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Abstract
We provide a resolution-based proof procedure for modal, description and hybrid logic that improves on previous
proposals in important ways. It avoids translations into large undecidable logics, and works directly on modal,
description or hybrid logic formulas instead. In addition, by using the hybrid machinery it avoids the complexities of
earlier propositional resolution-based methods for modal logic. It combines ideas from the method of prefixes used
in tableaux, and resolution ideas in such a way that some of the heuristics and optimizations devised in either field
are applicable.
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1 Introduction

Resolution, originally introduced for first-order logic (FO) in [36], is the most widely used
reasoning method for first-order logic today: most of the available automatic theorem provers
for FO are resolution based. The propositional core of the method is well-known: to check
whether a propositional formula � is not satisfiable, start by turning it into clausal form. To
this end, we write � in conjunctive normal form

� =
^

l2L

_

m2M

 (l;m);

for  (l;m) a literal, and let the clause set associated with � be

ClSet(�) = ff (l;m) j m 2Mg j l 2 Lg:

Next, we define ClSet�(�) as the smallest set containing ClSet(�) and closed under a unique,
very easy to grasp rule:

(RES)
Cl1 [ fNg 2 ClSet�(�) Cl2 [ f:Ng 2 ClSet�(�)

Cl1 [ Cl2 2 ClSet�(�)

If fg 2 ClSet�(�), then � is not satisfiable. The intuition behind (RES) is as follows: given
that either N or :N is always the case in any model, they can be ‘cut away’ if the sets of

J. Logic Computat., Vol. 11 No. 5, pp. 717–736 2001 c
 Oxford University Press



718 Resolution in Modal, Description and Hybrid Logic

clauses are conjoined. The aim of the whole method is to ‘cut away everything’ and arrive at
the empty set.

The elegance of the resolution method for propositional logic relies mostly on its bare
simplicity. The method can also be straightforwardly implemented, it seems tailored for a
dumb machine able to crunch symbols quickly. The only computational cost is a search for
complementary atoms in the set of clauses.

Of course, the picture for the first-order case is different (to start with, first-order resolution
has to address an undecidable problem!). And actual implementations of first-order resolution
systems are not ‘dumb’ at all. In particular, during first-order resolution we have to cope with
the rich structure of terms, and the unification algorithm (introduced by Robinson in [36],
see [33] for a linear time version) plays a fundamental role in handling this complexity, and
in using it to guide the search. The field of resolution based first-order theorem proving
has developed into a community of its own, with an impressive collection of methods and
optimizations [9, 34].

In contrast to the popularity of resolution-based methods in first-order logic, modern modal
theorem provers are generally based on tableau methods [15]. Nowadays, resolution and
modal languages seem to be related only when indirectmethods are used. In translation-based
resolution calculi for modal logics, one translates modal languages into a large background
language (typically first-order logic), and devises strategies that guarantee termination for the
fragment corresponding to the original modal language [22, 29, 17, 5]. First-order resolution
provers like BLIKSEM [12] or SPASS [38] handle modal formulas in this way, in some cases
using extremely optimized translations like those investigated in [32, 37]. This approach
has both advantages and disadvantages with respect to the tableau approach. On the one
hand we can translate many systems into the same background language and hence explore
different, and also combined, systems without the need to modify the prover. But empirical
tests show that the price to pay is high [28, 5]. The undecidability of the full background
language shows up in degraded performance on the modal fragments, and first-order provers
can hardly emulate their tableau based competitors.

Given the simplicity of propositional resolution, it is natural to wonder why direct resolu-
tion methods for modal languages don’t figure in the picture. Designing resolution methods
that can directly (without translation into large background languages) be applied to modal
logics, received some attention in the late 1980s and early 1990s [20, 30, 16]. Also, the first
(non-clausal) resolution methods for temporal languages go back to that period with the work
of Abadi and Manna [1]. Recently, new results on clausal temporal resolution have been pre-
sented (see [18]). But even though we might sometimes think of modal languages as a ‘simple
extension of propositional logic’, direct resolution for modal languages has proved a difficult
task. Intuitively, in basic modal languages the resolution rule has to operate insideboxes and
diamonds to achieve completeness. This leads to more complex systems, less elegant results,
and poorer performance, ruining the one-dumb-rule spirit of resolution.

In this paper we will show how ideas from hybrid logics can be put to work with benefit
even when the subject is purely modal. In particular, aided by the notions of nominals and
labelling, we will show how to define simple direct resolution methods for modal languages.
This ‘case study’ is an example of how the additional flexibility provided by the ability to
name states can be used to improve reasoning methods. In addition, we can build over the
basic resolution system and obtain extensions for hybrid and also description languages.

The main characteristics of the resolution method we will introduce can be summarized as
follows:
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� by using labelled formulas it avoids the complexity of earlier direct resolution-based
methods for modal logic;

� it does not involve skolemization beyond the use of constants;

� it does not involve translation into large undecidable languages, working directly on
modal, hybrid or description logic formulas instead;

� it is flexible and conservative in more than one sense: it incorporates the method of pre-
fixes used in tableaux [23] into resolution in such a way that different heuristics and
optimizations devised in either field are applicable.

The structure of the paper is as follows. In Section 2 we discuss, in some detail, the problems
with direct modal resolution. We do this by discussing the system presented by Enjalbert
and Fariñas del Cerro in [20]. In Section 3 we introduce labelled resolutionfor the basic
multi-modal logic Km. Informally, the calculus uses the hybrid@ operator to ‘push formulas
out of modalities’ and in this way, feed them into a simple (RES) rule. Whereas in Section 3,
we use the hybrid machinery only at the meta-logical level, the next step naturally leads us to
internalized systems. We start in Section 4, by providing a resolution based method for de-
ciding knowledge base inconsistency (with simple, acyclic T-Boxes and non-empty A-Boxes)
for the description logicALCR; as discussed in [2], ALCR can be viewed as a restricted hy-
brid language. In Section 5 we finally move into the complete basic hybrid language, fully
internalizing our use of @ and explaining how to handle nominals. We need to incorporate
a form of equality reasoning into the resolution calculus, and discuss paramodulation and
other techniques. In the last part of this section we show how to treat very expressive hybrid
languages, by considering the # hybrid binder. In Section 6 we conclude, with comments on
related work and some directions for further research.

