
Feature Interaction as a Satisfiability Problem

Carlos Areces
ILLC, Univ. of Amsterdam

Pl. Muidergracht 24
1018 TV Amsterdam

The Netherlands
carlos@wins.uva.nl

Wiet Bouma
KPN Research
P.O. Box 421

2260 AK Leidschendam
The Netherlands

L.G.Bouma@research.kpn.com

Maarten de Rijke∗

ILLC, Univ. of Amsterdam
Pl. Muidergracht 24
1018 TV Amsterdam

The Netherlands
mdr@wins.uva.nl

Abstract

We present a formal model for the specification of tele-
phone features by means of description logics. Our frame-
work permits the formal definition of the basic telephone
system as well as the specification of additional features
(Call Waiting, Call Forwarding, etc.). Furthermore, by
using standard reasoning tasks from Description Logics,
properties of features can be formally proved and interac-
tions detected. An EXPTIME upper bound for the complex-
ity of detecting feature interaction as a satisfiability problem
is provided by exploiting well-known results for expressive
description languages.

1. Introduction

The term “feature interaction” was originally intro-
duced in the telecommunications domain when new fea-
tures started being added to the basic telephony service. The
phrase seems to have been introduced in 1983, with the pub-
lication of a comprehensive set of feature descriptions by
Bellcore. In [4], one of the first attempts was made to define
the general problem, and to develop a software engineering
framework for managing feature interactions. Afeaturein
the context of telephone systems is an addition of function-
ality to provide new behavior to the users or the administra-
tion of the telephone system. Classical examples of features
are: Call Waiting, Call Forwarding in several flavors, Three-
Way Calling, Automatic Call Back (also called Call Com-
pletion Busy Subscriber), and reverse- and split-charging.
There are many other feature domains in the telecommu-
nications area, for example data- and multi-media com-
munication (like video telephony, video-conferencing, tele-
education, video on demand), management of equipment,
and billing and administration. However, traditionally, fea-

∗Supported by the Spinoza project ‘Logic in Action.’

tures and their interactions in the end-user telephony do-
main are the most visible. The list of “classical” features
is very long, for instance [1] contains hundreds of feature
descriptions.

Featureinteractionarises when the behavior of one fea-
ture influences the behavior of another, mostly in an unex-
pected and unwanted way. A simple example is the combi-
nation of Call Waiting and Call Forwarding on Busy: if the
network gives priority to one, the other is effectively dis-
abled. The problem has recently generated a lot of attention
in the telecommunications domain. Reasons for this are the
ever increasing complexity of the set of features deployed in
current telephone networks and the need to rapidly develop
and commercially deploy new features on top of already
installed ones, feature creation by third parties, and the in-
creasingly distributed nature of software for telecommuni-
cations systems: service programs are possibly executed by
different network components, or even by components in
other domains.

Because the feature interaction problem is so general,
there have been many attempts to come up with a classi-
fication of interactions. We give a brief overview follow-
ing [12]. Probably the most accepted is thecausalview
from [6] which classifies interactions according to their rea-
son of occurrence: limitations of network support (like a
poor user-to-network signaling interface), intrinsic prob-
lems in distributed systems (like timing problems and race
conditions), or violation of assumptions (about the envi-
ronment in which a feature operates). One can also take
asoftware-engineeringpoint of view, and subdivide feature
interactions according to the phase of the software life-cycle
where they occur (requirements specification, software de-
sign, implementation, testing, provisioning), see e.g., [7].
Yet another possibility is to classify interactions according
to thenumber of users and network componentsinvolved.
Finally, one can take anorganizationalpoint of view and
focus on who in an organization is responsible for dealing
with the occurrence of interactions, see for instance [13].

1

There are many approaches to finding and dealing with
interactions. The accepted categorization from [3] is to use
a two-dimensional scheme and split approaches into on-line
and off-line on the one hand, and avoidance, detection and
resolution on the other. On-line vs. off-line refers towhen
interactions are dealt with: during or before deployment.
The split in avoidance, detection and resolution refers to
whether features are designed so that interactions simply do
not occur (or rather are always completely explicit), feature
descriptions are analyzed against each other to find interac-
tions, or different methods are devised to deal with interac-
tions when they occur, respectively.

Traditionally, detection methods have been most popu-
lar, and especially analytical methods based on formal ver-
ification techniques. The idea is to do a formal design of
both system and features, and to use these formal descrip-
tions to detect interaction. In the great majority of these
cases, a functional model of the telecommunications net-
work is constructed, on top of which features are added.
Correctness criteria for proper functioning of the system
and features are then checked using verification techniques,
most often model checking. We refer to [12] for a detailed
overview. In contrast to the model-oriented approach, only
few contributions use a satisfiability approach in which the
system is described using a specific logic, mostly predi-
cate, temporal or modal logic. Feature requirements are
then checked for consistency against the system descrip-
tion. One example here is the work by Blom [2], which
uses specification techniques close to linear temporal logic.
Specifications can automatically be mapped onto finite state
machines. Interaction is defined as states with transitions
that have conflicting enabling conditions, or that have con-
flicting effects. Gammelgaard and Kristensen [10] model
a telephony service, possibly enhanced with features, as a
set ofpropositional axiomstogether with a set oftransition
rules; feature interaction is defined as non-satisfiability of
such axiom sets. We will come back to this approach in
more detail in Section 5.

