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Abstract. We provide a resolution-based proof procedure for modal
and description logics that improves on previous proposals in a number
of important ways. First, it avoids translations into large undecidable log-
ics, and works directly on modal or description logic formulas instead.
Second, by using labeled formulas it avoids the complexities of earlier
propositional resolution-based methods for modal logic. Third, it pro-
vides a method for manipulating so-called assertional information in the
description logic setting. And fourth, we believe that it combines ideas
from the method of prefixes used in tableaux and resolution in such a
way that some of the heuristics and optimizations devised in either field
are applicable.

1 Introduction

In this paper we develop a novel direct resolution method for modal logics and
description logics. Designing resolution methods that can directly (that is, with-
out having to perform translations) be applied to modal logics, received quite a
bit of attention in the late 1980s and early 1990s, cf. [12, 17, 8]. In contrast, recent
years have witnessed an increase of attention for translation-based resolution cal-
culi for modal (and modal-like) logics; here, one translates modal languages into
a large background language (typically first-order logic), and devises strategies
that guarantee termination for the fragment corresponding to the original modal
language; see [14, 16, 9].

In parallel with these developments, the description logic community has
been very active in devising tableaux-based methods. There is some work on
devising translation-based resolution methods for description logics [20, 16], but
we are not aware of any work on direct resolution-based methods for description
logics. This is surprising for at least two reasons. First, description logics are
closely related to modal logics (see [18, 10]), and, hence, tools in one field can
easily be used in the other. Secondly, and more importantly, in contrast with
modal logic, the field of description logic has a very strong focus on decision
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methods and computational tools, and, surely, resolution-based methods rather
than tableaux-based methods provide the basis for most of today’s powerful
computational logic tools, and so it seems natural to try and apply the former
in the setting of description logics.

Now, translation-based approaches to resolution for modal and description
logics suffer from the drawback that termination becomes a highly non-trivial
task as we are now working within full first-order logic. Existing direct resolution
methods for modal logics, on the other hand, lack the elegance and efficiency of
the original resolution method because they need to perform ‘cuts’ inside modal
operators to achieve completeness.

In this paper we develop a direct resolution method for modal and descrip-
tion logics that retains as much as possible of the lean ‘one-rule’ character of
traditional resolution methods. The key idea introduced here is to use labels to
decorate formulas with additional information. These labels encode accessibility
relations (or, in description logic terms, roles) as well as worlds (or, objects). The
use of labels allows us to avoid the complexities involved in previous proposals
for direct resolution methods for modal logics. The intuition is that labels make
information explicit as we need it, so that the basic resolution rule only needs
to be used ‘at the top level.’

The main achievements of this paper can be summarized as follows:

– it proposes a resolution method that does not involve skolemization beyond
the use of constants;

– it presents an elegant and direct propositional resolution calculus for classical
modal and description logic;

– description logics split information in two kinds: A-boxes which contain as-
sertional information (facts about a particular domain), and T-boxes with
terminological knowledge (definitions of derived notions). As far as we know,
our proposal is the first one to account for assertional information with a
propositional resolution approach;

– our method is hybrid and conservative in more than one sense: it allows one
to adopt ideas from different fields and amalgamate them together.

The rest of the paper is organized as follows. Because of space limitations we
will restrict our attention to the description logic ALC and its extension ALCR;
but the similarities between ALC and the basic multi-modal logic Km are well-
known [18], and they should allow anyone to transfer our results to the modal
setting without problems. In Section 2 we provide some basics on description
logic, and in Section 3 we present a resolution method for the description logic
ALCR. Then, in Section 4 we discuss various extensions of our results, covering
both modal and description logics, and in Section 5 we point out links with
related work. We conclude with a summary and further questions in Section 6.

2 Basic Issues in Description Logic

In this section we provide some background information on description logics,
as well as some basic definitions.



Description logics are a family of specialized languages for the representa-
tion and structuring of knowledge, together with efficient methods to perform
different ‘reasoning tasks.’ They are specialized languages related to the KL-
ONE system of Brachman and Schmolze [6]. Nowadays, description logics are
generally considered to be “variations” of first-order logic—either restrictions or
restrictions plus some added operators. On the one hand these variations are
motivated by the undecidability of the inference problem for first-order logic,
and on the other by a desire to preserve the structure of the knowledge being
represented. The main tools used for providing decision methods and studying
complexity-theoretic aspects in the area of description logic are based on labeled
tableaux.

Let us make things more precise now.

