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ABSTRACT
We address a specific enterprise document search scenario, where
the information need is expressed in an elaborate manner. In our
scenario, information needs are expressed using a short query (of
a few keywords) together with examples of key reference pages.
Given this setup, we investigate how the examples can be utilized
to improve the end-to-end performance on the document retrieval
task. Our approach is based on a language modeling framework,
where the query model is modified to resemble the example pages.
We compare several methods for sampling expansion terms from
the example pages to support query-dependent and query-indepen-
dent query expansion; the latter is motivated by the wish to increase
“aspect recall,” and attempts to uncover aspects of the information
need not captured by the query.

For evaluation purposes we use the CSIRO data set created for
the TREC 2007 Enterprise track. The best performance is achieved
by query models based on query-independent sampling of expan-
sion terms from the example documents.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: H.3.1 Content Anal-
ysis and Indexing; H.3.3 Information Search and Retrieval; H.3.4
Systems and Software; H.4 [Information Systems Applications]:
H.4.2 Types of Systems; H.4.m Miscellaneous

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
Enterprise search, query modeling, query expansion, language mod-
els

1. INTRODUCTION
Query modeling has been a topic of active research for many

years. One popular way of enriching the user’s (usually sparse)
query, and thus obtaining a more detailed specification of the un-
derlying information need is through query expansion, by selecting
terms from documents that are known, believed or assumed to be
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relevant. In the absence of explicit user feedback, the canonical ap-
proach is to treat the top-ranked documents retrieved in response to
a query as if they had been marked relevant by the user.

Our work takes place in an enterprise setting, where users are
more willing than, say, average web search engine users, to express
their information need in a more elaborate form than by means of
a few key words. In our scenario users have to create overview
pages of the information available within the enterprise on a given
topic, and the search engine should help them identify key refer-
ences, pages on the intranet of the enterprise that should be linked
to by a good overview page. The additional information that our
users provide consists of a small number of example key references.
We refer to those documents as sample documents.

An important research goal in this paper is to devise a way of us-
ing these rich specifications of the user’s information need, consist-
ing of a query and sample documents, in a theoretically transparent
manner. We address this goal while working within the generative
language modeling (LM) approach to retrieval. Here, one usually
assumes that the relevance of a document is correlated with the like-
lihood of the query [9, 16, 17], builds a language model from each
document, and ranks documents based on the probability of the
document model generating the query. Feedback documents are as-
sumed to be relevant, which often entails that the generation prob-
abilities are (re-)estimated (using the feedback documents). The
implicit nature of relevance within the LM framework has attracted
some criticism; see, e.g., [23]. This criticism has been addressed
in various proposals, including ones that consider not only docu-
ment models, but also a language model based on the request, i.e.,
a query model [14], relevance models [15], and parsimonious lan-
guage models [10].

In this paper we use sample documents to explicitly model rele-
vance and an important goal for us is to develop methods for accu-
rately estimating sampling probabilities. We assume that the query,
sample documents and relevant documents are all coming from an
unknown relevance model R. Lavrenko and Croft [15] used two
methods to build a relevance model θR, where P (t|θR) is the rela-
tive frequency with which we expect to see term t during repeated
independent random sampling of words from all of the relevant
documents (see Section 6.1 below). Both approaches assume con-
ditional dependence between the query and the terms t selected for
expansion. While this dependence assumption may be appropri-
ate in some cases (especially if the query is the only expression of
the information need that we have), we want to be able to lift it.
The reason for this is as follows. “Aspect recall” is an important
cause of failure of current IR systems [5], one that tends to be ex-
acerbated by today’s query expansion approaches: key aspects of
the user’s information need may be completely missing from the
pool of top-ranked documents, as this pool is usually query-biased



and (to keep precision reasonable) often small, and, hence, tends to
only reflect aspects covered by the original query itself [12]. In a
scenario such as ours, where a user provides a query plus sample
documents, we expect the sample documents to provide important
aspects not covered by the query. Hence, we want to avoid biasing
the expansion term selection toward the query and thereby possibly
loosing important aspects.

Our main contribution is a theoretically justified model for es-
timating a relevance model when training material (in the form of
sample documents) is available, a model that is fully general in
that we can sample expansion terms either independent of, or de-
pendent on, the query. Our model has two main components, one
for estimating (expansion) term importance, and one for estimating
the importance of the documents from which expansion terms are
selected—we consider various instantiations of these components,
including ones where document importance estimations are done
in a query independent manner, based on sample documents.