The feature detection done in the proposals mentioned
above is mostly informal. There is no calculus for the lan-
guage, and the arguments analyzing feature interaction are
a kind of semantic evaluation of models. Given the intri-
cacies of the subject area, this is bound to lead to errors.
Moreover, unless we have a proper formalization, we have
no way of understanding the complexity of the feature inter-
action problem, neither a way of using formal tools to help
us detect interaction. To address these shortcomings, we
provide a completely formal approach using standard rea-
soning tasks; furthermore, we argue that the language we
propose is a “good logic” to reason about features and the
interaction problem, with sufficient expressive power and
with sound and complete decision methods.

In Section 2 we introduce description logics and we

present the languageFI. This specification language is put
to use in Section 3 to model the basic call service and addi-
tional features. A definition of interaction and an algorith-
mic method for detecting them, illustrated with an example,
forms the content of Section 4. In Section 5 we discuss the
relation of our work with that of Gammelgaard and Kris-
tensen mentioned above. The paper concludes with a dis-
cussion on the complexity of the approach and directions
for future research.

2. Description Logics for Feature Interaction

Description logics deal with the representation of struc-
tured concepts, and of objects that may or may not be re-
lated to other objects, and that may or may not satisfy some
of these concepts. To preserve structural properties of the
data being represented, description logics descending from
the KL-ONE system [5] split information in two kinds:
ABoxes which contain assertional information (facts con-
cerning individuals in the domain), and TBoxes with termi-
nological knowledge (definitions of derived notions).

Example 2.1 Consider the following example:

TBox: T =

{
man v human umale
father .= man u ∃has−child .>

}

ABox: A =

 m :human
m :male
(m, e) :has−child

The formulas inT define concepts (subsets of the domain
to which information being represented refers). For exam-
ple, the first formula defines the concept of being a ‘man’
as a subset of those humans which are male. It is not a
strict definition because further conditions like having to be
‘alive’ and older than a certain age are not specified. In
other words, beenhumanandmaleare necessary conditions
but they are not sufficient to qualify asman. The second
formula, on the other hand, strictly defines the concept of
being a ‘father’ as the set of all those men who have a child
(has-childis a binary relation and> represents a trivial con-
dition, i.e., a tautology). The formulas in the ABoxA assert
that a certainm is both human and male, and also that there
exists an elemente which stands in the ‘has-child’ relation
with m. The available information is not enough to char-
acterizem as a father since we don’t know ifm satisfies
the required further conditions which were left open in the
definition of man.

Summing up, concepts and roles are the building blocks of
description logics, and each description logic is character-
ized by the way in which these can be combined in TBoxes

2

and ABoxes. More formally, thesignatureof a description
logic is given by specifying three disjoint setsC, R andA of
concept and role names, and atomic constants respectively.

Below, we propose a specific description logic as a suit-
able formalism for describing feature interaction. Con-
sider the following simple example. Suppose we haveA
andB which are subscribers to the basic telephony sys-
tem. A communication path established betweenA andB
forces both telephones to be engaged, butengagedA and
engagedB are not sufficient conditions for the existence
of a communication path betweenA andB as they can
be talking with other subscribers. In symbols, we have
pathAB v engagedA u engagedB . We will use terminolo-
gies and assertions to provide a formal model of the basic
telephony system; on top of that, we explicitly define how
this basic system is modified by adding features.

The Description Logic FI. Fix a signature τ =
〈C,R,A〉 of concept names, role names and constants. The
sets Co of concepts,Te of terminologies (formulas al-
lowed in TBoxes) andAs of assertions (formulas allowed
in ABoxes) are defined as follows:

BCo := > | C | ¬BCo | BCo u BCo

Co := BCo | ∀R.BCo | ∃R.BCo

Te := BCo v Co | BCo .
= Co

As := a :Co | (a, b) :R

HereC is a basic concept inC, R a basic relation inR and
a, b constants inA. As in Example 2.1, sets of elements
of Te andAs are used to specify notions and to assert that
certain elements correspond to them. Usually, a pair〈T,A〉
whereT ⊆ Te andA ⊆ As is called aknowledge base.