2 Direct resolution for modal languages

To understand how we can use hybrid logic ideas to improve direct modal resolution, we
introduce the system presented by Enjalbert and Fariñas del Cerro in [20]. Enjalbert and
Fariñas del Cerro use some non-standard definitions which we introduce below and to which
we adhere only in the present section; we will revert to more standard notation in the rest of
the paper.

A modal formula is in disjunctive normal formif it is a (possibly empty) disjunction of the
form

� =
_
Li _

_
2Dj _

_
3Ak;

where eachLi is a literal, eachDj is in disjunctive normal form, and eachAk is in conjunctive
normal form. A modal formula is in conjunctive normal formif it is a conjunction � =

V
Ci,

where each Ci is in disjunctive normal form. A formula in disjunctive normal form is called
a clause. The empty clause is denoted as?. The conjunctionC1 ^ � � � ^Cn is identified with
the set (C1; : : : ; Cn). For any modal formula an equivalent clause can be obtained, so that
attention can be restricted to clauses.

The following examples of applications of the resolution rule ‘in modal contexts’ are dis-
cussed in [20] to show the intricacies of modal resolution:

(a)
2(p _ q) 2:p

2q
(b)

2(p _ q) 3:p

3(:p; q)
:
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Both inferences are sound, and can be viewed as generalizations of the (RES) rule. While
(a) closely follows the (RES) pattern (we resolve on p inside 2 and cut it out to obtain 2q),
(b) is more complex: we again resolve on p but simply eliminating p from2(p_ q) to obtain
2q is unsound. Instead, we can soundly infer3q which would somehow follow the ‘cutting’
pattern of resolution but this is too weak; the proper inference being both :p and q possible
at the same state of the model.

Moreover, an attempt to apply a similar rule to the clauses 3(p _ q) and 3:p to derive
3(:p; q) does not preserve soundness. Also, inferences with only one premiss seem to be
needed, as for example in

(c)
3(:p; p _ q)

3(:p; p _ q; q)
;

where we resolve on p inside the sameclause to infer 3(:p; q). Enjalbert and Fariñas del
Cerro explain that, actually, the logically equivalent but more explicit formula3(:p; p_q; q)
needs to be retained for completeness of the resolution method.

A resolution system based on these intuitions has been introduced and proved complete
for K in [20]. Specifically, define, by induction, two relations on clauses �(�; �) ! 

and �(�) ! 
, as indicated in Figure 1, where �, �, �, Æ1, Æ2 are clauses, and 	, � are
sets of clauses. The relations � and � will be used to define the notion of resolvent, i.e.
of a clause obtained via resolution from a previous set of clauses. The definition is rather
involved, starting from the axioms stating the cut on opposing literals and the propagation of
inconsistencies ((A1) and (A2)), to the inductive steps which specify how disjunctions should
be handled (the pair of (_) rules) and how one should deal with modal contexts ((23), (22),
(31), (32), (2)).

The full formal definition runs as follows. Start by defining the simplification relationA �
B (perhaps better understood as a rewriting system;) as the least congruence containing

3? � ? ?_D � D
(?; A) � ? A _ A _D � A _D.

For any formula F there is a unique F 0 such that F � F 0 and F 0 cannot be simplified further.
This formula F 0 is called the normal form of F . C is a resolventof A andB (respectivelyA)

Axioms

(A1) �(p;:p)!?
(A2) �(?; �)!?

�-Rules �-Rules

(_)
�(�; �)! �

�(� _ Æ1; � _ Æ2)! � _ Æ1 _ Æ2
(31)

�(�; �)! �

�(3(�; �;�))! 3(�; �; �;�)

(23)
�(�; �)! �

�(2�;3(�;	))! 3(�; �;	)
(32)

�(�)! �

�(3(�;�))! 3(�;�;�)

(22)
�(�; �)! �

�(2�;2�)! 2�
(_)

�(�)! �

�(� _ �)! � _ �

(2)
�(�)! �

�(2�)! 2�

FIGURE 1. Enjalbert and Fariñas del Cerro resolution rules.



Resolution in Modal, Description and Hybrid Logic 721

iff there is some C 0 such that �(A;B)! C 0 (respectively, �(A)! C 0) and C is the normal
form of C 0. We write �(A;B) ) C (respectively, �(A) ) C) if C is a resolvent of A and
B (respectively, of A).

Given a set of clauses S, let ClSet�(S) be the smallest set containing S that is closed under
resolvents of elements in ClSet�(S). D is said to be a resolution consequenceof a set of
clauses S (notation S ` D) iff D 2 ClSet�(S).

THEOREM 2.1 ([20])
For S [ fDg a finite set of clauses, S ` D iff j=K

V
S ! D.

So much for the ‘one dumb rule spirit’ of resolution. Let us go through an example to better
understand how this resolution method works. As is standard, we use the resolution system
to check for unsatisfiability. If starting from a clause � we are able to derive the empty clause
?, then � is unsatisfiable.

EXAMPLE 2.2
Consider the formula 3(p ^ (:p _ 2r _ q)) ^ 2:q ^ 23:r. In the resolution proof be-
low we underline the literals on which resolution takes place, and simplify some steps for
succinctness.

1. (3(p;:p _ 2r _ q);2:q;23:r) by (A1), (_) and (31)
2. (3(p;:p _ 2r _ q;2r _ q);2:q;23:r) by (A1), (_) and (23)
3. (3(p;:p _ 2r _ q;2r _ q;2r);2:q;23:r) by (A1) and (23) twice
4. (3(p;:p _ 2r _ q;2r _ q;2r;3(:r;?));2:q;23:r) by (A2) and (31)
5. ?.

Even following this simple proof is complex. For example, line 1 should be understood as
follows. Given that (p;:p) ) ? by (A1), we can infer by (_) that (p;:p _ 2r _ q) )
(p;:p_2r_ q;2r_ q) (this already involves some simplifications). An application of (31)
allows us to perform this inference under3.

As we have just seen, the direct resolution method for modal logics presented in [20] (and,
similarly, those in [21, 30, 16]) performs resolution ‘inside’ modalities, leading to a prolifera-
tion of deductive rules. In the next sections we develop a direct resolution method for modal,
description and hybrid logic that retains as much of the lean one-rule character of traditional
resolution methods as possible. The key idea, from a basic modal logic perspective, is to use
labels to decorate formulas with additional information. Labels allow us to make information
explicit and resolution can then always be performed at the ‘top level’. From a hybrid logic
perspective, we are just taking advantage of the new expressive power that nominals and @
provide.