Definition 1 (Signature). Let L = {Ci} ∪ {Ri} ∪ {ai} be a denumerable set
of symbols. We will call Ci atomic concepts, Ri atomic roles and ai constants. L
is called a signature.

Definition 2 (Interpretation). Given a signature L = {Ci}∪{Ri}∪{ai}, an
interpretation I for L is a tuple I = 〈∆, ·I〉, where

– ∆ is a non empty set.
– ·I is a function assigning an element aIi ∈ ∆ to each constant ai; a subset

CI
i ⊆ ∆ to each atomic concept Ci; and a relation RI

i ⊆ ∆ × ∆ to each
atomic role Ri.

Definition 3 (Concepts and Roles). Given a signature L, each description
logic will define a set of defined concepts and a set of defined roles (usually
just called concepts and roles). Table 1 below defines the standard connectives
together with their usual names and semantics.

Constructor Syntax Semantics

concept name C CI

top > ∆I

bottom ⊥ ∅
conjunction C1 u C2 CI

1 ∩ CI
2

disjunction (U) C1 t C2 CI
1 ∪ CI

2

negation (C) ¬C ∆I \ CI

univ. quant. ∀R.C {d1 | ∀d2∈∆((d1, d2) ∈ RI → d2 ∈ CI)}
exist. quant. (E) ∃R.C {d1 | ∃d2∈∆((d1, d2) ∈ RI ∧ d2 ∈ CI)}
role name R RI

role conj. (R) R1 uR2 RI
1 ∩RI

2

Table 1. Common operators of description logics



The above semantic definition of ∀R.C and ∃R.C matches the semantic def-
inition of the modal operators 2 and 3; the connection was made explicit in
[18].

Historically, a number of description logics received a special name; it is
customary to define systems by postfixing the names of these original systems
with the added operators. The logic FL− [5] is defined as the description logic
allowing universal quantification, conjunction and unqualified existential quan-
tifications of the form ∃R.>. The logic AL [19] extends FL− with negation of
atomic concept names. The names in parentheses in Table 1 are the usual ones
for defining extensions. Hence, ALC is AL extended with full negation. In the
system ALCR all the other operators in Table 1 can be defined.

In description logics we are interested in performing inferences given certain
background knowledge.

Definition 4 (Knowledge Bases). A knowledge base Σ is a pair Σ = 〈T,A〉
such that

– T is the T(erminological)-Box, a (possibly empty) set of expressions of the
forms C1 v C2 or R1 v R2 (C1, C2 ∈ Concepts, R1, R2 ∈ Roles)

– A is the A(ssertional)-Box, a (possibly empty) set of expressions of the forms
a :C or (a, b) :R (C ∈ Concepts, R ∈ Roles, a, b ∈ Constants).

Definition 5 (Models). Let I be an interpretation and ϕ an expression of the
kind specified below. Then I models ϕ (notation: I |= ϕ) if

– ϕ = C1 v C2 and CI
1 ⊆ C2

I , or
– ϕ = R1 v R2 and RI

1 ⊆ R2
I , or

– ϕ = a :C and aI ∈ CI , or
– ϕ = (a, b) :R and (aI , bI) ∈ RI .

Let Σ = 〈T,A〉 be a knowledge base and I an interpretation, then I models Σ
(notation: I |= Σ) if for all ϕ ∈ T ∪A, I |= ϕ.

Definition 6 (Reasoning Tasks). The following are some of the standard
reasoning tasks considered for description logic. Let Σ be a knowledge base:

– Subsumption (Σ |= C1 v C2): check whether for all interpretations I such
that I |= Σ we have CI

1 ⊆ CI
2 .

– Instance Checking (Σ |= a : C): check whether for all interpretations I such
that I |= Σ we have aI ∈ CI .

– Concept Consistency (Σ 6|= C
.= ⊥): check whether for some interpretation

I such that I |= Σ we have CI 6= {}.
– Knowledge Base Consistency (Σ 6|= ⊥): check whether there exists I such

that I |= Σ.

Similar tasks can obviously also be defined for roles whenever role definitions
have a richer structure than we have considered here.

In this paper we will be concerned with knowledge base consistency, which, in
sufficiently strong description logics like ALC and its extensions, can decide all
the other reasoning tasks.