Description logics are interpreted oninterpretationsI =
(∆I , ·I), where∆I is any non-empty set, and·I is a func-
tion assigning subsets of∆I to concept names, binary rela-
tions over∆I to role names, and single elements of∆I to
atomic constants.I can be extended to all formulas inCo
as follows(>)I = ∆I , (C uD)I = CI ∩DI , (¬C)I =
∆I \ CI , (∀R.C)I = {d ∈ ∆I | ∀d′ ((d, d′) ∈ RI ⇒
d′ ∈ CI)}, and (∃R.C)I = {d ∈ ∆I | ∃d′ ((d, d′) ∈
RI & d′ ∈ CI)}. The last two conditions deserve fur-
ther comments. The intended meaning of∃R.C is the set
of all elements which stand in the relationR with some
C-element (see the definition of the conceptfather in Ex-
ample 2.1). The operator∀ is the dual notion and can be
defined in terms of∃: ∀R.C = ¬∃R.¬C.

We can now define the key notions ofsatisfactionand
consequence. A satisfaction relation|= is a relation between
interpretations and terminologies or assertions. Intuitively,
|= relates an interpretationI with formulas whose intended
meaning is supported byI: I |= C v D iff CI ⊆ DI ,
I |= C

.= D iff CI = DI , I |= a : C iff aI ∈ CI , and
I |= (a, b) : R iff (aI , bI) ∈ RI . Given a subsetK of

Te ∪ As, we say thatI |= K if each element ofK is sup-
ported byI (i.e., I |= ϕ for all formulasϕ in K). Recall
that we will use knowledge bases as in Example 2.1 to pro-
vide a formal description of the basic call service. LetBCS
be such a knowledge base; we are especially interested in
properties that are supported in any interpretation support-
ing BCS. More generally, given a knowledge base〈T,A〉
andϕ ∈ Te ∪ As, we say thatϕ follows from〈T,A〉 (nota-
tion 〈T,A〉 |= ϕ) if for all interpretationsI, I |= T ∪A im-
pliesI |= ϕ. Checking whether a formulaϕ follows from
a knowledge base is the main reasoning task for description
logics; in Section 3.2 we define detection of feature interac-
tion as a special instance of this task.

3. Modeling

We first model the basic call service as a knowledge base
in FI; after that we discuss the addition of features.

3.1 Step 1: Description ofBCSin FI

We should first fix the set of atomic concepts, relations
and constants we will use. We will provide a list, together
with a brief description of their intended meanings. As-
sume there is a fixed (finite) setSUB of indices which rep-
resent subscribers to the telephone system. In most cases,
feature interaction can already be detected in the presence
of a small number of subscribers. We will annotate atomic
concepts and roles with indexes fromSUB.

Atomic Concepts. We need concepts expressing that a
useru ∈ SUB is in a specific state. The following concepts
form the setSTu of possible states of a useru.

idleu the telephone has the receiver on hook and is silent;
dialtoneu the receiver is off hook and emits a dial tone; a num-

ber can be dialed;
busytoneu the receiver is off hook and emits a busy tone, indi-

cating a failed call attempt or the party has hung up;
ringingu the telephone is ringing with the receiver on hook;
ringbacku the receiver is off hook and emits a ring back tone

(called party’s phone is ringing);
engagedu there is a connection (also called speech path) with

another party.

We also need concepts expressing a (minimal) presence of
the network, because a call proceeds through phases (inter-
nal states of the network) that are not directly observable by
a user. Moreover, we need to be able to express connections
between users being active. These, foru, v ∈ SUB, form
the setISTuv of internal states.

callinguv the phone atv is ringing with u waiting for v to
accept the call;

pathuv u andv can communicate (have a speech path).

3

DefineC to be
⋃

u,v∈SUB
(STu ∪ ISTuv).

Atomic Roles. Roles represent possible actions of sub-
scribers. As before, defineR as the union of allROLESu

for u ∈ SUB, whereROLESu is the following:

offhooku representing the action ofu lifting the receiver;
dialuv representing the action ofu dialingv’s number (for

eachv ∈ SUB);
onhooku representing the action ofu putting down the re-

ceiver.

It is standard to assume that the system is deterministic, i.e.,
any action of a subscriber changes the state of the system
to a unique and completely specified new state. This as-
sumption is so common in knowledge representation, that
the logic comes “prepared” for handling certain roles as par-
tial functions (i.e., if(a, b) : R and(a, c) : R thenb = c);
see Section 4.2. All roles inR are assumed to be partial
functions.

TBox and ABox. Now that concept and role names have
been defined, we can specifyBCS. Again, we use the con-
vention that the statements presented below are schemes
whereu andv range over the setSUB of subscribers. To
begin, there are (TBox) expressions connecting the observ-
able states of a telephone with the ones representing net-
work states:

callinguv v ringingv u ringbacku , u 6= v;

ringingu v
F

v∈SUB,v 6=u callingvu ;

ringbacku v
F

v∈SUB,v 6=u callinguv ;

pathuv v engagedu u engagedv ;

engagedu v
F

v∈SUB,v 6=u pathuv ;

pathuv
.
= pathvu , u 6= v. (In the absence of billing, a speech

path is symmetric.)

