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ABSTRACT
Users of online shopping platforms typically purchase multiple
items at a time in the form of a shopping basket. Personalized within-
basket recommendation is the task of recommending items to com-
plete an incomplete basket during a shopping session. In contrast to
the related task of session-based recommendation, where the goal
is to complete an ongoing anonymous session, we have access to
the shopping history of the user in within-basket recommendation.
Previous studies have shown the superiority of neighborhood-based
models for session-based recommendation and the importance of
personal history in the grocery shopping domain. But their appli-
cability in within-basket recommendation remains unexplored.

We propose PerNIR, a neighborhood-based model that explic-
itly models the personal history of users for within-basket recom-
mendation in grocery shopping. The main novelty of PerNIR is in
modeling the short-term interests of users, which are represented
by the current basket, as well as their long-term interest, which is
reflected in their purchasing history. In addition to the personal
history, user neighbors are used to capture the collaborative pur-
chase behavior. We evaluate PerNIR on two public and proprietary
datasets. The experimental results show that it outperforms 10 state-
of-the-art competitors with a significant margin, i.e., with gains of
more than 12% in terms of hit rate over the second best performing
approach. Additionally, we showcase an optimized implementation
of our method, which computes recommendations fast enough for
real-world production scenarios.
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1 INTRODUCTION
Recommender systems in retail help users to find the items that
they need from large inventories in different domains [30]. In many
shopping scenarios, such as grocery shopping, users purchase mul-
tiple items in a single transaction, which corresponds to a shopping
basket. Within-basket recommendation is defined as recommend-
ing items for an incomplete shopping basket, which can reduce
the burden on users to explore the inventory proactively, and re-
sult in shorter shopping times [16, 20]. This problem is relevant
in both online and offline shopping. For an online platform, items
can be recommended based on user activity and items that have
previously been added to a basket. In brick-and-mortar grocery
stores, RFID-tagged items and smart shopping carts allow real-time
recommendation of items based on a user’s smart cart [13].

The characteristics of recommendation in grocery shopping have
been studied extensively in a closely related line of work, namely
next basket recommendation [2, 7, 17]. These studies reveal the
importance of the personal purchase history in grocery shopping.
In particular, users shop for grocery items repeatedly and on a reg-
ular basis; grocery items have a short life-time and are repurchased
frequently by the same user. Previous work on within-basket rec-
ommendation mostly focuses on learning a representation for the
incomplete basket using factorization machines [13, 16], product
embeddings [30], or graph neural networks [19, 20]. However, no
prior work considers explicitly modeling personal preferences.

Recent studies show that nearest neighbor methods provide
state-of-the-art performance in different recommendation settings,
such as session-based recommendation [21, 23], next basket recom-
mendation [7, 17], and session-aware recommendation [12]. More-
over, neighborhood-based recommendations are transparent and
explainable [23]. Recent work on real-world recommender systems
show that nearest neighborhood-based models scale to industry
workloads [11]; the training time required for neural approaches
has been found to be at least an order of magnitude larger than
neighbor-based approaches [10].
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We propose PerNIR, a personalized nearest neighbor-based model
for within-basket recommendation that explicitly considers users’
personal preferences (Section 4). PerNIR has two main components:
(i) a personal component that explicitly models the personal prefer-
ence of a user, and (ii) a collaborative component, which leverages
the neighboring users for scoring candidate items. In both compo-
nents, items in the current incomplete basket are used as signals
to find candidate items for recommendation. The main novelty of
PerNIR is that it models the long-term and short-term interests of
users at the same time in the personal component. The personal
component uses the historical purchases to assign scores to items
that the user has previously purchased, and leverages the items
in the current basket as signals for the short-term interests. The
collaborative component calculates how neighboring users would
score the candidate items, given the items in the user’s current bas-
ket. The personal and collaborative item scores are aggregated to
make up the final recommendation scores. Additionally, we provide
an optimized vectorized implementation of our proposed method
in Section 5, which precomputes static parts of our models on a per
user-basis and thereby provides low-latency inference performance.

In Sections 6 and 7, we conduct experiments on two public and
private grocery shopping datasets to evaluate PerNIR. We com-
pare PerNIR against 10 state-of-the-art baselines and find that it
significantly outperforms all, with gains of over 12% in terms of
hit rate over the second best performing approach. We conduct
an extensive ablation study with nine model variations as well as
a hyper-parameter sensitivity experiment. We analyze the perfor-
mance along different dimensions, i.e., characteristics of the users’
historical purchase behavior and the current incomplete basket.
Moreover, we study the inference efficiency of PerNIR to demon-
strate its effectiveness under real-world latency requirements.

2 PROBLEM FORMULATION
The goal of the within-basket recommendation task is to recom-
mend the next item that a user would add to their current in-
complete basket, based on the items that are currently in the bas-
ket and the history of the items that they have purchased in the
past [16, 19, 20]. One of the main use cases for the within-basket
recommendation task is grocery shopping, which is the focus of
this paper. In grocery shopping, users tend to purchase multiple
items at a time, which corresponds to a shopping basket [2, 7].

A basket is a list of items defined as b = [𝑥0, 𝑥1, . . . , 𝑥𝑡 ], where
𝑥𝑖 ∈ 𝐼 denotes an item from a set of items 𝐼 , and 𝑥𝑖 is the 𝑖-th
item that the user has added to the basket b. The sequence B𝑢 =

[b𝑢0 , b
𝑢
1 , . . . , b

𝑢
𝑛] denotes the history of baskets for a user 𝑢 ∈ 𝑈 . b𝑢

𝑖
is the 𝑖-th basket in the history of user 𝑢, and 𝑈 is the set of all
users. The goal is to predict the next item 𝑥𝑡+1 to be added to the
current incomplete basket b𝑢

𝑛+1 = [𝑥0, 𝑥1, . . . , 𝑥𝑡 ]. For the basket
history B𝑢 and the new basket b𝑢

𝑛+1, the recommendation model
assigns a score to all items 𝑥𝑖 ∈ 𝑋 , and the top-𝑛 items are returned
as the candidates for the next item to be added to the basket.

