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Abstract

We provide a resolution-based proof procedure for modal, description and hybrid logic that improves on previous
proposals in important ways. It avoids translations into large undecidable logics, and works directly on modal,
description or hybrid logic formulasinstead. In addition, by using the hybrid machinery it avoids the complexities of
earlier propositional resolution-based methods for modal logic. It combines ideas from the method of prefixes used
in tableaux, and resolution ideas in such away that some of the heuristics and optimizations devised in either field
are applicable.

Keywords Direct resolution, modal logic, description logic, hybrid logic.

1 Introduction

Resolution, originally introduced for first-order logic (FO) in [36], is the most widely used
reasoning method for first-order logic today: most of the available automatic theorem provers
for FO are resolution based. The propositional core of the method is well-known: to check
whether a propositional formula ¢ is not satisfiable, start by turning it into clausal form To
thisend, we write ¢ in conjunctive normal form

o=/N\ V Ywm
leL meM

for < ) aliteral, and let the clause set associated with ¢ be
ClSety) = {{¢,m) |me M} |1l €L}

Next, we define CISet (¢) asthe smallest set containing ClSet ¢) and closed under a unique,
very easy to grasp rule:

Cl, U{N} € CISet(¢) ClyU{~N} € ClSet(¢)
Cl; UCl, € CISet(¢)

(RES)

If {} € CISet(¢), then ¢ is not satisfiable. The intuition behind (RES) is as follows: given
that either N or -~V is always the case in any model, they can be ‘cut away’ if the sets of
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clauses are conjoined. The aim of the whole method isto ‘ cut away everything’ and arrive at
the empty set.

The elegance of the resolution method for propositional logic relies mostly on its bare
simplicity. The method can also be straightforwardly implemented, it seems tailored for a
dumb machine able to crunch symbols quickly. The only computational cost is a search for
complementary atoms in the set of clauses.

Of course, the picturefor the first-order case is different (to start with, first-order resolution
hasto address an undecidableproblem!). And actual implementationsof first-order resolution
systemsarenot ‘dumb’ at all. In particular, during first-order resol ution we have to cope with
the rich structure of terms, and the unification algorithm (introduced by Robinson in [36],
see [33] for alinear time version) plays a fundamental role in handling this complexity, and
in using it to guide the search. The field of resolution based first-order theorem proving
has developed into a community of its own, with an impressive collection of methods and
optimizations[9, 34].

In contrast to the popularity of resolution-based methodsin first-order logic, modern modal
theorem provers are generally based on tableau methods [15]. Nowadays, resolution and
modal languages seem to be related only when indirectmethods are used. In trandlation-based
resolution calculi for modal logics, one translates modal languages into a large background
language (typically first-order logic), and devises strategies that guarantee termination for the
fragment corresponding to the original modal language [22, 29, 17, 5]. First-order resolution
proverslike BLIKSEM [12] or sPASs [38] handle modal formulasin this way, in some cases
using extremely optimized translations like those investigated in [32, 37]. This approach
has both advantages and disadvantages with respect to the tableau approach. On the one
hand we can trandate many systems into the same background language and hence explore
different, and also combined, systems without the need to modify the prover. But empirical
tests show that the price to pay is high [28, 5]. The undecidability of the full background
language shows up in degraded performance on the modal fragments, and first-order provers
can hardly emulate their tableau based competitors.

Given the simplicity of propositional resolution, it is natural to wonder why direct resolu-
tion methods for modal languages don’t figure in the picture. Designing resolution methods
that can directly (without trandation into large background languages) be applied to modal
logics, received some attention in the late 1980s and early 1990s[20, 30, 16]. Also, thefirst
(non-clausal) resolution methodsfor temporal |anguages go back to that period with the work
of Abadi and Manna[1]. Recently, new results on clausal temporal resolution have been pre-
sented (see[18]). But even though we might sometimesthink of modal languagesasa‘simple
extension of propositional logic’, direct resolution for modal languages has proved a difficult
task. Intuitively, in basic modal languages the resolution rule has to operate insideboxes and
diamondsto achieve completeness. Thisleads to more complex systems, less elegant results,
and poorer performance, ruining the one-dumb-rule spirit of resolution.

In this paper we will show how ideas from hybrid logics can be put to work with benefit
even when the subject is purely modal. In particular, aided by the notions of nominals and
labelling, we will show how to define simple direct resolution methods for modal languages.
This ‘case study’ is an example of how the additional flexibility provided by the ability to
name states can be used to improve reasoning methods. In addition, we can build over the
basic resolution system and obtain extensions for hybrid and also description languages.

The main characteristics of the resolution method we will introduce can be summarized as
follows:
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e by using labelled formulas it avoids the complexity of earlier direct resolution-based
methods for modal logic;

e it does not involve skolemization beyond the use of constants;

e it does not involve trandation into large undecidable languages, working directly on
modal, hybrid or description logic formulasinstead;

o it isflexible and conservative in more than one sense: it incorporates the method of pre-
fixes used in tableaux [23] into resolution in such a way that different heuristics and
optimizations devised in either field are applicable.

The structure of the paper isasfollows. In Section 2 we discuss, in some detail, the problems
with direct modal resolution. We do this by discussing the system presented by Enjalbert
and Farifias del Cerro in [20]. In Section 3 we introduce labelled resolutiorfor the basic
multi-modal logic K ,,,. Informally, the calculus uses the hybrid @ operator to ‘ push formulas
out of modalities’ and in thisway, feed them into asimple (RES) rule. Whereasin Section 3,
we use the hybrid machinery only at the meta-logical level, the next step naturally leads usto
internalized systems. We start in Section 4, by providing a resolution based method for de-
ciding knowledge base inconsistency (with simple, acyclic T-Boxes and hon-empty A-Boxes)
for the descriptionlogic ALCR; asdiscussed in [2], ALCR can beviewed as arestricted hy-
brid language. In Section 5 we finally move into the complete basic hybrid language, fully
internalizing our use of @ and explaining how to handle nominals. We need to incorporate
a form of eguality reasoning into the resolution calculus, and discuss paramodulation and
other techniques. In the last part of this section we show how to treat very expressive hybrid
languages, by considering the | hybrid binder. In Section 6 we conclude, with comments on
related work and some directions for further research.