Next, there are statements specifying how a user and the
network can change state.

idleu v ∃offhooku .dialtoneu (if u is idle, she can go offhook
and accept digits);

dialtoneu u idlev v ∃dialuv .callinguv (if u has a dialtone
andv idle, u can dialv’s number and establish a call);

dialtoneu v ∃onhooku .idleu (if u has a dialtone, she can de-
cide to hang up and go idle);

dialtoneu u ¬idlev v ∃dialuv .busytoneu (if u’s party is
busy,u’s phone emits a busytone);

busytoneu v ∃onhooku .idleu (if u has a busytone, she can
go onhook to become idle);

callinguv v ∃offhookv .pathuv (when u is calling v and v
goes offhook, this establishes a speech path);

callinguv v ∃onhooku .(idleu u idlev) (if u goes onhook,
she and her party go idle);

pathuv v ∃onhooku .(idleu u busytonev) (u can go onhook
when talking tov).

Given the functionality of roles, these axioms also produce
universal restrictions, i.e., each∃ also acts as a∀.

There is only one ABox statement corresponding to the
“initial state” of the system; we require that at states0 all
users are idle,

s0 :
l

u∈SUB

idleu .

We should now enforce certain properties which are true in
any model of theBCS, like the fact that each subscriber is in
exactly one state at each moment, and that subscribers can
change state only by means of certain actions. The first is
expressed as follows by requiring that for allu ∈ SUB:

> v ¬
(⊔

s1,s2∈STu,s1 6=s2
(s1 u s2)

)
u

⊔
s∈STu

s.

As to the second property, because the set of subscribers
and the allowed transition functions are finite, we can ex-
plicitly enforce this condition. Define the following no-
tation linking states to the actions they allow. LetDuv

be {idleu , dialtoneu , busytoneu , ringingu u callingvu ,
callinguv , pathuv} for u, v ∈ SUB. We now define a map-
pingActuv fromDuv to the subsets ofROLESu∪ROLESv

as a function specifying the allowed actions:

Actuv(idleu) = {offhooku} ∪ {dialvu | v ∈ SUB, v 6= u}
Actuv(dialtoneu) = {onhooku}∪{dialuv | v∈SUB, v 6= u}
Actuv(busytoneu) = {onhooku}
Actuv(ringingu u callingvu) = {onhookv}
Actuv(callinguv) = {onhooku , offhookv}
Actuv(pathuv) = {onhooku , onhookv}

Then we require that for allu, v ∈ SUB, all s ∈ Duv, and
all R 6∈ Actuv(s), s v ∀R.s.

We have now completed our formalization of the basic
call system inFI. Next we turn to the analysis of feature
interaction.

3.2 Step 2: Adding Features

We will now indicate how to extend theBCSspecifica-
tion with features. This will be done through refinements.
As an example we will add three standard features (TCS,
CFU andCW). Furthermore, we formally define feature in-
teraction as a satisfaction problem.

Defining what exactly a feature is, is not a simple task.
A very abstract approach is to consider a feature as a pair
〈δ, ϕ〉 whereδ is a function mapping specifications to spec-
ifications (and representing the action of adding the feature
to a basic system), andϕ is a formal description of the ex-
pected behavior of the feature. Then, for example, ifTCS=
〈δ, ϕ〉 is the specification of the Terminating Call Screening
feature, it would be expected thatδ(BCS) |= ϕ, or in other
words, that adding TCS on the Basic Call System achieves

4

the expected behavior.δ can be viewed as the implementa-
tion function, whileϕ represents the feature specification.

Here we will take a more concrete approach. Notice that
separating the implementation function from the expected
behavior leaves open the possibility of wrong implementa-
tions, i.e., given an original specificationS, it might turn out
thatδ(S) does not satisfy the specification, i.e.,δ(S) 6|= ϕ.
Because we don’t want to consider this possibility, we will
dropϕ from the definition of a feature and simply view it
as a refining operator. Furthermore, and for the sake of sim-
plicity, we will restrict ourself to order independent refine-
ments, e.g., given two refinementsδ1 andδ2, for any spec-
ificationS, δ1(δ2(S)) is equivalent toδ2(δ1(S)). This will
let us achieve a clear definition of interaction.

Definition 3.1 (Refinement and Interaction) For a given
featureF we will define a refinement operationδF , and a set
of new conceptsAF ⊆ {Fū | ū ∈ SUB+}1 (theactivation
concepts). Given a knowledge baseK, δF (K) is the knowl-
edge base obtained by applying the refinement toK. We
say thatK andF interact on activationN for N ⊆ AF if
δF (K)∪N c∪Nd |= ¬>, whereN c is the set ofconnected
featuresN c = {> v Fū | Fū ∈ N} andNd is the set of
disconnected featuresNd = {> v ¬Fū | Fū ∈ AF \N}.

