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ABSTRACT
Retailers such as grocery stores or e-marketplaces often have vast
selections of items for users to choose from. Predicting a user’s
next purchases has gained attention recently, in the form of next
basket recommendation (NBR), as it facilitates navigating extensive
assortments for users. Neural network-based models that focus
on learning basket representations are the dominant approach in
the recent literature. However, these methods do not consider the
specific characteristics of the grocery shopping scenario, where
users shop for grocery items on a regular basis, and grocery items
are repurchased frequently by the same user.

In this paper, we first gain a data-driven understanding of users’
repeat consumption behavior through an empirical study on six
public and proprietary grocery shopping transaction datasets. We
discover that, averaged over all datasets, over 54% of NBR perfor-
mance in terms of recall comes from repeat items: items that users
have already purchased in their history, which constitute only 1% of
the total collection of items on average. A NBR model with a strong
focus on previously purchased items can potentially achieve high
performance. We introduce ReCANet, a repeat consumption-aware
neural network that explicitly models the repeat consumption be-
havior of users in order to predict their next basket. ReCANet
significantly outperforms state-of-the-art models for the NBR task,
in terms of recall and nDCG. We perform an ablation study and
show that all of the components of ReCANet contribute to its per-
formance, and demonstrate that a user’s repetition ratio has a direct
influence on the treatment effect of ReCANet.

CCS CONCEPTS
• Information systems→ Recommender systems; Personal-
ization.
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1 INTRODUCTION
Recommendation systems in retail help users to find the items that
they need from large inventories. Different retail industries such as
fashion [7], general e-commerce [15], and grocery shopping [18] uti-
lize recommendation systems to facilitate the shopping experience
for their users. Different types of recommendation systems, such
as top-n [8], sequential [25], and session-based [10] systems, are
deployed for different scenarios. In grocery shopping in particular,
the next basket recommendation (NBR) formulation is considered
to be the most relevant and has gained increasing attention in the
literature recently [9, 13, 20].
Next basket recommendation for grocery shopping. The NBR
task is defined as recommending a group of items to a user based
on their shopping history, where the history is a time-ordered se-
quence of baskets that they have purchased in the past. Each basket
is a set of items with no particular order [30]. This formulation fits
the grocery shopping setting well, where a user’s purchase history
occurs naturally in the form of such baskets. Two main characteris-
tics of the grocery shopping scenario make it distinct from other
retail domains: (1) users shop for grocery items repeatedly and on
a regular basis, and (2) grocery items have a short life time and are
repurchased frequently by the same user [17].

Previous work has studied the NBR problem within different
algorithmic frameworks. Specifically, a number of neural network-
based methods have been proposed to learn basket representa-
tions [12, 20, 26, 30], while nearest neighbor-based methods are
dominant in modeling the personal history of users [9, 13]. In the
grocery shopping domain, recent studies of NBR models has shown
that nearest neighbor-based models that consider the character-
istics of this domain and explicitly model the personal history of
users significantly outperform neural network-based models that
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are mostly focused on basket representation and consider the pre-
viously purchased items only implicitly [13, 16]. The superiority
of nearest neighbor-based models is further shown to be caused
by their ability to correctly recommend items that have previously
been purchased by a user, so-called repeat items [16].
Understanding repeat-consumption behavior. Inspired by pre-
vious work highlighting the importance of repeat items in grocery
shopping [2, 9, 13, 16], we study the repeat consumption behavior
across six public and proprietary datasets in the grocery shopping
domain (Section 4). We find that different users exhibit different
levels of repeat consumption in all datasets. As time goes by and
more baskets are added to a user’s history, the repeat consumption
increases. In all datasets, most of the items are subject to repurchas-
ing with a high probability. We further demonstrate what these
findings mean in terms of predictive performance for NBR. Specifi-
cally, we discover that averaged over all datasets, over 54% of the
performance in terms of recall comes from such repeat items: items
that the users have already purchased in their history, which only
account for 1% of the total items on average. This high performance
indicates that a NBR model that is focused on previously purchased
items can potentially achieve a high performance, while consider-
ing only a small number of candidate items per user. Section 4.3
shows that most of the performance of recommender systems in
NBR stems from the minority of repeat items in the dataset.

Existing nearest neighbor-based models [9, 13] consider three
main factors in recommending repeat items for the next basket:
(1) the frequency of items bought in a users’ history, (2) the re-
cency of items bought in the history, and (3) similarities between
users. Repurchasing patterns of items are not reflected in these
models. For example, one user might buy milk in every basket, and
buy apples every two-to-three baskets only. Moreover, similarities
between items are also not taken into account. Considering item
similarities has the potential to help the generalization power of a
recommendation model, in cases where the consumption data is
scarce [3].
ReCANet. We propose ReCANet, a repeat consumption-aware
neural network that addresses the shortcomings of existing NBR
models (Section 5). In addition to frequency and recency of items
purchased by a user, and user similarities, ReCANet further con-
siders item similarities and personal repeat consumption patterns.
The intuition behind ReCANet is that the consumption pattern of
an item by a user indicates whether the item will appear in the
next basket or not. Additionally, the consumption pattern of that
particular item by other users can also help the prediction. To this
end, we use embedding layers to represent items and users, and
model the consumption patterns with LSTM [11] layers. To evaluate
the performance of ReCANet for NBR, we compare it with several
state-of-the-art models on six datasets in terms of multiple standard
ranking metrics (Section 6). The experimental results confirm the
effectiveness of ReCANet (Section 7); it significantly outperforms
the state-of-the-art models in terms of recall and nDCG. The im-
provements over state-of-the-art baselines are consistent across all
datasets.

To summarize, our contributions are as follows:

• We provide an empirical study on the characteristics of repeat
consumption behavior across six grocery shopping datasets (Sec-
tion 4). To the best of our knowledge, this is the first study of
this kind.

• We propose ReCANet, a novel neural architecture for NBR in
grocery shopping, focused on repeat items (Section 5).

• We demonstrate the effectiveness of ReCANet in comparison
with state-of-the-art NBR models through experiments on three
public and three proprietary datasets, where ReCANet is shown
to significantly outperform the baselines (Section 7).

• We validate the importance of different components of ReCANet
through an ablation study and conduct parameter and user sen-
sitivity experiments to demonstrate its robustness for different
hyper-parameters and user groups (Section 7).

2 PROBLEM FORMULATION
The goal of the NBR task is to recommend a full basket composed
of a list of items to the user for their next basket, based on the
history of the items that they have purchased in the past. Such
recommendations reduce the burden on users to proactively find
items of interest every time they need to shop.