3 Labelled modal resolution

We now introduce a direct resolution proof procedure for the basic multi-modal logic Km.
We assume a fixed modal similarity type S = hREL;PROPi of accessibility relation and
propositional symbols, together with a basic hybrid logic similarity type S 0 = hREL;PROP;
NOMi, whereNOM is a countably infinite set of nominals (we use ATOM to denote PROP[
NOM).

DEFINITION 3.1 (Normal form)
We define the following rewriting procedure nf on modal formulas:



722 Resolution in Modal, Description and Hybrid Logic

::�
nf
; �,

hRi�
nf
; :([R]:�),

(�1 _ �2)
nf
; :(:�1 ^ :�2).

For any formula �, the rewriting of subformulas of � by means of
nf
; converges to a unique

normal form nf(�) which is logically equivalent to �. If we take _ and hRi as defined opera-
tors, then nf(�) is slightly more than an expansion of definitions (see [27]).

DEFINITION 3.2 (Clauses)
A clauseis a finite set Cl such that each element of Cl is a formula of the form t : � or
(t1; t2) : R for t; t1; t2 2 NOM, R 2 REL and � a basic multi-modal formula. Let � be a
basic multi-modal formula. The set S� of clauses corresponding to � is simply ffa : nf(�)gg,
for a an arbitrary label in NOM.

Formulas in clauses can be seen as labelled formulas[23, 25]; t1 :� specifies that the formula
� holds at the label t1, and (t1; t2) :R requires the labels t1 and t2 to be related by the acces-
sibility relationR. Equivalently, a set of clauses can be seen as a set of hybrid formulas, with
t :� standing for @t� and (t1; t2) :R standing for @t1hRit2, and we can use hybrid models to
define satisfiability for clauses. We recall the definition of hybrid model and satisfaction (see
[2] for details).

DEFINITION 3.3 (Semantics)
A (hybrid) modelM is a triple M = hM; fRig; V i such that M is a non-empty set, fRig
is a set of binary relations on M , and V : PROP [ NOM ! Pow (M) is such that for all
nominals i 2 NOM, V (i) is a singleton subset of M . Let M = hM; fRig; V i be a model
and m 2M . The relevant conditions for the satisfiability relationare defined as follows:

M;m 
 a iff m 2 V (a), a 2 ATOM
M;m 
 [R]� iff 8m0:(if R(m;m0) then M;m0


 �)
M;m 
 @i� iff M;m0


 �, where V (i) = fm0g, i 2 NOM.

If M is understood from the context, we simply write m 
 � for M;m 
 �. We write
M 
 � iff for all m 2M , M;m 
 �.

DEFINITION 3.4 (Satisfiability of clauses)
Let Cl be a clause, and let M be a hybrid model. We write M j= Cl if M j=

W
Cl. A set of

clauses S is satisfiableif there is a model M such that for all Cl 2 S, M j= Cl.

Let � be a basic multi-modal formula and S� its corresponding set of clauses. Proving that
� is satisfiable iff S� is satisfiable is straightforward. For the left to right implication, given
M = hW; fRig; V i and m 2 M such that M;m 
 �, just extend V so that V (a) = fmg
and give any interpretation to others elements in NOM. For the other direction, drop the
interpretation of elements in NOM.

We have now set up the machinery to provide the appropriate set of resolution rules. As a
guide, it is useful to recall that modal formulas can be seen as first-order formulas by means
of the standard translation ST .
DEFINITION 3.5 (Standard translation into FO)
The mutually recursive functions STx and ST y map basic modal formulas into FO:

STx(pj) = Pj(x), pj 2 PROP STy(pj) = Pj(y), pj 2 PROP
STx(:�) = :STx(�) STy(:�) = :STy(�)

STx(� ^  ) = STx(�) ^ STx( ) STy(� ^  ) = STy(�) ^ STy( )
STx([R]�) = 8y:(R(x; y)! STy(�)) STy([R]�) = 8x:(R(y; x)! STx(�)).
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Figure 2 provides a set of rules transforming sets of clauses into sets of clauses.

(^)
Cl [ ft :�1 ^ �2g

Cl [ ft :�1g
Cl [ ft :�2g

(:^)
Cl [ ft ::(�1 ^ �2)g

Cl [ ft :nf(:�1); t :nf(:�2)g

(RES)
Cl1 [ ft :�g Cl2 [ ft ::�g

Cl1 [ Cl2

([R])
Cl1 [ ft1 : [R]�g Cl2 [ f(t1; t2) :Rg

Cl1 [ Cl2 [ ft2 :�g

(:[R])
Cl [ ft ::[R]�g

Cl [ f(t; n) :Rg
Cl [ fn :nf(:�)g

, where n is new.

FIGURE 2. Labelled resolution rules.

If you read the rules with ST in the back of your mind, the meaning of ([R]) and (:[R]) will
be immediately clear. ([R]) is needed to account for the ‘hidden’ negation arising from the
implication in the translation of [R], and in that sense it is indeed a standard resolution rule
which cuts away the two complementary binary literals :R(t1; x) and R(t1; t2) and unifies
x to t2. On the other hand, (:[R]) can be seen as a mild kind of skolemization which only
involves the introduction of constants. From this perspective, we can view the rules (^), (:^)
and (:[R]) as preparing the input formula and feeding it into the resolution rules (RES) and
([R]). In other words, the system interleaves the reduction towards a standard clausal form
with the resolution steps as in [24]. An immediate advantage of this method is that resolution
can be performed not only on literals, but also on complex formulas.

Before moving on, let’s redo Example 2.2 in the new system. As before, we underline the
part of the formula where a rule applies.

EXAMPLE 3.6
Consider again the formula � = 3(p ^ (:p _ 2r _ q)) ^ 2:q ^ 23:r, which in the new
notation is written as hRi(p ^ (:p _ [R]r _ q)) ^ [R]:q ^ [R]hRi:r. S� is the singleton
ffi ::[R]:(p^ :(p ^:[R]r ^ :q)) ^ [R]:q ^ [R]:[R]:rgg. In each line we only show the
newly generated clauses and those which will still be required in the successive steps.