2 Direct resolution for modal languages

To understand how we can use hybrid logic ideas to improve direct modal resolution, we
introduce the system presented by Enjalbert and Farifias del Cerro in [20]. Enjabert and
Farifias del Cerro use some non-standard definitions which we introduce below and to which
we adhere only in the present section; we will revert to more standard notation in the rest of
the paper.

A modal formulaisin disjunctive normal fornif it is a (possibly empty) disunction of the

form
¢=\/Liv\/0OD; v\ 04,

whereeach L; isaliteral, each D; isin digunctive normal form, and each A, isin conjunctive
normal form. A modal formulaisin conjunctive normal fornif it isaconjunction ¢ = A C;,
where each C; isin digunctive normal form. A formulain digunctive normal formis called
aclause The empty clauseisdenoted as L. Theconjunction Cy A - - - A C,, isidentified with
the set (C4,...,C),). For any modal formula an equivalent clause can be obtained, so that
attention can be restricted to clauses.

The following examples of applications of the resolution rule ‘in modal contexts are dis-
cussed in [20] to show the intricacies of modal resolution:

O(pVq) O-p ®) O(pVq) Op

(@) Oq O(—p, q)
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Both inferences are sound, and can be viewed as generalizations of the (RES) rule. While
(a) closely follows the (RES) pattern (we resolve on p inside O and cut it out to obtain Og),
(b) is more complex: we again resolve on p but simply eliminating p from O(p V ¢) to obtain
Oq isunsound. Instead, we can soundly infer <&¢ which would somehow follow the * cutting’
pattern of resolution but this is too weak; the proper inference being both —p and ¢ possible
at the same state of the model.

Moreover, an attempt to apply a similar rule to the clauses & (p V ¢) and O-p to derive
<& (—p, q) does not preserve soundness. Also, inferences with only one premiss seem to be
needed, asfor examplein
(© O(=p,pVa)

O(-p,pV g, q)’

where we resolve on p inside the sameclause to infer & (—p, ¢). Enjalbert and Farifias del
Cerro explain that, actually, thelogically equivalent but more explicit formula<(—p, pV g, q)
needsto be retained for completeness of the resolution method.

A resolution system based on these intuitions has been introduced and proved complete
for K in [20]. Specifically, define, by induction, two relations on clauses X(«, 5) — ~
and I'(a) — ~, asindicated in Figure 1, where «, 3, &, 01, d» are clauses, and ¥, & are
sets of clauses. The relations X and T will be used to define the notion of resolvent, i.e.
of a clause obtained via resolution from a previous set of clauses. The definition is rather
involved, starting from the axioms stating the cut on opposing literals and the propagation of
inconsistencies ((A1) and (A2)), to theinductive steps which specify how disjunctions should
be handled (the pair of (V) rules) and how one should deal with modal contexts ((CO<), (O0),
(01), (02), (D).

Thefull formal definition runsasfollows. Start by defining the simplification relation A ~
B (perhaps better understood as a rewriting system ~») as the least congruence containing

D
AV D.

oL
(L, 4)

4 1vD
L | AVAVD

~ ~
~ ~
~ ~
~ ~

For any formula F' thereisaunique F'’ suchthat F' ~ F’ and F"' cannot be simplified further.
Thisformula F’ is called the normal form of F. C isaresolveniof A and B (respectively A)

Axioms

(AD) 2(p,—p) —» L
(A2 S(L,0) - L

¥-Rules I'-Rules
(e, B) = K S(a,B) > K
M Savagvem snvave | OV 0@ ) - odnd)
(e, 8) > & o) — B
O S Ea o6, w) 5 oG mw) | P o) 5 o6,a9)
(o) S X(a,B) = K W) I'(a) > B
(Oa,08) — Ok PaVk)—BVE
SELOET,
(Oa) — 08

FIGURE 1. Enjabert and Farifias del Cerro resolution rules.
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iff thereis some C' such that (A, B) — C’ (respectively, I'(A) — C') and C' isthe normal
form of C'. Wewrite ¥(A, B) = C (respectively, ['(A) = C) if C isaresolvent of A and
B (respectively, of A).

Givenaset of clauses S, let CISet (S) be the smallest set containing S that is closed under
resolvents of elements in CISet(S). D is said to be a resolution consequenc# a set of
clauses S (notation S - D) iff D € CISet(S).

THEOREM 2.1 ([20])
For S U {D} afinite set of clauses, S + D iff Ex A S — D.

So much for the ‘one dumb rule spirit’ of resolution. Let us go through an example to better
understand how this resolution method works. Asis standard, we use the resolution system
to check for unsatisfiability. If starting from a clause ¢ we are able to derive the empty clause
1, then ¢ isunsatisfiable.

EXAMPLE 2.2

Consider the formula G(p A (mp VvV Or V q)) A O-g A OO=r. In the resolution proof be-
low we underline the literals on which resolution takes place, and simplify some steps for
succinctness.

1. (O(p,~pVOryVgq),d-q,00-r) by (A1), (V) and (1)
2. (O(p,~pV OrVq,0rV q), O-g, O0-r) by (A1), (V) and (O<)
3. (O(p,~pV OrVq,0r V q,0r), O-g, O0-r) by (A1) and (O<) twice
4. (O(p,~pV OrVq,Or Vg 0Or,O(=r, L)), Oag, OO-r) by (A2) and (¢1)

5 1.

Even following this ssmple proof is complex. For example, line 1 should be understood as
follows. Given that (p, —p) = L by (A1), we can infer by (V) that (p,—pVv Or Vgq) =
(p,—~pV OrVgq,OrVq) (thisalready involves some simplifications). An application of (<1)
alows usto perform this inference under <.

As we have just seen, the direct resolution method for modal logics presented in [20] (and,
similarly, thosein [21, 30, 16]) performsresolution ‘inside’ modalities, leading to aprolifera
tion of deductive rules. In the next sections we develop a direct resolution method for modal,
description and hybrid logic that retains as much of the lean one-rule character of traditional
resolution methods as possible. The key idea, from a basic modal logic perspective, isto use
|abels to decorate formulas with additional information. Labelsallow usto make information
explicit and resolution can then always be performed at the ‘top level’. From a hybrid logic
perspective, we are just taking advantage of the new expressive power that nominals and @
provide.