Formally, a basket is a set of items defined as 𝐵 = {𝑥1, 𝑥2, . . . , 𝑥𝑡 },
where 𝑥𝑖 ∈ 𝐼 denotes an item from a set of items 𝐼 . Given the history
of purchases for user 𝑢 ∈ 𝑈 as the sequence 𝐵𝑢 = [𝐵𝑢1 , 𝐵

𝑢
2 , . . . , 𝐵

𝑢
𝑛],

where 𝐵𝑢
𝑖
is the 𝑖-th basket in the purchase history of user 𝑢 and

𝑈 denotes the set of users, the goal is to predict the items in the
next basket of the user, i.e., 𝐵𝑢

𝑛+1. For the basket history 𝐵𝑢 , the
recommendation model assigns a score to all items 𝑥𝑖 ∈ 𝑋 , and the
top-𝑘 items are returned as the candidate items for the next basket.

One of the main use cases for the NBR task is grocery shopping,
which is also the focus of this paper. Users tend to purchase multiple
items at a time, which corresponds to the concept of a shopping
basket. Grocery shopping is repetitive; it is usually done on a regular
basis. Moreover, many grocery items have a short life time, which
leads to repeated purchases of these items [17].

The next basket of a user consists of both repeat items, i.e., the
items that they have already purchased in the past, and completely
new items that they have not purchased previously, i.e., explore
items. A recent study on state-of-the-art methods in NBR on gro-
cery shopping datasets [16] has shown that NBR methods that
are biased towards repetition, i.e., that generate a predicted basket
mostly from repeat items, significantly outperform explore-biased
approaches. Explore-biased approaches methods are even repeat-
edly outperformed by the simplest model for NBR, which recom-
mends the most frequently purchased items in a user’s history. This
calls for further studies aimed at understanding repeat consumption
behavior in grocery shopping, as well as designing personalized
NBR models that are able to effectively model this behavior.

In this paper, we focus on the following two research questions
as a step towards this direction:
RQ1: What are the characteristics of repeat consumption behavior

in the grocery shopping domain?
RQ2: How can we design a NBR model that takes the personal

repeat behavior of users into account?
In Section 4, we address RQ1 through an empirical study of six
grocery shopping datasets. We then propose ReCANet in Section 5,
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a personalized next basket recommender that models the repeat
consumption behavior effectively.

3 RELATEDWORK
Next basket recommendation. There is growing interest in re-
search into e-commerce in the information retrieval (IR) commu-
nity [27]. As one of the core recommendation tasks in e-commerce,
the NBR task has gained considerable attention in the recent years,
where many studies focus on learning representations for sequence
of baskets with neural networks. Yu et al. [30] use recurrent layers
and inspired by word2vec in natural language processing, Wan et al.
[28] introduce triple2vec for NBR. Correlations between items in
baskets are used to recommend more coherent baskets in [14]. An
encoder-decoder architecture using recurrent layers is proposed
in [12]. Inspired by the transformer architecture, Sun et al. [26]
leverage multi-head attention to learn a representation for a se-
quence of sets. Yu et al. [31] build a co-occurrence graph for items
and use graph convolutions to learn item relationships in baskets. A
contrastive learning framework is introduced in [20] to denoise bas-
ket generation by considering only the relevant items in the history.
The focus in these works is on modeling item relations in baskets;
personal preferences of users are considered only implicitly.

In another line of work, Hu et al. [13] propose TIFU-KNN, a near-
est neighbor-based model for NBR that directly models the personal
history of users. The model is shown to perform superior to strong
neural network-based baselines designed for the task, demonstrat-
ing the importance of repeat behavior, i.e., recommending items that
a user has purchased before. Similarly, Faggioli et al. [9] propose
UP-CF@r, a simple model that combines the personal popularity
with collaborative filtering, leading to strong performance for NBR.
A recent survey on NBR models demonstrates the effectiveness
of TIFU-KNN and UP-CF@r compared to more complex neural
models [16]. While these models consider the frequency and the
recency of items bought in the history, repurchasing patterns of
items are not reflected in these models.

In this paper, we propose a neural architecture that learns from
the personal consumption patterns of users and recommends from
the previously purchased items.
Understanding repeat behavior. People are creatures of habit [1,
19]. The tendency to repeat behavior has been uncovered in many
different domains, from revisiting places to re-listening to the same
songs [1, 4]. Reiter-Haas et al. [22] adopt a psychological theory of
human cognition that models the operations of human memory for
music re-listening prediction. Chen et al. [6] derive four generic
features that influence people’s short-term reconsumption behav-
iors independent of domain and predict whether or not a user will
perform a reconsumption at a specific time.

Repeat behavior has also been studied in the context of recom-
mendation. Rappaz et al. [21] show that carefully modeling repeat
consumption plays a significant role in achieving state-of-the-art
recommendation performance on a video live-streaming platform.
Repeat purchase recommendations on the Amazon.com website
lead to an over 7% increase in product click through rate on its
personalized recommendations page [5]. Ren et al. [23] propose
a model with an encoder-decoder architecture for session-based
recommendation, where the encoder has a separate component for

modeling repeat consumption. Finally, Wang et al. [29] combine
collaborative filtering with temporal point processes to recommend
novel items and consumed items in a sequential recommendation
setting.

What we add to this literature is a next basket recommendation
model that focuses on recommending items from the users’ past
consumption history in the grocery shopping domain.

4 EMPIRICAL STUDY
In this section, we study the characteristics of repeat consumption
behavior in grocery shopping. We describe six datasets that con-
tain transaction data from online and physical grocery stores. We
then analyze the repeat behavior across users, baskets, and items.
We conclude this section by establishing an upper bound on the
predictive performance for repeat-focused recommendation.

4.1 Dataset description
We use six grocery shopping datasets in this paper. The datasets are
described below and their statistics are summarized in Table 1. We
leverage three types of datasets: “online” and “offline” refer to online
shops and physical stores, respectively. “Multi-channel” is the case
where users purchase goods from both online and offline shopping
channels. Among them, three are publicly available: Dunnhumby,1
ValuedShopper,2 and Instacart.3 We further use three proprietary
datasets from a large food retailer in Europe, namely X-online,
X-offline, and X-multi-channel.

All datasets contain transactions: which items are bought by
which user at which time. All items bought in the same transaction
are treated as a basket. In all datasets, we remove users who have
less than three baskets and items that occur in less than five baskets
in total. For every user, we sort the baskets by time. The last basket
of every user is reserved for testing or validation, while the rest
are treated as the training data. Table 1 shows the statistics for the
training data after preprocessing.