1. fi ::[R]:(p ^ :(p ^ :[R]r ^ :q))^[R]:q^[R]:[R]:rg, by ((^) twice)
2. fi ::[R]:(p ^ :(p ^ :[R]r ^ :q))g; fi : [R]:qg; fi : [R]:[R]rg, by (:[R])
3. fR(i; j)g; fj : (p^:(p ^ :[R]r ^ :q))g; fi : [R]:qg; fi : [R]:[R]rg, by (^)
4. fR(i; j)g; fj :pg; fj ::(p^:[R]r^:q)g; fi : [R]:qg; fi : [R]:[R]rg, by (:^)
5. fR(i; j)g; fj :pg; fj ::p; j : [R]r; j :qg; fi : [R]:qg; fi : [R]:[R]rg, by (RES)
6. fR(i; j)g; fj : [R]r; j :qg; fi : [R]:qg; fi : [R]:[R]rg, by ([R])
7. fj : [R]r; j :qg; fj ::qg; fj ::[R]rg, by (RES)
8. fj : [R]rg; fj ::[R]rg, by (RES)
9. fg.

DEFINITION 3.7 (Deduction)
A deductionof a clause Cl from a set of clauses S is a finite sequence S1; : : : ; Sn of sets of
clauses such that S = S1, Cl 2 Sn and each Si (for i > 1) is obtained from Si�1 by adding
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the consequent clauses of the application of one of the resolution rules in Figure 2 to clauses
in Si�1. Cl is a consequenceof S if there is a deduction of Cl from S. A deduction of fg
from S is a refutationof S, and we say that S is refutable.

The set ClSet�(S), defined as the smallest set containing S and all its consequences, need not
be finite because the rule (:[R]) can introduce infinitely many clauses which only differ on
the label. By restricting (:[R]) to be ‘fired only once’ as we will describe in the next section,
we can ensure finiteness of ClSet�(S), and hence termination of the search for consequences.

It is straightforward to prove that the resolution rules in Figure 2 preserve satisfiability.
That is, given a rule, if the premisses are satisfiable, then so are the conclusions. In Section 4,
we will extend the system to deal with knowledge bases in the description language ALCR,
and prove there, in detail, soundness, completeness and termination.

3.1 Modal extensions

From a traditional modal logic point of view we often want to consider systems above Km.
Here we choose systems T, D, and 4 as examples. Each system is axiomatically defined as
an extension of the basic system K by the addition of an axiom scheme which characterizes
certain property of the accessibility relation.

Name Axiom Scheme Accessibility Relation
T p! hRip reflexivity: 8x:R(x; x)
D [R]p! hRip seriality: 8x9y:R(x; y)
4 hRihRip! hRip transitivity: 8xyz:(R(x; y) ^ R(y; z)! R(x; z))

Corresponding to each of the axioms we add a new resolution rule:

(T)
Cl [ ft : [R]�g

Cl [ ft :�g

(D)
Cl [ ft : [R]�g

Cl [ ft ::[R]nf(:�)g

(4)
Cl1 [ ft1 : [R]�g Cl2 [ f(t1; t2) :Rg

Cl1 [ Cl2 [ ft2 : [R]�g
.

Soundness for these systems is immediate. For completeness and termination we should
modify the constructions in Section 4 (in particular (4) needs a mechanism of cycle detection);
this can be done using methods from [20].

4 Description logic

We will now discuss resolution based decision methods for description logics (DLs), a family
of specialized languages for the representation and structuring of knowledge, related to the
KL-ONE system of Brachman and Schmolze [13]. The connections between DLsand hybrid
logics are strong (see [2, 3]), as we will clearly see in what follows. We spell out the details
of a labelled resolution system to decide inconsistency of knowledge bases with so-called
simple, acyclic T-Boxes and non-empty A-Boxes in the description logic ALCR.

We assume fixed a description logic signature S = hCON;ROL; INDi together with an
additional countable set of labels LAB. CON is the set of atomic concepts, ROL the set of
atomic roles and IND the set of individuals.
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DEFINITION 4.1 (Interpretation)
An interpretationI for S is a tuple I = h�I ; �Ii, where �I is a non-empty set, and �I is
a function assigning an element aIi 2 �I to each individual ai; a subset CI

i � �I to each
atomic concept Ci; and a relation RI

i � �I ��I to each atomic role Ri.

In other words, a description logic interpretation is just a model for a particular kind of first-
order signature, where only unary and binary predicate symbols are allowed and the set of
function symbols is empty.

The atomic symbols in a description logic signature can be combined by means of con-
ceptand role constructors, to form complex concept and role expressions. Each description
logic is characterized by the set of concept and roles constructors it allows. Figure 3 de-
fines the roles and concepts constructors for the description logic ALCR, together with their
semantics.

Constructor Syntax Semantics

concept name C CI

top > �I

negation :C �I n CI

conjunction C1 u C2 CI
1 \ C

I
2

disjunction C1 t C2 CI
1 [ C

I
2

universal quant. 8R:C fd1 j 8d22�I :(RI(d1; d2)! d2 2 CI)g
existential quant. 9R:C fd1 j 9d22�I :(RI(d1; d2) ^ d2 2 CI)g
role name R RI

role conjunction R1 uR2 RI
1 \ R

I
2

FIGURE 3. Operators of ALCR.

In description logics we are interested in performing inferences given certain background
knowledge.

DEFINITION 4.2 (Knowledge bases and inference)
A knowledge baseis a pair � = hT;Ai such that T is the T(erminological)-Box, a finite
(possibly empty) set of terminological axiomsof the form C1 v C2 or R1 v R2, and A is
the A(ssertional)-Box, a finite (possibly empty) set of assertionsof the form a :C or (a; b) :R,
whereC;C1; C2 are complex concepts,R;R1; R2 are complex roles, and a; b are individuals.

For I an interpretation and � a terminological axiom or an assertion, we define the relation
I j= � as follows

I j= C1 v C2 iff CI
1 � C2

I

I j= R1 v R2 iff RI
1 � R2

I

I j= a :C iff aI 2 CI

I j= (a; b) :R iff (aI ; bI) 2 RI :

Let � = hT;Ai be a knowledge base and I an interpretation, then I j= � if for all � 2
T [ A; I j= �. We say that � is satisfiableif there exists a model I such that I j= �; it is
unsatisfiableotherwise.