3 Labdled modal resolution

We now introduce a direct resolution proof procedure for the basic multi-modal logic K,,,.
We assume a fixed modal similarity type S = (REL,PROP) of accessibility relation and
propositional symbols, together with a basic hybrid logic similarity type S’ = (REL, PROP,
NOM), where NOM isacountably infinite set of nominals (we use ATOM to denote PROP U
NOM).

DEFINITION 3.1 (Normal form)
We define the following rewriting procedure nf on modal formulas:
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-—¢ S 9,
(R)¢ «”:» =([R]=9),
(p1 Vo) > (=g A-go).

For any formula ¢, the rewriting of subformulas of ¢ by means of > convergesto a unique
normal form nf¢) whichislogicaly equivalent to ¢. If we take v and (R} as defined opera-
tors, then nf(¢) is dightly more than an expansion of definitions (see [27]).

DEFINITION 3.2 (Clauses)

A clauseis a finite set C'l such that each element of C1 is a formula of the form ¢ : ¢ or
(t1,t2) : R for ¢,t1,t € NOM, R € REL and ¢ abasic multi-moda formula. Let ¢ be a
basic multi-modal formula. The set Sy of clauses correspondingto ¢ issimply {{a : nf(¢)}},
for a an arbitrary label in NOM.

Formulasin clauses can be seen aslabelled formulag23, 25]; ¢; : ¢ specifiesthat the formula
¢ holdsat thelabel ¢, and (¢, ¢2): R requiresthe labelst; and ¢, to be related by the acces-
sibility relation R. Equivalently, a set of clauses can be seen as a set of hybrid formulas, with
t: ¢ standing for @;¢ and (¢1, t2) : R standing for @, (R)t-, and we can use hybrid modelsto
define satisfiability for clauses. We recall the definition of hybrid model and satisfaction (see
[2] for details).

DEFINITION 3.3 (Semantics)

A (hybrid) model M is atriple M = (M, {R;}, V) such that M isanon-empty set, {R;}
isaset of binary relationson M, and V : PROP U NOM — Pow(M) is such that for all
nominalsi € NOM, V(i) isasingleton subset of M. Let M = (M,{R;}, V) be amodel
and m € M. Therelevant conditionsfor the satisfiability relationare defined as follows:

M,mlka iff meV(a),a e ATOM
M,m - [R]¢ iff  Vm/.(if R(m,m’) then M, m’ IF ¢)
M,mlF @ iff M,m' I+ ¢, whereV (i) = {m'},i € NOM.

If M is understood from the context, we simply write m I+ ¢ for M, m I ¢. We write
M- giffforal m e M, M,m I+ ¢.

DEFINITION 3.4 (Satisfiahility of clauses)
Let Cl beaclause, and let M be ahybrid model. Wewrite M = Clif M |=\/ Cl. A set of
clauses S is satisfiableif thereis amodel M such that for al Cl € S, M |= Cl.

Let ¢ be abasic multi-modal formulaand S its corresponding set of clauses. Proving that
¢ is satisfiable iff Sy is satisfiable is straightforward. For the |eft to right implication, given
M = (W, {R;},V)and m € M suchthat M, m I ¢, just extend V" so that V' (a) = {m}
and give any interpretation to others elements in NOM. For the other direction, drop the
interpretation of elementsin NOM.

We have now set up the machinery to provide the appropriate set of resolutionrules. Asa
guide, it is useful to recall that modal formulas can be seen as first-order formulas by means
of the standard translation ST'.

DEFINITION 3.5 (Standard translation into FO)
The mutually recursive functions ST, and ST',, map basic modal formulasinto FO:

ST, (pj) = Pj(z), p; € PROP STy(pj) = Pj(y), pj € PROP
ST, (ﬂfb)—ﬂST( ) ST, (ﬁ(b)—ﬂST( )
5T(¢A¢) T (¢) A ST () 5T(¢/\¢) Ty(9) A STy(¥)
T.([R]¢) =Vy.(R(z,y) = ST,(¢)) | STy([R]¢) = ( (y,x) = ST (9)).
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Figure 2 provides a set of rulestransforming sets of clauses into sets of clauses.

ClU{t:¢1 A ¢} ClU {t:=(p1 A ¢2)}

N —Giotay . TN Gt een), tnien)]
CLU {t: ¢y}
(RES) chu {t:é)l}l UCCI?IQU {t:—o}
Cl U {t1:[R]$} Cls U{(t1,t2): R}
(iR _CLIAEDIRIOL e isnew.

ClU{(t,n):R}
ClLU {n:nf(=¢)}

FIGURE 2. Labelled resolution rules.

If you read the ruleswith ST in the back of your mind, the meaning of ([R]) and (—[R]) will
be immediately clear. ([R]) is needed to account for the ‘hidden’ negation arising from the
implication in the translation of [R], and in that sense it is indeed a standard resolution rule
which cuts away the two complementary binary literals —R(t1,z) and R(¢1,t2) and unifies
z 10 t2. On the other hand, (—[R]) can be seen as a mild kind of skolemization which only
involvestheintroduction of constants. From this perspective, we can view therules (A), (=A)
and (—[R]) as preparing the input formula and feeding it into the resolution rules (RES) and
([R]). In other words, the system interleaves the reduction towards a standard clausal form
with the resolution steps asin [24]. An immediate advantage of this method is that resolution
can be performed not only on literals, but also on complex formulas.

Before moving on, let’s redo Example 2.2 in the new system. As before, we underline the
part of the formulawhere arule applies.

EXAMPLE 3.6

Consider again the formulag = G(p A (=p vV Or V q)) A O=g A OO=r, which in the new
notation is written as (R)(p A (—p V [R]r V q)) A [R]—q A [R](R)—r. S, isthe singleton
{{i:[R]=(p A =(p A—[R]r A—q)) A [R]-q A [R]-[R]—r}}. Ineachline we only show the
newly generated clauses and those which will still be required in the successive steps.