“Avg. item per user” shows the number of unique items that a
user has interacted with, averaged over all users. “Personal item
ratio (%)” is the average number of items per user divided by the
total number of items in the dataset, in percentage. “Avg. repeat
ratio” shows the fraction of items in the last training basket of the
users that have already appeared in their past, averaged over users.
“Avg. explore ratio” shows the opposite, the fraction of new items.

The datasets vary in different aspects. In terms of history per
user, Dunnhumby and ValuedShopper are very rich, with more
than a hundred baskets per user on average. Instacart, X-offline and
X-multi-channel have much less history for users, ranging from
13 to 16 basket per user on average, and X-online is scarce with
only 6 basket per user on average. The number of users varies
across datasets as well, with Instacart being the largest with 197K
users and Dunnhumby being the smallest with 2K users. The basket
size is similar for all datasets, except X-online and X-multi-channel
which have larger basket sizes than the rest. The total number of
items does not vary a lot across datasets, ranging from 13K to 47K.

1https://www.dunnhumby.com/careers/engineering/sourcefiles
2https://www.kaggle.com/c/acquire-valued-shoppers-challenge/overview
3https://www.kaggle.com/c/instacart-market-basket-analysis

https://www.dunnhumby.com/careers/engineering/sourcefiles
https://www.kaggle.com/c/acquire-valued-shoppers-challenge/overview
https://www.kaggle.com/c/instacart-market-basket-analysis
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Table 1: Dataset statistics after preprocessing.

Type Dataset Users Items Baskets Avg. item
per basket

Avg. basket
per user

Avg. item
per user

Personal
item ratio (%)

Avg. repeat
ratio

Avg. explore
ratio

Online Instacart 197,523 47,389 3,122,453 10.08 16 65 0.14 0.60 0.40
X-online 55,528 18,570 360,672 41.84 6 161 0.87 0.58 0.42

Offline
Dunnhumby 2,483 36,963 270,416 9.15 109 524 1.42 0.49 0.51
ValuedShopper 9,601 13,271 1,068,285 8.87 111 371 2.80 0.71 0.29
X-offline 62,789 23,379 791,971 11.15 13 96 0.41 0.36 0.64

Multi-channel X-multi-channel 94,912 24,693 1,286,689 23.13 14 197 0.80 0.46 0.54

Figure 1: Distribution of repeat ratio in the baskets of users
for all datasets.

The average repeat ratio differs between datasets, with Valued-
Shopper having the highest and X-offline having the lowest values.
However, even the lowest repeat ratio is over 36%. Personal item
ratio is less than 3% for all datasets, which shows that from all of
the items that are present in the inventory, every individual user is
only concerned with a very small fraction of them. Interestingly,
this is also the case for the datasets with a rich history for users,
such as Dunnhumby and ValuedShopper: even when a user’s pur-
chase history covers a long period, the number of unique items
they interact with does not grow that much.

4.2 Characteristics of repeat consumption
In this section, we study the repeat consumption behavior in the
grocery shopping datasets introduced above. We aim to gain in-
sights that show what a recommendation model should focus on
when using user and item data. In this section, we only consider
the training baskets.
Repeat ratio across baskets. Repeat ratio in a basket is defined as
the fraction of items in that basket that have already been purchased
by the same user in the previous baskets. We study the repeat ratio
in users’ baskets to understand the stability of repeat consumption
across time. Specifically, we are interested in analyzing how the
repeat ratio changes as more baskets are added to the history of a
user. For each user, we distribute their baskets uniformly in 10 bins,
where the smaller bin numbers correspond to the earliest baskets in
the user’s history. Given 𝐵𝑢𝑡 as a basket in user 𝑢’s history, where 𝑡
indicates the index in the history sequence and𝑛 is the total number
of 𝑢’s baskets, the bin number for 𝐵𝑢𝑡 is defined as ⌈ 𝑡

𝑏𝑙𝑢
⌉, where 𝑏𝑙𝑢

corresponds to the bin length for 𝑢, defined as ⌈ 𝑛10 ⌉.
Figure 1 shows the distribution of the averaged repeat ratio for

each bin across datasets. As expected, the repeat ratio grows asmore
baskets are added to the history. For the Instacart, Dunnhumby

Figure 2: Cumulative distribution of repeat ratio in the last
basket of users (Left) and repetition probability of items
(Right) in all datasets.

and ValuedShopper datasets, we see a jump at the start of the
history. The jump at the start shows that after the first baskets
of the user, when sufficient history has been gathered, the repeat
ratio stabilizes to some extent. That is, when users have purchased
goods for some time, their history is rich enough for a repeat-
based recommendation. On the X-datasets, the repeat ratio is still
increasing and has not reached the plateau point yet. This might be
the result of the minimum preprocessing and preselection of users
that we performed when creating these datasets, in contrast to the
ones that are made public by others.

The repeat ratio reaches its highest value in the final baskets
of the users. This means that the last baskets of the users in the
history contain more repeat items than the earlier ones. This shows
the importance of considering the recency: the next basket we aim
to predict is closer to the last baskets of the users, in terms of repeat
ratio, than to the early baskets.
Repeat ratio across users. To analyze the repeat ratio across users,
we consider the repeat ratio in their last basket in the training data,
which is the temporally closest one to the future basket we aim to
predict. The cumulative distribution of repeat ratio in the last basket
of training data is shown in Figure 2 (Left). The distributions differ
across datasets. On the Instacart, Dunnhumby and ValuedShopper
datasets, 20 to 25 percent of users have a repeat ratio of 1: their
last basket is entirely composed of items that they have already
purchased before. On the ValuedShopper dataset, half of the users
have a repeat ratio of more than 0.75, and for only 20 percent of the
users the repeat ratio is less than 0.50. Instacart follows the same
trend, with slightly lower values for the repeat ratio. On the other
hand, in the X-offline and Dunnhumby datasets, around 20 percent
of the users have a repeat ratio of zero: these are the users who will
not benefit from repeat-based recommendations. This percentage
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is less than 10 for the other datasets. X-online has the smoothest
distribution, with no long tail on either side of the spectrum.

Overall, we observe that not all users benefit to the same degree
from a personalized recommendation, which is expected: users
differ in terms of amount of history that we have for them, and they
differ in their tendency for repeat consumption. However, even for
the X-offline dataset as the most challenging dataset, over 30% of
the last basket can be predicted based on the history, for more than
50% of the users.
Repeat ratio across items. So far, we have analyzed the repeat
behavior from the users’ perspective and across baskets. Another
aspect to consider for repeat behavior is the item dimension. Items
differ in their tendency to be repurchased. We define the item rep-
etition probability as the number of users who have repurchased
the item (a.k.a. purchased the item more than once) divided by the
number of users who have purchased the item only once.

