implies M, m |- ¢; ¢ is a global consequence of a set
of formulas T' (notation: T = ¢), if for all models M, M Ik T implies
M IF ¢. When T is the empty set, we have {} % ¢ iff {} = ¢, and
simply write = ¢.

2 Schild’s Terminologies

It is easy to map concepts in ALC into formulas of CPDL, while pre-
serving satisfiability — actually, basic poly-modal logic is enough. Just
define the translation -* by putting (C;)* = p;, for C; an atomic concept;
(=C)t = =(Ch); (CM D)t = C* A DY and (3R.C)' = (R)C*. Tt is clear
that -* preserves satisfiability. But we need further expressive power to
account for T-Box and A-Box reasoning.

Consider the signature S = ({C1,Cs2},{R}, {a}) and the interpre-
tations Z; = ({my,ma}, - 7) and Zo = ({ms3, my4, ms}, - 72) where C’%I1 =
{m1}, CF = {m1,ma}, R = {}, ¥ = my; and CT2{my}, C3* =
{ms}, R*> = {}, a®* = ms. Clearly, Z; models both C; C Cy and a:C,
while Z5 models neither. On the other hand, when we consider Z; and
7> as modal models, the relation {(mz, ms)} is a bisimulation, showing
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that there are no basic modal formula capturing these notions.

Observe that terminological axioms such as C; C C5 and a : C}
express global properties: they are true in a point in a model iff they are
true in all elements of the model. Schild (1991) accounts for the global
nature of terminological axioms by using the collapsed model property of
CPDL (any satisfiable CPDL formula is satisfiable in a connected model)
and the availability of the Kleene star. Due to the former, we can ignore
states which are not reachable by a finite sequence of backwards and
forwards transitions. And due to the Kleene star we can “compress”
these transitions into a single step. Formally, extend - by putting (C' C
D)t = (C* — D?'). And for a finite set of terminological axioms T', let T"
be A ¢!, where ¢; € T. Now, let TU{¢} be a finite set of terminological
axioms, and let Ry, ..., R, be all the roles in TU{¢}. Then (T, {}) E ¢
iff = [(RiUR;'U---UR, UR YT — ¢

As Schild remarks, this translation would not work for an infinite
T. On the one hand, 7" might contain an infinite number of roles, but
even in the case of a finite signature, PDL is not compact (Harel 1984,
Theorem 2.15), hence inference from infinite sets does not coincide with
inference from finite sets. More importantly, lack of compactness has a
striking effect on the complexity of the consequence problem, which be-
comes highly undecidable, an indication that PDL is not computation-
ally well behaved. The computational problems caused by the Kleene
star have been well investigated both in the modal and description
logic community (Ladner 1977, Halpern and Moses 1992, Sattler 1996,
Horrocks and Gough 1997); and authors like Sattler, and Horrocks and
Gough have argued that the ability to define a role as transitive often
suffices in applications, instead of the full power of transitive closure.

What is going on here? How can we understand terminological ax-
ioms in modal terms, using the kind of model-theoretic tools that have
been used to analyze modal logic itself? Before we answer this question
we highlight one more distinguishing feature of DLs.

3 De Giacomo’s Individuals

Accounting for assertional information in CPDL is more complicated
than encoding terminological axioms. Below we present a simplified ver-
sion of a translation proposed by De Giacomo and Lenzerini (1994); the
latter enforce the unique name assumption and also deal with complex
structure on roles (union, composition, transitive closure, etc.) which
makes for the additional complexity. Here, we only discuss the handling
of individuals.

Extend the translation - defined in Section 2 to assertions by defining
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(a:C) = p, — C' and ((a,b): R)' = p, — (R)pp, where p, and py,
are propositional symbols. Let A be a finite set of assertions, define A*
as /\ ¢! for ¢; € A. The problem now is that in translating individuals
as propositions in CPDL we have lost the information that individuals
denote a single element in the domain. Hence, we have to explicitly force
these symbols to behave as individuals. Let ¥ = (T, A) be a knowledge
base, Rq,..., R, the roles appearing in X, ai,...,a,, the individuals
mentioned in 3, and let SF(¢) be the set of all subformulas of ¢. Let [U]
stand for [(Ry UR;*U---UR,, UR;')*], and let S be a role not in X.
Let ¥t be

[SIUJ(A" AT") A

A Spen| A ISP AY) = U, — o)

1<i<m YESF(TtAAL)

It can be shown that ¥ is consistent if and only if ¥ is satisfiable. This
is enough because in sufficiently expressive languages like the ones we
consider in this paper, all standard reasoning tasks can be reduced to
knowledge base consistency.

As remarked by Horrocks et al. (2000), De Giacomo’s translation is
probably too involved and costly to provide effective decision methods.
It is also difficult to extract theoretical results from it, except for the gen-
eral complexity results presented in De Giacomo and Lenzerini (1994).
As we already remarked, the model theory of CPDL is intricate because
of the inductive nature of the Kleene star, and the cryptic translation
provides little help on simplifying things out.