1 Ai:=[R]=(p A =(p A =[R]r A —q)) A[R]~qA[R]=[R]-r}, by ((A) twice)
2.{i:=[Rl=(p A ~(p A =[R]r A =q))}, {i: [R]~q}, {i:[R]=[R]r}, by (=[R])
3.A{R(i,5)}, {7: (pA=(p A =[R]r A=)}, {i:[R] =g}, {i:[R]-[R]r}, by (A)
4.{R(i,j)},{j:p}, {j:2(pA-[RlrA=q)}, {i:[R]~q}, {i:[R]-[R]r}, by (=)
5.{R(i,j)},{i:p}.{s:2p, 5 :[Rlr, j:q}, {i: [R]~q}, {i:[R]-[R]r}, by (RES)
6.{R(i,j)},{:[R]r,j:q}, {i:[R]~a}, {i:[R]-[R]r}, by ([R])
7.{5:[Rlr, j:q},{i:~a}, {5:~[R]r}, by (RES)
8.{j:[R]r}, {j:=[R]r}, by (RES)
9. {}.

DEFINITION 3.7 (Deduction)

A deductionof a clause CI from a set of clauses S is afinite sequence Sy, ... , S,, of setsof

clausessuchthat S = Sy, Cl € S,, and each S; (for ¢ > 1) isobtained from S;_; by adding
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the consequent clauses of the application of one of the resolution rulesin Figure 2 to clauses
in S;_1. Clisaconsequencef S if thereis adeduction of Cl from S. A deduction of {}
from S isarefutationof S, and we say that S isrefutable

The set ClISet (S), defined as the smallest set containing S and all its consequences, need not
be finite because the rule (—[R]) can introduce infinitely many clauses which only differ on
the label. By restricting (—[R]) to be‘fired only once’ aswe will describein the next section,
we can ensure finiteness of CISet (S), and hence termination of the search for consequences.

It is straightforward to prove that the resolution rules in Figure 2 preserve satisfiability.
That is, given arule, if the premisses are satisfiable, then so are the conclusions. In Section 4,
we will extend the system to deal with knowledge bases in the description language ALCR,
and prove there, in detail, soundness, completeness and termination.

3.1 Modal extensions

From a traditional modal logic point of view we often want to consider systems above K ,,,.
Here we choose systems T, D, and 4 as examples. Each system is axiomatically defined as
an extension of the basic system K by the addition of an axiom scheme which characterizes
certain property of the accessibility relation.

Name | Axiom Scheme | Accessibility Relation
T p — (R)p reflexivity: Vz.R(z, x)

D [Rlp — (R)p seridity:  Vz3y.R(z,y)
4 (R)(R)p — (R)p|transitivity: Vazyz.(R(z,y) A R(y,z) = R(z,2))
Corresponding to each of the axioms we add a new resolution rule:
ClU{t:|R
M {t:(F}9)
CluU{t:¢}
ClU{t:[R]o}

(D)

ClU {t:—[R]nf(—¢)}
(@) Cly U{t1:[R]¢} ClyU{(t1,t2): R}
Cll U ClQ U {tg . [R](ﬁ} '
Soundness for these systems is immediate. For completeness and termination we should

modify the constructionsin Section 4 (in particular (4) needsamechanism of cycle detection);
this can be done using methods from [20].

4 Description logic

We will now discuss resolution based decision methodsfor description logics (DLs), afamily
of specialized languages for the representation and structuring of knowledge, related to the
KL-ONE system of Brachman and Schmolze [13]. The connections between DLsand hybrid
logics are strong (see [2, 3]), as we will clearly see in what follows. We spell out the details
of a labelled resolution system to decide inconsistency of knowledge bases with so-called
simple, acyclic T-Boxes and non-empty A-Boxes in the description logic ALCR.

We assume fixed a description logic signature S = (CON, ROL, IND) together with an
additional countable set of labels LAB. CON is the set of atomic concepts, ROL the set of
atomicrolesand IND the set of individuals.
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DEFINITION 4.1 (Interpretation)

An interpretationZ for S isatuple Z = (AZ,-), where AZ is anon-empty set, and -Z is
afunction assigning an element a? € A to eachindividual a;; asubset CZ C A7 to each
atomic concept C;; and arelation RZ C A% x AZ to each atomic role R;.

In other words, a description logic interpretation is just amodel for a particular kind of first-
order signature, where only unary and binary predicate symbols are alowed and the set of
function symbolsis empty.

The atomic symbols in a description logic signature can be combined by means of con-
ceptand role constructorsto form complex concept and role expressions. Each description
logic is characterized by the set of concept and roles constructors it allows. Figure 3 de-
fines the roles and concepts constructors for the description logic ALCR, together with their
semantics.

Constructor Syntax | Semantics
concept name C ct

top T AT
negation -C AT\ C?
conjunction c,ney | ¢Etnc?
digunction C,ucC, | ctuct

universal quant. VR.C | {di|Vd2€ AT (RY(dy,ds) — do € CT)}
existential quant. dR.C {dl | dd» EAI.(RI(dl, d2) ANdy € CI)}
role name R RT

roleconjunction | By MRy | RF NR%

FIGURE 3. Operatorsof ALCR.

In description logics we are interested in performing inferences given certain background
knowledge.

DEFINITION 4.2 (Knowledge bases and inference)

A knowledge bases apair ¥ = (T, A) such that T is the T(erminological)-Box, a finite

(possibly empty) set of terminological axiom®f theform C; C Cy or R; C Ro, and A is

the A(ssertional)-Box, afinite (possibly empty) set of assertionof theforma:C or (a,b): R,

where C, C, Cs are complex concepts, R, Ry, R arecomplex roles, and a, b areindividuals.
For 7 an interpretation and ¢ aterminological axiom or an assertion, we define the relation

7 = ¢ asfollows

ITEC CCy iff OF COyr
TER CRy, iff RICRY
Tka:C iff of €C*
7 = (a,b):R iff (aZ,b?) € RZ.
Let ¥ = (T, A) be aknowledge base and Z an interpretation, then Z = X if for al ¢ €

TUA,T = ¢. Wesay that X is satisfiableif there existsamodel Z suchthat 7 = %; it is
unsatisfiableotherwise.