Figure 2 (Right) shows the cumulative distribution of the prob-
ability of an item being repurchased for all items across datasets.
Unlike the analysis on baskets and users, where the repeat ratio
varied a lot across datasets, we observe very similar distributions
for items. On all datasets, less than 10% of the items have a repeti-
tion probability of less than 0.5. The median ranges between 0.7 to
0.9, which means that most of the items in the grocery shopping
datasets will be repurchased with a high probability.

4.3 Upper bound on predictive performance for
personalized next basket recommendation

Our study in Section 4.2 shows that the users’ repeat behavior
becomes more dominant as time passes. Furthermore, while being
different for different users, repeat items account for a considerable
fraction of items in baskets even when the average repeat ratio is
low. Moreover, most of the items in grocery shopping datasets are
repurchased frequently. In this section, we analyze how the repeat
consumption behavior relates to the next basket recommendation
problem. To this end, we consider a personal NBR model that only
focuses on items that a user has purchased before. That means that
instead of ranking all of the items in the dataset, the model only
assigns scores to the users’ previously purchased items.

What is the maximum performance of a personal NBR model?
We design an oracle personal NBR model that achieves this per-
formance as follows: given the items purchased in the history
𝐵𝑢 = [𝐵𝑢1 , 𝐵

𝑢
2 , . . . , 𝐵

𝑢
𝑛] of user 𝑢, the oracle recommends the ones

that occur in 𝐵𝑢
𝑛+1. Table 2 shows the performance of the oracle

model on different datasets, in terms of Recall@|𝐵 | and nDCG@|𝐵 |,
where |𝐵 | is the size of the target basket 𝐵𝑢

𝑛+1. Recall@|𝐵 | measures
the fraction of items in the target basket that are present in the
top |𝐵 | items, and nDCG measures how high in the top |𝐵 | list the
relevant items are ranked. Repeat items, which account for less than
3% of all items in all datasets, are responsible for 38 to 62% of the
oracle performance in NBR. The remaining 97% of items contribute
to the oracle performance in NBR similarly: they account for the
remaining 38 to 62% of performance. Averaged over all datasets, 54%
of the oracle performance in NBR in terms of Recall@|𝐵 | comes
from only 1% of items! This indicates the importance of the re-
peat items, and the potential of a personalized recommendation

Table 2: Performance of the oracle personal NBR model.

Type Dataset Recall@|𝐵 | nDCG@|𝐵 |

Online Instacart 0.6087 0.6945
X-online 0.6214 0.7236

Offline
Dunnhumby 0.4488 0.5331
ValuedShopper 0.7168 0.7815
X-offline 0.3811 0.4843

Multi-channel X-multi-channel 0.4959 0.6055

model that is focused on those. Next, we introduce our proposed
recommendation model that builds on these insights.

5 A PERSONALIZED NEXT BASKET
RECOMMENDATION MODEL

Based on insights from our empirical study, we design a network
that is focused on repeat items and that models the personal con-
sumption patterns in a user’s history. We introduce ReCANet, a
repeat consumption-aware neural network.

5.1 Architecture overview
The goal of the personalized NBR task is to decide which of the
items that a user consumed in the past will appear in the next
basket. We model it as a binary classification task, where the labels
“positive” and “negative” correspond to an item being present in the
target basket or not, respectively.

We design a neural model for this problem, whose architecture
is shown in Fig. 3. The intuition is that the repurchase of an item is
predictable from the past consumption pattern of the item by this
user, other users, and other items. To model this, the network takes
three inputs: item id 𝑥 , user id 𝑢, and history vector with the length
of window size𝑤 , corresponding to the consumption pattern of 𝑥
by𝑢. Formally, given user𝑢, for every 𝑥 ∈ 𝑋𝑢 where𝑋𝑢 is the set of
all items user 𝑢 has purchased in their history, ReCANet produces
𝑝𝑢𝑥 , which is the probability of item 𝑥 being in the next basket of
𝑢. At the first layer, item id and user id are embedded separately,
concatenated, and fed to a feed-forward layer to create a user-item
representation. The combination of the user-item representation
and the history vector is then fed to a stack of LSTM layers, which
models the temporal consumption pattern of item 𝑥 by user 𝑢. The
output of the last LSTM layer is the input for a stack of feed-forward
layers, with a sigmoid activation at the last layer which generates
the probability of item 𝑥 appearing in the target basket.

5.2 Architecture details
The goal of ReCANet is to predict the probability of an item appear-
ing in the next basket of a user. As explained above, to model this,
ReCANet utilizes different components, which we will now discuss
in detail.
Inputs. The network takes three inputs: (1) An item id 𝑥 , which is
a unique identifier for each item 𝑥 ∈ 𝑋 ; (2) A user id 𝑢, similarly a
unique identifier for each user 𝑢 ∈ 𝑈 ; (3) A history vector ®ℎ ∈ R𝑤 ,
where window size𝑤 is a hyper-parameter of our model.
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User embedding

Non-linear feed-forward layer 

User id Item id History vector

Probability of item  being  
in the next basket of user  

 

Item embedding

User-item representation learning Consumption pattern learning
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Figure 3: Overview of ReCANet’s architecture.

The history vector ®ℎ is defined in a way to reflect the consump-
tion history of item 𝑥 by user𝑢. As we aim to predict the occurrence
of 𝑥 in basket 𝐵𝑢

𝑛+1, we consider the last𝑤 baskets in [𝐵1, . . . , 𝐵𝑛]
that contain 𝑥 . [𝑏1, 𝑏2, . . . , 𝑏𝑤] denote the indices in the basket his-
tory sequence, that is 1 ≤ 𝑏𝑖 ≤ 𝑛. For 0 ≤ 𝑖 ≤ 𝑤 − 1, the 𝑖-th
element in ®ℎ is equal to 𝑏𝑖+1 − 𝑏𝑖 . For 𝑖 = 𝑤 , the 𝑖-th element in ®ℎ is
equal to (𝑛 + 1) − 𝑏𝑤 . If the number of baskets that contain 𝑥 are
less than𝑤 , the corresponding elements in ®ℎ are filled with zero.

As an example, assume that user𝑢 has 99 baskets in their history,
and we want to predict whether item 𝑥 appears in the 100th basket.
We know that 𝑥 has appeared in baskets {15,29,45,78,95,97,99}. Given
a window size of𝑤 = 5, vector ®ℎ is equal to [78 − 45, 95 − 78, 97 −
95, 99 − 97, 100 − 99] = [33, 17, 2, 2, 1].