3 RELATEDWORK
Our work is related to several lines of work.
Within-basket recommendation. Although less studied than
other forms and definitions of the recommendation task, there are
a few papers that address the exact same problem as ours in the

literature. As some of the first authors active in this area, Le et al.
[13] propose a basket-sensitive factorization machine, which mod-
els the recommendation as a function of four associations between
a user, a target item, and the items in a basket. Focused on the gro-
cery shopping domain, Wan et al. [30] learn product embeddings
using the co-occurrence of items in baskets and further use the
learned embeddings for in-basket and next basket recommendation.
Graph-based neural networks have also been studied in work asso-
ciated with Walmart Labs, again focused on grocery [19, 20]. More
recently, Li et al. [16] have proposed a deep learning-based model
(DBFM, deep basket-sensitive factorization machine) to address the
task. However, the order of items in a basket is ignored in this work.

Our paper resembles the papers listed in terms of problem defini-
tion, domain, and datasets used. What we add is a highly effective,
low-latency neighborhood-based model with a focus on personal
history for within-basket recommendation in grocery shopping.
Session-based recommendation. A well-studied recommenda-
tion scenario is session-based recommendation (SBR), which refers
to the task of recommending items for the next interactions in
a given ongoing anonymous session. Various neural models have
been proposed for the task [6, 15, 18, 24, 31, 32], as well as neighbor-
hood-basedmodels [5, 9]. Recent studies have revealed that neighbor-
hood-based models, despite their sometimes simple nature, often
perform equally well as, or even outperform, conceptually and
computationally more complex deep neural models [21–23].

We build on successful ideas from neighborhood-based mod-
els in SBR in our work. However, in contrast to SBR, the identity
of the user with an ongoing basket is assumed to be known for
within-basket recommendation, which makes our problem space
and solution different from existing work.
Personalized session-based recommendation. Analogous to
within-basket recommendation, the goal in this scenario is to recom-
mend items for an ongoing session, while the recommender system
is aware of the user identifier (and the corresponding user history).
Neural recommendation models are the dominant approach in this
area, where recurrent neural networks [8, 26, 28, 29], attention
networks [33], and graph neural networks [25, 35] have been pro-
posed. A surprising recent study on personalized session-based
recommender systems has revealed that such neural models are
not better than approaches that do not use users’ personal history,
and extensions of neighborhood-based models proposed for SBR
consistently outperform recent neural techniques [12].

None of these publications consider the grocery shopping do-
main for recommendation, which has been shown to have specific
characteristics, such as the importance of a user’s personal his-
tory [2, 7]. We focus on this domain, and propose a neighborhood-
based model that is designed for within-basket recommendation.
Next basket recommendation. In this scenario, the goal is to
recommend a list of items to a user, based on their history of pre-
viously purchased shopping baskets. This definition is similar to
within-basket recommendation, as the history is in the form of
baskets, and is mostly studied in the grocery shopping domain.
Similar to SBR, neighborhood-based methods [4, 7] and neural
methods [2, 14, 27, 34] have both been examined and show strong
performance in next basket recommendation (NBR) [17]. In within-
basket recommendation, however, the goal is to recommend items
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to complete an incomplete basket, which already contains some
items that can be utilized for recommendation.

In this work, we make use of ideas that have been shown to
be effective in NBR for grocery shopping and adapt them to our
problem setting by using both the personal history and the current
basket for computing the recommendation scores.

4 MODEL
Next, we introduce PerNIR, our personalized neighborhood-based
model for within-basket recommendation in grocery shopping. We
introduce the personal scoring function, the neighborhood-based
scoring, as well as our final scoring function, which combines them.

4.1 Personal scoring function
Recent studies have shown the importance of users’ personal his-
tory in grocery shopping [2, 7, 17]. However, they consider the next
basket recommendation task as their main goal, where there is no
information about a current basket b𝑢

𝑛+1. For simplicity, we use the
notation b𝑐 as the current basket that we aim to recommend items
for as an alias for b𝑢

𝑛+1. We propose the following personal scoring
function 𝑃𝑆𝐹 (𝑥,𝑢, b𝑐 ) to compute the score of a candidate item 𝑥

for the current incomplete basket b𝑐 of user 𝑢:

𝑃𝑆𝐹 (𝑥,𝑢, bc) = 𝛼 · 𝐻𝑆𝐹 (𝑥,𝑢) + (1 − 𝛼) · 𝐵𝑆𝐹 (𝑥,𝑢, bc), (1)

where 𝐻𝑆𝐹 (𝑥,𝑢) is a history-based scoring function that scores
an item 𝑥 based on how the user 𝑢 has consumed it in the past,
regardless of the current basket. 𝐵𝑆𝐹 (𝑥,𝑢, b𝑐 ) is a basket-based
scoring function that considers both the history and the items in
the current basket for assigning a score to 𝑥 . Finally, 𝛼 is a hyper-
parameter to balance the two parts.
History-based scoring.𝐻𝑆𝐹 (𝑥,𝑢), the history-based scoring func-
tion, accounts for the loyalty of a user to an item. In other words, it
considers how frequently a user has purchased the item in the past.
In addition to frequency, the recency of occurrences of an item is
also important in predicting the next occurrence, as shown in [2, 4].
We define 𝐻𝑆𝐹 (𝑥,𝑢) as follows:

