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Abstract

We consider two recently proposed defini-
tions of the expressive power of description
logics, one due to Baader, the other due
to Kurtonina and de Rijke. The proposals
are non-equivalent, and we explain their
differences, similarities, as well as ways in
which they are related. We also map out
a research agenda resulting from efforts to
combine the two approaches.

1 Introduction

The area of description logics is a young and rapidly
growing field. New languages keep appearing and
new results are added on a regular basis. But as
with all young fields, the area still lacks a widely
accepted, unifying background theory, and as a con-
sequence it often has a disorganized and incomplete
flavor. From a logician’s point of view one of the
most important notions that had been underdevel-
oped until recently is that of expressive power, es-
pecially since a measure of the expressive power
of a language is fundamental for comparing differ-
ent proposals. Description logics aim to represent
knowledge and to manipulate it in efficient ways.
Hence, it is important to have an exact definition of
what a given description logic can express together
with a method to compare or measure the difference
in expressive power of two formalisms. Naturally,
what one is after is to get the highest expressive
power at the lowest computational costs.

The issue of expressive power for description log-
ics was first addressed by Baader [1] and Borgida
[3], and later by Kurtonina and de Rijke [13, 14].
The approaches proposed by the first two authors

are similar, but they differ in many ways from the
approach of the latter two authors which has a def-
inite model theoretic character. The different ap-
proaches induce different classifications of descrip-
tion logics with respect to their expressive power.
For example, according to Baader the description
language T F has the same expressive power as the
language NT F . In contrast, according to Kurton-
ina and de Rijke, NT F is strictly more expressive
than T F (the definition of the specific description
logics mentioned will be given in Section 2.) How
can this be? Can both results be correct? The aim
of this note is to understand the differences and sim-
ilarities between the two approaches to the expres-
sive power of description logics and to determine
their interrelations, and thereby add new results to
both.

This paper is organized as follows. In Section 2
we recall basic definitions and notions pertaining
to description logics. In Section 3 we discuss the
issue of expressive power, present the approaches to
the expressive power of description logics that are
due to Baader and Kurtonina and de Rijke, and we
identify some of their differences and similarities.
In Section 4 we map out a new research agenda
resulting from efforts to merge the two approaches;
this is very much work in progress. In the final
section we draw our conclusions.

2 Background

Description logics are specialized languages re-
lated to the KL-ONE system of Brachman and
Schmolze [5]. They are designed for representing
knowledge, and the general aim is to provide a small
set of operations to describe pieces of information
together with efficient methods to obtain inferences.
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In the early days, it was not clear if a given de-
scription logic was really a logic in the strict sense of
the notion (i.e., with a formal syntax and semantics,
model theory, etc.) or just a tool or methodology.
Actually, some of the early description logics were
no more than a computer system implementation
to store information in an efficient way and derive
inferences from it.

Nowadays, description logics are generally con-
sidered to be “variations” of first-order logic (FOL)
— either restrictions or restrictions plus some added
operators. These variations are motivated on one
hand by the undecidability of the inference problem
for FOL and on the other by an intention to pre-
serve the structure of the knowledge represented.

As a basic way to preserve structure, description
logics descending from KL-ONE split information
in two kinds: A-boxes which contain assertional in-
formation (facts), and T-boxes with terminological
knowledge (definitions of derived notions). A-boxes
are simple, usually just a list of atomic formulas.
The expressive power of a description logic is in the
constructions allowed in T-boxes: which derived no-
tions can be defined?

Let’s see an example. The following is a valid pair
〈T-Box, A-box 〉 in the description logic FLEUR
defined in Table 1 below (with disjointness axioms).