Notice that the formalism gives us the flexibility to model
different activation possibilities by modifying the activation
sets. Trivially, refinements can be iterated. IfF1 andF2

are features thenδF2(δF1(K)) denotes the successive re-
finements throughF1 andF2, which we denote asF1 ◦ F2.
Remember that we will only consider features such that,
F1 ◦ F2 is always equivalent toF2 ◦ F1.

WhenK is the basic call serviceBCS, we say that fea-
turesF1 andF2 interact if there exist activation setsNF1 ⊆
AF1 andNF2 ⊆ AF2 such thatBCSandF1 ◦ F2 interact on
activationNF1 ∪NF2 .

Terminating Call Screening (TCS). TCS is a feature
where a useru can put another userv on a black list:v’s
phone is not allowed to establish a connection tou’s phone.
A first attempt to formalize this behavior is by introducing
a new conceptTCSuv, and simply refiningBCSby adding
TCSuv v ¬callingvu . However, this extension immedi-
ately interacts (with itself on activation{TCSuv}). This is
an expectedinteraction, though. In fact, adding a feature
alwaysmodifies, and hence contradicts, the basic system (if
the basic system has been completely modeled). To obtain
a correct refinement, first define the set of activation con-
cepts forTCSto be{TCSuv | u, v ∈ SUB, u 6= v}. The
refinementδTCS is defined by replacing, in any knowledge
base, terminologies of the formC1[dialtoneu u idlev] v
∃dialuv .C2[callinguv] by

1For any setS, S+ denotes the set of nonempty strings overS.

C1[¬TCSvu u dialtoneu u idlev] v ∃dialuv .C2[callinguv]
C1[TCSvu u dialtoneu u idlev] v ∃dialuv .C2[busytoneu]
TCSvu v ¬callinguv .

HereC1 andC2 are contexts. In generalC[ϕ] singles out
an occurrence ofϕ as a subformula of any formulaψ. We
will take care thatδTCS is well defined by applying it only
to knowledge bases where contexts single out unique occur-
rences.

Call Forwarding Unconditional (CFU). The informal
meaning ofCFUuv is that wheneverw callsu, she will be
connected tov instead. For the activation concepts we take
the set{CFUuv | u, v ∈ SUB, u 6= v}. We formalizeδCFU

by replacing axioms of the formC1[dialtoneu u idlev]
v ∃dialuv .C2[callinguv] and C3[dialtoneu u ¬idlev] v
∃dialuv .C4[busytoneu] by

C1[¬ tw∈SUB CFUvw u dialtoneu u idlev] v
∃dialuv .C2[callinguv],

C1[CFUvw u dialtoneu u idlew] v
∃dialuv .C2[callinguw],

C3[¬ tw∈SUB CFUvw u dialtoneu u ¬idlev] v
∃dialuv .C4[busytoneu],

C3[CFUvw u dialtoneu u ¬idlew] v
∃dialuv .C4[busytoneu].

CFU affects also the definition of theAct function. For ex-
ample, ifu hasCFUuv for somev, then for allw, dialwu

will actually not modify her state (as the call will be for-
warded tov). Modifying Act appropriately is straightfor-
ward.

Some very interesting issues surface when formally
defining this feature. Notice that the forwarding event is
implemented by changing the statecallinguv to callinguw

wheneverCFUvw is active (together with some book keep-
ing). But this bypasses thedialuv action. If, in addi-
tion, CFUwx is active this second forwarding will not be
executed. In other words, the specification actually en-
codes a policy of restricting the number of possible for-
warding to only one. To implement multiple forward-
ing, network states forwardinguv should be added and
the refinement modified as follows.δTCS is defined by
replacing, in any knowledge base, terminologies of the
form C1[dialtoneu u idlev] v ∃dialuv .C2[callinguv] and
C3[dialtoneu u ¬idlev] v ∃dialuv .C4[busytoneu] by

C1[¬ tw∈SUB CFUvw u dialtoneu u idlev] v
∃dialuv .C2[callinguv],

C1[CFUvw u dialtoneu] v ∃dialuv .C2[forwardinguw],
C3[¬ tw∈SUB CFUvw u dialtoneu u ¬idlev] v

∃dialuv .C4[busytoneu],
¬ tx∈SUB CFUwx u forwardinguw u idlew v callinguw ,
¬ tx∈SUB CFUwx u forwardinguw u ¬idlew v busytoneu ,
CFUwx u forwardinguw v forwardingux .

5

Notice that the new network states are notuser states(i.e.,
they are not members ofST). This is crucial, as in our
model the network will be going through multipleforward-
ing states till it reaches a userw which does not have the
call forwarding feature activated.

In the new specification there is no limit on the number
of times a call can be forwarded. This, of course, might lead
to infinite loops. Properties like this can be detected by the
calculus introduced in Section 4.