𝐻𝑆𝐹 (𝑥,𝑢) =
|B𝑢 |−1∑︁
𝑡=0

1{𝑥 ∈b𝑡 }
|B𝑢 | − 𝑡

, (2)

where 1{𝑥 ∈b𝑡 } is equal to one if 𝑥 occurs in b𝑡 and zero otherwise.
In this formulation, more recent occurrences of an item in the user
history are given more weight.
Basket-based scoring. To compute the score of a candidate item
𝑥 given the items that are already in the current basket, we define
the basket-based scoring function 𝐵𝑆𝐹 (𝑥,𝑢, b𝑐 ). It scores an item 𝑥

based on its past co-occurrences with the items in the user’s past
baskets. It takes into account three factors while scoring an item:
(i) recent baskets are more informative than older baskets, (ii) recent
items in the current basket are more important than older items,
and (iii) the distance between the candidate item 𝑥 and the current
item 𝑥𝑖 in the past baskets is important. Formally:

𝐵𝑆𝐹 (𝑥,𝑢, b𝑐 ) =
|b𝑐 |−1∑︁
𝑖=0

1
|b𝑐 | − 𝑖

·

|B𝑢 |−1∑︁
𝑡=0

1{𝑥 ∈b𝑡 }
|B𝑢 | − 𝑡

·
1{𝑥𝑖 ∈b𝑡 }

|𝐼 (𝑥, b𝑡 ) − 𝐼 (𝑥𝑖 , b𝑡 ) |
,

(3)

where 𝐼 (𝑥, b𝑡 ) indicates the index at which 𝑥 has occurred in basket
b𝑡 . In other words, more weight is given to a candidate item that
has appeared in close proximity of current items in the recent
baskets of the user. The first two factors have already been shown
to be effective for session-based recommendation in [5], where they
are used to compute the similarity of the current session with all
existing sessions. Here, however, we compute the similarity with
the personal baskets of the user for scoring candidate items.

4.2 Neighbor-based scoring function
In addition to the personal scoring function, our model has a col-
laborative component that assigns scores to candidate items ac-
cording to the neighboring users of the target user 𝑢. Specifically,
the neighbor-based scoring function 𝑁𝑆𝐹 (𝑥,𝑢, b𝑐 ) is defined as
follows:

𝑁𝑆𝐹 (𝑥,𝑢, b𝑐 ) =
1

|𝑁𝑢 |
∑︁
𝑣∈𝑁𝑢

𝑠𝑖𝑚(𝑢, 𝑣)𝑃𝑆𝐹 (𝑥, 𝑣, b𝑐 ), (4)

where 𝑁𝑢 is the set of neighbors of 𝑢 of size 𝑘 and 𝑠𝑖𝑚(𝑢, 𝑣) is the
similarity between users𝑢 and 𝑣 . Note that the number of neighbors
𝑘 is a hyper-parameter in our model. The neighbor-based scoring
function 𝑁𝑆𝐹 (𝑥,𝑢, b𝑐 ) calculates how an item 𝑥 would be scored by
the neighbors of user 𝑢, given the items already in the basket. The
similarity between a neighbor and the target user is also considered.
User similarity. To compute the similarity 𝑠𝑖𝑚(𝑢, 𝑣) between two
users 𝑢 and 𝑣 , we consider the history-based scoring from Eq. 2.
We represent each user 𝑢 as a vector over the item space 𝐼 , where
each element in the vector, corresponding to an item 𝑥 ∈ 𝐼 , is the
history-based score of the item for the user. The similarity is then
defined as the cosine similarity between two user vectors. Formally:

𝑠𝑖𝑚(𝑢, 𝑣) =
∑
𝑥 ∈𝐼 𝐻𝑆𝐹 (𝑥,𝑢)𝐻𝑆𝐹 (𝑥, 𝑣)√︁∑

𝑥 ∈𝐼 𝐻𝑆𝐹 (𝑥,𝑢)2
√︁∑

𝑥 ∈𝐼 𝐻𝑆𝐹 (𝑥, 𝑣)2
. (5)

The set of 𝑘 nearest neighbors of a user 𝑢, containing the most
similar users in 𝑈 to 𝑢, is then defined as 𝑁𝑢 .

4.3 Final scoring function
The final score of a candidate item 𝑥 for an incomplete basket b𝑐
belonging to user 𝑢, is calculated as follows:

𝑠𝑐𝑜𝑟𝑒 (𝑥,𝑢, b𝑐 ) = 𝛽 · 𝑃𝑆𝐹 (𝑥,𝑢, b𝑐 ) + (1 − 𝛽) · 𝑁𝑆𝐹 (𝑥,𝑢, b𝑐 ), (6)

where 𝛽 is a hyper-parameter of our model, balancing the contri-
butions of the personal history component and the collaborative
component. The model assigns a score to all items in 𝐼 \ b𝑐 , and the
top 𝑛 scored items are returned as the recommendation list.

5 VECTORIZED IMPLEMENTATION
Analogous to session-based recommendation, within-basket rec-
ommendation models are challenging to deploy in real-world sce-
narios, as they need to respond online to users filling their baskets.
E-commerce applications typically need to respond with a latency
of less than 50 milliseconds in at least 90 percent of requests [11],
and it has been observed that low prediction latency contributes to
the acceptance of recommendations by users [1, 10].