4 Universal Statements and Individuals

The two features of DLs that most modal logicians would probably find
hard to understand in terms of the model-theoretic notions they are used
to (bisimulations, axiomatizations, etc.), are the use of global informa-
tion and of information about individuals.

One way to understand the issue of global information is by pay-
ing special attention to the standard notions of consequence used in
description and modal logics. In Section 1 we introduced two notions
of consequence, a local one and a global one which differ in the way
we quantify over states in the model. To understand what is going on,
it is helpful to discuss consequence in first-order terms. Given a set of
formulas T" U {¢} which might contain free variables, the way we define
the quantification over models M and first-order assignments g becomes
meaningful. We can either require
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(Global) VM(VgM = T'[g] = Vg.M [= ¢[g]), or
(Local)  VMVg(M = T'g] = M |= ¢[g])

The global consequence relation is the one familiar from first-order logic,
but first-order consequence is usually analyzed over sets of sentences, and
in this case both the global and the local notions coincide. Modal lan-
guages are usually equivalent to first-order formulas with free variables,
and choosing one of the two possibilities becomes an issue. In line with
the general local perspective of modal logics (evaluation of a formula at a
state in the model), the local notion of consequence is the most natural.
But the presence of the E modality in hybrid languages makes things
simpler, as we can easily interdefine local and global consequence. Let A
(the universal modality) be the dual of < (i.e., Ap := =E—¢), then

(1) T E" 6 iff {Ay | € T} E* 6.

Goranko and Passy (1992) study properties of languages containing E,
and prove that global properties of a logic £ correspond to local prop-
erties of the logic £F which arises from £ by adding E. In particular, for
basic modal logics, global decidability, global finite model property, and
global completeness of a logic £ are equivalent to their local versions for
LE. This result can be extended to many hybrid languages.

Theorem 4.1 Let the property P be either decidability, finite model
property, or axiomatic completeness, and let L be any sublanguage of
HN((R™1),@). Then L has P globally iff LE has P locally.

Going back to description languages, notice that if we use = instead of
=", then basic modal logic is enough to encode terminological axioms,
as the following equivalence holds: (T, {}) & ¢ iff T* = ¢'. By using
(1) we can move to (T,{}) | ¢ iff {A(T")} E'* ¢'. And given that the
local consequence relation satisfies the deduction theorem, we obtain

(T.{}) Eoiff FAT")—¢"

By Theorem 4.1, then, we can study logical properties of inference from
non-empty knowledge bases through local properties of satisfiability of
languages containing E. If the logic is compact, we can perform this
reduction even for infinite T-Boxes, but, most importantly, by replacing
the Kleene star with the existential modality we obtain a language with
a much better behaved and understood model theory.

Let us now turn to the second feature of DLs that many modal
logicians find puzzling from a model-theoretic point of view: A-Box in-
formation.
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The main difficulty with the extended translation (-)* defined in Sec-
tion 3 is in forcing propositional symbols in CPDL to behave as individ-
uals. If we use hybrid logics instead, we can simply use nominals. A-Box
statements can then be straightforwardly accounted for, as a:C simply
becomes @,C* and (a,b) : R can be translated as @,(R)b. The whole
idea of nominals seems to fit neatly in the DLs perspective, so much so
that many ideas and techniques from hybrid logics, involving the direct
use of nominals, have been already taken up by the description logic
community (see, e.g., Tobies 2000).

Given the presence of the existential modality and nominals, hybrid
logics are very well suited to provide a modal perspective on description
languages that is able to deal with full terminological and assertional
reasoning. Consider the following translation -» taking concepts, termi-
nological axioms and assertions to hybrid formulas:

(C)H" = p;, (C; atomic) ({a1,..,a ) =a1v---Va,
(=C) = ~(C) (3R{a})" = <R>a
(Cn D)y =cChADP (C € D)* = A(C* — D")
BR.C)" = (R)C" (a:0) = @,C"
ERL.O) = (RHCO" ((a,0):R)" = Qu(R)b.

Theorem 4.2 Let 3 = (T, A) be a knowledge base in ALCOZ, and ¢ a
terminological aziom or an assertion, then (T, A) E ¢ iff = (Ayer YA

/\¢eA 7/’h) - ¢h-

The proof is obvious (and the connection between the two languages is
stronger than with CPDL), as any model of (T, A) and ¢ can be viewed
as a model of (A cp P A Nyea YPh) — ¢" and vice versa.

Hybrid logics have already been proposed as natural counterparts
of description languages. Blackburn and Tzakova (1998) propose using
hybrid languages to embed description logics, highlighting the connec-
tion between assertional information and nominals, and the use of the
existential modality to encode terminological axioms. But they intro-
duce undecidable hybrid languages for this account, arguing that the
increase in expressive power of these languages is an advantage. Instead,
our translation tries to remain as faithful as possible to the original
description language, and pays special attention to decidability issues.