T-BOX: T =

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

Man
.
= Human u

Male u
Rest-Man

Woman
.
= Human u

Female u
Rest-Woman

Father
.
= Man u
∃≥1.Child

Loves
.
= Child t

Rest-Love

dis(Man, Woman)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

A-BOX: A =

8>>>>><>>>>>:

Human(m)
Human(e)
Child(m, e)
Male(m)
Rest-Man(m)
Rest-Love(m, e)

9>>>>>=>>>>>;
The first three formulas in T define concepts (sub-
sets of the domain to which the represented infor-
mation refers). For example, the third defines the
derived concept ‘Father’ as all those men which have

at least one child. The fourth formula defines a role1

(a binary relation) which can be read as saying that
all parents love their children. Finally, the last for-
mula is an axiom (a rule governing the definition of
concepts and roles) establishing that the concepts
‘Man’ and ‘Woman’ should be disjoint. This T-box
is acyclic (no concept or role occurs on both sides
of the same definition), but it is not unfolded (as
a concept occurs on both sides of different defini-
tions.)

It is obvious that the example above can be
rewritten as a set of first-order formulas. In general
T-boxes can be rewritten in L3, the three variable
fragment of FOL, possibly extended with counting
expressions; see [3].

Summing up, concepts and roles are the building
blocks of description logics, and each description
logic is characterized by the way these can be com-
bined in T-boxes. In [1] description logics are de-
fined just as sets of T-boxes. We will take the same
definition, but we are convinced that the T-boxes
allowed are specified by the concept and role form-
ing constructions the language of a given description
logic admits and the kind of axioms it allows.

The signature of a description logic is given by spec-
ifying three disjoint sets C, R and A of concept
names and role names, and atomic constants re-
spectively.

Description logics are interpreted on interpreta-
tions I = (∆I , ·I), where ∆I is a non-empty do-
main, and ·I is an interpretation function assigning
subsets of ∆I to concept names, binary relations
over ∆I to role names and single elements of ∆I

to atomic constants. Table 1 list operations which
appear in different description logic, together with
their notation and semantics.

The logic FL− [4] is defined as the description
logic allowing universal quantification, conjunction
and unqualified existential quantifications of the
form ∃R.>. FL0 is the restriction of FL by not
allowing existential quantification. AL [18] ex-
tends FL− with negation of atomic concept names.
T F [16] allows concept conjunction, role conjunc-
tion, universal quantification and number restric-

1The sets of concept and role symbols are assumed to have
empty intersection and hence no confusion arises about when
a given equation defines a concept or a role.



Constructor Syntax Semantics

concept name C CI ⊂ ∆I

top > ∆I

bottom ⊥ ∅
conjunction C u C′ CI ∩ C′I

disjunction (U) C t C′ CI ∪ C′I

negation (C) ¬C ∆I \ CI

univ. quant. ∀R.C {d1 | ∀d2(d1R
Id2 → CId2)}

exist. quant. (E) ∃R.C {d1 | ∃d2(d1R
Id2 ∧ CId2)}

numb. restr. (N ) (≥ nR) {d1 | |{(d1, d2) ∈ RI}| ≥ n}
(≤ nR) {d1 | |{(d1, d2) ∈ RI}| ≤ n}

role name R RI ⊆ ∆I ×∆I

role conj. (R) R uR′ RI ∩R′I

role disj. (UR) R tR′ RI ∪R′I

Table 1: Common operators of description logics

tion, while NT F is the extension of T F with nega-
tion of atomic concept names. The names in paren-
thesis in Table 1 are the usual ones for defining ex-
tensions. For example, ALC is AL extended with
full negation.

We will only consider first-order description log-
ics and acyclic definitions. As these can always be
unfolded and completed (even though this has an
impact on their size), we restrict ourselves to full
definitions Q

.= ϕ where Q does not occur any-
where else in the T-box. When only this kind of
T-boxes are considered, the left-hand sides of equa-
tions become trivial and we are only interested in
definitions occurring on the right-hand side.

If T is a T-box, we use Int(T ) to denote the class
of interpretations for T , i.e., the interpretations that
make all equalities in T true and satisfy its axioms.

3 Two Notions of Expressive Power

In this section we describe and compare the two
definitions of expressive power due to Baader, and
Kurtonina and de Rijke, respectively. Before do-
ing so, we briefly the discuss the issue of expressive
power in a wider setting.