The design of PerNIR supports such low-latency prediction sce-
narios. Major parts of PerNIR depend on the static user history B𝑢
(which only changes after purchases), while only the incomplete
basket b𝑐 changes dynamically during the shopping session. In the
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following, we describe how to exploit this structure to precompute
the parts of the model that only depend on the static user history B𝑢
and how to vectorize the underlying computations to score multiple
candidate items at once. Note that we model a basket b ∈ {0, 1} |𝐼 |
as a binary vector in item space for these purposes.
Offline precomputation. For each user 𝑢, we can precompute the
outputs of HSF (Eq. 2) into a user-specific history vector h𝑢 :

h𝑢 =

|B𝑢 |−1∑︁
𝑡=0

1
|B𝑢 | − 𝑡

b𝑡 . (7)

We analogously precompute the item co-occurrences (the second
sum from Eq. 3) from their basket history matrix into a user-specific
basket co-occurrence matrix C𝑢 . Each entry (𝑖, 𝑗) of this matrix
denotes the weight assigned to the co-occurrence of two items 𝑖
and 𝑗 in the basket history B𝑢 :

C𝑢 =


|B𝑢 |−1∑︁
𝑡=0

1{𝑥𝑖 ∈b𝑡 } 1{𝑥 𝑗 ∈b𝑡 }
( |B𝑢 | − 𝑡) |𝐼 (𝑥𝑖 , b𝑡 ) − 𝐼 (𝑥 𝑗 , b𝑡 ) |

𝑖 𝑗 . (8)

Note that C𝑢 ∈ R |𝐼 |× |𝐼 | is high-dimensional but extremely sparse,
as its number of non-zeros is at most the sum of the squares of
the number of distinct items per basket in the user history. Next,
we precompute the top-𝑘 similar users 𝑁𝑢 for a user 𝑢 (which
only depend on the users’ static history vectors). Based on the
corresponding similarities, we precompute the combination h𝑠𝑢
of the user’s history vector h𝑢 with the history vectors of their
neighbors 𝑣 ∈ 𝑁𝑢 , and analogously precompute the combination
C𝑠𝑢 of their co-occurrence matrices:

h𝑠𝑢 = 𝛽 h𝑢 + 1 − 𝛽

|𝑁𝑢 |
∑︁
𝑣∈𝑁𝑢

𝑠𝑖𝑚(𝑢, 𝑣) h𝑣 (9)

C𝑠𝑢 = 𝛽 C𝑢 + 1 − 𝛽

|𝑁𝑢 |
∑︁
𝑣∈𝑁𝑢

𝑠𝑖𝑚(𝑢, 𝑣) C𝑣 . (10)

Online inference. At inference time, we compute a “summation
and selection” vector 𝜙 (b𝑐 ) from the dynamically changing incom-
plete basket b𝑐 , which contains the associated weights from the
first sum of Eq. 3:

𝜙 (b𝑐 ) =
[ 1{𝑥𝑖 ∈b𝑐 }
|b𝑐 | − 𝐼 (𝑥𝑖 , b𝑐 )

]
𝑖

. (11)

We can now efficiently compute item scores based on 𝜙 (b𝑐 ) and
the precomputed “personal” model h𝑠𝑢 and C𝑠𝑢 for user 𝑢:

𝑠𝑐𝑜𝑟𝑒 (𝑢, b𝑐 ) = 𝛼 h𝑠𝑢 + (1 − 𝛼) C𝑠𝑢 𝜙 (b𝑐 ). (12)

Note that the scoring computation only requires a single sparse
matrix vector multiplication and a single sparse vector addition,
for which we can leverage highly optimized implementations from
SparseBLAS [3].

6 EXPERIMENTAL SETUP
We address the following research questions (RQs): (RQ1) How does
PerNIR perform compared with existing state-of-the-art models for
within-basket recommendation in grocery shopping? (RQ2) What
are the effects of the different components 𝐻𝑆𝐹 , 𝐵𝐹𝑆 , and 𝑁𝐹𝑆 of
PerNIR and hyper-parameters 𝛼 , 𝛽 , and the number of neighbors
𝑘 on the overall performance? (RQ3) How sensitive is PerNIR’s

Table 1: Dataset statistics after preprocessing.

Avg. item Avg. basket
Dataset Users Items Baskets per basket per user

Instacart 30,000 43,936 413,860 11.9 13.8
X-online 10,000 22,486 141,342 38.2 14.1

performance to characteristics such as the number of baskets per
user or the number of items in the current basket? (RQ4) How
efficient is PerNIR in terms of inference latency? To answer our
research questions we consider two experimental setups.
Setup for effectiveness experiments. To answer RQ1–RQ3 we
design a set of contrastive experiments with a diverse set of state-
of-the-art baselines.

Datasets. We use two datasets in our experiments. While other
grocery shopping datasets do exist [17], they do not contain the
add-to-basket order data which is crucial for within-basket rec-
ommendation [19, 20]. The datasets are described below and their
statistics are summarized in Table 1. Instacart1 is publicly available,
and X-online comes from a large food retailer in Europe. We ran-
domly sample 30,000 users from Instacart and 10,000 users from
X-online and retrieve all baskets of the users. In both datasets, we
remove users with less than three baskets, items occuring in less
than five baskets in total, and baskets with less than four items.

Baselines. In addition to the simple baseline P-POP, we com-
pare PerNIR with within-basket recommendation models (BasConv,
MITGNN), session-based recommendation models (VSKNN, STAN),
a personalized session-based recommendation model (HG-GNN),
and next basket recommendation models (TIFU-KNN, ReCANet):
• P-POP: Recommends the most popular items in the user history,
sorted by their frequency of purchases. P-POP is considered one
of the strongest baselines in NBR for grocery shopping [2], and
we consider it as a baseline for our task as well.