What kind of expressive power is needed to encode the different lan-
guages and reasoning tasks? For example, the existential modality is
required only for translating terminological axioms, while @ is only used
for assertions. The following lists a number of relevant hybrid languages:
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e Hn({(R™1),@, E), in which the full translation of ALCOZ with non-
empty T-Boxes and A-Boxes can be made.

e Hn((R™Y), @), in which only inferences in terms of empty T-Boxes
can be performed.

e H({R™'),@ @0, E), in which we only allow nominals to appear
as subindices of @ and in the construction @,(R)b or @,(R™1)b,
and hence we can translate neither the one-of operator O nor role
fillers B.

e H({R™'),@ @%), the “local” version of the language above, where
we work with empty T-Boxes.

We have defined each of the logics above to be expressive enough to
permit the encoding of certain specific DLs. But it is also important
to determine if and how we have extended the expressive power of the
source language with the move into these hybrid languages. The general
answer is: we have incorporated Boolean structure into the knowledge
base, and allowed explicit interaction among T-Box definitions, A-Box
assertions and concepts.

As an example, we will show how to recast satisfiability of a formula
in HN((R™Y),@, E), in terms of satisfiability in the corresponding de-
scription logic. It will be useful to first discuss a normal form for hybrid
formulas. Take a formula ¢ in Hy((R™"), @, E). We start by translating
¢ into propositional normal form. Then we use the following equivalences
to “push out” the E and A operators from inside the other modalities
(we use Q to range over E and A):

R

[RIQY = [RILVQy 0.Qp « QY
[RI(OVQy) < [RlOVQy Q0VQY) « Qb6VQY
[BI(O AAY) = [R]O A [RIAY Q(0NQY) < Q@.60AQY

[B]

0 N
[RI(OAES) — [RILV ([R)0AEY)

Similar equivalences hold for the dual modalities (R) (@ is self dual).
For pushing out @ we have
[R]@¢ < [R]LV @ Q,Qpp — Qup
[RI(0V Q) < [ROvVQs | Qy0V Q) « Q@0VQap)
RIOAQW)  [ROA[RIOW | Q,0AQ0) < Q0A@0.

And similarly for the @ operators appearing under (R). We arrive then
to the following result.

Proposition 4.3 Let ¢ be a hybrid formula, then ¢ is equivalent to a
formula ¢" where subformulas of the form Ev, A and Q¢ (if any) occur
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only at modal depth 0. In particular, ¢’ can be taken to be

Nier (VmeM Ap(m) V Bor v \/iGNOM(q/)) Qiv,iy V Tl) 3

for some (possibly empty) index sets L, M, where p( m), o1, Vi and 7
contain neither E nor Q.

By allowing negations in the T-Box we can encode validity of formu-
las in Hn((R™1),@,E) as instance checking as follows. Define Boolean
knowledge bases as pairs ¥ = (T, A) where T is a set of Boolean com-
binations of terminological axioms, and A a set of Boolean combina-
tions of assertions. In the description logic community, Boolean knowl-
edge bases have been considered in the setting of the CLASSIC system
(Borgida et al. 1989), while authors with a modal logic background, such
as Wolter and Zakharyaschev (2000), have also considered this kind of
knowledge bases.

Take ¢ € Hn({R™1),@,E) in the normal form described in Proposi-
tion 4.3. For [ € L, define the knowledge base 225 = (Té, Ag) by putting

T, = {~(TCpl.y) |meMyU{TC-ol '}, and
Al = {i=wf, | € NOM(9)},

where the mapping 47" s the backwards translation from the hybrid
language into ALCOZ that sends Boolean and modal operators to the
corresponding description logic ones and using singleton one-of sets {i}
for translating nominals.

Theorem 4.4 For any formula ¢ in Hn((R™Y), @, E), let a ¢ NOM(),

then ¢ is valid iff for alll € L, Zizﬁ Eat .

Interestingly, even if we allow Boolean knowledge bases, we cannot recast
validity of hybrid formulas as inference in terms of a unique knowledge
base. This is because the separation between terminological axioms, as-
sertions and simple concepts imposes syntactic restrictions which don’t
exist in hybrid logic. Trivially, if the index set L above is a singleton,
then a unique knowledge base is sufficient. I.e., we can precisely charac-
terize the fragment of Hy((R™1), @, E) that captures the expressivity of
ALCOT with Boolean knowledge bases.

As we will see in Section 5, allowing the extra flexibility that Boolean
knowledge bases offer does not modify the complexity class in which
the reasoning tasks fall (for the languages we are considering), but it
increases expressive power and has an impact on meta-logical properties
like interpolation and Beth definability.
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5 Exploiting the Connection

The links between hybrid logics and DLs discussed in the previous sec-
tions are so strong, that we can immediately start harvesting by inter-
preting results from one field in the other. This is what we will do now,
from a number of perspectives, including complexity, expressive power
and meta-logical properties.