Let Y = (T, A) be aknowledge base (with so-called simple, non-cyclic definitions, see[31])
in ALCR. ¥ can be transformed into an ‘unfolded’ equivalent knowledgebase &' = (), A")



726 Resolution in Modal, Description and Hybrid L ogic

where all concept and role assertions are of the form ¢:[7], V; [19]. Hence, from now on we
will only consider knowledge bases with empty T-Boxes.

The definition of the normal form nf for DL assertionsis a notational variation of Defini-
tion 3.1, obtained by exchanging Vv by LI, A by M, etc.; and setting nf( : N) = ¢ : nf(V).
Again, for any assertion¢: NV, nf always convergesto a unique normal form.

DEFINITION 4.3 (Clauses)

A clauseis a set C1 such that each element of C1 is either a concept assertion of the form
t:C or arole assertion of theform (t1,t2) : R, wheret,t1,¢2 € IND U LAB. A formulaina
clauseisaliteral if it is either arole assertion, a concept or negated concept assertion on an
atomic concept, or a universal or negated universal concept assertion. The set Sy, of clauses
corresponding to aknowledge base & = (), A} isthe smallest set such that

eifa:[],C; =nf(a:C) fora:C € Athen{a:C;} € Sy,
oif (a,b):[], R; € Athen {(a,b):R;} € Sx.

Formulasin a clause are simply assertions over an expanded set of individuals. Let Cl bea
clause, and 7 = (A, -7) amodel over the expanded signature (CON, ROL, IND U LAB); we
putZ |= Clif Z |=\/ Cl. A set of clauses S has a modeif thereis model Z such that for all
Cl e S,T |=Cl. Clearly, X is satisfiable iff Sy, hasamodel.

ClU{f:NlﬂNQ} ClU{t:“(Cl HCQ)}

[l = -l
M ClU{t:N,} G &g {t:nf(=C1), t:nf(=C5)}

ClU{f: Ny}

Cl1 U {LTN} ClQ U {f:ﬁN}
(RES) Cly UCly
(V) Cll U {tl VRC} ClQ U {(tl, t2) R}
Cll U Clz U {tZ:C}
(=V) CLUft:~vR.C} , wheren is new.

Clu{(t,n):R}
ClU {n:nf(=C)}

FIGURE 4. Labelled resolution rulesfor ALCR.

Figure 4 shows the labelled resolution rules recast for the language ALCR. The only
differenceswith the rulesin Figure 2 are that (M) handles both concept and role conjunction,
and that labels are now part of the language as the calculus directly manipulates concept and
role assertions. Before proving soundness, completeness and termination we present asimple
example of resolution in our system.

EXAMPLE 4.4

Consider the following description. Suppose that children of tall people are blond (1). Fur-
thermore, all Tom’s daughters are tall (2), but he has a non-blond grandchild (3). Can we
infer that Tom has a son (4)?
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(0) FEMALE = —MALE

(1) TALL C VChild.BLOND

(2) tom:VYChild.(~FEMALE LI TALL)
(3) tom:3Child.IChild.~BLOND

(4) tom:3dChild.MALE.

As is standard in DL, we use a new proposition letter REST-TALL to complete the partial
definitionin (1) to (1') TALL = VYChild.BLOND M REST-TALL (any partial definition A C B
can be completedo an eguivalent full definition A = B M C for C anew concept, see [31])
and we resolve with the negation of the formula we want to infer (as a knowledge base %
entails ¢ iff ¥ U {¢} is inconsistent). After unfolding definitions (0) and (1) in (2) and
applying nf we obtain the following three clauses:

1. {tom:VChild.~(=MALE M —((VChild.BLOND) M REST-TALL))}
2. {tom:-VChild.¥Child BLOND}
3. {tom:VChild.~MALE}.

Now we start resolving:

4. {s:-VChild.BLOND} by (=) in 2
5. {(tom,s):Child} (ﬂ‘v’) in2
6. {s:—MALE} by (V)in3
7. {s:=(~MALE M —((YChild.BLOND) M REST-TALL)} by (V) in1
8. {s:MALE, s:((VChild.BLOND) M REST-TALL)} by (—|I_I) in7
9. {s:((¥Child.BLOND) MREST-TALL)} by (RES) in6 and 8
10. {s:VChild BLOND} by (M) in9
11. {s:REST-TALL} by (M) in9
12.{} by (RES) in 4 and 10.

Thus, indeed, Tom has a son.

4.1 Soundness, completeness and termination

We will now prove that the resolution calculus for deciding knowledge base inconsistency
in ALCR is sound and complete, and that a procedure for ensuring termination exists. The
proofscan easily be adapted to prove compl eteness and termination for the resol ution calculus
presented in Section 3.

Given a set of clauses Sy, corresponding to a knowledge base X, the notion of arefutation
for Sy, isasin Definition 3.7.

THEOREM 4.5 (Soundness)
The rules described in Figure 4 are sound. That is, if ¥ is a knowledge base, then Sy, has a
refutation only if ¥ isinconsistent.

ProOF. We prove that labelled resolution rules preserve satisfiability. We only discuss (—V).
Let 7 be a model of the premiss. If 7 is a model of Cl we are done. If 7 is a model of
t:=VR.C, then there exists d in the domain, such that (t*,d) € R* andd € =C*. Let 7’ be
like Z except perhapsin theinterpretation of n, wheren” = d. Asn isnew, 7' |= t:-VR.C.
Butnow Z' |= ClU {(t,n): R} and ' = C1U {n:nf(=C)}. ||

Next, we prove completeness. We follow the approach used in [20]: given aset of clauses S
we aim to define a structure T's such that
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(1) if S issatisfiable, amodel can be effectively constructed from T's; and
(t1) if S isunsatisfiable, arefutation can be effectively constructed from 7's.

In our case we aso have to deal with A-Box information, that is, with named objects (con-
cept assertions) and fixed constraints on rel ations (role assertions). We will proceedin stages.
To begin, we will obtain afirst structure to account for named states and their fixed relation
congtraints. After that we can use asimple generalization of resultsin [20]. We base our con-
struction on trees which will help in guiding the construction of the corresponding refutation
proof.