3 Decision Methods for Description Logics

Weak logics like FL− have very effective decision methods. For some of the
standard reasoning tasks mentioned in Definition 6 these methods are polynomial
and only need to perform a structural analysis of the concepts involved (i.e., no
“real deduction” is performed). It is interesting to note that at this (low) level
of expressive power the different reasoning tasks cannot be mapped into each
other. But, of course, once we have full boolean expressive power as in ALC,
reasoning tasks like subsumption can be translated into satisfaction queries.

However, even at the level of ALC there is another dimension which matters:
the difference between dealing with assertional information and terminological
information. More precisely, assertions increase the expressive power of descrip-
tion logics. The standard connection between description logics and Km is es-
tablished at the terminological level. To account for the assertional information
the notion of nominal or name for a world is needed. See [4] for a recent study
of this topic and Section 5 for further comments.

Below we give a resolution proof procedure for the description logic ALCR
that is able to cope with assertional information.

Definition 7 (Weak Negation Form). Define the following rewriting proce-
dure WNF on concepts:

1. ¬¬C
WNF
; C

2. ∃R.C
WNF
; ¬(∀R.¬C)

3. (C1 t · · · t Cj)
WNF
; ¬(¬C1 u · · · u ¬Cj)

4. > WNF
; ¬(C u ¬C), for C arbitrary

5. ⊥ WNF
; ¬>

For any concept C, WNF converges to a unique normal form which we denote as
WNF(C). WNF(C) is logically equivalent to C. WNF can trivially be extended
to expressions a : C1 by setting WNF(a : C1) = a : WNF(C1). If we interpret
t, ∃R.C, > and ⊥ as defined operators, then WNF is slightly more than an
expansion of definitions.

Definition 8 (Clause). Given an infinite set of labels L disjoint from Con-
stants, a clause is a set Cl such that each element of Cl is either

– a concept assertion of the form t : C where t is either a constant or a label
in L.

– a role assertion of the form (t1, t2) : R, where t1, t2 are either constants or
labels in L.

We will use the notation t : C (with possible subindices) for concept assertions
and (t1, t2) :R (with subindices) for role assertions, and t̄ :N for both of them.

A formula in a clause is a literal if it is either a role assertion, a concept
or negated concept assertion on an atomic concept, or a universal or negated
universal concept assertion.



Definition 9 (Model for a Clause and a Set of Clauses). Notice that
formulas in a clause are simply assertions over an expanded set of constants.
Let Cl be a clause, and I = 〈∆, ·I〉 a model in the expanded signature; we put
I |= Cl if I |=

∨
Cl. A set of clauses S has a model if there is model I such that

for all Cl ∈ S, I |= Cl.

Definition 10 (Set of Clauses of a Knowledge Base). Let Σ = 〈T,A〉
be a knowledge base (with non-cyclic definitions). It is known that Σ can be
transformed into an “unfolded” equivalent knowledge base Σ′ = 〈∅, A′〉 where
all concept and role assertions use only atomic concept and role symbols [11].

The set SΣ of clauses corresponding to Σ is the smallest set such that

– if a :C1 u · · · u Cn = WNF(a :C) (n ≥ 1) for a :C ∈ A′ then {a :Ci} ∈ SΣ ,
for 1 ≤ i ≤ n.

– if (a, b) :R1 u · · · uRn ∈ A′ then {(a, b) :Ri} ∈ SΣ , for 1 ≤ i ≤ n.

Notice that the “unfolded” assertions of A′ are used in this translation. Fur-
thermore, in SΣ we can identify a (possibly empty) subset of clauses RA of the
form {(a, b) : R} which we call role assertions, and for each constant a a (pos-
sibly empty) subset CAa of clauses of the form {a : C} which we call concept
assertions.

Because of the format of a knowledge base it is impossible to find in SΣ mixed
clauses containing both (in disjunction) concept and role assertions. Furthermore
there are no disjunctive concept assertions on different constants, i.e., there is
no clause Cl in SΣ such that Cl = Cl′ ∪ {a : C1} ∪ {b : C2} for a 6= b. These
properties will be relevant in the first steps of the completeness proof.

Proposition 1. Let Σ be a knowledge base and SΣ its corresponding set of
clauses. Then Σ is satisfiable iff SΣ is satisfiable.