5.1 Complexity

We start by exporting complexity results for hybrid logics to DLs. We
need to pay attention to the difference between local and global notions.
For a modal language, we can distinguish between the local-Sat problem
(given a formula ¢, does there exist a model M and m € M with M, m I+
@?), and the global-Sat problem (is there a model M with M IF ¢7). If
the logic contains the E modality, the problems coincide, as we argued
in Section 4.

First, we consider the “pure future” fragments of the hybrid lan-
guages defined in Section 4, i.e., we only consider formulas without the
(R™1) operator. The local-Sat problem for Hy (@) is PSPACE-complete
(Areces et al. 1999b). This result also settles the complexity of the lan-
guage H (@, @0), because this language contains the basic modal lan-
guage. As a corollary of the EXPTIME-completeness of CPDL, we ob-
tain an EXPTIME upper bound for the local-Sat problem for Hy (@, E).
It follows from Spaan’s (1993) results on the EXPTIME-completeness of
modal logics with the existential modality, that both H(@, @<, E) and
Hn(Q, E) are EXPTIME-complete.

Switching to the DL perspective, the results above imply that it is
the move from empty T-Boxes to full T-Boxes that modifies complexity.
And this does not depend on our extension to “Boolean” knowledge
bases, as the same complexity results obtain when we restrict ourselves
to standard knowledge bases. The one-of operator O and role fillers B
offer more expressivity at no cost (up to a polynomial). At this very point
the encoding of DLs into hybrid languages, instead of CPDL, works to
our advantage, as we can identify cases with a PSPACE upper bound.

Theorem 5.1 1. Instance checking for Boolean knowledge bases with
empty T-Boxes is PSPACE-complete for the language ALCO.

2. Instance checking for Boolean knowledge bases is solvable in EX-
PTIME (hence EXPTIME-complete) for the language ALCO.

Notice that we don’t need to restrict to empty A-Boxes in item 1, and
recall that the complexity results for instance checking extend to all
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standard reasoning tasks like knowledge base consistency, or subsump-
tion checking.

What about the (R™!) operator? Adding just one nominal to ba-
sic temporal logic moves the complexity of the local-Sat problem from
PSPACE-hard to EXPTIME-hard. The known EXPTIME upper bound
for CPDL plus nominals and E (Areces et al. 1999b) also covers the lan-
guage Hn((R™1), @, E); hence, the local-Sat problems of Hy((R™1), @),
H(R™!),@,@0,E) and Hn((R™!), @, E) are EXPTIME-complete.

A PSPACE upper bound for H((R™!),@, Q<) is easy to establish
by using the fact that @ operators need only appear at modal depth 0.!
We give a sketch of the proof. To avoid confusion we will write @;(R,.)j
as R.(i,7). Let

¢ = /\ ( \/ Qv \/\/Tz VUz) )
leL \ieNOM
where each T; is a collection of formulas of the form R,.(i, j) or =R,(4, ),
and v ;), 0y contain neither @ nor nominals. As PSPACE = NPSPACE,
non-deterministically choose from each conjunct of ¢ the disjunct satis-
fied by a model of ¢. Collect these choices in a set called CHOICE. Now,
for each i, let S; = {¢ | @;¢p € CHOICE}, and create a polynomial model
satisfying S; at the point m; (notice that all formulas in S; are basic
temporal formulas and hence a PSPACE model can be constructed).
Similarly, create a polynomial model for all formulas in CHOICE which
are not @-formulas. Let M be the disjoint union of all these models.
Finally, if R,(¢,7) € CHOICE, add the pair (m;, m;) to R,. The model
of ¢ obtained in this way has size polynomial in |¢]|.
With the translation into CPDL it would of course be impossible to
evaluate the difference made by the presence or absence of the (R™1)
operator in terms of complexity.

Theorem 5.2 1. Instance checking for Boolean knowledge bases with
empty T-Bozes is solvable in PSPACE (hence PSPACE-complete)
for the language ALCBT.

2. Instance checking for knowledge bases with empty T- and A-Bozes
is EXPTIME-hard for the language ALCOT.

3. Instance checking for Boolean knowledge bases is solvable in EX-
PTIME (hence EXPTIME-complete) for the language ALCOT.

1Notice that we cannot directly use the normal form of Proposition 4.3 here, as the
formula ¢’ in normal form can be exponentially larger than the original ¢ (already
the first step in the transformation is to translate ¢ in propositional normal form).
But pulling out the @ modality with the help of new propositional symbols is simple.
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The complexity results listed so far were based on importing hybrid logic
results into DL. The EXPTIME-hardness result for Hy((R™1)) (basic
temporal logic with at least one nominal) contrast sharply with the good
complexity behavior of Hn(@). For example, if we move to the class of
transitive models, even Hn(@, E) is PSPACE-complete (meaning that
there are PSPACE algorithms even for inference from non-empty T-
Boxes, when restrictions are set on roles), while Hy({R~!)) remains ob-
stinately in EXPTIME. Results concerning the complexity of hybrid log-
ics in different classes of models are investigated in (Areces et al. 2000).
When translated in DL terms, one of the main results in that paper
implies that instance checking for Boolean knowledge bases in ALCOZ
can be solved in PSPACE if we consider only transitive trees as models.