Let � = hT;Ai be a knowledge base (with so-called simple, non-cyclic definitions, see [31])
in ALCR. � can be transformed into an ‘unfolded’ equivalent knowledge base �0 = h;; A0i
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where all concept and role assertions are of the form �t :
d
iNi [19]. Hence, from now on we

will only consider knowledge bases with empty T-Boxes.
The definition of the normal form nf for DL assertions is a notational variation of Defini-

tion 3.1, obtained by exchanging _ by t, ^ by u, etc.; and setting nf(�t : N) = �t : nf(N).
Again, for any assertion �t :N , nf always converges to a unique normal form.

DEFINITION 4.3 (Clauses)
A clauseis a set Cl such that each element of Cl is either a concept assertion of the form
t :C or a role assertion of the form (t1; t2) :R, where t; t1; t2 2 IND [ LAB. A formula in a
clause is a literal if it is either a role assertion, a concept or negated concept assertion on an
atomic concept, or a universal or negated universal concept assertion. The set S� of clauses
corresponding to a knowledge base � = h;; Ai is the smallest set such that

� if a :
d
i Ci = nf(a :C) for a :C 2 A then fa :Cig 2 S�,

� if (a; b) :
d
i Ri 2 A then f(a; b) :Rig 2 S�.

Formulas in a clause are simply assertions over an expanded set of individuals. Let Cl be a
clause, and I = h�; �Ii a model over the expanded signature hCON;ROL; IND [ LABi; we
put I j= Cl if I j=

W
Cl. A set of clauses S has a modelif there is model I such that for all

Cl 2 S, I j= Cl. Clearly, � is satisfiable iff S� has a model.

(u)
Cl [ f�t :N1 uN2g

Cl [ f�t :N1g
Cl [ f�t :N2g

(:u)
Cl [ ft ::(C1 u C2)g

Cl [ ft :nf(:C1); t :nf(:C2)g

(RES)
Cl1 [ f�t :Ng Cl2 [ f�t ::Ng

Cl1 [ Cl2

(8)
Cl1 [ ft1 :8R:Cg Cl2 [ f(t1; t2) :Rg

Cl1 [ Cl2 [ ft2 :Cg

(:8)
Cl [ ft ::8R:Cg

Cl [ f(t; n) :Rg
Cl [ fn :nf(:C)g

, where n is new.

FIGURE 4. Labelled resolution rules for ALCR.

Figure 4 shows the labelled resolution rules recast for the language ALCR. The only
differences with the rules in Figure 2 are that (u) handles both concept and role conjunction,
and that labels are now part of the language as the calculus directly manipulates concept and
role assertions. Before proving soundness, completeness and termination we present a simple
example of resolution in our system.

EXAMPLE 4.4
Consider the following description. Suppose that children of tall people are blond (1). Fur-
thermore, all Tom’s daughters are tall (2), but he has a non-blond grandchild (3). Can we
infer that Tom has a son (4)?
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(0) FEMALE
:
= :MALE

(1) TALL v 8Child:BLOND
(2) tom :8Child:(:FEMALE t TALL)
(3) tom :9Child:9Child::BLOND

(4) tom :9Child:MALE.

As is standard in DL, we use a new proposition letter REST-TALL to complete the partial
definition in (1) to (1’) TALL

:
= 8Child:BLOND u REST-TALL (any partial definition A v B

can be completedto an equivalent full definition A = B u C for C a new concept, see [31])
and we resolve with the negation of the formula we want to infer (as a knowledge base �
entails � iff � [ f�g is inconsistent). After unfolding definitions (0) and (1’) in (2) and
applying nf we obtain the following three clauses:

1. ftom :8Child::(:MALE u :((8Child:BLOND) u REST-TALL))g
2. ftom ::8Child:8Child:BLONDg
3. ftom :8Child::MALEg.

Now we start resolving:

4. fs ::8Child:BLONDg by (:8) in 2
5. f(tom; s) :Childg by (:8) in 2
6. fs ::MALEg by (8) in 3
7. fs ::(:MALE u :((8Child:BLOND) u REST-TALL)g by (8) in 1
8. fs :MALE; s : ((8Child:BLOND) u REST-TALL)g by (:u) in 7
9. fs : ((8Child:BLOND) u REST-TALL)g by (RES) in 6 and 8
10. fs :8Child:BLONDg by (u) in 9
11. fs :REST-TALLg by (u) in 9
12. fg by (RES) in 4 and 10.

Thus, indeed, Tom has a son.

4.1 Soundness, completeness and termination

We will now prove that the resolution calculus for deciding knowledge base inconsistency
in ALCR is sound and complete, and that a procedure for ensuring termination exists. The
proofs can easily be adapted to prove completeness and termination for the resolution calculus
presented in Section 3.

Given a set of clauses S� corresponding to a knowledge base �, the notion of a refutation
for S� is as in Definition 3.7.

THEOREM 4.5 (Soundness)
The rules described in Figure 4 are sound. That is, if � is a knowledge base, then S� has a
refutation only if � is inconsistent.

PROOF. We prove that labelled resolution rules preserve satisfiability. We only discuss (:8).
Let I be a model of the premiss. If I is a model of Cl we are done. If I is a model of
t ::8R:C, then there exists d in the domain, such that (tI ; d) 2 RI and d 2 :CI . Let I 0 be
like I except perhaps in the interpretation of n, where nI

0

= d. As n is new, I 0 j= t ::8R:C.
But now I 0 j= Cl [ f(t; n) :Rg and I 0 j= Cl [ fn :nf(:C)g.

Next, we prove completeness. We follow the approach used in [20]: given a set of clauses S
we aim to define a structure TS such that
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(y) if S is satisfiable, a model can be effectively constructed from TS; and

(yy) if S is unsatisfiable, a refutation can be effectively constructed from TS .

In our case we also have to deal with A-Box information, that is, with named objects (con-
cept assertions) and fixed constraints on relations (role assertions). We will proceed in stages.
To begin, we will obtain a first structure to account for named states and their fixed relation
constraints. After that we can use a simple generalization of results in [20]. We base our con-
struction on trees which will help in guiding the construction of the corresponding refutation
proof.