§3.1. Expressiveness versus Complexity. A
popular slogan in the area of knowledge representa-
tion is ‘complexity versus expressiveness’: the more
expressive a (description) logic is, the higher the
complexity of the reasoning tasks that can be per-
formed in it. The complexity of satisfiability and
subsumption problems for description logics has
been studied extensively, but the problem of expres-

siveness has not kept pace. Understanding the ex-
pressive power of one’s representation formalism is
important; it may be used by the designer of knowl-
edge based systems to help choose the description
logic that best fits his or her descriptive require-
ments.

More generally, expressive power has been a key
interest of logicians and computer scientists in a
large number of areas. Without attempting to sup-
ply an exhaustive list, we should at least mention
model-theoretic logics [2], database query languages
[10], finite variable logics [11], and modal and tem-
poral logic [8].

§3.2. Baader [1]. In first-order logic two sen-
tences are equivalent if they have the same class
of models. For the comparison of the expressive
power of two description logics we may need to
compare different languages having different vocab-
ularies and interpretations, but despite these differ-
ences we want to relate the meaning of expressions
in one language to expressions in the other. To cope
with this, Baader introduces embeddings: instead of
asking for equality of classes of models, we require
the classes to be embeddable in each other through
translation functions. The formal definition is as
follows.

Definition 1 Let L1, L2 be description logics, and
T1 ∈ L1, T2 ∈ L2 be T-boxes. Also, let I ∈ Int(T1),
J ∈ Int(T2) be interpretations and f a function
from the concept and role names in T1 to those in
T2 (which assignes concepts to concepts and roles
to roles). Then

1. I is embedded in J by f (I ⊆f J ) if for
all concept and role names Q occurring in T1,
QI = f(Q)J .

2. We write Int(T1) =f Int(T2) if for all I ∈
Int(T1) there is J ∈ Int(T2) such that I ⊆f J
and for all J ∈ Int(T2) there is I ∈ Int(T1)
such that I ⊆f J .

3. L1 can be expressed by L2 through embeddings
(L1 ≤e L2) if for all T1 ∈ L1 there exists T2 ∈
L2 with Int(T1) =f Int(T2). We say that L1

and L2 have the same expressive power through
embeddings (L1 =e L2) if L1 ≤e L2 and L2 ≤e

L2.



Some comments are in order. First, it is easy to
check that of “having the same expressive power
through embeddings” is indeed an equivalence rela-
tion. Also, it seems to capture the notion of “ev-
erything that can be said in L1 can be said in L2”
and vice versa. It is related to the standard defi-
nition of equivalence of logic systems as presented
in [7] on the one hand, and to the notion of equiva-
lence of equational theories in equational logic [19]
on the other. But there are important differences
between Baader’s definition and the other two. Un-
like Baader’s definition, the definition stemming
from equivalence of logic systems applies to sys-
tems over the same similarity type only, and hence
no translation (or embedding) is involved. And un-
like Baader’s definition, the definition of equivalent
equational theories requires explicit translations of
the operations which differentiate between theories.
Formally, if Γ1 and Γ2 are equational theories then
Γ1 is equivalent to Γ2 if there exist sets of defini-
tions ∆1 and ∆2 in the corresponding languages
such that Γ1,∆1 ` Γ2 and Γ2,∆2 ` Γ1 (plus further
requirements).