Here we have mainly exported complexity results from hybrid log-
ics to description logics, but of course the other direction is also open:
known complexity results from DLs can be translated in hybrid terms.
For example, little is known about the extension of hybrid languages
with counting, while counting is widely used in DLs. Further, there is
a “folklore” result which states that instance checking for ALC with T-
Boxes restricted to simple and acyclic terminological axioms is PSPACE-
complete; this implies that when syntactic restrictions are imposed on
the use of E, we can avoid EXPTIME-hardness for the local-Sat prob-
lem of H(@, @<, E). In this respect, Lutz (1999a, 1999b) provides the
first detailed complexity analysis of inference from simple, acyclic T-
Boxes. Interestingly, the restriction to simple, acyclic T-Boxes does not
always preserve complexity: instance checking in ALCF (ALC extended
with features, feature agreement and feature disagreement) is PSPACE-
complete for empty T-Boxes, but it turns NEXPTIME-complete even
when only simple, acyclic T-Boxes are allowed.

5.2 Expressive Power

We now consider expressive power, and we do so by taking advantage of
hybrid bisimulations. Bisimulations are binary relations on the domain of
hybrid models. Kurtonina and de Rijke (1999) provide a detailed analysis
of the expressive power of DLs by means of (bi-)simulations, but their
results only address the expressive power of concepts. In this section, we
will instead study the expressive power offered by full knowledge bases.

Let M = (M,{RM}, VM) and N = (N, {RY}, V) be two hybrid
models. For i € NOM, let i™ be the denotation of i in M and similarly
for iV. Let ~ be a non-empty binary relation on M x N, and consider the
following properties on ~ in addition to the conditions for bisimulation
for a basic temporal language (Blackburn et al. 2001):
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(@)  For all nominals 7 in NOM, iM ~ ¢,
(@0) Let i,4 be nominals in NOM, then R, (M, jM) iff R, (N, V).
(E) ~ is total and surjective.

A bisimulation ~ for a basic temporal language is a H({R™1), @, QO)-
bisimulation if it satisfies the conditions (@) and (@<). Further, ~ is a
Hn((R™1), @)-bisimulation if bisimilar states agree on all nominals (and
in this case (@Q<) can be derived from the others). H((R™1), @, @O, E)-
and Hy((R™!), @, E)-bisimulations are obtained from H({R™1), @, QO)-
and Hy((R™1!), @)-bisimulations, respectively, by requiring, in addition,
condition (E).

Proposition 5.3 Let H be one of H((R™!),@,@0), Hy((R™1), @),
H(R™Y), @, @O, E) and HN((R™Y),@,E). Let M = (M, {RM}, VM)
and N = (N,{RN}, VN, and let ~ be an H-bisimulation between M
and N'. Then form € M,n € N, and ¢ in H, m ~ n implies M, m I+ ¢
N, IF 6.

For two logics H and H' we write H < H' if there is a translation
*:"H — H’, such that for each formula ¢, for any model M and state
min M, M, m Ik ¢ if and only if M, m I+ ¢*. We write H < H' if H < H’
and not H’ < H. It is immediate that H({R™!), @, @Q0) x Hy((R™1), @)
and H((R™!),@,@0,E) < Hn((R™!), @, E). More interestingly, each of
the relations is actually strict, which can be shown by means of bisimu-
lations. In DL terms this means, for instance, that the one-of operator
O does increase the expressive power of the language, both with full and
empty T-Boxes.

The relation between Hy((R™!), @) and H((R™!), @, @O, E) is more
complex. Using bisimulations, we can prove both that Hy({(R™1), @) £
H(R™!),@,@0,E) and H((R™!), @, QO E) £ Hn((R™!),@). Never-
theless, H((R™!),@, @O, E) is at least as expressive as Hy((R™!), @) if
we are only interested in satisfiability (and not in the existence of an
equivalent formula).

Proposition 5.4 There exists a translation -* from Hy((R™1), Q) into
H((R™1), @, @O, E) such that such that for all ¢ € HN((R™Y), @), ¢ is
satisfiable iff ¢* is satisfiable.

Such comparisons of the expressive power of hybrid logics easily translate
to description languages. For two description languages £1 and Lo, define
L1 < Lo if for any knowledge bases ¥ in £ there is a knowledge base
Y in Lo such that for all interpretations Z, Z = 3 iff Z = ¥'. Now, the
formulas used to separate the languages can easily be recast as assertions
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or terminological definitions, and similarly for the translation used in the
proof of Proposition 5.4.