Let � be a knowledge base and S� its corresponding set of clauses. In S� we can identify
a (possibly empty) subset of clauses RA of the form f(a; b) : Rg, and for each label a a
(possibly empty) subset CAa of clauses of the form fa : Cg. Notice that S� has no mixed
clauses containing both concept and role assertions (in a single disjunction). Also, there are
no disjunctive concept assertions on different labels, i.e. there is no clause Cl in S� such that
Cl = Cl0 [ fa :C1g [ fb :C2g for a 6= b. We will take advantage of these properties in the
first steps of the completeness proof.

For each label a appearing in �, construct inductively a binary tree Ta whose nodes will
be sets of clauses. Let the original tree Ta consist of the single node CAa and repeat in
alternation the following operations:

Operation A1. Repeat the following steps as long as possible:
� choose a leaf w. Replace in w any clause of the form fa ::(C1 u C2)g by fa : nf(:C1), a : nf(:C2)g;

and any clause of the form fa :C1 u C2g by fa :C1g and fa :C2g.
Operation A2. Repeat the following steps as long as possible:
� choose a leaf w and a clause Cl in w of the form Cl = fa :C1; a :C2g [ Cl0;
� add two children w1 and w2 to w, where w1 = wnfClg [ ffa : C1gg and w2 = wnfClg [ ffa :
C2g [ Cl0g.

The leaves of Ta give us the possibilities for ‘named states’ in our model. We can view each
leaf as a set Sja, representing a possible configuration for state a.

PROPOSITION 4.6
Operation A (the combination of A1 and A2) terminates, and upon termination

1. all the leaves S1
a; : : : ; S

n
a of the tree are singleton sets of literal clauses,

2. if all S1
a; : : : ; S

n
a are refutable, then CAa is refutable,

3. if one Sja is satisfiable, then CAa is satisfiable.

PROOF. Termination is trivial. Item 1 holds by virtue of the construction, and 2 is proved
by induction on the depth of the tree. We need only realize that by simple propositional
resolution, if the two children of a node w are refutable, then so is w. Item 3 is also easy.
Informally, Operation A ‘splits’ disjunctions and ‘carries along’ conjunctions. Hence if some
Sja has a model we have a model satisfying all conjuncts in CAa and at least one of each
disjunct.

We now consider the set RA of role assertions. Let NAMES be the set of labels which appear
in �. If a is in NAMES but CAa is empty in S�, define S1

a = ffa : C; a : :Cgg for some
concept C. We define the set of sets of nodes N = fNi j Ni contains exactly one leaf of
each Tag; each Ni is a possible set of constraints for the named worlds in a model of S�.

For all i, we will now extend each set in Ni with further constraints. For each Sa 2 Ni,
start with a node wa labelled by Sa.
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Operation B1. Equal to Operation A1.

Operation B2. Repeat the following steps as long as possible:
� choose nodes wa, wb such that f(a; b) : Rg in RA, fa : 8Ri:Cig 2 wa, fb : Cig 62 wb, where wb is

without children;
� add a child to wb, w0

b
= wb [ ffb :Cigg.

Let N�
i be the set of all leaves obtained from the forest constructed by applying Operation B

(the combination of B1 and B2).

PROPOSITION 4.7
Operation B terminates, and upon termination

1. all nodes created are derivable from
S
Ni [ RA, and hence if a leaf is refutable so isS

Ni [ RA, and hence S� too;

2. if some
S
N�
i is satisfiable, then S� is satisfiable.

PROOF. To prove termination, notice that in each cycle the quantifier depth of the formulas
considered decreases. Furthermore, it is not possible to apply twice the operation to nodes
named by a and b and a formula a :8Ri:Ci.

As to item 1, each node is created by an application of the (8) rule to members of Ni [
RA or clauses previously derived by such applications. Hence either the original

S
N�
i is

refutable and we can build a refutation for S� as indicated in Proposition 4.6, or fg can be
derived from

S
Ni by simple application of (8).

To prove item 2, let I be a model of N�
i . Define I 0 = h�0; �I

0

i as �0 = �, aI
0

= aI for
all labels a, CI

0

= CI for all atomic concepts C, and RI
0

= RI [ f(aI ; bI) j f(a; b) :Rg 2
RAg.

Observe that I 0 differs from I only in an extended interpretation of role symbols. By
definition, I 0 j= RA. It remains to prove that I 0 j= CA. By Proposition 4.6, we are done if
we prove that I 0 j=

S
N�
i . Since we only expanded the interpretation of relations, I and I 0

can only disagree on universal concepts of the form a :8R:C. By induction on the quantifier
depth we prove this to be false.

Assume that I and I 0 agree on all formulas of quantifier depth less than n, and let a :8R:C
be of quantifier depth n, for fa : 8R:Cg 2 S�a . Suppose I 0 6j= 8R:C. This holds iff there
exists b such that (aI

0

; bI
0

) 2 RI
0

and I 0 6j= b :C. By the inductive hypothesis, I 6j= b :C.
Now, if (aI ; bI) 2 RI we are done. Otherwise, by definition f(a; b) :Rg 2 RA. But then
fb :Cg 2 S�b by construction and as I j= S�b , we also have I j= b :C — a contradiction.

Each N�
i represents the ‘named core’ of a model of S. The final step is to define the non-

named part of the model. The following operations are performed to each set in each of the
N�
i , obtaining in such a way a forest Fi.
Fix N�

i , and a. We construct a tree ‘hanging’ from the corresponding S�a 2 N�
i . The

condition that each node of the tree is named by either an individual or a new label (that is,
all the formulas in a node have the same label) will be preserved as an invariant during the
construction. Set the original tree u to S�a and repeat the following operations C1, C2 and C3
in succession until the end-condition holds.
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Operation C1. Equal to Operation A1.

Operation C2. Equal to Operation A2.

Operation C3. For each leaf w of u,
� if for some concept we have fCg; f:Cg 2 w, do nothing;
� otherwise, since w is a set of unit clauses, we can write w = fft :C1g, : : : , ft :Cmg, ft : 8Rk1 :A1g,
: : : , ft :8Rkn :Ang, ft ::8Rl1 :P1g, : : : , ft ::8Rlq :Pqgg. Form the sets wi = ffnf(t0 ::Pi)gg [ Si,
where t0 is a new label, and Si = fft0 : Ahg j ft : 8Ri:Ahg 2 wg, and append each of them to w as
children marking the edges as Ri links. The nodes wi are called the projectionsof w.