One of the important characteristics of Baader’s
definition of expressive power is that it permits
translation. For each of the concept and role names
occurring in a T-box T1 we can pick a corresponding
name in T2 which will be mimicking it. If we can
do this for all names in all T-boxes, then the second
language can express everything the first language
does. In this sense the definition is very general,
but in other aspects it is perhaps too specific. Why
should we relate names? It seems more natural to
translate definitions in T1 into new definitions in
T2 (compare the definition for equational theories),
and it would be even better if we could provide a
translation for the full language L1, independently
of the particular T-box we are considering. A fur-
ther advantage of this global approach to translating
the full language instead of a given T-box, is that we
would be able to measure and compare how much
is needed in the way of computational resources in
the translation. In other words, a global transla-
tion would help us to estimate the complexity of
interpreting L1 into L2. A further point is this:
can T2 be any T-box in L2? If we have axioms in
T2, non trivial encoding can be done at this level
which would be hidden by the existential quantifi-

cation over T2 in the definition. Finally, observe
that Baader’s definition does not give an explicit
description of what a given description logic can ex-
press; it only explains the relative expressive power
of logics.

§3.3. Kurtonina and de Rijke [13, 14]. The
core of this competing definition of expressive power
is the notion of simulation. The best way to un-
derstand simulations is through an example. Let us
take ALC and consider only concepts for a moment.

Definition 2 Let I = (∆I , ·I) and J = (∆J , ·J )
be two interpretations. A non-empty relation Z ⊆
∆I ×∆J is called an ALC-simulation if it satisfies
the following clauses.

1. If d1Zd2, then, for every (atomic) concept
name C, d1 ∈ CI iff d2 ∈ CJ .

2. For every (atomic) role name R, if d1Zd2 and
RId1e1, then there exists e2 ∈ ∆J such that
RJ d2e2 and e1Ze2.

3. For every (atomic) role name R, if d1Zd2 and
RJ d2e2, then there exists e1 ∈ ∆I such that
RJ d2e2 and e1Ze2.

It is clear that the notion of ALC-simulation is tai-
lored to a specific language: item 1. above takes
care of atomic concepts, items 2. and 3. of existen-
tial quantifiers, while conjunction and negation are
covered by the one-to-one relation (points are re-
lated with points) and the “symmetry” of the defi-
nition.

Anybody with a basic knowledge of modal logic
will recognize the notion of bisimulation in the defi-
nition above. This is witness of the close connection
between description logics and modal logics as stud-
ied in, for example, [17, 9, 6]. Another source for
bisimulations is the theory of concurrency; see, for
instance, [15].

A first-order formula with a free variable ϕ(x)
(i.e., a concept) is said to be preserved under a given
notion of L-simulation if for all interpretations I,
J , d1 ∈ ∆I , and d2 ∈ ∆I , we have that d1 ∈ ϕI

implies d2 ∈ ϕJ whenever there is an L-simulation
between I and J which connects d1 and d2.

The important result concerning simulations is
the following.



Theorem 3 Fix some similarity type for descrip-
tion logics. Let ϕ(x) be a first-order formula over
this similarity type. Then ϕ(x) is equivalent to
an ALC-concept iff it is preserved under ALC-
simulations.

In this way ALC-concepts are completely character-
ized by ALC-simulations.

In [13, 14] the authors provide, given a set
of concept-forming operations from Table 1 that
are admissible in a description logic L, the cor-
responding relation of L-simulation between L-
interpretations, as well as suitable analogs of Theo-
rem 3. Hence, an explicit and exact characterization
of the concepts expressible in a given description
logic L is given.

Notice that Theorem 3 gives an explicit charac-
terization of “what can be expressed in a description
logic L1.” So far there is no mention of a second
language L2, while Baader’s definition is a recipe
for determining relative expressive power. Never-
theless, once a characterization for L1 in the style
of Theorem 3 is obtained, we can prove that L2 can
express all that L1 says by using this characteriza-
tion.

Definition 4 Let L1, L2 be description logics.
Then L1 can be expressed by L2 through simula-
tions (L1 ≤s L2) if all concepts in L1 are pre-
served under L2-simulations. We say that L1 and
L2 have the same expressive power under simula-
tions (L1 =s L2) if L1 ≤s L2 and L2 ≤s L1.

Even though this definition has been shown to pro-
duce intuitively correct separation and classification
results for a large class of description logics [13, 14],
it has some serious limitations: only concepts are
considered — but they are characterized completely
— and there is no room for translations, and hence
for the comparison of concepts defined over different
vocabularies.