The history vector ®ℎ has three important properties: (1) it con-
tains the frequency of consuming the item, as the number of non-
zero elements in the vector are the representative of the purchase
frequency; (2) it contains the recency information, since it is a
sequence and the index in the sequence indicates how far in the
history the item has been consumed; and (3) it contains informa-
tion about the consumption pattern, as the values in the vector
demonstrate the gaps between consecutive purchases of the item.
User item representation learning. Our goal is to predict the
appearance of item 𝑥 in the next basket of user 𝑢. As a result, we
aim to model the user-item relationship. We separately embed users
and items, and then combine the embeddings. Assume𝑊𝑖 ∈ R |𝐼 |×𝑑𝑖
is the trainable embedding matrix for items and𝑊𝑢 ∈ R |𝑈 |×𝑑𝑢 is
the trainable embedding matrix for users, where 𝑑𝑖 and 𝑑𝑢 are the
embedding dimensions. Given 𝑥 and 𝑢 as item and user identifiers,
the corresponding rows in the embedding matrices denote the item
embedding 𝑒𝑥 ∈ R𝑑𝑖 and user embedding 𝑒𝑢 ∈ R𝑑𝑢 , respectively.
These embeddings allow the network to learn item and user rep-
resentations that keep similar items and similar users close in the
embedding space. The final user-item representation 𝑒𝑢𝑖 ∈ R𝑚 is

obtained as follows:

𝑒𝑢𝑖 = ReLU((𝑒𝑢 ⊕ 𝑒𝑖 ) ·𝑊1 + 𝑏1),

where𝑊1 ∈ R(𝑑𝑖+𝑑𝑢 )×𝑚 and 𝑏1 ∈ R𝑚 are trainable parameters,
ReLU is the activation function, and𝑚 is a hyper-parameter of our
model that denotes the hidden layer size, i.e., the model size. ⊕
denotes concatenation.
Consumption pattern learning. The history vector ®ℎ ∈ R𝑤
contains the consumption pattern of item 𝑥 by user 𝑢. In order
to predict the repurchase probability, we first need to combine
the user-item representation with the history vector. To this end,
we replicate 𝑒𝑢𝑖 𝑤 times to obtain 𝑒𝑤

𝑢𝑖
∈ R𝑤×𝑚 . The combination

representation 𝑐𝑢𝑖 ∈ R𝑤×𝑚 is the computed as follows:

𝑐𝑢𝑖 = ReLU((𝑒𝑤𝑢𝑖 ⊕𝑟 ®ℎ) ·𝑊2 + 𝑏2), (1)

where ⊕𝑟 denotes row-wise concatenation; that is, each element of ®ℎ
is concatenated with the corresponding row in 𝑒𝑤

𝑢𝑖
(i.e., (𝑒𝑤

𝑢𝑖
⊕𝑟 ®ℎ) ∈

R𝑤×(𝑚+1) ).𝑊2 ∈ R(𝑚+1)×𝑚 and 𝑏2 ∈ R𝑚 are trainable parameters.
𝑐𝑢𝑖 is a sequence of length𝑤 that contains information from both
the user-item representation and the consumption history vector.
To model sequential information, we use a stack of two LSTM layers.
Formally:

𝑓𝑗𝑡 = Sigmoid(𝑊𝑓𝑗 𝑥𝑡 +𝑈𝑓𝑗ℎ𝑡−1𝑗 + 𝑏 𝑓𝑗 )
𝑖 𝑗𝑡 = Sigmoid(𝑊𝑖 𝑗 𝑥𝑡 +𝑈𝑖 𝑗ℎ𝑡−1𝑗 + 𝑏𝑖 𝑗 )
𝑜 𝑗𝑡 = Sigmoid(𝑊𝑜 𝑗

𝑥𝑡 +𝑈𝑜 𝑗
ℎ𝑡−1𝑗 + 𝑏𝑜 𝑗

)
𝑐 𝑗𝑡 = Tanh(𝑊𝑐 𝑗 𝑥𝑡 +𝑈𝑐 𝑗ℎ𝑡−1𝑗 + 𝑏𝑐 𝑗 )
𝑐 𝑗𝑡 = 𝑓𝑗𝑡 · 𝑐 𝑗𝑡−1 + 𝑖 𝑗𝑡 · 𝑐 𝑗𝑡
ℎ 𝑗𝑡 = 𝑜 𝑗𝑡 · Tanh(𝑐 𝑗𝑡 ),

(2)

where 𝑗 ∈ {1, 2} denotes the first and the second LSTM layer,
respectively; 1 ≤ 𝑡 ≤ 𝑤 indexes the time step; 𝑥𝑡 ∈ R𝑚 denotes
the input of the LSTM, which is equal to the corresponding time
stamp in 𝑐𝑢𝑖 for the first layer, and the corresponding time stamp
in cell state vector of the first layer (i.e., 𝑐1𝑡 ) for the second layer.
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are weight matrices and
bias vector parameters that will be learned during training. The
hidden state of the second layer, i.e., ℎ𝑤2 ∈ R𝑚 , is used as the input
for the prediction layers.
Prediction.We apply a two-layer feed-forward network with ReLU
activation in between and a sigmoid activation at the end to produce
the probability of item 𝑥 appearing in the next basket of user 𝑢,
with trainable parameters𝑊𝑜1 ,𝑊𝑜2 ∈ R𝑚×𝑚 and 𝑏𝑜1 , 𝑏𝑜2 ∈ R𝑚 :

𝑝𝑢𝑥 = Sigmoid(ReLU(ℎ𝑤2 ·𝑊𝑜1 + 𝑏𝑜1 ) ·𝑊𝑜2 + 𝑏𝑜2 ). (3)

5.3 Learning process
Training.We use the training baskets for creating training samples.
For each user, we consider their last 𝐿 baskets, where 𝐿 is a parame-
ter than can be set per user or per dataset. We set it per dataset. The
intuition behind truncating the baskets is two-fold: (1) as shown
in our empirical study, the last baskets of users are more similar
to their upcoming basket in terms of repeat consumption behavior
than their earlier baskets; and (2) the number of baskets per user
varies, and this may result in unfair presence of users in training
data. Limiting the number of baskets per user helps to mitigate
this problem. For each basket 𝐵𝑡 in the last 𝐿 baskets of a user, the
items that have been purchased in the previous 𝑡 − 1 baskets are the
candidates for recommendation. Each item along with the user and
its consumption history make up one training sample. To create
labels for the binary classification task, the items that occur in 𝐵𝑡
are the positive samples; the rest are negative ones. We use the
binary cross-entropy loss for training the network.
Testing. The last basket of each user is used for testing or validation.
The inputs of the network are generated with the same procedure
as the training phase, where all items in the training baskets of
the user are recommendation candidates. For each user, the items
are then ranked based on the output of the network, and the top-𝑘
items are returned as the predictions for the next basket.