(u)
Cl ∪ {t̄ :N1 uN2}

Cl ∪ {t̄ :N1}
Cl ∪ {t̄ :N2}

(¬u)
Cl ∪ {t :¬(C1 u C2)}

Cl ∪ {t :WNF(¬C1), t :WNF(¬C2)}

(RES)
Cl1 ∪ {t̄ :N} Cl2 ∪ {t̄ :¬N}

Cl1 ∪ Cl2

(∀) Cl1 ∪ {t1 :∀R.C} Cl2 ∪ {(t1, t2) :R}
Cl1 ∪ Cl2 ∪ {t2 :C}

(¬∀) Cl ∪ {t :¬∀R.C}
Cl ∪ {(t, n) :R}

Cl ∪ {n :WNF(¬C)}

, where n is new.

(notice that (u) also covers role conjunction and that (¬∀) is a mild kind of
skolemnization which only involves the introduction of constants).

Table 2: The Resolution Rules



Table 2 shows the resolution rules we will consider.

Definition 11 (Deduction). A deduction of a clause Cl from a set of clauses
S is a finite sequence S1, . . . , Sn of sets of clauses such that S = S1, Cl ∈ Sn

and each Si (for i > 1) is obtained from Si−1 by adding the consequent clauses
of the application of one of the resolution rules in Table 2 to clauses in Si−1. Cl
is a consequence of S if there is a deduction of Cl from S. A deduction of {}
from S is a refutation of S.

Before proving soundness, completeness and termination we present a simple
example of resolution in our system.

Example 1. Consider the following description. Ignoring some fundamental ge-
netic laws, suppose that children of tall people are blond (1). Furthermore, all
Tom’s daughters are tall (2), but he has a non-blond grandchild (3). Can we
infer that Tom has a son (4)?

(0) female
.= ¬male

(1) tall v ∀CHILD.blond
(2) t :∀CHILD.(¬female t tall)
(3) t :∃CHILD.∃CHILD.¬blond
(4) t :∃CHILD.male

As is standard, we use a new proposition letter rest-tall to complete the partial
definition in (1) and we resolve with the negation of the formula we want to
infer. After unfolding and applying WNF we obtain the following three clauses

1. {t :∀CHILD.¬(¬male u ¬((∀CHILD.blond) u rest-tall))}
2. {t :¬∀CHILD.∀CHILD.blond}
3. {t :∀CHILD.¬male}

Now we start resolving,
4. {t′ :¬∀CHILD.blond} by (¬∀) in 2.
5. {(t, t′) :CHILD} by (¬∀) in 2.
6. {t′ :¬male} by (∀) in 3.
7. {t′ :¬(¬male u ¬((∀CHILD.blond) u rest-tall)} by (∀) in 1.
8. {t′ :male, t′ : ((∀CHILD.blond) u rest-tall)} by (¬u) in 7.
9. {t′ : ((∀CHILD.blond) u rest-tall)} by (RES) in 6 and 8.
10. {t′ :∀CHILD.blond} by (u) in 9.
11. {t′ : rest-tall}. by (u) in 9.
12. {} by (RES) in 4 and 10.

Theorem 1 (Soundness). The resolution rules described in Table 2 are sound.
That is, if Σ is a knowledge base, then SΣ has a refutation only if Σ is unsat-
isfiable.

Proof. We will prove that the resolution rules we introduced preserve satisfi-
ability. That is, given a rule, if the premises are satisfiable, then so are the
conclusions. We only discuss (¬∀).

Let I be a model of the antecedent. If I is a model of Cl we are done. If I is a
model of t :¬∀R.C, then there exists d in the domain, such that (tI , d) ∈ RI and



d ∈ ¬CI . Let I ′ be identical to I except perhaps in the interpretation of n where
nI

′
= d. As n is a new label, also I ′ |= t :¬∀R.C. But now I ′ |= Cl ∪ {(t, n) :R}

and I ′ |= Cl ∪ {n :WNF(¬C)}. 2

Our next aim is to prove completeness. We follow the approach used in [12]:
given a set of clauses S we aim to define a structure TS such that

(†) if S is satisfiable, a model can be effectively constructed from TS ; and
(††) if S is unsatisfiable, a refutation can be effectively constructed from TS .

But in our case this proves to be more difficult than in [12] because we have
to deal with A-Box information, that is, with named objects or worlds (concept
assertions) and fixed constraints on relations (role assertions). We will proceed
in stages. To begin, we will obtain a first structure to account for named worlds
and their fixed relation constraints. After that we can use a simple generalization
of results in [12]. We base our construction on trees which will help in guiding
the construction of the corresponding refutation proof.

Let Σ be a knowledge base and SΣ its corresponding set of clauses. Let a
be a constant and CAa the subset of CA of concept assertions concerning the
constant a. Define the following operation to be performed on CAa.