§3.4. A Comparison. A number of differences
between the two approaches is immediately obvi-
ous. First, they compare the expressive power of de-
scription logics with respect to different things: full
T-boxes (Baader) and concepts (Kurtonina and de
Rijke). Second, Baader compares description logics
based on different sets of (atomic) roles and con-
cepts, and role and concept constructions can be

mimicked in a language from which they are absent
by using additional roles or concepts in a transla-
tion: Baader’s definition stands between two logics.
Kurtonina and de Rijke, on the other hand, aim at
explicit characterizations explaining the expressive
power of a given description logic in terms of one
and only set of (atomic) roles and concepts: simu-
lations are inside a given logic. And third, as Kur-
tonina and de Rijke do not consider translations,
it is easier to establish separation results in their
framework.

Even though the two approaches talk about dif-
ferent things, it is possible to say something — for-
mally — about their connections. In particular, one
can show that Kurtonina and de Rijke’s approach
gives a finer notion of expressive equivalence of de-
scription logics than Baader’s.
Proposition 5 Let L1, L2 be two description logics
without axioms in T-boxes, then L1 ≤s L2 implies
L1 ≤e L2.
Proof. Suppose L1 ≤s L2. Let T1 ∈ L1 and Q

.=
ϕ ∈ T1. As L1 ≤s L2 there is ϕ′ ∈ L2 such that
|= ϕ ↔ ϕ′ (every formula of L1 has an equivalent
in the language of L2).

Define T2 = {Q .= ϕ′ | Q
.= ϕ ∈ T1}, renaming

Q if necessary so that it does not appear anywhere
else. That is, we replace each formula of L1 by its
equivalent in L2. Then Int(T1) = Int(T2) and we
can take f to be the identity function. Trivially,
Int(T1) =f Int(T2). a
The converse to Proposition 5 does not hold, even
when we restrict ourselves to concepts and T-boxes
without axioms: as we said in the introduction
T F =e NT F while T F <s NT F . It is an in-
teresting exercise to see where an attempted proof
of NT F ≤e T F ⇒ NT F ≤s T F fails. The fact
that translation functions are used in the definition
of ≤e simply destroys any hope of proving that if I
is an interpretation of a negated concept ϕ(x) and
J is T F-similar to I then J also satisfies ϕ(x).

Nevertheless, simulations can play an important
role in Baader’s approach. Using simulations suc-
cinct proofs via embeddings can be given. Consider
the following example [1, Theorem 4.6].
Proposition 6 FL0 <e FL−.
Proof. As FL− is an extension of FL0 we have
FL0 ≤e FL−. To prove that FL0 6=e FL−, reason



as follows. Let T1 = {P .= ∃R.>} ∈ FL−. Sup-
pose T2 ∈ FL0 expresses T1 through embeddings.
Let I ∈ Int(T1) be defined as I = ({a, b}, ·I), with
P I = {a}, RI = {(a, b)}. Let J = (∆J , ·J ) be the
corresponding model in Int(T2) such that I ⊆f J .
Next, define J ′ as (∆J , ·J ′), with f(R)J

′
= ∅,

QJ ′ = QJ for Q 6= f(R) and does not occur on the
left-hand side of a definition in T2, and QJ ′ = ϕJ

′

if Q
.= ϕ ∈ T2. Notice that the definition is not

circular because Q does not occur in ϕ and ϕJ
′
can

be defined without knowing QJ ′ .2

By definition, J ′ ∈ Int(T2). Also, it is easy to
prove that Z = {({m},m) | m ∈ ∆J } is an FL0-
simulation from J to J ′. Notice that a ∈ P I im-
plies a ∈ f(P )J and by preservation under sim-
ulations, a ∈ f(P )J