The notions of bisimulation we have defined not only separate the
fragments of first-order logic which corresponds to the hybrid logics we
have been discussing, they also characterize them. For H any of our
hybrid languages, we say that a first-order formula «(z) in the first-
order language over (RELU {P; | p; € PROP},NOM, {z,y}) is invariant
for H-bisimulations if for all models M and A/, and all states m in M,
n in N, and all H-bisimulations ~ between M and N such that m ~ n,

we have M = a(z)[m] if N = a(z)[n].

Theorem 5.5 Assume that H is one of the following: H((R™!), @, Q0),
Hy((R™Y), @), H((R™Y),@, @O, E) or HN((R™Y), @, E). Then, a first-
order formula a(x) over the signature (RELU{P; | p; € PROP}, NOM,
{z,y}) is invariant for H-bisimulations iff it is equivalent to the hybrid
translation of a hybrid formula in H.

We have only scratched the surface on expressivity issues. For example,
definability results for hybrid languages, like the ones presented here
and those in (de Rijke 1992, Gargov and Goranko 1993, de Rijke and
Sturm 2001) shed light on the kinds of models that can be captured by
means of knowledge bases of a given description language. More gener-
ally, Gargov and Goranko (1993) discuss transfer results when moving
from basic modal languages to languages with nominals, while Goranko
and Passy (1992) give a similar analysis for the extension with the ex-
istential modality. These results are closely related to the move from
empty knowledge bases to non-empty A- and T-Boxes, respectively.

5.3 Interpolation and Beth Definability

In (Areces et al. 1999a) results concerning the interpolation and Beth
definability properties for a variety of hybrid languages are provided.
What is the role of these two properties in the setting of description
logics? Let’s first introduce some notation. For ¥ = (T, A), ¥ = (T", A")
two knowledge bases, let ¥ U X be (T UT',; AU A’), and X[C/D] be
the knowledge base obtained from X by replacing each occurrence of the
concept C' by D. Now, suppose that for a given knowledge base 3 the
following holds,

(2) Z[C/Dl} U Z[C/Dg] ': D1 = D2 for some D17D2 € CON(Z)
Notice that this equation need not be true for all knowledge bases ¥ and
concepts C. Actually, (2) implies that ¥ encodes enough information

concerning C' to provide a complete—though not necessarily explicit—
definition. Now, if the (global) Beth definability property holds for the
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language of X, then there actually exists an explicit definition of C'. I.e.,
there is a concept D not involving C' such that ¥ E C = D. Given
that description languages take definitions very seriously (partial and
complete definitions are exactly the content of T-Boxes), the Beth de-
finability property (i.e., the capacity of the language to turn implicit
definitions into explicit ones) seems highly relevant.

There doesn’t seem to be a uniform direct way of proving or dis-
proving Beth definability. The standard approach to establishing the
property is via a detour through interpolation. In first-order and modal
languages, the (arrow) interpolation property implies the Beth defin-
ability property and the same relation holds for the hybrid languages we
have introduced.

Hence, positive interpolation results for hybrid languages translate
into nice definability properties of the corresponding description lan-
guage. Unfortunately, for languages where nominals appear free in for-
mulas, and which do not provide a binding mechanism, failure of arrow
interpolation seems to be the norm. In particular, (Areces et al. 1999a)
provides counter-examples to the arrow interpolation property for the
basic modal language extended with nominals Hy(@). The extensions
of this language with the (R~1) operator fare no better, and adding the
E operator doesn’t help either. Hence, in all these cases, the standard
road to to establish Beth definability is closed for us. Interestingly, the
counter-examples to arrow interpolation obtained are based on count-
ing arguments. Because the language is not expressive enough to bound
the number of successors of a given state we can establish bisimula-
tions between points with different number of successors and use this to
prove failure of the interpolation property. The language extended with
counting operators (even unqualified counting) would destroy the bisim-
ilarity and hence invalidate the counter-examples, and perhaps restore
interpolation and hence Beth definability.

The case is different for H(@, @0) and H((R™1), @, @O). As we will
now show, we can extend the constructive method for establishing arrow
interpolation presented in (Kracht 1999, Section 3.8), to handle @ and
@<, Again, we will use the normal form introduced in Proposition 4.3.

Theorem 5.6 H(Q, Q0) and H((R™'),@,@0) have arrow interpola-
tion.

Given that arrow interpolation implies global Beth definability for these
languages, implicit definitions in H(@, @<¢) can be turned into explicit
definitions. In an attempt to transfer this property to the description
logic counterpart of H(@, @0), we would proceed as follows. Suppose
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a knowledge base ¥ = (T, A) in ALC satisfies the conditions in (2).
Then we can translate ¥ into a theory © of H(@, Q<) (as we are using
global consequence this time we don’t need E), and obtain ©[pc/pp,] U
Olpc/pp,] E™ pp, < PD,.- Applying Beth definability for H(@Q, Q<)
we obtain a formula § such that © = § < po. Now, § is an explicit
definition of C, but it is in the full language H(@, @), i.e., it might
contain subformulas of the form @, and @;<j. Because of the syntactic
restrictions imposed by the division into T- and A-Box information it
will not always be possible to translate d into a concept in ALC. To see
an example, suppose 9 is of the form @Q;v V 9. Hence we will have that
YE(Qu — (pc < T))A(Q=v — (pc < 9)). That is, we obtain a
definition of C' that is conditional on assertional information.