We construct for each CAa a binary tree Ta inductively. Let the original
tree u consist of the single node CAa and repeat the following operations in an
alternating fashion.

Operation A1. Repeat the following steps as long as possible:
– choose a leaf w. Replace any clause of the form {a : ¬(C1 u C2)} by {a :

WNF(¬C1), a : WNF(¬C2)}; and any clause of the form {a : C1 u C2} by
{a :C1} and {a :C2}.

Operation A2. Repeat the following steps as long as possible:
– choose a leaf w of u and a clause Cl in w of the form Cl = {a :C1, a :C2}∪Cl′;
– add two children w1 and w2 to w, where w1 = w\{Cl} ∪ {{a : C1}} and

w2 = w\{Cl} ∪ {{a :C2} ∪ Cl′}.

The leaves of Ta give us the possibilities for “named worlds” in our model
(remember that concept prefixes act as names for worlds/objects). We can view
each leaf as a set Sj

a, representing a possible configuration for world a.

Proposition 2. Operation A (the combination of A1 and A2) terminates, and
upon termination

1. all the leaves S1
a to Sn

a of the tree are sets of unit literal clauses;
2. if all S1

a, . . . , Sn
a are refutable, then CAa is refutable;

3. if one Sj
a is satisfiable, then CAa is satisfiable.

Proof. Termination is trivial. Item 1 holds by virtue of the construction, and
item 2 is proved by induction on the depth of the tree. We need only realize that
by simple propositional resolution if the two children of a node w are refutable,
then so is w. Item 3 is also easy. Informally, Operation A “splits” disjunctions
and “carries along” conjunctions. Hence if some Sj

a has a model we have a model
satisfying all conjuncts in CAa and at least one of each disjuncts. 2



We should now consider the set RA of role assertions. Let NAMES be the
set of constants which appear in Σ. If a is in NAMES but CAa is empty in SΣ ,
define S1

a = {{a : C, a : ¬C}} for some concept C. We will construct a set of
sets of nodes N = {Ni | Ni contains exactly one leaf of each Ta}. Each Ni is a
possible set of constraints for the named worlds in a model of SΣ .

Proposition 3. If for all i,
⋃

Ni ∪RA is refutable, then so is SΣ.

Proof. If for all i,
⋃

Ni∪RA is refutable, then for some constant a we have that
for all Sj

a obtained from CAa, Sj
a ∪ RA is refutable. Hence by Proposition 2,

CAa ∪RA is refutable, and so is SΣ . 2

For all i, we will now extend each set in Ni with further constraints. For each
Sa ∈ Ni, start with a node wa labeled by Sa .

Operation B1. Equal to Operation A1.

Operation B2. Repeat the following steps as long as possible:
– choose nodes wa, wb such that {(a, b) :R} in RA, {a :∀Ri.Ci} ∈ wa, {b :Ci} 6∈

wb, where wb is without children;
– add a child to wb, w′

b = wb ∪ {{b :Ci}}.

Call N∗
i the set of all leaves obtained from the forest constructed in B.

Proposition 4. Operation B terminates, and upon termination

1. all nodes created are derivable from
⋃

Ni∪RA, and hence if a leaf is refutable
so is

⋃
Ni ∪RA;

2. if some
⋃

N∗
i is satisfiable, then SΣ is satisfiable.

Proof. To prove termination, notice that in each cycle the quantifier depth of
the formulas considered decreases. Furthermore, it is not possible to apply twice
the operation to a node named by a and b and a formula a :∀Ri.Ci.

As to item 1, each node is created by an application of the (∀) rule to members
of Ni ∪RA or clauses previously derived by such applications. To prove item 2,
let I be a model of N∗

i . Define a new model I ′ = 〈∆′, ·I′〉 as follows.

– ∆′ = ∆;
– aI

′
= aI for all constants a;

– CI′
= CI for all atomic concepts C; and

– RI′
= RI ∪ {(aI , bI) | {(a, b) :R} ∈ RA}.

Observe that I ′ differs from I only in an extended interpretation of role symbols.
By definition, I ′ |= RA. It remains to prove that I ′ |= CA. By Proposition 2,
we are done if we prove that I ′ |=

⋃
N∗

i . Now, since we only expanded the
interpretation of relations, I and I ′ can only disagree on universal concepts of
the form a :∀R.C. By induction on the quantifier depth we prove this to be false.