• BasConv [20]: Defines a basket entity to represent the basket
intent and models the recommendation task as a basket-item link
prediction task in the user-basket-item graph. It utilizes graph
convolutional networks to learn representations.

• MITGNN [19]: An approach based on graph neural networks to
model multiple intents in the baskets.

• VSKNN [21]: A neighborhood-based model proposed that puts
a strong emphasis on more recent events of a session when
computing session similarities.

• STAN [5]: A neighborhood-based model that considers the po-
sition of an item in the current session, the recency of a past
session w.r.t. to the current session, and the position of a recom-
mendable item in a neighboring session when computing session
similarities.

• HG-GNN [25]: A graph-augmented hybrid encoder that consists
of a heterogeneous graph neural network and a personalized
session encoder to generate a session preference embedding for
personalized session-based recommendation.

• TIFU-KNN [7]: A nearest neighbor-basedmodel that outperforms
deep recurrent neural networks in NBR. The model relies on the
similarity of the target user with other users and the purchase
history of the target user.

1https://www.kaggle.com/c/instacart-market-basket-analysis
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Table 2: Results of PerNIR compared against the baselines. Boldface and underline indicate the best and second best performing
model, respectively. Significant improvements of PerNIR over the best baseline are marked with † (paired t-test, p < 0.05).

Instacart X-Online

Recommendation model type Model HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20

Within-basket BasConv 0.0699 0.0268 0.1070 0.0293 0.0385 0.0151 0.0602 0.0166
MITGNN 0.0672 0.0258 0.1026 0.0283 0.0379 0.0151 0.0606 0.0166

Personalized session-based HG-GNN 0.0353 0.0125 0.0551 0.0139 0.0499 0.0222 0.0726 0.0237

Session-based

VSKNN 0.1105 0.0426 0.1637 0.0462 0.0829 0.0312 0.1271 0.0342
STAN 0.0914 0.0385 0.1280 0.0410 0.0975 0.0477 0.1282 0.0498
PVSKNN 0.2372 0.0915 0.3354 0.0983 0.1839 0.0742 0.2621 0.0796
PSTAN 0.2142 0.0871 0.3115 0.0938 0.2009 0.1049 0.2607 0.1090

Next basket
PPOP 0.2224 0.0846 0.3210 0.0914 0.1765 0.0695 0.2557 0.0750
TIFUKNN 0.2069 0.0799 0.2843 0.0853 0.1555 0.0600 0.2267 0.0649
ReCANet 0.2550 0.0977 0.3585 0.1049 0.1835 0.0734 0.2665 0.0791

PerNIR 0.2592† 0.1044† 0.3625† 0.1115† 0.2258† 0.1069† 0.3006† 0.1120†

• ReCANet [2]: A repeat consumption-aware neural network that
explicitly models the repeat consumption behavior of users in
order to predict their next basket.

In the case of NBR baselines, we considered two setups: discarding
the current basket and treating it as the final basket in the history.
The former gave the best performance results and we report those.
In case of session-based and personalized session-based baselines,
each session is considered as a basket. We further use two modified
session-based models, namely Personalized SKNN (PSKNN) and
Personalized STAN (PSTAN). In these two models, the neighboring
baskets are the personal baskets of the user.

Data split. We follow the same procedure as Latifi et al. [12].
For every user, we sort the baskets by purchase time and use the
last basket of each user as test data. The second-to-last basket is
used as validation data to tune the parameters. The remaining
baskets are considered as training data. Table 1 shows the statistics
for the training data after preprocessing. Each test or validation
basket produces several test samples. Specifically, the first three
items in the basket are used as the seed for the current basket, and
the rest of the items are added iteratively to the current basket
and the next item is used as the ground truth item. Evaluation is
performed for each non-seed item in the basket. For example, given
a test or validation basket 𝑏 = [𝑥1, 𝑥2, . . . , 𝑥6], the evaluation is
performed on the following samples: {𝑋 = [𝑥1, 𝑥2, 𝑥3], 𝑌 = [𝑥4]},
{𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4], 𝑌 = [𝑥5]},{𝑋 = [𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5], 𝑌 = [𝑥6]}.

Evaluation metrics. We use Hit Rate (HR) @𝑛 and Mean Re-
ciprocal Rank (MRR) @𝑛 as evaluation metrics. HR measures if the
relevant item appears in the list of recommendations, and MRR
measure how high the relevant item is ranked. Both measures are
calculated across the predicted next item for all test users and all
test samples. We report the metrics for 𝑛 ∈ {10, 20}.

Parameter settings.We perform a grid search to find the hyper
parameters that result in the best performance on the validation set,
and use those for testing. The hyper-parameters of the baselines are
either tuned or set according to instructions in the original papers
if available.

Setup for efficiency experiments. To answer RQ4, we use an
alternative experimental design. Our goal will be to showcase that
PerNIR is able to handle inference workloads with a latency low
enough for production workloads, where users browse a site and fill
their baskets in response to online recommendations. We choose
the Instacart dataset for this experiment as it is larger than the
X-Online dataset in terms of users, items and baskets, and therefore
more challenging for inference workloads.

We run this experiment in a single thread on a StandardD8v4
instance in the Microsoft Azure cloud, with an Intel Xeon Platinum
8272CL CPU@2.60GHz and 32gb of RAM, using Ubuntu 20.04,
Python 3.9 and scipy 1.9.0.