′
. Now let I ′ be such that

I ′ ⊆f J ′. By definition RI′ = f(R)J
′

= ∅, but
P I′ = f(P )J

′
and hence a ∈ P I′ . From which we

get I ′ 6∈ Int(T1) — a contradiction. a

To conclude this section, let us identify what we
take to be the main advantages of both approaches.
The main characteristic of Baader’s approach is its
generality in two aspects. First, full T-boxes are
considered against only concepts in Kurtonina and
de Rijke’s definition. Second, translations are al-
lowed and hence the natural idea of coding is cap-
tured: if we cannot express a notion directly, per-
haps there is another way of explaining it in terms
of others. On the other hand, Kurtonina and de
Rijke’s approach completely and explicitly charac-
terizes which concepts can be defined in a given
description logic. Also, it has a high explanatory
power since the characterizations tell us exactly
which changes in an interpretation are “noticed”
by a given description logic and which are not. Fi-
nally, the notion of simulation is not ad-hoc. It has
been broadly used in computer science and more
recently also in (modal and classical) logic. Some
strong and interesting results are known, and some
of these may be useful for description logics.

4 The Way Forward

This section is full of questions, and has only very
few answers. The main question is: Can we com-

2This definition fixes an error in Baader’s proof where it

is not verified that (∆J ′
, ·J

′
) is still a model of T2. The same

error appears in [1, Theorem 4.9].

bine the two notions of expressive power to obtain
“the best of the two worlds?” To be more precise,
in our synthesis we would like to have more gen-
eral notions of simulation, ones that will allow us to
characterize not just the concepts expressible in a
given description logic, but also its roles and indeed
its T-boxes; in addition, we want to incorporate the
notion of a translation into the picture. Of course,
this is an ambitious project, and it breaks down in
a few natural approximations, which we list below.

1. Characterizing Roles. The first aim is to de-
velop simulation techniques to characterize the roles
expressible in a given description logic. We have
been successful here, and have extended techniques
presented in [13, 14] to account for roles. Basically,
simulations should not only relate (sets of) points
in one model to (sets of) points in the other, but
also pairs of these. The idea is that as connecting
(sets of) points preserves concepts, connecting pairs
of (sets of) points preserves roles.

We have characterized (first-order definable) op-
erations on roles (as conjunction, disjunction) us-
ing these extended simulation techniques. Charac-
terization results for all interesting subsets of the
concept- and role-forming operations presented in
Table 1 are now available. To substantiate this
claim, we present a sample: we describe a two-
sorted simulation for ALCR that allows us to char-
acterize both the concepts and roles that are defin-
able in ALCR.

Definition 7 Let I = (∆I , ·I) and J = (∆J , ·J )
be two interpretations. A two-sorted ALCR-
simulation is a triple Z = (Z0, Z1, Z2) that satisfies
the following clauses:

1. (a) Z0 ⊆ ∆I ×∆J .
(b) Z1 ⊆ P(∆I ×∆I)× (∆J ×∆J ).
(c) Z2 ⊆ P(∆J ×∆J )× (∆I ×∆I).

2. (a) If d1Z0d2, then, for every (atomic) concept
name C, d1 ∈ CI iff d2 ∈ CJ .

(b) If X1Z1(d2, e2), then, for every (atomic)
role name R, X1 ⊆ RI implies (d2, e2) ∈
RJ .

(c) If X2Z2(d1, e1), then, for every (atomic)
role name R, X2 ⊆ RJ implies (d1, e1) ∈
RI .



3. (a) If d1Z0d2 and for some e1 and role R,
(d1, e1) ∈ RI , then there exists e2 ∈ ∆J

with {(d1, e1)}Z1(d2, e2).
(b) If d1Z0d2 and for some e2 and role R,

(d2, e2) ∈ RJ , then there exists e1 ∈ ∆I

with {(d2, e2)}Z2(d1, e1).

4. (a) If X1Z1(d2, e2), then for all (d1, e1) ∈ X1

we have both d1Z0d2 and e1Z0e2.
(b) If X2Z2(d1, e1), then for all (d2, e2) ∈ X2

we have both d1Z0d2 and e1Z0e2.