We use data provided by the TREC 2007 Enterprise track to
evaluate our models. We compare them against standard blind rel-
evance feedback approaches (where expansion terms are selected
from a query-biased set of documents) and against relevance mod-
els based on the sample documents. Assuming independence be-
tween query and sampling terms leads to expanded queries that
outperform a high performing baseline with no query expansion,
as well systems that perform standard query expansion. Unbi-
ased query expansion improves “aspect recall” by bringing in more
“rare” relevant documents, that are not identified by the standard
(query-biased) expansion methods that we consider.

The remainder of the paper is organized as follows. In Section 2
we discuss related work. In Section 3 we detail our retrieval ap-
proach and describe our take on query modeling. In Section 4 we
describe our experimental setup and in Section 5 we establish a
baseline, using the sample documents to maximize query log like-
lihood. Then, in Section 6 we detail several query models, which
we evaluate in Section 7. We follow with an analysis in Section 8
and a conclusion in Section 9.

2. RELATED WORK
Query modeling, i.e., transformations of simple keyword queries

into more detailed representations of the user’s information need
(e.g., by assigning (different) weights to terms, expanding the query,
or using phrases), is often used to bridge the vocabulary gap be-
tween query and document collection. Many expansion techniques
have been proposed, and they mostly fall into two categories, i.e.,
global and local. The idea of global analysis is to expand the
query using global collection statistics based, for instance, on a
co-occurrence analysis of the entire collection. Thesaurus- and
dictionary-based expansion as, e.g., in [18], also provide examples
of the global approach.

We focus on local approaches to query expansion, that use the
top retrieved documents as examples from which to select terms to
improve the retrieval performance [19]. In the setting of language
modeling approaches to query expansion, the local analysis idea
has been instantiated by estimating query language models [13, 24]
or relevance models [15] from a set of feedback documents. Yan
and Hauptmann [25] explore query expansion in the setting of mul-
timedia retrieval. Our work goes beyond this work by dropping the
assumption that query and expansion terms are dependent.

“Aspect recall” has been identified in [5, 8]. Kurland et al. [12]
provide an iterative “pseudo-query” generation technique to un-
cover aspects of a query, using cluster-based language models.

At the TREC 2007 Enterprise track, several teams experimented
with the use of sample documents for the document search task,

using a language modeling setting [4, 11, 21] or using ideas remi-
niscent of resource selection [6], or using the document structure in
various ways [1, 7]. Some groups experiment with the use of sam-
ple documents, but the difference between the best performance
with sample documents and the best performance without sample
documents was modest [2].

3. RETRIEVAL MODEL
In this section we derive our ranking mechanism. We bring

query-likelihood LM approaches and relevance models to a com-
mon ground, and show that both lead to the same scoring function,
although the theoretical motivation behind them is different.

3.1 Query Likelihood
In case of the query likelihood (also referred as standard LM) ap-

proach, documents are ranked according to the likelihood of them
being relevant given the query P (D|Q). Instead of calculating this
probability directly, we apply Bayes’ rule and rewrite it to

P (D|Q) =
P (Q|D) · P (D)

P (Q)
. (1)

The probability of the query P (Q) can be ignored for the purpose
of ranking documents, which leaves us with

P (D|Q) ∝ P (D) · P (Q|D). (2)

Assuming that query terms are independent from each other, we
estimate P (Q|D) by taking the product across terms in the query.
Substituting this into Eq. 2 we obtain

P (D|Q) ∝ P (D) ·
Q
t∈Q P (t|D)n(t,Q). (3)

Here, n(t, Q) is the number of times term t is present in the query
Q. This is the multinomial view of the document model, i.e., the
query Q is treated as a sequence of independent terms [9, 16, 22].

To prevent numerical underflows, we perform this computation
in the log domain (thus compute the log-likelihood of the document
being relevant to the query) and rewrite our equation as

logP (D|Q) ∝ logP (D) +
P
t∈Q n(t, Q) · logP (t|D). (4)

Next, we generalize n(t, Q) so that it can take not only integer but
real values. This will allow more flexible weighting of query terms.
We replace n(t, Q) with P (t|θQ), which can be interpreted as the
weight of term t in query Q. We will refer to θQ as query model.
We generalize P (t|D) to a document model, P (t|θD), and arrive
at our final formula for ranking documents:

logP (D|Q) ∝ logP (D) +
P
t∈Q P (t|θQ) · logP (t|θD) (5)

Two important components remain to be defined, the query model
and the document model. Before doing so, we point out a relation
between our ranking formula in Eq. 5 and relevance models.