End-condition. Operation C3 is inapplicable.

PROPOSITION 4.8
Operation C (the combination of C1, C2 and C3) cannot be applied indefinitely.

DEFINITION 4.9
We call nodes to which Operation C1 or C2 has been applied of type 1, and those to which
Operation C3 has been applied of type 2. The set of closed nodesis recursively defined as
follows,

� if for some concept ft :Cg; ft ::Cg are in w then w is closed,

� if w is of type 1 and all its children are closed, w is closed,

� if w is of type 2 and some of its children is closed, w is closed.

Let Fi be a forest that is obtained by applying Operations C1, C2, and C3 to N�
i as often as

possible. Then Fi is closedif any of its roots is closed.

LEMMA 4.10
If one of the forests Fi is not closed, then S� has a model.

PROOF. Let Fi be a non-closed forest. By a simple generalization of the results in [20,
Lemma 2.7] we can obtain a model I = h�; �Ii of all roots S�a in Fi, from the trees ‘hanging’
from them, i.e. a model of

S
N�
i . By Proposition 4.7, S� has a model.

Lemma 4.10 establishes the property (y) we wanted in our structure TS . To establish (yy) we
need a further auxiliary result.

PROPOSITION 4.11
Let w be a node of type 2. If one of its projectionswi is refutable, then so is w.

PROOF. Let w be a set of unit clauses w = fft : C1g, : : : , ft : Cmg, ft : 8Rk1 :A1g, : : : ,
ft :8Rkn:Ang, ft ::8Rl1:P1g, : : : , ft ::8Rlq :Pqgg. And let wi be its refutable projection:
wi = ffnf(t0 ::Pi)gg[Si, where t0 is a new label, and Si = fft0 :Ahg j ft :8Ri:Ahg 2 wg.
We use resolution on w to arrive at the clauses in wi from which the refutation can be carried
out: apply (:8) to ft ::8Ri:Pig in w to obtain ft0 :nf(t0 ::Pi)g and f(t; t0) :Rig. Now apply
(8) to all the clauses ft :8Ri:Ahg in w to obtain ft0 :Ahg.

LEMMA 4.12
In a forest Fi, every closed node is refutable.

PROOF. For w a node in Fi, let d(w) be the largest distance from w to a leaf.
If d(w) = 0, then w is a leaf, thus for some concept C, ft : Cg and ft : :Cg are in w.

Using (RES) we immediately derive fg.
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For the induction step, suppose the lemma holds for all w0 such that d(w0) < n and that
d(w) = n. If w is of type 1, let w1 = w n fClg [ fCl1g and w2 = w n fClg [ fCl2g be its
children. By the inductive hypothesis there is a refutation for w1 and w2. By propositional
resolution there is a refutation of w: repeat the refutation proof for w2 but starting with w,
instead of the empty clause we should obtain a derivation of Cl2; now use the refutation of
w2. Suppose w is of type 2. Because w is closed, one of its projections is closed. Hence, by
the inductive hypothesis it has a refutation. By Proposition 4.11, w itself has a refutation.

THEOREM 4.13 (Completeness)
The resolution method described above is complete: if � is a knowledge base, then S� is
refutable whenever � is inconsistent.

PROOF. We only need to put together the previous pieces. If � does not have a model then
neither does S�. By Lemma 4.10 all the forests Fi obtained from S� are closed, and by
Lemma 4.12, for each N�

i , one of the sets S�aj is refutable. By Proposition 4.7, for all i,S
Ni [ RA is refutable, and hence S� is refutable.

Because we have shown how to effectivelyobtain a refutation from an unsatisfiable set of
clauses we have also established termination. Notice that during the completeness proof we
have used a specific strategyin the application of the resolution rules (crucially, the (:8) rule
is never applied twice to the same formula). By means of this strategy, we can guarantee
termination of labelled modal resolution when verifying the consistency of any knowledge
base in ALCR.

THEOREM 4.14 (Termination)
Labelled resolution can effectively decide consistency of simple, acyclic knowledge bases in
ALCR.

We have now spelled out in detail our resolution method for the basic description logic
ALCR, and we could naturally consider extensions. For instance, in [14] some attention
has been given to n-ary roles (in modal logic terms, n-ary modal operators). Our approach
generalizes to this case without further problems.

An attractive idea which matches nicely with the resolution approach is to incorporate a
limited kind of unification on ‘universal labels’ of the form x : C, to account for on the
fly unfolding of definitions and more general T-Boxes. The use of such universal labels
would make it unnecessary to perform a complete unfolding of the knowledge base as a pre-
processing step. The leitmotif would be ‘to do expansion by definitions only when needed
in deduction’. On the fly unfolding has already been implemented in tableaux based systems
like KRIS [7].

5 Hybrid logic

It is the turn of hybrid languages now. Of course, we have already been dealing with hybrid
languages throughout the previous section: formulas in the A-Box are actually a restricted
form of @ formulas. To handle the full basic hybrid language H(@), we need to provide
rules for nominals and @. As before, we can get a hint of what is needed from the standard
translation of this language into FO. The new clauses of ST are as follows:

ST x(i) = (x = i), i 2 NOM ST y(i) = (y = i), i 2 NOM
ST x(@i�) = 9x:(x = i ^ STx(�)) ST y(@i�) = 9y:(y = i ^ ST y(�)).
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Nominals and@ introduce a limited form of equational reasoning on labels. Indeed, a formula
like @ij is true in a model iff i and j label the same state. Moreover, in the tableau treatment
of hybrid languages, nominals and the @ operator have been considered as the mechanisms
needed to formulate modal theories of state equality and state succession [10].

In the resolution tradition, Robinson and Wos [35] have introduced a rule called paramod-
ulation to improve previous accounts of equational reasoning in FO:

(PARAM)
Cl1 [ ft = sg Cl2 [ f�(u)g

(Cl1 [ Cl2 [ f�(u=s)g)�
,

where � is the most general unifier of t and u. In descriptions of paramodulation calculi one
usually identifies the symmetric equations s = t and t = s, includes (positive) factoring, and
an inference rule that encodes resolution with the reflexivity axiom:

(REF)
Cl [ ft 6= sg

Cl�
,

where � is the most general unifier of s and t. For a complete discussion of equational
reasoning in first-order logics, we refer to [8]. We can introduce paramodulation in our direct
resolution calculus for the basic hybrid language as follows:

(PARAM)
Cl1 [ f@tsg Cl2 [ f�(t)g

Cl1 [ Cl2 [ f�(t=s)g

(SYM)
Cl [ f@tsg

Cl [ f@stg
(REF)

Cl [ f@t:tg

Cl

We need only one further rule to handle formulas of the form @s@t� (see (@) below). Fig-
ure 5 shows the complete set.