Let 3 be aknowledge base and Sy, its corresponding set of clauses. In Sy, we can identify
a (possibly empty) subset of clauses RA of the form {(a,b) : R}, and for each label a a
(possibly empty) subset CA,, of clauses of the form {a : C'}. Notice that Ss; has no mixed
clauses containing both concept and role assertions (in a single digunction). Also, there are
no digjunctive concept assertions on different labels, i.e. thereisno clause C'l in Sy, such that
Cl=Cl' U{a:Ci}U{b:Cs} fora # b. Wewill take advantage of these propertiesin the
first steps of the compl eteness proof.

For each label a appearing in X, construct inductively a binary tree T, whose nodes will
be sets of clauses. Let the original tree T, consist of the single node CA, and repesat in
aternation the following operations:

Operation Al. Repeat the following steps as long as possible:

o choose aleaf w. Replace in w any clause of the form {a : =(C1 M C2)} by {a: nf(=C1), a : nf(=C2)};
and any clause of the form {a:C1 M C2} by {a:C1} and {a:C2}.

Operation A2. Repest the following steps as long as possible:

e choose aleaf w and aclause Clinw of theform Cl = {a:C1,a:C2} U Cl';

e add two children w; and w2 to w, where w1 = w\{Cl} U {{a: C1}} and w2 = w\{Cl} U {{a:
CarucCl'}.

Theleaves of T}, give usthe possibilities for ‘named states’ in our model. We can view each
leaf asaset S7, representing a possible configuration for state a.

PROPOSITION 4.6
Operation A (the combination of A1 and A2) terminates, and upon termination

1. al theleaves S., ..., S™ of the tree are singleton sets of literal clauses,
2.ifal Si,... S" arerefutable then CA, isrefutable,
3.if one SJ is satisfiable, then C4, is satisfiable.

PROOF. Termination is trivial. Item 1 holds by virtue of the construction, and 2 is proved
by induction on the depth of the tree. We need only realize that by simple propositional
resolution, if the two children of a node w are refutable, then so isw. Item 3 is aso easy.
Informally, Operation A ‘splits' disunctionsand ‘ carriesalong’ conjunctions. Hence if some
S has a model we have a model satisfying all conjunctsin CA, and at least one of eacn
disunct.

We now consider the set RA of role assertions. Let NAMES be the set of labels which appear
in . If aisin NAMES but CA, isempty in Sy, define S} = {{a:C,a:-C}} for some
concept C'. We define the set of sets of nodes ' = {N; | N; contains exactly one leaf of
each T, }; each N; isapossible set of constraints for the named worldsin amodel of Sy..

For all 4, we will now extend each set in IV; with further constraints. For each S, € N,
start with anode w,, labelled by S, .
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Operation B1. Equal to Operation A1

Operation B2. Repeat the following steps as long as possible:

e choose nodes wq, wy, such that {(a,b) : R} in RA, {a:VR;.C;} € wa, {b:C;} & wy, where wy is
without children;

e add achild to wy, wj, = wp U {{b:C;}}.

Let NV bethe set of all Ieaves obtained from the forest constructed by applying Operation B
(the combination of B1 and B2).

PROPOSITION 4.7
Operation B terminates, and upon termination

1. all nodes created are derivable from | J N; U RA, and hence if aleaf is refutable so is
U V; U RA, and hence Sy, too;

2. if some|J N/ issatisfiable, then Sy is satisfiable.

PROOF. To prove termination, notice that in each cycle the quantifier depth of the formulas
considered decreases. Furthermore, it is not possible to apply twice the operation to nodes
named by a and b and aformulaa:VR;.C;.

Asto item 1, each node is created by an application of the (V) rule to members of NV; U
RA or clauses previously derived by such applications. Hence either the original | N} is
refutable and we can build a refutation for Sy, as indicated in Proposition 4.6, or {} can be
derived from [ J N; by simple application of (V).

To proveitem 2, let Z be amodel of N7. DefineZ’ = (A',-T) as A’ = A, a” = o for
al labelsa, C*' = C7 for al atomic concepts C, and RT = RZ U {(a%,b%) | {(a,D): R} €
RA}Y.

Observe that 7' differs from Z only in an extended interpretation of role symbols. By
definition, Z' = RA. It remainsto provethat 7' = C'A. By Proposition 4.6, we are done if
we provethat Z' = (J N;*. Since we only expanded the interpretation of relations, Z and Z'
can only disagree on universal concepts of the form a:VR.C. By induction on the quantifier
depth we provethisto be false.

Assumethat 7 and 7' agree on all formulas of quantifier depth lessthann, andleta:VR.C
be of quantifier depth n, for {a: VR.C} € S¥*. Suppose Z' i~ VR.C. This holds iff there
exists b such that (a”',b”') € RT and I’ £ b: C. By theinductive hypothesis, Z |~ b: C.
Now, if (aZ,b?) € R we are done. Otherwise, by definition {(a,b): R} € RA. But then
{b:C} € S; by congtructionand as 7 |= Si, we aso have 7 |= b:C' — acontradiction. [l

Each N} represents the ‘named core’ of a model of S. The final step is to define the non-
named part of the model. The following operations are performed to each set in each of the
N7, obtaining in such away aforest F;.

Fix N}, and a. We construct a tree *hanging’ from the corresponding S; € N;. The
condition that each node of the tree is named by either an individual or a new label (that is,
al the formulas in a node have the same label) will be preserved as an invariant during the
congtruction. Set the original tree w to S’ and repeat the following operations C1, C2 and C3
in succession until the end-condition holds.
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Operation C1. Equal to Operation Al
Operation C2. Equal to Operation A2

Operation C3. For each leaf w of u,

o if for some concept we have {C'}, {—~C} € w, do nothing;

e otherwise, since w is a set of unit clauses, wecanwritew = {{t:C1}, ..., {t:Cm}, {t : VR, . A1},
e, {t:VRkn .An}, {t:ﬁVRll .Pl}, . {t:ﬁVqu Pq}} Form the sets w; = {{nf(t’ ﬁPl)}} us;,
where ' isanew label, and S; = {{t' : Ax} | {t :VR;. A} € w}, and append each of them to w as
children marking the edges as R; links. The nodes w; are called the projectionsof w.

End-condition. Operation C3 isinapplicable.

PROPOSITION 4.8
Operation C (the combination of C1, C2 and C3) cannot be applied indefinitely.