We pick 1,000 users at random from the Instacart dataset, and
ask PerNIR to score items for five randomly chosen incomplete test
baskets per user. We base the prediction on the precomputed “per-
sonal” model for each user (as discussed in Section 5). We measure
the response time in milliseconds, and repeat this experiment for
increasing numbers of neighbors 𝑘 , ranging from 20 to 500.
Reproducibility. To facilitate reproducibility and follow-up re-
search, we share our code.2

7 RESULTS AND ANALYSIS
We conduct extensive experiments to answer our research questions.
In this section, we describe the results of our experiments.
Performance comparison (RQ1). We compare the performance
of PerNIR with several state-of-the-art baselines, and list the results
in Table 2. First, we observe that HG-GNN is the baseline with
the weakest performance. This model is originally proposed for
personalized session-based recommendation, which is identical to
within-basket recommendation in terms of problem formulation.
However, the grocery shopping domain has special characteristics,
such as repeat behavior and larger baskets compared to online ses-
sions, which are not considered by HG-GNN and other personalized
session-based recommendation models.

2https://github.com/mzhariann/pernir
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Table 3: Results of the ablation study. Different variations of PerNIR are compared with each other and the final model.

Instacart X-Online

# Model variation HR@10 MRR@10 HR@20 MRR@20 HR@10 MRR@10 HR@20 MRR@20

1 w/o history-based scoring (𝛼 = 0) 0.2525 0.1011 0.3544 0.1081 0.2138 0.1021 0.2867 0.1072
2 w/o basket-based scoring (𝛼 = 1) 0.2465 0.0955 0.3513 0.1028 0.1764 0.0693 0.2513 0.0745
3 w/o personal history (𝛽 = 0) 0.1363 0.0594 0.1859 0.0628 0.0880 0.0389 0.1249 0.0414
4 w/o neighbor scoring (𝛽 = 1) 0.2548 0.1020 0.3542 0.1089 0.2145 0.1031 0.2841 0.1079
5 w/o user similarity weighting 0.2564 0.1032 0.3569 0.1101 0.2047 0.0936 0.2778 0.0987
6 w/ binary user similarity scoring 0.2586 0.1035 0.3628 0.1107 0.2166 0.1042 0.2873 0.1091
7 w/o basket recency 0.2481 0.0986 0.3496 0.1056 0.2120 0.1011 0.2801 0.0989
8 w/o item recency 0.2519 0.0969 0.3587 0.1043 0.1851 0.0751 0.2643 0.0805
9 w/o item distance 0.2527 0.0996 0.3569 0.1068 0.1835 0.0744 0.2576 0.0795

PerNIR 0.2592 0.1044 0.3625 0.1115 0.2258 0.1069 0.3006 0.1120

The GNN-based within-basket recommendation models Bas-
Conv and MITGNN perform poorly. One possible reason for this is
that these models are trained on large baskets only (more than 40
items) in the original papers, which might limit their ability to gen-
eralize to our setting, where we set the lower bound of the basket
size to four items. Moreover, these models are trained for predicting
the rest of the basket where 80% of the items in the current basket
are already given, which is again different from our setting. We add
items to the baskets one by one and use each item as a label during
evaluation, which is closer to the real-world setting where users
receive recommendations after each item is added to the basket.

The session-based recommendationmodels VSKNN and STAN in
their original formulation perform better than the previous models,
but fall short of their modified personalized versions. This shows
that the user personal history is an important indicator in within-
basket recommendation. VSKNN and STAN focus on finding items
from baskets that are similar to the current incomplete basket, and
cannot utilize the personal preferences of users. By limiting the
search for similar baskets to the personal baskets, PVSKNN and
PSTAN get a boost in performance. Specifically, PSTAN is the best
performing baseline on X-Online based on three out of four metrics,
and PVSKNN is the second-best performing one on Instacart. This
shows that the components in VSKNN and PSTAN are able to utilize
the items in the current basket for scoring candidate items.

Next basket recommendation models provide the best base-
line performance on both datasets. Among them, ReCANet is the
strongest competitor, followed by PPOP and TIFUKNN. This is in
line with the results observed for NBR [2]. NBR models focus on uti-
lizing personal purchasing history, but are unable to use the signals
in the current incomplete basket. These models demonstrate higher
performance compared to the performance of session-based recom-
mendation models that use only the incomplete basket but not the
personal history. This result once again confirms the importance
of the personal history in grocery shopping.

PerNIR outperforms all the baselines on both datasets, and the
improvements over the best performing baseline are statistically
significant on all metrics, using a paired t-test. The improvements
on Instacart are 1.6% and 1.1% for HR@10 and HR@20, respectively.
Larger improvements are obtained on MRR@10 and MRR@20,
namely 6.8% and 6.2%. Improvements on X-Online are even more

substantial, especially in terms of HR. We observe 1.9% and 2.7% in-
creases in terms of MRR@10 and MRR@20 with respect to PSTAN,
as well as 12.3% and 12.7% improvements over PSTAN and Re-
CANet in terms of HR@10 and HR@20. Overall, the results show
that PerNIR is effective for within-basket recommendation.
Ablation study (RQ2). We conduct an extensive ablation study
with nine different variations of PerNIR to analyze the effect of
different components in the model. Table 3 shows the results. First,
we observe that the final model is superior to all variations on both
datasets for all metrics, with the exception of one case (HR@20 on
variation 6, where there is a 0.1% performance degradation). This
indicates that all of the components in PerNIR contribute to the final
performance and are necessary to achieve the best performance.