Assume that I and I ′ agree on all formulas of quantifier depth less than
n, and let a : ∀R.C be of quantifier depth n, for {a : ∀R.C} ∈ S∗

a. Suppose



I ′ 6|= ∀R.C. This holds iff there exists b such that (aI
′
, bI

′
) ∈ RI′

and I ′ 6|= b :C.
By the inductive hypothesis, I 6|= b : C. Now, if (aI , bI) ∈ RI we are done.
Otherwise, by definition {(a, b) :R} ∈ RA. But then {b :C} ∈ S∗

b by construction
and as I |= S∗

b , we also have I |= b :C—a contradiction. 2

As we said above, each N∗
i represents the “named core” of a model of S. The

final step is to define the non-named part of the model. The following operations
are performed to each set in each of the N∗

i obtaining in such a way a forest Fi.
Fix N∗

i , and a. We construct a tree “hanging” from the corresponding S∗
a ∈

N∗
i . The condition that each node of the tree is named by either a constant of a

new label (that is, all the formulas have the same prefix) will be preserved as an
invariant during the construction. Set the original tree u to S∗

a and repeat the
following operations C1, C2 and C3 in succession until the end-condition holds.

Operation C1. Equal to Operation A1.

Operation C2. Equal to Operation A2.

Operation C3. For each leaf w of u,
– if for some concept we have {C}, {¬C} ∈ w, do nothing;
– otherwise, since w is a set of unit clauses, we can write w = {{t : C1}, . . . ,
{t :Cm}, {t :∀Rk1 .A1}, . . . , {t :∀Rkn .An}, {t :¬∀Rl1 .P1}, . . . , {t :¬∀Rlq .Pq}}.
Form the sets wi = {{WNF(t′ : ¬Pi)}} ∪ Si, where t′ is a new label, and
Si = {{t′ :Ah} | {t :∀Ri.Ah} ∈ w}, and append each of them to w as children
marking the edges as Ri links. The nodes wi are called the projections of w.

End-condition. Operation C3 is inapplicable.

Proposition 5. Operation C cannot be applied indefinitely.

Definition 12. We call nodes to which Operation C1 or C2 has been applied
of type 1, and those to which Operation C3 has been applied of type 2. The set
of closed nodes is recursively defined as follows,

– if for some concept {t :C}, {t :¬C} are in w then w is closed.
– if w is of type 1 and all its children are closed, w is closed.
– if w is of type 2 and some of its children is closed, w is closed.

Let Fi be a forest that is obtained by applying Operations C1, C2, and C3 to
N∗

i as often as possible. Then Fi is closed if any of its roots is closed.

Lemma 1. If one of the forest Fi obtained from SΣ is non-closed, then SΣ has
a model.

Proof. Let Fi be a non-closed forest. By a simple generalization of the results in
[12, Lemma 2.7] we can obtain a model I = 〈∆, ·I〉 of all roots S∗

a in Fi, from
the trees “hanging” from them, ie., a model of

⋃
N∗

i . By Proposition 4, SΣ has
a model. 2

Lemma 1 establishes the property (†) we wanted in our structure TS . To
establish (††) we need a further auxiliary result.



Proposition 6. Let w be a node of type 2. If one of its projections wi is
refutable, then so is w.

Proof. Let w be a set of unit clauses w = {{t :C1}, . . . , {t :Cm}, {t :∀Rk1 .A1},
. . . , {t :∀Rkn .An}, {t :¬∀Rl1 .P1}, . . . , {t :¬∀Rlq .Pq}}. And let wi be its refutable
projection: wi = {{WNF(t′ :¬Pi)}} ∪ Si, where t′ is a new label, and Si = {{t′ :
Ah} | {t : ∀Ri.Ah} ∈ w}. We use resolution on w to arrive to the clauses in wi

from which the refutation can carried out: Apply (¬∀) to {t :¬∀Ri.Pi} in w to
obtain {t′ : WNF(t′ : ¬Pi)} and {(t, t′) : Ri}. Now apply (∀) to all the clauses
{t :∀Ri.Ah} in w to obtain {t′ :Ah}. 2

Lemma 2. In a forest Fi, every closed node is refutable.

Proof. For w a node in Fi, let d(w) be the longest distance from w to a leaf.
If d(w) = 0, then w is a leaf, thus for some concept C, {t : C} and {t :¬C}

are in w. Using (RES) we immediately derive {}.
For the induction step, suppose the proposition holds for all w′ such that

d(w′) < n and that d(w) = n. If w is of type 1, let w1 = w \ {Cl} ∪ {Cl1}
and w2 = w \ {Cl} ∪ {Cl2} be its children. By the inductive hypothesis there is
a refutation for w1 and w2. By propositional resolution there is a refutation of
w: repeat the refutation proof for w2 but starting with w, instead of the empty
clause we should obtain a derivation of Cl2, now use the refutation of w2.