For relevance language modeling one assumes that for every in-
formation need there exists an underlying relevance model R, and
the query and documents are random samples from R, see Fig-
ure 1. We view documents and queries as samples from R, how-
ever, the two sampling processes do not have to be the same (i.e.,
P (t|R) does not need to be the same as P (t|Q) or P (t|D), where
D is a relevant document). The query model θQ is to be viewed as
an approximation of R. Estimating P (t|θQ) in a typical retrieval
setting is problematic because we have no training data. (Below,
however, we will use the sample documents for this purpose, see
Section 6.2.) Documents and queries are represented by a multi-
nomial probability distribution over the vocabulary of terms. Doc-
uments are ranked based on their similarity to the query model.
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Figure 1: The query and relevant documents are random sam-
ples from an underlying relevance model R.

The Kullback-Leibler divergence between the query and document
models can then be used to provide a ranking of documents:

D(θQ||θD) = −
P
t P (t|θQ) · logP (t|θD) + cons(Q). (6)

The document-independent constant cons(Q) (the entropy of the
query model) can be dropped, because it does not affect the ranking
of documents; see [14, 26]. If we assume a uniform prior in Eq. 5,
maximizing the query log-likelihood in Eq. 5 provides the same
document ranking as minimizing the KL-divergence (Eq. 6).

3.2 Document Modeling
The move from P (t|D) to the document model P (t|θD) in Eq. 4

and 5 is motivated by sparseness issues. To be able to rank docu-
ments using Eq. 4, we need to estimate P (t|D), the probability
that t would be observed during repeated random sampling from
the document model. The maximum likelihood (ML) estimate of a
term provides the simplest method for inferring an empirical doc-
ument model: P (t|D) = n(t,D)/

P
t′ n(t′, D). If one or more

query terms do not appear in the document, it will be assigned a
zero probability (Eq. 3).

Nonetheless, creating a document model θD can resolve the zero
probability problem, by smoothing the ML estimate such that for
every term t, P (t|θD) > 0. The document model is built up from a
linear combination of the empirical estimate, P (t|D), and the max-
imum likelihood estimate of the term, given the collection model
P (t|C), using the coefficient λ to control the influence of each:

P (t|θD) = (1− λ) · P (t|D) + λ · P (t|C). (7)

We discuss the problem of estimating the smoothing parameter λ—
and exploit sample documents for this purpose—in Section 5.

3.3 Query Modeling
As to the query model, we consider several flavors. Our baseline

query model consists of terms from the topic title only, and assigns
the probability mass uniformly across these terms:

P (t|θQ) = P (t|Q) =
n(t, Q)P
t′ n(t′, Q)

(8)

As before, n(t, Q) is the frequency of term t in Q.
The baseline query model has two potential issues. Not all query

terms are equally important, hence, we may want to reweigh some
of the original query terms. Also, P (t|Q) is extremely sparse, and,
hence, we may want to add new terms (so that P (t|θQ) amounts to
query expansion), and for this purpose we will again use the sample
documents; see Sections 6.2 and 6.3.

Much of the paper is devoted to investigating ways of construct-
ing the query model θQ that approximates the true relevance model
R accurately. In [15] two methods are presented that estimate rele-
vance models by constructing topic models from the topic title only
without training data; in this paper, we examine theoretically justi-

fied ways of estimating the relevance model when training data (in
the form of sample documents) is available.

4. EXPERIMENTAL SETUP
We addressed the following research questions: Can sample doc-

uments be used to estimate the amount of smoothing applied? How
does using sample documents compare to blind relevance feed-
back? Expansion terms in the case of standard blind relevance
feedback are dependent on the original query. How does lifting
this assumption affect retrieval performance? To address our re-
search questions we ran experiments using the CSIRO Enterprise
Research Collection (CERC), a crawl of *.csiro.au (public) web
sites conducted in March 2007. The crawl has 370,715 documents,
with a total size 4.2 gigabytes [3].

In the 2007 edition of the TREC Enterprise track, CERC was
used as the document collection [2]. CSIRO’s science communica-
tors played an important role in topic creation. They, the envisaged
end-users of systems taking part in the TREC Enterprise track, read
and create outward-facing web pages of CSIRO to enhance the or-
ganization’s public image and promote its expertise. A total of 50
topics were created by the science communicators; systems had to
return “key references” for these topics, i.e., pages that should be
linked to by a good overview page.