DEFINITION 4.9

We call nodes to which Operation C1 or C2 has been applied of type 1, and those to which
Operation C3 has been applied of type 2. The set of closed nodess recursively defined as
follows,

o if for some concept {t:C'}, {t:~C} arein w then w is closed,
o if wisof typelandal itschildren are closed, w is closed,
o if wisof type 2 and some of its childrenis closed, w is closed.

Let F; be aforest that is obtained by applying Operations C1, C2, and C3 to IV} as often as
possible. Then F; is closedif any of itsrootsis closed.

LEMMA 4.10
If one of the forests F; is not closed, then Sy, has a model.

PROOF. Let F; be a non-closed forest. By a simple generalization of the results in [20,
Lemma2.7] wecan obtainamodel Z = (A, -Z) of al roots S* in F;, from the trees ' hanging’
from them, i.e. amodel of | J N;. By Proposition 4.7, Ss. hasamodel.

Lemma4.10 establishes the property () wewanted in our structure T's. To establish ({1) we
need a further auxiliary result.

PROPOSITION 4.11
Let w be anode of type 2. If one of its projectionsw; isrefutable, then sois w.

PROOF. Let w beaset of unit clausesw = {{t: C1}, ..., {t : O}, {t :VRg, . A1}, ...,
{t:VRy, A}, {t:=VR; .Pi}, ..., {t:=VR, .P,}}. And let w; beits refutable projection:
w; = {{nf(t':=P;)}}US;, wheret' isanew label,and S; = {{t': An} | {t:VR;. Ar} € w}.
We use resolution on w to arrive at the clauses in w; from which the refutation can be carried
out: apply (=V) to {¢t:—VR;.P;} inw toobtain {¢':nf(¢t': = P;)} and {(¢,t'): R; }. Now apply
(V) to al the clauses {t:VR;. Ay} inw to obtain {¢': A,}. [ |
LEMMA 4.12

Inaforest F;, every closed nodeis refutable.

PrRoOOF. For w anodein F;, let d(w) bethe largest distance from w to alesf.
If d(w) = 0, then w is a leaf, thus for some concept C, {t: C} and {t : ~C} are in w.
Using (RES) weimmediately derive {}.



Resolution in Modal, Description and Hybrid Logic 731

For the induction step, suppose the lemma holds for all w’ such that d(w') < n and that
d(w) =n. fwisof typel, letw; = w \ {CI}U{Cli} andw, = w \ {Cl} U {Cl,} beits
children. By the inductive hypothesis there is a refutation for w; and w». By propositional
resolution there is a refutation of w: repeat the refutation proof for wy but starting with w,
instead of the empty clause we should obtain a derivation of C'l,; now use the refutation of
ws. Suppose w is of type 2. Because w is closed, one of its projectionsis closed. Hence, by
the inductive hypothesisit has a refutation. By Proposition 4.11, w itself has arefutation. Wl

THEOREM 4.13 (Compl eteness)
The resolution method described above is complete: if ¥ is a knowledge base, then Sy, is
refutable whenever ¥ isinconsistent.

ProoF. We only need to put together the previous pieces. If 3 does not have a model then
neither does Sy;. By Lemma 4.10 all the forests F; obtained from Sy, are closed, and by
Lemma 4.12, for each N, one of the sets S; ~ is refutable. By Proposition 4.7, for all 4,

U N: U RA isrefutable, and hence Sy, is refutable. ||

Because we have shown how to effectivelyobtain a refutation from an unsatisfiable set of
clauses we have also established termination. Notice that during the completeness proof we
have used a specific strategin the application of the resolution rules (crucially, the (V) rule
is never applied twice to the same formula). By means of this strategy, we can guarantee
termination of labelled modal resolution when verifying the consistency of any knowledge
basein ALCR.

THEOREM 4.14 (Termination)
Labelled resolution can effectively decide consistency of simple, acyclic knowledge basesin
ALCR.

We have now spelled out in detail our resolution method for the basic description logic
ALCR, and we could naturally consider extensions. For instance, in [14] some attention
has been given to n-ary roles (in modal logic terms, n-ary modal operators). Our approach
generalizesto this case without further problems.

An attractive idea which matches nicely with the resolution approach is to incorporate a
limited kind of unification on ‘universal labels of the form = : C, to account for on the
fly unfolding of definitions and more general T-Boxes. The use of such universa labels
would make it unnecessary to perform a complete unfolding of the knowledge base as a pre-
processing step. The leitmotif would be ‘to do expansion by definitions only when needed
in deduction’. On the fly unfolding has already been implemented in tableaux based systems
like KRIS[7].

5 Hybrid logic

It isthe turn of hybrid languages now. Of course, we have aready been dealing with hybrid
languages throughout the previous section: formulasin the A-Box are actually a restricted
form of @ formulas. To handle the full basic hybrid language (@), we need to provide
rules for nominals and @. As before, we can get a hint of what is needed from the standard
trangdlation of thislanguageinto FO. The new clauses of ST are asfollows:

ST, (i) (z=1),i € NOM ST, (i) (y =1),i € NOM
ST, (Q;0) Ja.(z =i A STL(¢)) | ST,(@Q;) Jy.(y =i A STy (0)).
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Nominalsand @ introducealimited form of equational reasoning on labels. Indeed, aformula
like @;j istruein amodel iff i and j label the same state. Moreover, in the tableau treatment
of hybrid languages, nominals and the @ operator have been considered as the mechanisms
needed to formulate modal theories of state equality and state succession [10].

In the resolution tradition, Robinson and Wos [35] haveintroduced arule called paramod-
ulation to improve previous accounts of equational reasoning in FO:

Chu{t=s}  ClU{6(u)}
(ClLuCl, U{p(u/s)}o

where o isthe most general unifier of ¢t and u. In descriptions of paramodulation calculi one
usually identifies the symmetric equations s = ¢t and ¢ = s, includes (positive) factoring, and
an inference rule that encodes resolution with the reflexivity axiom:

ClU{t # s}
Clo '

where ¢ is the most general unifier of s and t. For a complete discussion of equational
reasoning in first-order logics, werefer to [8]. We can introduce paramodulationin our direct
resolution calculus for the basic hybrid language as follows:

(PARAM)

(REF)

Cly U {Qs} Cla U{g(t)}

(PARAM) CliUClL, U{o(t/s)}
ClU {@,s) Cru{a, -t}
M) e REFR) —F—

We need only one further rule to handle formulas of the form @,@; ¢ (see (@) below). Fig-
ure 5 shows the compl ete set.