6 EXPERIMENTAL SETUP
We introduce our baselines, data split scheme, evaluation metrics,
parameter setting and implementation details.
Baselines. In addition to two simple baselines (P-POP, GP-POP),
we compare ReCANet with two neighborhood-based models (TIFU-
KNN, UP-CF@r), and one neural network (DNNTSP). These models
have been shown to outperform other methods in NBR for grocery
shopping and achieve state-of-the-art performance [16]:4
• P-POP: Recommends the most popular items in the user history,
sorted by frequency of purchases. In NBR, P-POP is considered
one of the strongest baselines.

• GP-POP: First uses P-POP to fill the predicted basket. If there are
remaining empty slots (a.k.a., the basket size is larger than the
number of items in the user’s history), they will be filled with
the most popular items in total.

• TIFU-KNN [13]: A nearest neighbor-based model that has been
shown to outperform deep recurrent neural networks. The model
relies on the similarity of the target user with other users and
the history of the target user.

4While a large number of NBR methods have been proposed in recent years, these are
all outperformed by the methods that we have selected as baselines; see [13, 16].

• UP-CF@r [9]: A collaborative filtering-based approach based on
user-wise item popularity which also considers the recency of
purchases.

• DNNTSP [31]: A deep neural network model that learns item re-
lationships by constructing a co-occurrence graph and performs
graph convolutions on the dynamic relationship graphs.

Data split.We follow the same procedure as Faggioli et al. [9]. The
training data is composed of all baskets but the last one of all users.
We randomly select 50% of the last baskets for the validation set,
and the remaining ones for the test set. The validation set is used
to select the best hyper-parameters of the methods, and the final
results are reported on the test set.
Evaluation metrics. Following [13, 31], we use Recall@𝑘 and
nDCG@𝑘 for evaluation. Recall is widely used in NBR, measuring
how many of the items in the target basket are present in the pre-
dicted items for the next basket. nDCG is a ranking-based measure
that takes into account the order of elements. Both measures are
calculated across the predicted next basket for all test users. We
report the metrics for 𝑘 ∈ {10, |𝐵 |}, where |𝐵 | stands for the length
of the test basket 𝐵. We use 10 because there are limits for show-
ing recommendations to users. We use |𝐵 | to be able to compare
performance across varying basket sizes and different datasets.
Parameter settings.We perform a grid search to find the hyper
parameters that result in the best performance on the validation
set, and use those for testing. We set the model size𝑚 to 64, sweep
the embedding sizes 𝑑𝑢 and 𝑑𝑖 in {16, 32, 64, 128} and the window
size𝑤 in {5, 15, 25, 35, 45}. The hyper-parameters of the baselines
are either tuned or set according to instructions in the papers if
available. For TIFU-KNNwe use the best parameters reported in the
original paper [13] for the Instacart and ValuedShopper datasets.
For UP-CF@r, we use the reported parameters on the Instacart and
Dunnhumby dataset [9]. We tune these models on the rest of the
datasets. DNNTSP is used with the parameter setting stated in [31]
for all datasets, as there are no instructions for tuning.
Implementation details. ReCANet is implemented using the
Keras framework with TensorFlow as backend. We use mini-batch
stochastic gradient descent (SGD) together with the Adam opti-
mizer to train the models. We set the batch size to 2048, and stop
training when the loss on the validation set converges. To remove
the random initialization effect, we run our model 10 times and
report the average results. It is worth mentioning that the standard
deviation is less than 0.001 in all cases. For users who have more
than 100 baskets in the training data, we only keep their last 100
baskets for creating the training samples (𝐿 = 100), except on the
ValuedShopper dataset, where we set the threshold to 50. We make
our code public to facilitate reproducibility and follow up research.5

7 RESULTS AND DISCUSSION
7.1 Overall performance
Table 3 (left-hand side) shows the results of ReCANet alongside
state-of-the-art baselines on all datasets. We observe that the per-
formance of P-Pop and GP-Pop is identical in most cases, and in
cases where a difference is observed (all metrics on Instacart and

5https://github.com/mzhariann/recanet

https://github.com/mzhariann/recanet
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Table 3: Results of ReCANet compared against the baselines (left-hand side), as well as ablation study results (right-hand side).
Boldface and underline indicate the best and the second best performing model among NBR models, respectively. Significant
improvements of ReCANet over the best baseline results are marked with † (paired t-test, p < 0.05). ▲% shows the improvements
of ReCANet against the best baseline. ▼% shows the drop in performance compared to ReCANet.

D
at
as
et Baselines Ours

Metric P-Pop GP-Pop TIFU-KNN UP-CF@r DNNTSP ReCANet
(▲%)

w/o user
(▼%)

w/o item
(▼%)

w/o user and
item (▼%)

w/o history
(▼%)

In
st
ac
ar
t Recall@10 0.3222 0.3230 0.3434 0.3400 0.3427 0.3592† (4.6) 0.3585 (0.2) 0.3507 (2.4) 0.3506 (2.4) 0.3135 (12.7)

nDCG@10 0.3131 0.3134 0.3332 0.3319 0.3336 0.3502† (5.0) 0.3496 (0.2) 0.3406 (2.7) 0.3407 (2.7) 0.2976 (15.0)
Recall@|𝐵 | 0.2901 0.2904 0.3115 0.3077 0.3079 0.3295† (5.8) 0.3291 (0.1) 0.3203 (2.8) 0.3202 (2.8) 0.2807 (14.8)
nDCG@|𝐵 | 0.3299 0.3301 0.3521 0.3479 0.3480 0.3717† (5.6) 0.3712 (0.1) 0.3613 (2.8) 0.3612 (2.8) 0.3172 (14.7)

X-
on

lin
e Recall@10 0.1603 0.1603 0.1443 0.1619 0.1601 0.1645† (1.6) 0.1632 (0.8) 0.1609 (2.2) 0.1598 (2.9) 0.1155 (29.8)

nDCG@10 0.6283 0.6283 0.5771 0.6361 0.6334 0.6462† (1.6) 0.6409 (0.8) 0.6285 (2.7) 0.6238 (3.5) 0.4604 (28.8)
Recall@|𝐵 | 0.3613 0.3613 0.3009 0.3680 0.3679 0.3735† (1.5) 0.3712 (0.6) 0.3637 (2.6) 0.3626 (2.9) 0.2997 (19.8)
nDCG@|𝐵 | 0.4323 0.4323 0.3731 0.4396 0.4391 0.4467† (1.6) 0.4436 (0.7) 0.4342 (2.8) 0.4323 (3.2) 0.3441 (23.0)