Assessment was done by the TREC 2007 Enterprise track par-
ticipants. Judgments were made on a three-point scale: 2: highly
likely to be a “key reference;” 1: a candidate key page, or otherwise
informative to help build an overview page, but not highly likely;
0: not a “key reference,” because, e.g., not relevant, off-topic, not
an important page on the topic, on-topic but out-of-date, not the
right kind of navigation point, or too informal or too narrow an
audience. All non-judged documents are considered as irrelevant.
For our experiments we used the official qrels released after TREC
2007, consisting of 50 topics, but with the sample documents re-
moved from the runs and from the set of relevant documents.

We scored our retrieval output both using the possibly relevant
and the highly relevant levels, using mean average precision and
mean reciprocal rank.

5. ESTABLISHING A BASELINE

5.1 Parameter Estimation
In order to establish a baseline, we need a reasonable estimate of

λ (in Eq 7) for those documents that are likely to be relevant to a
given query, since they are the ones we are interested in.

When training data (in the form of topics and corresponding rel-
evance judgments) is available, we can estimate λ empirically on a
set of training topics, and then apply this value on the test set. This
way the same amount of smoothing is applied for all queries. When
such a set of training topics is not available, one approach is to use
automatic relevance feedback [20]. We perform an initial guess for
λ (e.g., λ = 0.5) and assume that the top M retrieved documents
are relevant to the query. These M top-scoring documents then
become the set we use to estimate λ.

Given our setting (with sample documents available), we will
view these as documents relevant to a given query, and use them
for learning settings for the λ parameter. However, instead of esti-
mating a uniform λ, we estimate a query-dependent λQ. Below, we
present two unsupervised methods that can accurately estimate this
value, and deliver the same performance as the empirical estimate.1

1Recall that sample documents (which we use for estimation) are
removed from the runs and from the relevance judgments; in partic-
ular, they are not part of the test data that we use in the estimation



Method (possibly) relevant (highly) relevant
MAP bpref P@5 P@10 P@20 MRR MAP bpref P@5 P@10 P@20 MRR

EMP_BEST (λ = 0.6) .3599 .3856 .6320 .6080 .5660 .7200 .3150 .3964 .4920 .4380 .3800 .6361
Using example documents
MAX_AP .3517 .3812 .6040 .5840 .5470 .7017 .3092 .3901 .4600 .4120 .3660 .6131
MAX_QLL .3576 .3853 .6120 .6000 .5610 .7134 .3143 .4013 .4880 .4360 .3770 .6326

Table 1: Comparison of the two parameter (λ) estimation methods (MAX_AP, MAX_QLL) and the empirical estimate (EMP_BEST).
All results are evaluated against the (TREC) relevance judgments. The row in boldface row will serve as a baseline.

Maximizing Average Precision.
In our first technique for estimating λQ (called MAX_AP) we

view the sample documents as if they were the only relevant docu-
ments given the query. The process for each query Q is as follows:
1. For each λQ ∈ (0, 1) (with steps δ); 2. Run retrieval using the
parameter λQ; 3. Calculate the average precision (AP) of the sam-
ple documents; 4. Select λQ that maximizes AP. Formally:

λQ = arg max
λ

AP (λ,Q, S). (9)

Maximizing Query Log Likelihood.
Our second technique sets for estimating λQ (called MAX_QLL)

sets λQ to the value that maximizes the log-likelihood of the query
Q, given a set of sample documents S:

λQ = arg max
λ

X
D∈S

X
t∈Q

log((1−λ) ·P (t|D)+λ ·P (t|C)) (10)

5.2 Evaluation
In order to evaluate the two approximation methods presented

above, we first perform an empirical exploration of a query-in-
dependent smoothing parameter λ. That is, we iterate over pos-
sible λ values in steps of δ = 0.01 and calculate the mean average
precision (MAP) on the entire set of topics:

λ = arg max
λ

P
QAP(λ,Q)

|Q| (11)

We refer to this value as the best empirical estimate (EMP_BEST).
Figure 2 displays the results, using both possibly and highly rel-
evant assessments. There is a broad range of settings where per-
formance levels close to the maximum are achieved; the maximum
AP scores are reached around λ = 0.6, with a substantial drop in
performance for λ ≥ 0.8.

Next, we use λ = 0.6 and compare our approximation methods
against this baseline; see Table 1. Our estimation methods for λQ
are effective in estimating λ. MAX_QLL performed slightly better
than MAX_AP, but the differences are not significant.2

5.3 Wrap-up
We have fixed our baseline retrieval approach. We set the smooth-

ing parameter using an estimation method that exploits sample doc-
uments (MAP_QLL). Although this method uses only a handful of
sample documents per query (3.6 on average), the performance is
as good as that of the empirical best; moreover, it can be computed
more efficiently. For the remainder of the paper, this (with smooth-
ing determined using MAP_QLL) serves as our baseline.