Two remarks on the rules above. Given that @ is self dual, we can define nf(—=Q;¢) =
@;nf(—¢); andfor any formula¢ in 1 (@), ¢ issatisfiableiff @;¢ is satisfiable, for anominal
¢t not appearing in ¢. Hence, we can define the set S, of clauses corresponding to ¢ to be
{{@;nf(¢)}}, where ¢ does not appear in ¢.

The soundness of the calculus is straightforward and the proof of Theorem 4.13 can be
adapted in away similar to the standard first-order case, to prove that paramodulation can
handle @ and nominals (see[8]).

THEOREM 5.1
The resolution calculus introduced in Figure 5 is sound and complete for H(@).

It is interesting to point out that optimizations and alternatives to paramodulation such as
those discussed in [8] can now be investigated in the hybrid setting. In particular, we conjec-
ture that heuristics can be devised to make the resolution calculus above terminating.

What about binders? Extending the system to account for hybrid sentencesusing | isfairly
straightforward. Consider therule (].) below (again | is self dual, so we don’t need arule for
its negation):

Clu{Qz.¢}
Clu{Qe(z/t)}

Notice that the rule transforms hybrid sentences into hybrid sentences. The full set of rules
gives us acomplete calculusfor sentencesin H (@, ]). Let’'s go through a short example.

)
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CluU {@t(¢1 A ¢)2)} (_| ) Cclu {@t_‘((ﬁl A ¢2)}
ClU{Q;¢} ClU{@nf(=¢1), @nf(—¢2)}
Clu{Q;¢2}

()

Cly U{@Qp} Cly U{@Q;—¢}
ClUCly

(RES)

Cll U {@t[R]gb} Cl2 U {@t—![R]—'S}

((7D) Cly UCl, U{@,4)
CluU {Q@;~[R]¢}
CIED - =575 {@,—~[R]-n}
ClU{Q,nf(-¢)}

ClU {@,@,¢}

@) G019

Ol u{@s) ClU{g(t)}

, wheren is new.

(PARAM) ClyUCl, U{p(t/s)}
Clu {@,s} Clu{@;~t}
M) ot REF)  —&—

FIGURE 5. Labelled resolution rulesfor 1 (@).

EXAMPLE 5.2
We prove that J=.(R)(z A p) — p isatautology. Consider the negation of the formulain
clausal form

1. {@;lz.~[R]~(z Ap)}, {@;—p} by ()
2. {@;=[R]-(i Ap)}, {@;—p} by (=[£])
3. {Q;—[R]~j}, {Q;(iAp)}, {i:—p} by (A)
4. {Q;i}, {@;p}, {Q;—p} by (PARAM)
5. g@@». {@;~p} by (RES)
6. {}.

Of course, we cannot expect a heuristic ensuring termination of our calculusfor H(@, ), as
the satisfiability problem for #({) is aready undecidable (see [11]).

6 Conclusions

Blackburn [10] argues that hybrid languages can be used to internalize labelled deduction.
Similar ideas play afundamental role in the labelled resolution systems weintroduced in this
paper. Once again, nominas/labels together with the satisfiability operator : or @ are the
key to achieving smooth and well behaved reasoning methods. The systems we introduced
make clear that labelled resol ution has many advantagesin comparison with direct resolution
proposals, thus supporting our claim that hybrid logic ideas can indeed be used to improve
reasoning methods. We conclude the paper with a discussion of a number of independent
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directionsfor future research.

Once |abels are introduced, the resolution method is very close to the tableaux approach,
but we are still doing resolution. Aswe said, therules (A), (—A) and (—[R]), prepare formu-
lasto befed into the resolution rules (RES) and ([R]). Andtheaimisstill to derive the empty
clause instead of finding a model by exhausting a branch. But, is this method any better than
tableaux? We don’t think this is the correct question to ask. We believe that we learn differ-
ent things from studying different methods. For example, Horrocks and Patel-Schneider [27]
study anumber of interesting optimizations of the tableaux implementation which were tested
on the tableaux based theorem prover bLP. Some of their ideas can immediately be (or have
aready been) incorporated in our resolution method (lexical normalization and early detec-
tion of clashes, for instance), and others might be used in implementations of our method. At
the same time, optimizations for direct resolution such as those discussed in [6] can aso be
exploited. For example, in implementations of the resolution algorithm, strategies for select-
ing the resolving pairs are critical. Thiskind of heuristic has been investigated by Auffray et
al. [6] and some of their results easily extend to our framework. In certain cases, establishing
compl eteness of these heuristicsis even simpler because of our explicit use of resolution via
nominalsand @.

The issue of heuristicsis very much connected to complexity. The basic heuristic used in
the proof of Theorem 4.13 keeps the complete clause set ‘in memory’ at all times and hence
requires non-polynomial space. A similar situation occursin clausal propositional resolution
where the trandation into clausal form can introduce an exponential blow up. We conjecture
that a PSPACE heuristic for labelled resolution can be obtained by exploiting further the
presence of labels (and given that we don’t force atrandation into full clausal form). Notice
that nominalsand @ let us keep track of the accessibility relation and we can define the notion
of ‘being a member of a branch’. Now we can attempt to use the tree property of modal
languages to guide resolution. We used similar ideas in [5] to improve the performance of
trandation based resolution provers; see also [26] for translation based resolution methods
which are able to polynomially simulate PSPACE tableaux.

Thefirst author and Juan Heguiabehere areimplementing afirst prototype of theresolution
method described in this paper. It would be interesting to perform empirical testing on the
performanceof this resolution prover along thelines of, for example[28], both in comparison
with tranglation based resol ution provers and those based on tableaux.

Finally, our completeness proof is constructive: if a refutation cannot be found, we can
actually define a model for the formula or knowledge base. Hence, our methods can also
be used for model extraction. How does this method perform in comparison with traditional
model extraction from tableaux systems?
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