Suppose w is of type 2. Because w is closed, one of its projections is closed.
Hence, by the inductive hypothesis it has a refutation. By Proposition 6, w itself
has a refutation. 2

Theorem 2 (Completeness). The resolution method described above is com-
plete: if Σ is a knowledge base, then SΣ is refutable whenever Σ is unsatisfiable.

Proof. It is only necessary to put together the previous pieces. If Σ does not have
a model then, by Proposition 1, there is no model for SΣ . Hence by Lemma 1 all
the forests Fi obtained from SΣ are closed, and by Lemma 2, for each N∗

i , one
of the sets S∗

aj
is refutable. By Proposition 4, for all i,

⋃
Ni ∪ RA is refutable.

By Proposition 3, SΣ is refutable. 2

Because we have shown how to effectively obtain a refutation from an incon-
sistent set of clauses we have also established termination. Notice that during
the completeness proof we have used a specific strategy in the application of the
resolution rules (for example, the (¬∀) rule is never applied twice to the same
formula).

Theorem 3 (Termination). Given a knowledge base Σ, the resolution method
(with the strategy described above) terminates with answer YES if Σ is incon-
sistent and with answer NO otherwise.

As a corollary of the results above, we obtain soundness, completeness and
termination of our resolution method for Km. Notice that this is really a weaker
result than the ones proved above, since we don’t have to bother about asser-
tional A-Box information when dealing with Km. When using our resolution
method for Km the prefix labels are really metalogical entities and not part of
the logic. We will discuss this matter further in Section 5.



4 Extensions and Variations

In addition to the basic results in Section 3, we will now discuss some extensions
and variations. Because of space constraints we provide few details.

Modal Extensions. The natural step, from a classical modal point of view, is to
consider systems above Km. We choose systems T, D, and 4 as examples. Each
system is defined as an extension of the basic system K by the addition of an
axiom scheme which characterizes certain properties of the accessibility relation:

Name Axiom scheme Accessibility Relation
T p → 3p reflexivity: ∀x.xRx
D 2p → 3p seriality: ∀x∃y.xRy
4 33p → 3p transitivity: ∀xyz.(xRy ∧ yRz → xRz)

Corresponding to each of the axioms we add a new resolution rule.

(Ti)
Cl ∪ {t :∀Ri.C}

Cl ∪ {t :C}

(Di)
Cl ∪ {t :∀Ri.C}

Cl ∪ {t :¬∀Ri.WNF(¬C)}

(4i)
Cl1 ∪ {t1 :∀Ri.C} Cl2 ∪ {(t1, t2) :Ri}

Cl1 ∪ Cl2 ∪ {t2 : ∀Ri.C}

Of course, because we are in a multi-modal formalism, these rules can be speci-
fied for any particular relation Ri. From the description logic point of view these
extensions can be understood as forcing certain properties on a specific rela-
tion. There exist description logics which permit the definition of the reflexive-
transitive closure of a relation (R∗). Seriality is related to functionality of roles,
another feature common in description logic formalisms.

Soundness for these systems is immediate:

Theorem 4. The resolution methods obtained by adding the rules (T), (D) and
(4) for a particular relation Ri, are sound with respect to the class of knowl-
edge bases where the relation Ri is always interpreted as reflexive, serial and
transitive, respectively.

For completeness and termination we should modify the construction we defined
previously (in particular (4i) needs a mechanism of cycle detection); this can be
done again using methods from [12].

Theorem 5. The resolution methods obtained by adding the rules (T), (D) and
(4) for a particular relation Ri, are complete and terminate with respect to the
class of knowledge bases where the relation Ri is always interpreted as reflexive,
serial and transitive, respectively.



DL Extensions. In the description logic community one considers a kind of
extensions of the language that is different from the ones we already introduced.
For instance, recently in [7] some attention has been given to n-ary relations in
description logics (in modal logic terms, n-dimensional modal operators). Our
approach seems to generalize without further problems to account for this.