Two remarks on the rules above. Given that @ is self dual, we can define nf(:@t�) =
@tnf(:�); and for any formula � inH(@), � is satisfiable iff @t� is satisfiable, for a nominal
t not appearing in �. Hence, we can define the set S� of clauses corresponding to � to be
ff@tnf(�)gg, where t does not appear in �.

The soundness of the calculus is straightforward and the proof of Theorem 4.13 can be
adapted in a way similar to the standard first-order case, to prove that paramodulation can
handle @ and nominals (see [8]).

THEOREM 5.1
The resolution calculus introduced in Figure 5 is sound and complete for H(@).

It is interesting to point out that optimizations and alternatives to paramodulation such as
those discussed in [8] can now be investigated in the hybrid setting. In particular, we conjec-
ture that heuristics can be devised to make the resolution calculus above terminating.

What about binders? Extending the system to account for hybrid sentences using # is fairly
straightforward. Consider the rule (#) below (again # is self dual, so we don’t need a rule for
its negation):

(#)
Cl [ f@t#x:�g

Cl [ f@t�(x=t)g
.

Notice that the rule transforms hybrid sentences into hybrid sentences. The full set of rules
gives us a complete calculus for sentences in H(@; #). Let’s go through a short example.
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(^)
Cl [ f@t(�1 ^ �2)g

Cl [ f@t�1g
Cl [ f@t�2g

(:^)
Cl [ f@t:(�1 ^ �2)g

Cl [ f@tnf(:�1);@tnf(:�2)g

(RES)
Cl1 [ f@t�g Cl2 [ f@t:�g

Cl1 [ Cl2

([R])
Cl1 [ f@t[R]�g Cl2 [ f@t:[R]:sg

Cl1 [ Cl2 [ f@s�g

(:[R])
Cl [ f@t:[R]�g

Cl [ f@t:[R]:ng
Cl [ f@nnf(:�)g

, where n is new.

(@)
Cl [ f@t@s�g

Cl [ f@s�g

(PARAM)
Cl1 [ f@tsg Cl2 [ f�(t)g

Cl1 [ Cl2 [ f�(t=s)g

(SYM)
Cl [ f@tsg

Cl [ f@stg
(REF)

Cl [ f@t:tg

Cl

FIGURE 5. Labelled resolution rules for H(@).

EXAMPLE 5.2
We prove that #x:hRi(x ^ p) ! p is a tautology. Consider the negation of the formula in
clausal form

1. f@i#x::[R]:(x ^ p)g, f@i:pg by (#)
2. f@i:[R]:(i ^ p)g, f@i:pg by (:[R])
3. f@i:[R]:jg, f@j(i^p)g, fi ::pg by (^)
4. f@jig, f@jpg, f@i:pg by (PARAM)
5. f@ipg, f@i:pg by (RES)
6. fg.

Of course, we cannot expect a heuristic ensuring termination of our calculus for H(@; #), as
the satisfiability problem for H(#) is already undecidable (see [11]).

6 Conclusions

Blackburn [10] argues that hybrid languages can be used to internalize labelled deduction.
Similar ideas play a fundamental role in the labelled resolution systems we introduced in this
paper. Once again, nominals/labels together with the satisfiability operator : or @ are the
key to achieving smooth and well behaved reasoning methods. The systems we introduced
make clear that labelled resolution has many advantages in comparison with direct resolution
proposals, thus supporting our claim that hybrid logic ideas can indeed be used to improve
reasoning methods. We conclude the paper with a discussion of a number of independent
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directions for future research.
Once labels are introduced, the resolution method is very close to the tableaux approach,

but we are still doing resolution. As we said, the rules (^), (:^) and (:[R]), prepare formu-
las to be fed into the resolution rules (RES) and ([R]). And the aim is still to derive the empty
clause instead of finding a model by exhausting a branch. But, is this method any better than
tableaux? We don’t think this is the correct question to ask. We believe that we learn differ-
ent things from studying different methods. For example, Horrocks and Patel-Schneider [27]
study a number of interesting optimizations of the tableaux implementation which were tested
on the tableaux based theorem prover DLP. Some of their ideas can immediately be (or have
already been) incorporated in our resolution method (lexical normalization and early detec-
tion of clashes, for instance), and others might be used in implementations of our method. At
the same time, optimizations for direct resolution such as those discussed in [6] can also be
exploited. For example, in implementations of the resolution algorithm, strategies for select-
ing the resolving pairs are critical. This kind of heuristic has been investigated by Auffray et
al. [6] and some of their results easily extend to our framework. In certain cases, establishing
completeness of these heuristics is even simpler because of our explicit use of resolution via
nominals and @.

The issue of heuristics is very much connected to complexity. The basic heuristic used in
the proof of Theorem 4.13 keeps the complete clause set ‘in memory’ at all times and hence
requires non-polynomial space. A similar situation occurs in clausal propositional resolution
where the translation into clausal form can introduce an exponential blow up. We conjecture
that a PSPACE heuristic for labelled resolution can be obtained by exploiting further the
presence of labels (and given that we don’t force a translation into full clausal form). Notice
that nominals and @ let us keep track of the accessibility relation and we can define the notion
of ‘being a member of a branch’. Now we can attempt to use the tree property of modal
languages to guide resolution. We used similar ideas in [5] to improve the performance of
translation based resolution provers; see also [26] for translation based resolution methods
which are able to polynomially simulate PSPACE tableaux.

The first author and Juan Heguiabehere are implementing a first prototype of the resolution
method described in this paper. It would be interesting to perform empirical testing on the
performance of this resolution prover along the lines of, for example [28], both in comparison
with translation based resolution provers and those based on tableaux.

Finally, our completeness proof is constructive: if a refutation cannot be found, we can
actually define a model for the formula or knowledge base. Hence, our methods can also
be used for model extraction. How does this method perform in comparison with traditional
model extraction from tableaux systems?
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