Call Waiting (CW). The specification of theCW feature
is much more involved than the ones we have discussed so
far. The intended behavior ofCW is as follows. Suppose
subscriberA hasCW activated, andA is speaking withB.
If C callsA, A should receive a notification of a waiting
second call (A will hear a signal while speaking withB).
He can then decide to putB on hold by doing a flash hook
and attend toC ’s call. He can continue to swap between
the parties by doing further flash hooks. In the end, if the
subscriber does an on hook while a party is still on hold, he
will be rung back from the held party.

It is immediate from the informal description thatCW
adds both new states (e.g.,onhold) and new actions (e.g.,
flashhook), and hence its specification asks for a more elab-
orated knowledge base. It should be clear however, that
once we have specified the different states the subscribers
and the system will pass through, together with the allowed
actions, the model can be encoded inFI without further
inconveniences. We don’t provide full details but, for ex-
ample, by adding the following formulas to the TBox we
can model some of the actions which are possible for a user
which has theCW feature enabled.

CWx u pathxy v ∃dialzx .cwalertingxyz

CWx u cwalertingxyz v ∃flashhookx .onholdxzy

CWx u onholdxzy v ∃flashhookx .onholdxyz

CWx u onholdxyz v ∃onhookx .callingzx u busytoney

4. UsingFI for Detecting Feature Interaction.

Now let us take stock. First, it is important to remark
that many of the properties spelled out in Section 3 were en-
forced only informally (or not at all) in previous proposals,
like [10]. Our modeling effort revealed a number of hidden
assumptions. Second, we can now use formal results avail-
able about description logics to obtain information about
the properties ofFI and, in particular, about feature inter-
action.

How? For a start,FI is just a subset of a well known
description logic which is calledALC with assertions and
cyclic definitions. In [8], De Giacomo et al. define a tableau
method to prove consistency of knowledge bases inALC
with assertions and cyclic definitions, which is EXPTIME

complete (even though the paper only mentions an EXP-
TIME upper bound we can easily encode global satisfiabil-
ity of the basic modal logicK in this logic). What does
this imply for the complexity of determining feature inter-
action? Because we have defined this task as a special sat-
isfiability problem, it follows that determining feature in-
teraction (as it is modeled here) is decidable in EXPTIME.
Furthermore, even thoughFI is a proper fragment of full
ALC with cyclic TBoxes and assertions, it actually has full
ALC expressivity: the full fragment can be encoded inFI
by means of definitions. Hence, EXPTIME is also a lower
bound for deciding satisfiability inFI.

4.1 Decision Methods forFI

In this section we provide details on the tableau method
which can be used to detect feature interaction. The follow-
ing tableaux method is adapted toFI from [8].

Definition 4.1 (Tableaux Method) A tableau forFI can
be represented as a set of formulas with added prefixes of
the form〈b | p : C〉 where thesegmentb is a binary string
representing choices in a binary branching tree; theelement
p is a string alternating integers (names for individuals) and
role names; andC is anFI concept.

Define the following notation: given two stringsσ1 and
σ2, σ1 � σ2 (σ1 ≺ σ2) means thatσ1 is a prefix (strict pre-
fix) of σ2. A segmentbM is maximal for another segmentb
in a tableauT if both bM andb are present inT andbM is
the longest segment inT of which b is a prefix.

Let 〈T,A〉 be the knowledge base obtained by consid-
ering a given refinement ofBCStogether with a particular
activation setN . Suppose we want to check whether〈T,A〉
interact on activationN (e.g.,〈T,A〉 |= ¬>). Initialize the
tableau with〈ε | s0 :

d
u∈SUB

idleu〉 (whereε is the empty
string) and apply the following rules.

AND:
〈b | p : C uD〉
〈b | p : C〉
〈b | p : D〉

OR:
〈b | p : C tD〉
〈bM0 | p : C〉
〈bM1 | p : D〉

with bM maximal forb

SOME:
〈b | p : ∃R.C〉
〈b | pRn : C〉 with pRn new

ALL:
〈b | p : ∀R.C〉
〈b | pRn : C〉 with pRn present inb

KB:

...
〈b | p : ¬C tD〉

with p present inb
andC v D ∈ T

6

To handle functional rules, the application of the SOME
rule is restricted by the side condition requiring that noR
successor ofp already exists in the branch.

If we also provide the correct definition of when a branch
in the tableau is closed together with a heuristic of how the
rules should be applied, termination is guaranteed (see [8]
for details). In addition, the decision method is sound and
complete, i.e., all the branches in the tableau are closed if
and only if the knowledge base is inconsistent.

4.2 Example: Interaction betweenTCSand CFU.

Intuitively, interaction betweenTCSandCFU might oc-
cur as follows. SupposeB forwards his phone toC and
C putsA on his screening list. NowA callsB, and be-
causeB has forwarded his calls toC and he is not onC ’s
screening list, a connection is established fromA to C!
This is a bad interaction which can be formally detected:
δCFU (δTCS (BCS)) interacts on activation{TCSCA} ∪
{CFUBC}. We formally prove our claim that the inter-
action sketched is detected by the tableaux calculus. The
derivation will produce a closed tableau; see below. Note
that only the application of the OR rule in the calculus gives
rise to new branches.