Finally, another direction for extensions is to consider additional structure
on roles. We have limited ourselves to conjunction, but disjunction, negation,
composition, etc. can be considered. Description logics allowing these operations
are known as very expressive description logics, and their worst case complexity
is high, even though they perform well in some limited cases; their modal logic
counterparts are related to dynamic logics based on PDL. For a translation based
resolution treatment of these, see [16].

5 Related Work

The Connection with Resolution for Modal Logics. Resolution methods for modal
logics (without translation) have been investigated before [13, 17, 12, 8]. The in-
novation introduced in this paper is in the use of labels. We think this is the
key to simplify the complexities involved in previous proposals. Previously, res-
olution had to be performed “inside” modalities (in a similar way as how new
tableaux had to be started in non-prefixed tableaux systems). Labels allow us to
make information explicit and resolution can then always be performed at the
“top level.” Because we have labels available, we can also deal with properties
on relations—like reflexivity, seriality or transitivity—in a tableaux-like fashion,
and a single new rule is all that is necessary to account for them.

Comparison with the Tableaux Method. Once labels are introduced the res-
olution method is very close to the tableaux approach, but we are still doing
resolution. The rules (u), (¬u) and (¬∀), prepare formulas to be “fed” into the
resolution rules (RES) and (∀).1 And the aim is still to derive the empty clause
instead of finding a model by exhausting a branch.

But, is this method any better than tableaux? We don’t think this is the
correct question to ask. We believe that we learn different things from studying
different methods. For example, [15] studies a number of interesting optimiza-
tions of the tableaux implementation which were tested on the tableaux based
theorem prover DLP. Some of their ideas were already incorporated in our reso-
lution method (lexical normalization and early detection of clashes), and others
might perhaps be used in implementations of our method. But what is perhaps
more interesting to the description logic community, is that new optimizations,
specific to the resolution approach, can now be exploited.

Strategies for Modal Resolution. In implementations of the resolution algo-
rithm, strategies for selecting the resolving pairs are critical. Heuristics for the
case of modal logics have been investigated in [1]. Some of their results extend
to our framework, and in certain cases proofs are simpler because of our explicit
use of resolution via labels. We cannot give a full description of this issue here.
1 (∀) is added to account for the “hidden” negation in the guard of the quantifier.



Assertional Information and Hybrid Logics. There is a final topic on which
we would like to comment: the relation between nominals and assertional in-
formation. The similarity between ALC and the basic multi-modal logic Km is
well-known. But this connection concerns the terminological part of ALC. Re-
cent work on nominals and hybrid languages [4] explains how assertions enter
the picture. This paper investigates ALCNO, ALC plus counting, plus the set
formation operator in terms of individuals: O(a1, . . . , an)I = {aI1 , . . . , aIn}, em-
bedding this logic in a very expressive hybrid formalism H(∀). To account for
ALC (including assertions) a subset of a weaker system called H(@) is enough.
For this language, labeled tableaux appear as a very natural choice [3]; however,
by using our labeled calculus, resolution has become just as natural a choice.

6 Conclusions and Further Work

In this paper we have provided a propositional resolution method for deciding
knowledge base consistency for ALCR. This result is further extended to account
for reflexive, serial and transitive relations. Because of the connection between
ALC and Km, our methods can also be used as resolution methods for deciding
theoremhood of modal logics. Due to space limitations, only the basics of related
issues such as more expressive description logics, and optimized strategies where
discussed. These issues are being dealt with in the full version of the paper.

There is a number of important questions which are still open at this stage
of our research. First, up to now we have no implementation, but this issue is
high on our agenda. We believe that the ideas behind our resolution method are
simple enough so that even adapting already available provers should not prove
to be a very difficult task.

Further, a very attractive idea which matches nicely with the resolution ap-
proach is to incorporate a limited kind of subsumption on universal prefixes to
account for “on the fly” unfolding of terminological definitions. The use of such
“universal labels” should make it unnecessary to perform a complete unfolding
of the knowledge base as a pre-processing step: The leitmotiv would be “perform
expansion by definitions only when needed in deduction.” On the fly unfolding
has already been implemented in tableaux based systems like KRIS [2].

As to the complexity of resolution: we have not attempted to formally es-
tablish the complexity of our resolution method so far. We conjecture that a
PSPACE heuristic for prefixed resolution exists, even though in this first ac-
count the näıve heuristic we have introduced requires exponential space.

Finally, our completeness proof is constructive: when a refutation cannot
be found we can actually define a model for the knowledge base. Hence, our
method can also be used for model extraction. How does this method perform
in comparison with traditional model extraction from tableaux systems?
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