The first two variations concern the effect of 𝐻𝑆𝐹 and 𝐵𝑆𝐹 in
the personal scoring function. By setting 𝛼 to zero, we remove the
𝐻𝑆𝐹 and with setting it to one, we remove 𝐵𝑆𝐹 . Both cases result
in a drop in performance for all metrics on both datasets. However,
removing 𝐵𝑆𝐹 has a more substantial effect on performance ranging
from 3.0% to 8.5% on Instacart and 16.4% to 35.1% on X-Online. The
effect is considerably higher on X-Online; one reason for this could
be the larger basket sizes on X-Online, which translates to more
signals being lost when the current basket is ignored.

In variations 3 and 4, we remove the personal scoring function
𝑃𝑆𝐹 and neighboring scoring function 𝑁𝑆𝐹 by setting 𝛽 to zero
and one, respectively. In both cases the performance degrades for
all metrics and datasets. The effect of removing 𝑃𝑆𝐹 is substan-
tially larger than of removing 𝑁𝑆𝐹 , where the performance drop
ranges from 43.1% to 48.7% on Instacart and 58.4% to 63.6% on
X-Online. This indicates the importance of modeling personal his-
tory in PerNIR. Removing 𝑁𝑆𝐹 results in 1.6% to 2.3% and 3.5% to
5.4% drops in performance on Instacart and X-Online, respectively.
Therefore, the neighbor-based scoring function is essential and
contributes to the final performance.

Another component in PerNIR is the user similarity computa-
tion, which is analyzed by variations 5 and 6. In variation 5, we
remove the user similarity scores altogether and set 𝑠𝑖𝑚(𝑢, 𝑣) = 1 in
Eq. 4, which means that all neighbors have the same weight in the
neighbor-based scoring function 𝑁𝑆𝐹 . This results in a small drop
in performance on Instacart, ranging from 1% to 1.5%. The effect is
considerable on X-Online, where the degradation ranges from 7.5%
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to 12.4%. One explanation is the larger number of users on Instacart,
which could lead to more similar users in the neighborhood, which
lowers the need for the similarity scores. In variation 6, we use
another similarity scoring function to compute 𝑠𝑖𝑚(𝑢, 𝑣), which is
essentially removing 𝐻𝑆𝐹 from Eq. 5, and representing each user
by a binary vector with the length of the item space, where each
element in the vector indicates the occurrence of the corresponding
item in the purchasing history of the user. This results in the lowest
performance drop on both datasets for all metrics compared to the
other variations, ranging from −0.1% to 4.4%. Hence, using 𝐻𝑆𝐹 in
computing user similarity is effective, but the effect is not critical.

In variations 7, 8, and 9, we study the effect of different com-
ponents in computing the basket-based scoring function 𝐵𝑆𝐹 . In
variation 7, we remove the effect of basket recency by using the
same weight for all baskets in the user history in Eq. 3. We remove
the effect of item recency in the current basket in variation 8 by
setting the weights of all items in the current basket to one. We fur-
ther remove the effect of the distance between a candidate item and
the item in the current basket in historical baskets in variation 9, by
using the same weight of one for all candidate items. In all cases, the
performance degrades; all of these components contribute to the
performance. Interestingly, for variations 8 and 9, the performance
drop for X-Online is more than for Instacart, ranging from 12.0%
to 30.4%. This could be a result of larger basket sizes in X-Online;
since baskets are larger on X-Online, it becomes more important to
consider the position of items in the baskets, in both incomplete
baskets and in the historical baskets.

We further study the effect of the three hyper-parameters 𝛼 ,
𝛽 , and 𝑘 on the performance. We perform a grid search where 𝛼
and 𝛽 are swiped in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] and k in
{50, 250, 500}. We find that on Instacart, 𝑘 = 250, 𝛼 = 0.1, and
𝛽 = 0.2 result in the best performance on the validation set in terms
of HR@20. A similar observation is made on X-Online, with the
difference of 𝑘 = 50 giving the best performance.

Figure 1 (left) shows the performance of PerNIR for different
values of 𝛼 and 𝑘 . Increasing 𝛼 leads to lower performance for all 𝑘
values. Hence, in the personal scoring function 𝑃𝑆𝐹 , items in the
current basket should be considered more effectively; relying heav-
ily on 𝐻𝑆𝐹 , which ignores the current basket hurts, performance.

Figure 1 (right) shows the performance of PerNIR for different
values of 𝛽 and 𝑘 . For all values of 𝑘 , setting 𝛽 to 0.2 results in the
best performance. 𝛽 balances the contribution of personal scoring
function and neighbor-based scoring function to the final score of
items. A high value for 𝛽 results in a lower effect for 𝑁𝑆𝐹 , which
degrades the performance. The optimal value of 𝑘 is 250 on In-
stacart, however, it has a lower effect on the performance compared
to 𝛼 and 𝛽 . Increasing the number of neighbors from 250 to 500
has a minimal effect on performance, while the difference is more
apparent between 𝑘 = 50 and 𝑘 = 250, which indicates that a too
low value for 𝑘 hurts the performance.
Sensitivity analysis (RQ3). In this section, we study the sen-
sitivity of PerNIR’s performance to characteristics of users and
baskets. Specifically, we analyze the recommendation performance
for incomplete baskets of varying lengths and users with varying
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Figure 1: Sensitivity of the performance in terms of HR@20
to hyper-parameters 𝛼 and 𝛽 for different values of 𝑘 on
Instacart.
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Figure 2: Performance of PerNIR in terms of HR@20 based
on the number of items in the current basket. Bars show the
distribution of basket lengths.
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Figure 3: Performance of PerNIR in terms of HR@20 based
on the number of baskets in users’ history. Bars show the
distribution of number of baskets per user.

numbers of baskets in their history. We also consider the perfor-
mance for cases where the target item is a previously purchased
item vs. cases where it is a new item.