1. Applying AND to the start formula〈ε | s0 :
d

u∈SUB idleu〉
gives〈ε | s0 : idleA〉.

2. An intermediate derivation produces:

(a) applying KB to ruleidleA v ∃offhookA.dialtoneA

of T produces 〈ε | s0 : ¬idleA t
∃offhookA.dialtoneA〉

(b) Applying OR gives two branches:

i. 〈0 | s0 : ¬idleA〉. This one is already closed
because of the appearance of〈ε | s0 : idleA〉
earlier in this segment,

ii. and〈1 | s0 :| ∃offhookA.dialtoneA〉,
(c) and finally by applying SOME:〈1 | s0 offhookA s1 :

dialtoneA〉, with s1 a new state.

3. We derive〈ε | s0 : ¬idleB t ∀offhookA.idleB 〉 in an in-
termediate step, by applying KB to the frame axioms. Then,
applying OR:

(a) 〈10 | s0 : ¬idleB 〉 which is again already closed, and
(b) 〈11 | s0 : ∀offhookA.idleB 〉 to which we apply rule

ALL, resulting in
(c) 〈11 | s0 offhookA s1 : idleB 〉

4. We need a further intermediate derivation. Applying KB to
ruledialtoneAuidleB v ∃dialAB .callingAC of the (CFU-
modified) TBox gives:〈11 | s0 offhookA s1 : ¬dialtoneA t
¬idleB t ∃dialAB .callingAC 〉. Apply OR:

(a) 〈110 | s0 offhookA s1 : ¬dialtoneA〉 which is already
closed, and

(b) 〈111 | s0 offhookA s1 : ¬idleB t∃dialAB .callingAC 〉

Apply OR again:

(a) 〈1110 | s0 offhookA s1 : ¬idleB 〉 (closed), and

(b) 〈1111 | s0 offhookA s1 : ∃dialAB .callingAC 〉, and
finally SOME again, producing

(c) 〈1111 | s0 offhookA s1 dialAB s2 : callingAC 〉
which closes the last open segment of the tableau.
This is proved by applying KB to ruleTCSCA v
¬callingAC of the CFU-modified TBox, giving
〈1111 | s0 offhookA s1 dialAB s2 : ¬TCSCA t
¬callingAC 〉, and finally by OR:

i. 〈11110 | s0 offhookA s1 dialAB s2 : ¬TCSCA〉
which is closed byTCSCA itself, and

ii. 〈11111 | s0offhookAs1dialAB s2 : ¬callingAC 〉
which finishes the closure.

As we obtain a closed tableau,δCFU (δTCS (BCS)) inter-
acts on activation{TCSCA} ∪ {CFUBC}. It is important
to realize that the closed tableau can be obtained mechani-
cally, and hence feature interaction automatically detected.

5. Related work

We briefly discuss previous work that is connected with
our approach to understanding feature interaction.

Gammelgaard and Kristensen’s paper [10] has been the
starting point for the current contribution. The authors in-
troduce a formal language for specifying theories consisting
of global propositional formulas (network properties) and
(propositional) transition rules of the formp− t→ q, where
transitions are labeled by symbols from a designated setL
of trigger symbols. Some examples are:

calling(A, B) ⇒ ringing(B) ∧ ring back(A)

path(A, B) ⇒ engaged(A) ∧ engaged(B)

idle(A)− offhook(A)→ dialtone(A)

TCS(A,B) ⇒ ¬calling(B ,A)

Here, the first three formulas are more or less self-
explanatory (for example,calling(A,B) is just a proposi-
tional symbol and⇒ is material implication), and the last
one is a so-calledactivation predicate, specifying that user
A has an active Terminating Call Screening feature, and has
put userB on her black list.

A semantics for such specifications is provided by in-
troducing deterministic labeled transition systems (LTSs)
equipped with a propositional valuation on states, as candi-
date models. Network properties are required to hold glob-
ally (in all states), and a transition rulep − t→ q holds iff
for all statess we have that ifp holds ins, then there exists
a transition labeled witht leading to a state whereq holds.
An LTS M is amodelfor a specificationF iff it satisfies all
axioms ofF and the followinginitial statecondition holds:
there is a state in whichidle(A) holds for each subscriber
A. A specification issatisfiableiff it has a model.

7

Features are introduced at two levels, by an informal de-
scription, and formally by activation predicates as discussed
above. An activation predicate is an instance of a network
property scheme; it represents a feature that is active in
the network, which means that it is active in every state.
Features that are not explicitly active are supposed to be
switched off. Using these activation predicates, Gammel-
gaard and Kristensen give several definitions: features can
interact with the basic call service, with themselves, or with
other features. The set-up is illustrated with examples.