More generally, we first write § in normal form to obtain

0 (/\( \/ Qv 1) VTl) < pe-
leL i€NOM
Notice that for a hybrid formula 1) and @;» € SF(¢)) such that @ does not
appear in v, v is equivalent to (Q;v — [Q,v/T])A(Q;—v — P[Q,v/L]).
By iterating this rewriting on the formula (A<, (V;cnom @ivin) V) <
pc, we finally obtain a series of definitions of C' in terms of concepts of
ALC, but conditional on assertional information to be inferred from X.
There is an interesting connection between the Beth definability
property and acyclic definitions in T-Boxes. The latter restriction was
aimed at avoiding the introduction of circular concepts, i.e., concepts de-
fined in terms of themselves. This kind of concepts, it was argued, called
for some kind of fixed point semantics which would be computationally
expensive (Baader 1990, Nebel 1990). But if the language has the Beth
definability property, any concept implicitly defined in a knowledge base
also has an explicit definition without self reference. Hence, considering
only acyclic definitions does not carry any loss of expressivity.

6 Conclusions and Further Directions

Nearly a decade after Schild started exploring the connection between
modal and description logic, we have made another step forwards in
finding a precise modal logical counterpart of DLs. One of the key points
of DLs is their use of non-empty T-Boxes and A-Boxes; we have shown
how hybrid languages provide simple mechanisms to deal with them
and to understand their inter-relations. We have illustrated some of the
possibilities by means of examples. Our analysis of DLs in terms of
hybrid logics has shown that we can reason with non-empty A-Boxes
(and empty T-Boxes) in PSPACE; we have also shown how to capture
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the expressive power offered by T-Boxes, A-Boxes, and how to transfer
meta-logical properties such as interpolation and Beth definability.

It is striking how description and hybrid logics are similar and dif-
ferent at the same time, like twin brothers raised separately. Because
the connection is so tight, modal logicians can use hybrid logic both as
an entrypoint to DLs, and as a means for understanding them. In par-
ticular, we can investigate meta-logical properties on the “hybrid logic
side” (which appears to be more amenable to standard model-theoretic
techniques), and these results can help us understand the behavior of
description languages.

We have only investigated some of the possibilities of this two-way in-
terchange, but there are many others of course. One direction, for exam-
ple, concerns the classical hybrid topic of binders and variables (Black-
burn and Seligman, 1995). We have focused on “weak” hybrid languages
which remain close to the basic DLs. But a natural step from the hy-
brid point of view is to regard nominals not as names but as wvariables
over individual states, and to add quantifiers. Undecidability quickly
shows up in this setting, but syntactic restriction can restore decid-
ability, while providing interesting new concepts when introduced in a
description language. A different direction concerns counting. Graded
or counting modalities (n)¢ restrict the number of possible successors
satisfying ¢ that a state has in a model. While their theory is not so
well developed, qualifying number restrictions are actively used in de-
scription formalisms, as they provide important modeling power. Recent
work by Tobies (2000) provides promising new complexity results.

Different enough to make comparisons interesting, but similar enough
to allow for extensive traffic of results, extensions and variations, descrip-
tion logics and hybrid logics form an interesting pair. We hope that this
paper paves the way for further cross-fertilization.

Acknowledgments

We would like to thank Carsten Lutz, Ulrike Sattler, Stephan Tobies,
and the anonymous referees for their valuable comments. Maarten de
Rijke was supported by the Spinoza project ‘Logic in Action’ and by a
grant from the Netherlands Organization for Scientific Research (NWO),
under project number 365-20-005.

References

Areces, C., P. Blackburn, and M. Marx. 1999a. Hybrid logics: characteriza-
tion, interpolation and complexity. Technical Report CLAUS-Report 104,
http://wuw.coli.uni-sb.de/cl/claus. Computerlinguistik, Universitat
des Saarlandes. To appear in the Journal of Symbolic Logic.



REFERENCES / 19

Areces, C., P. Blackburn, and M. Marx. 1999b. A road-map on complexity for
hybrid logics. In Computer Science Logic, ed. J. Flum and M. Rodriguez-
Artalejo, 307-321. LNCS, No. 1683. Springer. Proceedings of the 8th
Annual Conference of the EACSL, Madrid, September 1999.

Areces, C., P. Blackburn, and M. Marx. 2000. The computational complexity
of hybrid temporal logics. Logic Journal of the IGPL 8(5):653-679.