D
un

nh
um

by Recall@10 0.1315 0.1315 0.1485 0.1421 0.0892 0.1621† (9.2) 0.1615 (0.4) 0.1544 (4.8) 0.1526 (5.9) 0.1330 (18.0)
nDCG@10 0.1267 0.1267 0.1379 0.1364 0.0825 0.1489† (8.0) 0.1488 (0.1) 0.1447 (2.8) 0.1417 (4.8) 0.1206 (19.0)
Recall@|𝐵 | 0.1048 0.1048 0.1244 0.1173 0.0576 0.1310† (5.3) 0.1337 (-2.1) 0.1226 (6.4) 0.1250 (4.6) 0.1067 (18.5)
nDCG@|𝐵 | 0.1216 0.1216 0.1423 0.1346 0.0685 0.1503† (5.6) 0.1529 (-1.7) 0.1412 (6.1) 0.1428 (5.0) 0.1230 (18.2)

Va
lu
ed
-

Sh
op

pe
r Recall@10 0.2030 0.2030 0.2194 0.2161 0.1927 0.2311† (5.3) 0.2309 (0.1) 0.2264 (2.0) 0.2257 (2.3) 0.2007 (13.2)

nDCG@10 0.2006 0.2006 0.2142 0.2096 0.1954 0.2228† (4.0) 0.2221 (0.3) 0.2209 (0.9) 0.2193 (1.6) 0.1949 (12.5)
Recall@|𝐵 | 0.1735 0.1735 0.1853 0.1822 0.1647 0.1958† (5.7) 0.1966 (-0.4) 0.1933 (1.3) 0.1925 (1.7) 0.1650 (15.7)
nDCG@|𝐵 | 0.2032 0.2032 0.2174 0.2134 0.1929 0.2282† (5.0) 0.2287 (-0.2) 0.2264 (0.8) 0.2244 (1.7) 0.1958 (14.2)

X-
offl

in
e Recall@10 0.1585 0.1587 0.1136 0.1644 0.1298 0.1704† (3.6) 0.1692 (0.7) 0.1597 (6.3) 0.1598 (6.2) 0.1342 (21.2)

nDCG@10 0.2006 0.2007 0.1345 0.2055 0.1964 0.2120† (3.2) 0.2113 (0.3) 0.2009 (5.2) 0.2006 (5.4) 0.1575 (25.7)
Recall@|𝐵 | 0.1569 0.1570 0.1090 0.1619 0.1593 0.1675† (3.5) 0.1669 (0.4) 0.1579 (5.7) 0.1582 (5.6) 0.1280 (23.6)
nDCG@|𝐵 | 0.1882 0.1883 0.1282 0.1933 0.1899 0.1998† (3.4) 0.1990 (0.4) 0.1895 (5.2) 0.1893 (5.3) 0.1496 (25.1)

X-
m
ul
ti-

ch
an
ne
l Recall@10 0.1170 0.1170 0.0797 0.1181 0.1064 0.1203† (1.9) 0.1203 (0.0) 0.1166 (3.1) 0.1174 (2.4) 0.0826 (31.3)

nDCG@10 0.3628 0.3628 0.2375 0.3673 0.3607 0.3648 (-0.7) 0.3683 (-1.0) 0.3509 (3.8) 0.3548 (2.7) 0.2587 (29.1)
Recall@|𝐵 | 0.2132 0.2133 0.1634 0.2172 0.2152 0.2214† (1.9) 0.2218 (-0.2) 0.2128 (3.9) 0.2144 (3.2) 0.1685 (23.9)
nDCG@|𝐵 | 0.2574 0.2575 0.1848 0.2616 0.2582 0.2642† (1.0) 0.2656 (-0.5) 0.2541 (3.8) 0.2564 (3.0) 0.1954 (26.0)

X-offline, Recall@|𝐵 | and ndCG@|𝐵 | on X-multi-channel) GP-Pop
outperforms P-Pop with a very small margin that is not significant.
This means that given 10 and |𝐵 | as cut-off points for the recom-
mendation list, users have enough items in their history that will
surpass the threshold. However, the differences will likely be more
substantial if larger thresholds are used, as suggested in [16].

The performance of P-Pop is the lowest in most cases, but it
is in the same range as state-of-the-art methods. This result once
again confirms the importance of personal history in next basket
recommendation. P-Pop as the simplest method for NBR should
always serve as a baseline when a new model is proposed. This has
not always been the case; in [20], for example, the authors do not
compare their proposed method with P-Pop, and it has later been
shown that P-Pop outperforms it in most cases [16].

DNNTSP is not the best baseline for any of the datasets and met-
rics, except for nDCG@10 on Instacart. The performance in all cases
is in the same range with other methods, except on Dunnhumby,
where there is a large gap between DNNTSP’s performance and the
others. We suspect that this is a result of the extremely low number
of users in Dunnhumby, compared to the other datasets. DNNTSP

has been tested on datasets with 10k to 100k users in the origi-
nal paper [31], and additional measures such as hyper-parameter
tuning might be required for a dataset with small number of users.

TIFU-KNN and UP-CF@r are the best performing baselines on all
datasets and metrics, except for one case (nDCG@10 on Instacart).
Both methods are nearest neighbor-based, and show superior per-
formance to the state-of-the-art neural approach DNNTSP. These
results are in line with findings in previous work [13, 16]; modeling
the personal history is at least as effective as basket representa-
tion learning, if not more. The performance of UP-CF@r is more
stable across datasets than TIFU-KNN; in cases where it is not the
best baseline (Instacart, Dunnhumby, ValuedShopper) its perfor-
mance does not differ significantly from TIFU-KNN. On the other
hand, TIFU-KNN’s performance drops on X datasets and even falls
short of P-Pop. We suspect that this a result of non-optimal hyper-
parameters on these datasets. The ranges for tuning the parameters
given in the original paper are for Dunnhumby (but another version
of the dataset), Instacart and ValuedShopper [13].
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Figure 4: Performance of ReCANet in terms of nDCG@|𝐵 | based on (top) the number of baskets per user, (center) the number of
unique items per user, and (bottom) the average repeat ratio in users’ history. Bars show the distribution of users. Performance
correlates with the average repeat ratio, but is mostly robust for different basket and unique item sizes.

ReCANet significantly outperforms the best baseline in all data-
sets and across all metrics, except for one case (nDCG@10 on X-
multi-channel), where it performs the same as UP-CF@r. The im-
provements range from 1.0% to 9.2%. X-online and X-multi-channel
are the datasets with the lowest performance gains compared to the
best baseline. These are the datasets with a large average basket size
(42 and 23, compared to around 10 on other datasets). This indicates
that predicting larger baskets is more challenging for ReCANet.
Improving the ranking component of the network could mitigate
this problem, which is left as future work.