We say that a unary first-order formula ϕ(x) is pre-
served under two-sortedALCR-simulations if for all
interpretations I and J , all d1 ∈ ∆I and d2 ∈ ∆J ,
we have that d1 ∈ ϕI iff d2 ∈ ϕJ whenever there
is a two-sorted ALCR-simulation Z = (Z0, Z1, Z2)
between I and J such that d1Z0d2.

Also, a binary first-order formula ϕ(x, y) is pre-
served under two-sortedALCR-simulations if for all
interpretations I and J , all X1 ⊆ (∆I × ∆I) and
(d2, e2) ∈ (∆J×∆J ), we have that X1 ⊆ ϕI implies
(d2, e2) ∈ ϕJ whenever there is a two-sortedALCR-
simulation Z = (Z0, Z1, Z2) such that X1Z1(d2, e2).

Item 1 of Definition 7 reflects the fact that
ALCR-simulations are two-sorted: they have to
preserve concepts (item 1(a)) and roles (items 1(b)
and 1(c)). Linking objects to objects will provide
the right setting for preserving concepts (as in Def-
inition 2), while we the only operation on roles that
we want to preserve is role conjunction — for that
reason we link sets of pairs of objects to objects
(in items 1(b) and 1(c)); see [14] for further intu-
itions. Item 2 makes sure that atomic concepts and
roles preserved. Item 3 encodes the familiar back
and forth character of ALC-simulations, and item 4
coordinates the simulations between the two sorts.

Theorem 8 Fix some similarity type for descrip-
tion logics.

1. Then, a unary first-order formula over this
similarity type is preserved under two-sorted
ALCR-simulations iff it is equivalent to an
ALCR-concept.

2. Also, a binary first-order formula over this
similarity type is preserved under two-sorted
ALCR-simulations iff it is equivalent to an
ALCR-role.

Proof. We only prove the ‘easy’ right-to-left direc-
tions of the theorem. For a proof of the ‘hard’ direc-
tions, a combination of the proofs for Theorems 4.2
and 4.18 in [14] works.

To prove the easy directions, we have to show
that ALCR-concepts and -roles are preserved un-
der two-sorted ALCR-simulations. First, it is easily
seen that all ALCR-roles are so preserved. Let I,
J be two interpretations with X1 ⊆ (∆I × ∆I)
and (d2, e2) ∈ (∆J × ∆J ). If we have X1 ⊆
(RI

1 ∩ · · · ∩ RI
n) and, for some ALCR-simulation

Z, X1Z1(d2, e2), then, by item 2(b) of Definition 7
and a simple induction on n, we have that (d2, e2) ∈
(RJ

1 ∩ · · · ∩RJ
n ), as required.

Next, let us show that ALCR-concepts are in-
deed preserved. The proof is by induction on con-
cepts, and we will only consider the case of existen-
tial quantification ∃R.C (where R may be a com-
plex role). Assume that d1Z0d2 and d1 ∈ (∃R.C)I ;
we need to show that d2 ∈ (∃R.C)J . Clearly,
there exists e1 ∈ ∆I with (d1, e1) ∈ RI and
e1 ∈ CI . By item 3(a) there exists e2 ∈ ∆J

with {(d1, e1)}Z1(d2, e2). By our earlier observa-
tions (d2, e2) ∈ RJ , and using item 4(a) we find
that e1Z0e2, and hence e2 ∈ CJ by the induction
hypothesis. a

The general strategy used above is worth identify-
ing. What we have done is to take ALC-simulations
as defined Definition 2, and to add a second layer
characterizing role conjunction on top of it. The
same strategy may be used for other description log-
ics L for which characterizations of the L-definable
concepts has been given in terms of L-simulations
in [14].