Baader, F. 1990. Terminological cycles in KL-ONE-based knowledge repre-
sentation languages. In Proceedings of the 8th National Conference on
Artificial Intelligence (AAAI-90), 621-626.

Blackburn, P., M. de Rijke, and Y. Venema. 2001. Modal Logic. Cambridge
University Press.

Blackburn, P., and J. Seligman. 1995. Hybrid languages. Journal of Logic,
Language and Information 4(3):251-272. Special issue on decompositions
of first-order logic.

Blackburn, P., and M. Tzakova. 1998. Hybridizing concept languages. Annals
of Mathematics and Artificial Intelligence 24:23-49.

Borgida, A., R. Brachman, D. McGuinness, and L. Alperin Resnick. 1989.
CLASSIC: a structural data model for objects. In Proceedings of the ACM
SIGMOD International Conference of Management of Data, 59-67.

De Giacomo, G., and M. Lenzerini. 1994. Boosting the correspondence between
description logics and propositional dynamic logics. In Proceedings of the
12th National Conference on Artificial Intelligence (AAAI’94), 205-212.

de Rijke, M. 1992. The modal logic of inequality. Journal of Symbolic Logic
57(2):566-584.

de Rijke, M., and H. Sturm. 2001. Global definability in basic modal logic. In
Essays on Non-classical Logic, ed. H. Wansing. World Scientific Publishers.

Fischer, M., and R. Ladner. 1979. Propositional dynamic logic of regular
programs. Journal of Computer and System Sciences 18(2):194-211.

Gargov, G., and V. Goranko. 1993. Modal logic with names. Journal of
Philosophical Logic 22(6):607—-636.

Goranko, V., and S. Passy. 1992. Using the universal modality: gains and
questions. Journal of Logic and Computation 2:5-30.

Halpern, J., and Y. Moses. 1992. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence 54:319-379.

Harel, D. 1984. Dynamic logic. In Handbook of Philosophical Logic. Vol. II,
ed. D. Gabbay and F. Guenthner. Synthese Library, Vol. 165, 497-604.
Dordrecht: D. Reidel Publishing Co.

Horrocks, I., and G. Gough. 1997. Description logics with transitive roles.
In Proceedings of the International Workshop on Description Logics, ed.
M. Rousset, R. Brachmann, F. Donini, E. Franconi, I. Horrocks, and
A. Levy, 25-28. Gif sur Yvette, France.

Horrocks, 1., U. Sattler, and S. Tobies. 2000. Practical reasoning for very
expressive description logics. In Methods for Modalities, 1, ed. C. Areces,
E. Franconi, R. Goré, M. de Rijke, and H. Schlingloff, 239-264. Logic
Journal of the IGPL.



20 / REFERENCES

Kracht, M. 1999. Tools and Techniques in Modal Logic. Amsterdam: North-
Holland Publishing Co.

Kurtonina, N., and M. de Rijke. 1999. Expressiveness of concept expressions
in first-order description logics. Artificial Intelligence 107(2):303-333.
Ladner, R. 1977. The computational complexity of provability in systems of
modal propositional logic. STAM Journal of Computing 6(3):467-480.
Lutz, C. 1999a. Complexity of terminological reasoning revisited. In Pro-
ceedings of the 6th International Conference on Logic for Programming
and Automated Reasoning LPAR’99, 181-200. Lecture Notes in Artificial

Intelligence. Springer-Verlag.

Lutz, Carsten. 1999b. On the complexity of terminological reasoning. LTCS-
Report 99-04. LuFg Theoretical Computer Science, RWTH Aachen, Ger-
many.

Nebel, B. 1990. Terminological cycles: semantics and computational proper-
ties. In Principles of Semantic Networks, ed. J. Sowa. 331-361. Los Altos:
Morgan Kaufmann.

Sattler, U. 1996. A concept language extended with different kinds of transitive
roles. In 20. Deutsche Jahrestagung fir Kinstliche Intelligenz, ed. G. Gorz
and S. Holldobler. Lecture Notes in Artificial Intelligence, No. 1137.
Springer Verlag.

Schild, K. 1991. A correspondence theory for terminological logics. In Pro-
ceedings of the 12th IJCAI 466-4T71.

Spaan, E. 1993. Complexity of Modal Logics. Doctoral dissertation, Institute
for Logic, Language and Computation, University of Amsterdam.

Tobies, S. 2000. The complexity of reasoning with cardinality restrictions and
nominals in expressive description logics. Journal of Artificial Intelligence
Research. To appear.

Wolter, F., and M. Zakharyaschev. 2000. Modal description logics: modalizing
roles. Fundamenta Informaticae. To appear.

Carlos Areces and Maarten de Rijke
ILLC, University of Amsterdam
Plantage Muidergracht 24

1018 TV Amsterdam

The Netherlands

E-mail: {carlos, mdr}@science.uva.nl