Figure 2 shows the distribution of basket lengths, i.e., number
of items in the current incomplete basket, in the test samples for
Instacart and X-Online (bars) as well as the performance in terms
of HR@20 (line). We observe that in both datasets the distribution
is right-skewed; most of the baskets contain a small number of
items. The performance correlates negatively with the basket size
in both cases: the smaller the size of the current basket, the higher
the performance of PerNIR. This means that recommending the
last items in the basket is more difficult for PerNIR. One reason for
this could be that users add more obvious, regular items earlier to
their basket, which are easier for the model to predict.

Figure 3 shows the distribution of the number of baskets in
the users’ history (bars) as well as the performance in terms of
HR@20 (line). In Instacart, the distribution is right-skewed; most
users have a small number of baskets in their history. In X-Online,
the distribution is closer to uniform,with userswith a small, medium,
or large number of baskets in their history. In both datasets, the
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Figure 4: Performance of PerNIR in terms of hit rate at dif-
ferent thresholds, for two cases: when the target item is a
previously purchased item and when it is a new item.

performance has a positive correlation with the number of baskets
in the users’ history. As users purchase more, PerNIR gets better at
learning their shopping behavior and recommends more accurately.

We further analyze the performance of PerNIR for cases where
the target item has previously been purchased by the user (i.e., a
repeat item) vs. the cases where it is a new item. Figure 4 shows
the performance in terms of hit rate at different thresholds, for
repeat and new items on both datasets. There is a significant dif-
ference in performance: predicting a repeat item is much easier
than predicting a new item. While the performance reaches it max-
imum for repeat items at a threshold of 100 and 500 items for
Instacart and X-Online, respectively, recommending accurate new
items remains challenging even at high thresholds. The new items
are recommended based on the items that neighboring users have
purchased before. This makes the search space larger and finding
the correct target item more challenging. Additionally, not all new
items can be found in the neighbors’ item space, which further
limits the achievable performance. We conclude that repeat item
recommendation is an easier task for PerNIR in the within-basket
recommendation scenario, in line with previous findings in NBR
for grocery shopping [17].
Prediction latency (RQ4). Next, to answer RQ4, we evaluate the
prediction latency of our precomputation approach from Section 5.

We plot the median and 90th percentile (p90) of the response
times of PerNIR in Figure 5. Both the median and p90 prediction
latency scale linearly with the number of neighbors 𝑘 . Our precom-
putation approach is able to conduct inference with low prediction
latency even for higher numbers of 𝑘 , e.g., with a p90 latency of
less 1.4 milliseconds for 𝑘 = 250, which scored high in our evalu-
ation. These results give a strong indication that PerNIR handles
real-world deployments where low-latency online responses for
users browsing a site and filling their baskets are required.

In addition, we list the average model sizes (in terms of the num-
ber of non-zero entries in the sparse history vectors h𝑠𝑢 (nnz-h)
and cooccurrence matrices C𝑠𝑢 (nnz-c)) of the precomputed per-
sonal models for various values of 𝑘 in Table 4. The model size
also scales linearly with 𝑘 and the personal models only require a
small number of megabytes in terms of storage, e.g., the average
model size for 𝑘 = 250 would be less than ten megabytes with 64bit
floating point numbers. This small size would, for example, make it
feasible to ship these models to user devices such as mobile phones.

8 CONCLUSION
In this paper, we have proposed PerNIR, a personalized neighbor-
hood-based model for within-basket recommendation in grocery

20 50 100 200 250 300 400 500
k

0

1

2

la
te

nc
y

(m
s)

p90 median

Figure 5: Median and 90-th percentile of the prediction la-
tency of PerNIR for an increasing number of neighbors on
the Instacart dataset (in milliseconds). PerNIR is able to re-
spond with a p90 latency of less than 1.4 milliseconds for
𝑘 = 250, which scored high in our evaluation.

Table 4: Average number of non-zero entries in the sparse
history vectors (nnz-h) and cooccurrence matrices (nnz-c) of
the precomputed personal models for various values of 𝑘 .

𝑘 100 200 250 300 400 500

nnz-h 3,173 5,027 5,789 6,468 7,654 8,700
nnz-c 153,236 307,630 384,850 463,615 614,432 761,671

shopping. Our proposed method has different components for ex-
plicitly modeling personal preferences of users and utilizing the
purchasing behavior of neighboring users.

Through extensive experiments, we have demonstrated the effec-
tiveness of PerNIR compared to state-of-the-art baselines in terms
of different performance metrics. We have further studied the con-
tribution of different components in our model in an ablation study,
which has revealed the necessity of all of them for achieving the
best performance. Moreover, we have provided a vectorized imple-
mentation of PerNIR which allows for fast inference. As a result,
PerNIR can provide low-latency predictions that are required in
real-world recommendation systems.

A broader implication of our work is that PerNIR is applicable
to the personalized session-based recommendation scenario, where
sessions can be treated as baskets.

In terms of limitations, we have found that the performance of
PerNIR degrades as the number of items in an incomplete basket
increases. In future work, we aim to further study and address this
phenomenon. One possible solution for this could be learning better
weights for items in a given basket, which is currently calculated
solely based on the recency of the addition of the item to the basket.
Our experimental results have revealed a substantial difference in
performance of PerNIR between the cases when the target item is a
previously purchased item or a new item. In future work, we aim to
improve the collaborative component in PerNIR to better capture
signals for recommending items unseen in users’ personal history.
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