The detection done in the approach sketched above is
informal. There is no calculus for the language, and the ar-
guments analyzing feature interaction are a kind of seman-
tic evaluation of models. Given the intricacies of the sub-
ject area, this is bound to lead to errors. Moreover, unless
we have a proper formalization, we have no way of under-
standing the complexity of the feature interaction problem,
and we have no way of using formal tools to help us detect
interaction. Our contribution is that we address these short-
comings by representing network properties and transition
rules in an appropriate description logic and by expressing
feature interaction as a satisfiability problem for which de-
cision methods and complexity results are available.

6. Conclusion

We have provided a formal method for feature interac-
tion detection. Our method formalizes some of the ideas
first introduced in [10]. Our modeling enterprise has re-
vealed various inaccuracies and ambiguities in previous ap-
proaches as described in Section 5. In addition, we have
established an EXPTIME upper bound for the problem
of detecting feature interaction, indicating that logical ap-
proaches to feature interaction are probably expensive.

Where to go from here? There is a clear line of logic-
related questions, and a line of questions related to feature
interaction. Since our formalization of the interaction prob-
lem does not need the full expressivity ofFI (disjunctions
of concepts were never used), there is some hope that the
problem falls inside a lower complexity class than EXP-
TIME. Another option is to adapt the general tableaux cal-
culus to the specific problem of detecting feature interac-
tion in order to improve its complexity. Also, it seems in-
teresting to further investigate the nature of our refinement
operator, and to explore notions of refinement in the liter-
ature. As to interaction issues, a classification in terms of
how they should be specified seems interesting. For exam-
ple, TCSdoes not introduce new states while new network
states are needed to modelCFU. The more complex Call
Waiting feature needs both new actions and new user states.
Implementing the scheme we laid out in this paper in a theo-
rem prover for description logics is a top priority which will
certainly provide new insights into modeling the feature in-

teraction problem. Preliminary experiments with the RACE
system developed by Haarslev and Möller [11] show that
each subscriber adds an exponential number of new inter-
actions; that is, the time needed to check the consistency of
the basic call service increases exponentially with the num-
ber of subscribers — as is to be expected. Finally, there is
room for improving the knowledge bases that describe the
basic call service (possibly modified by features); we are
currently duplicating the descriptions of subscribers with-
out even trying to exploit the fact that these descriptions are
virtually identical. Given the exponential behavior noted
above, it may be worthwhile to develop more sophisticated
representations that exploit the similarities.

References

[1] Bellcore. LATA switching systems generic requirements
(LSSGR). Tech. Reference TR-TSY-000064, Bellcore, Pis-
cataway, N.J., 1992.

[2] J. Blom. Formalisation of requirements with emphasis on
feature interaction detection. In Dini et al. [9], pages 61–77.

[3] L. Bouma and H. Velthuijsen, editors.Feature Interactions
in Telecommunication Systems, Amsterdam, Oxford, Wash-
ington DC, Tokyo, 1994. IOS Press.

[4] T. Bowen, F. Dworack, C. Chow, N. Griffeth, and Y. Lin.
The feature interaction problem in telecommunication sys-
tems. In Proc. 7th Int. Conf. Software Engineering
for Telecommunication Switching Systems, pages 59–62,
Bournemouth, UK, 1989.

[5] R. Brachman and J. Schmolze. An overview of the KL-
ONE knowledge representation system.Cognitive Science,
9(2):171–216, 1985.

[6] E. Cameron, N. Griffeth, Y. Lin, M. Nilson, W. Schnure, and
H. Velthuijsen. A feature interaction benchmark for IN and
beyond. In Bouma and Velthuijsen [3], pages 1–23.

[7] J. Cameron and H. Velthuijsen. Feature interactions in
telecommunications systems.IEEE Communications Mag-
azine, 31(8):18–23, August 1993.

[8] G. De Giacomo, F. Donini, and F. Massacci. EXPTIME
tableaux forALC. In Proceedings International Workshop
on Description Logics (DL’96), pages 107–110, Cambridge,
MA, USA., November 1996.

[9] P. Dini, R. Boutaba, and L. Logrippo, editors.Feature In-
teractions in Telecommunication Systems, III, Amsterdam,
Oxford, Washington, Tokyo, 1997. IOS Press.

[10] A. Gammelgaard and J. Kristensen. Interaction detection, a
logical approach. In Bouma and Velthuijsen [3], pages 178–
196.

[11] V. Haarslev and R. M̈oller. RACE system description. In
Proceedings International Workshop on Description Logics
(DL’99), 1999.

[12] D. Keck and P. Kuehn. The feature and service interaction
problem in telecommunications systems: A survey.IEEE
Trans. Software Engineering, 24(10), 1998.

[13] K. Kimbler. Addressing the interaction problem at the en-
terprise level. In Dini et al. [9], pages 13–22.

8