7.2 Ablation study
Wedesign an ablation study to investigate the effect of different com-
ponents of ReCANet and compare it with four variations: (1) w/o
user: the user embedding layer is omitted, and the item embed-
ding alone is combined with history vector; (2) w/o item: the item
embedding layer is omitted, and the user embedding alone is com-
bined with history vector; (3) w/o user and item: the user-item
representation learning module is omitted; and (4) w/o history: the
consumption pattern learning module is omitted.

Table 3 (right-hand side) shows the results. ReCANet w/o history
has the lowest performance compared to the other versions, across
all metrics and datasets. Omitting the consumption pattern learn-
ing module results in drops in performance ranging from 12.7%
to 31.3%. This indicates that the history vector contains valuable
information for next basket predication, and the designed module
is effective in utilizing this information. The smallest effect on per-
formance comes from the user embedding layer, as illustrated in
the results of ReCANet w/o user. The drops in performance are
small, ranging from 0% to 0.8%. In some cases ReCANet w/o user
even outperforms ReCANet, albeit with small margins. The user
information is implicitly encoded in the model, in the way that we
create the training and test data. That is, the positive and negative
samples come from the personal history of users in the training
data, and the personal items are ranked during testing. This results

in a reduced need for explicitly modeling users via the user embed-
ding layer. Item embeddings have a positive effect on performance
across all metrics and dataset; ReCANet w/o item results in 0.9% to
6.4% drops in performance. Hence, modeling item information is
important for the NBR task. Omitting the user-item representation
learning module all together has a similar effect on performance.
As expected, in cases where user information is not helpful, the
effect is lower than omitting the item embedding alone. In other
cases where user information helps the performance, the effect of
the user-item representation learning is more apparent.

In summary, all components of ReCANet contribute to its perfor-
mance, and are essential to achieve the best overall performance.

7.3 User-level analysis
Table 3 shows the performance of ReCANet averaged over all users.
In this section, we analyze the treatment effect for different groups
of users [24]. We group users in three ways: (1) by the number of
baskets per user, (2) by the number of unique items per user, and
(3) by the average repeat ratio per user. Do different groups of users
benefit from ReCANet in different degrees?

Fig. 4 (top) shows the performance of ReCANet in terms of
nDCG@|𝐵 | w.r.t. the number of baskets per user for each dataset.
The distribution of users based on their number of baskets is also
shown with bars. All datasets are right-skewed; most of the users
have relatively small number of baskets in their history. The perfor-
mance shows no correlation with the number of baskets, and is ro-
bust across users. Sudden drops in performance on the Dunnhumby
and X-offline datasets only appear at the far right side of the distri-
butions, where the number of users is very low.

Fig. 4 (center) shows the performance of ReCANet in terms of
nDCG@|𝐵 | w.r.t. to the number of unique items per user for each
dataset. Similar to the number of baskets, the distribution of users
w.r.t. to the number of unique items has a right-skewed shape, but
it is closer to the normal distribution on X-online, ValuedShopper
and X-multi-channel. The performance is robust w.r.t. the number
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of items on Instacart and X-offline, but there is a drop on Instacart
for a small number of users in the tail. On Dunnhumby, Valued-
Shopper and X-multi-channel, the performance increases with the
increase in the number of items and decreases after a pick around
1500, 200, and 200 items, respectively. When the number of unique
items per user is very small, the performance is low due to the fact
that the user is still exploring; their history is not rich enough for
personalized recommendation. When the number of items passes
the peak point, the performance decreases; for users with many
unique items, the final ranking is more subject to noise. ReCANet
performs better for users with a higher number of unique items, as
it results in a more accurate estimation of the users’ taste.

Fig. 4 (bottom) shows the performance of ReCANet in terms of
nDCG@|𝐵 | w.r.t. to the average repeat ratio in the training bas-
kets per user for each dataset. The distribution of users is rather
close to the normal distribution in all datasets; most of the users
have a medium repeat ratio, with smaller numbers of users with a
very high or very low repeat ratio. In all datasets, performance of
ReCANet has a clear correlation with the repeat ratio; the more a
user tends to repurchase, the bigger benefit they will get from the
personalized recommendations. This also means that the average
repeat ratio can serve as predictor for the expected performance
of ReCANet. In that case, one can decide to explore non-personal
items for recommendation to users with low repeat ratios.

7.4 Parameter sensitivity
We analyze the performance of ReCANet w.r.t. to three hyper-para-
meters: window size𝑤 , user embedding size𝑑𝑢 and item embedding
size 𝑑𝑖 . On all datasets, the performance is most sensitive to the
window size. Small and large window sizes both degrade the per-
formance; 15 and 25 result in the highest performance. This means
that too little history makes it hard for the model the learn the
consumption patterns, and too much history adds noise to the data
that matters most. In contrast, the performance is not sensitive
to the user and embedding size; the performance only changes
marginally (less than 0.1%) when increasing the dimension size
from 16 to 128. This indicates that we can use a small embedding
size, which results in a smaller model size and less training time
without loss of performance.

8 CONCLUSION
In this paper, we have analyzed the repeat consumption behavior in
grocery shopping. We have found that repeat items, i.e., items that
a user has previously purchased, have a high chance of reappear-
ing in users’ future baskets. We have focused on the next basket
recommendation (NBR) problem, and proposed ReCANet, a neural
model for the task that learns from users’ personal consumption
patterns of items. Our experiments show that ReCANet, while fo-
cused on the repeat items that make up a small percentage of the
total items in the inventory, is able to outperform state-of-the-art
NBR models. This means that the repeat consumption behavior in
grocery shopping is a strong indicator for future purchases, and ex-
plicitly modeling it leads to improvements in the recommendation
performance.

Our experiments further show that not all users benefit to the
same degree from the repurchase recommendations; the recom-
mendation performance correlates with the average repeat ratio in
the previous baskets of the users. In future work, we aim to extend
ReCANet to help such users in discovering new items, while mod-
eling the consumption behavior of repeat items at the same time.
Moreover, while ReCANet significantly outperforms the best base-
lines, there is still a gap between ReCANet’s performance and the
performance of an oracle personalized NBR model. This indicates
that the repeat-focused recommendation task is far from solved and
there is still room for improvement. Currently, item relations in bas-
kets are only considered implicitly and through the training sample
generation procedure in ReCANet. In future work, we aim to add a
basket representation learning component, in the history baskets
modeling phase as well as the final basket generation phase.
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