2. Incorporating Translations. With the ideas
explored in Step 1 above, we now know how to
characterize the concepts and roles that are express-
ible in a given description logic L, and, hence, we
have the tools to compare L to other logics over the
same similarity type with respect the concepts and
roles that can be defined. Such comparisons be-
come much harder if different similarity types are
involved. A notion of simulation is strongly tied to
the language: in all the cases covered up to now,
we talked about L-simulations for a given L. When
trying to incorporate translations so as to account
for differences in similarity types, we have to con-



sider two languages. Also, in dealing with such com-
binations of translations and characterizations via
simulations, we want to have control over the com-
plexity of the translation (in terms of the size of the
translated formula, the size of the target T-box and
new predicates needed).

What is the appropriate modification of the ear-
lier framework? To produce in some way a new no-
tion of simulation for the two logics together, per-
haps combining the notions of simulations for L1

and L2? To build into the notion of L1-simulation
the translation function used? We do not think that
this is the proper solution.

Instead, our best conjecture is that simulations
have to be used in a different way than how they
are now applied to define the notion of expressive
power. In other words, we are after an alterna-
tive to Definition 4. The fact that =s gives rise
to a finer notion of equivalence of description log-
ics than =b, gives us the hint that a more liberal
use of simulation in Definition 4 is needed. Incor-
porating translations at this level will keep things
in their proper place: simulations are tied to a lan-
guage and hence are defined for a specific descrip-
tion logic, completely characterizing its definitional
power. And when a comparison between descrip-
tion logics based on different vocabularies is needed,
the corresponding notions of simulations plus ap-
propriate translations will be used.

After completing this step, we would indeed have
a tool which combines the characteristics of the ap-
proaches of Baader and Kurtonina and de Rijke for
the case of acyclic and unfolded T-boxes, where the
key notions are the right-hand side of definitions.

3. Full T-Boxes. The final step, considering full
T-boxes, becomes interesting when folded T-boxes
are allowed. We should still restrict ourselves to T-
boxes without cyclic definition if we want to stay
inside first-order logic3. In folded definitions, left-
hand sides of equations become important as they
can appear also on the right-hand side. As we said
in Section 2, unfolding definitions might cause an
exponential grow in the size of the T-box, some-

3To provide a semantics for cyclic definitions a notion of
fix point is needed. In this paper we will not discuss the
notion of simulation that is appropriate for such cases, even
though relevant results in the area of modal logic do exist;
see [12]

thing which should be taken into account given that
efficiency is a relevant issue for description logics.

To characterize full definitions of the form Q
.= ϕ,

we probably need a two-level notion of simulation:
on the bottom level, notions of simulation as de-
scribed in this article will take care of the preserva-
tion of ϕ while the top level will preserve the equiv-
alence of ϕ with Q.

Finally, full T-boxes also permit axioms that can
be used to enforce properties of interpretations.
This is probably the hardest point to cope with if
we insist to do it through simulations. Preserving
general properties of interpretations via simulations
is known to be a difficult problem. For example, an
axiom may force a given role to be functional, but
then in any similar model the role should also be
functional, and this global property is difficult to
enforce. A solution here might be to consider rel-
ativized simulations where we try to obtain simu-
lation based characterizations relative to external
restrictions on the classes of interpretations that
should be considered.

5 Conclusions

A proper notion of the expressive power of descrip-
tion logics is essential for the comparison and un-
derstanding of the many formalisms that are con-
tinually being proposed in the field. Awkwardly
enough, until recently this notion has largely been
neglected in the literature.

Two — quite different but related — notions of
expressive power have been given for description
logics: Baader’s definition based on a notion of em-
beddings and Kurtonina and de Rijke’s based on
simulations. The different approaches induce differ-
ent classifications of description logics with respect
to their expressive power. In this paper we have
compared the two notions, pointing to differences
and similarities, and we have also discussed ways in
which the two notions are connected.

We have also mapped out a research agenda in
which we aim to combine the best features of both
approaches. We have indicated three steps in this
direction: first, generalize simulations to roles, then
introduce translations, and, finally, generalize sim-
ulations so as to characterize full T-boxes. So far,
we have only given the first of these three steps; the
remaining two form part of our ongoing research.
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