6. REPRESENTING THE QUERY
We now consider different ways of representing the query. For

comparison purposes, we first consider standard blind relevance

process in this section.
2We use the two-tailed paired T-test for significance testing. We
consider differences with p < 0.01 significant.
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Figure 2: Effect of smoothing; MAP plotted against the weight
(λ) of the collection model; results on two relevance levels.

feedback using relevance models as defined in [15]. Next, we use
the same methods but instead of selecting expansion terms from
the top ranked documents in an initial retrieval run, we select them
from the sample documents. These expansion methods both as-
sume that expansion terms are dependent on the query; after that,
we provide a model according to which we can sample terms from
the sample documents both independent of and dependent on the
original query. The output of these methods is an expanded query
model Q̂.

Next, we combine the selected query terms with the terms from
the original query; this is also done in the original query expansion
papers (see, e.g., [19]) and in query modeling methods based on
language models (see, e.g., [12]) and prevents the topic to shift (too
far) away from the original user information need. We use Eq. 12
to mix the original query with the expanded query.

P (t|θQ) = (1− µ) · P (t|Q̂) + µ · P (t|Q), (12)

where P (t|Q) and P (t|Q̂) are the probability of term t given the
original query Q (see Eq. 8) and the expanded query Q̂, respec-
tively. The expanded query models Q̂ are evaluated in Section 7.1,
and their combinations with the original query (by performing an
empirical exploration of µ), are presented in Section 7.2.

6.1 Feedback Using Relevance Models
One way of expanding the original query is by using blind rele-

vance feedback: assume the top M documents to be relevant given
a query. From these documents we sample terms that are used to
form the expanded query model Q̂. Lavrenko and Croft [15] sug-
gest a reasonable way of obtaining Q̂, by assuming that P (t|Q̂) can
be approximated by the probability of term t given the (original)



query Q. We can then estimate P (t|Q̂) using the joint probability
of observing t together with the query terms q1, . . . , qk ∈ Q, and
dividing by the joint probability of the query terms:

P (t|Q̂) ≈ P (t, q1, . . . , qk)

P (q1, . . . , qk)
(13)

=
P (t, q1, . . . , qk)P
t′ P (t′, q1, . . . , qk)

, (14)

In order to estimate the joint probabilityP (t, q1, . . . , qk), Lavrenko
and Croft [15] propose two methods; they differ in the indepen-
dence assumptions that are being made:

RM1 It is assumed that t and qi are sampled independently and
identically to each other; therefore, their joint probability can
be expressed as the product of the marginals:

P (t, q1...qk) =
X
D∈M

P (D) · P (t|D) ·
kY
i=1

P (qi|D), (15)

where M is the set of feedback documents.

RM2 The second method tackles a different sampling strategy, and
we assume that query words q1, . . . , qk are independent of
each other, but we keep their dependence on t:

P (t, q1...qk) = P (t) ·
kY
i=1

X
D∈M

P (D|t) · P (qi|D). (16)

That is, the value P (t) is fixed according to some prior, then
the following process is performed k times: a documentD ∈
M is selected with probability P (D|t), then the query word
qi is sampled from D with probability P (qi|D).

RM1 can be viewed as sampling of all query terms conditioned on
t: a strong mutual independence assumption, compared to the pair-
wise independence assumptions made by RM2. Empirical evalua-
tions reported in [15] found that RM2 is more robust, and performs
slightly better that RM1. Our experiments below confirm this.

6.2 Relevance Models from Sample Documents
Next, we follow the approach of the previous section and apply

relevance models to the sample documents. Instead of performing
an initial retrieval run to obtain a set of feedback documents, we
use the sample documents and observe the co-occurrence of term t
with query terms q1, . . . , qk in the sample documents. I.e., we set
M = S. For RM1, we also need to make an extra assumption, viz.
that all sample documents are equally important: P (D) = 1/|S|.

6.3 A Query Model from Sample Documents
Now we introduce a new model based on sampling from doc-

uments that are assumed to be relevant. Unlike with the methods
considered above, the sampling can be done both independent of,
and dependent on, the original query. Our approach to constructing
the expanded query Q̂ is the following. First, we estimate a “sam-
pling distribution" P (t|S) using sample documents D ∈ S. Next,
the topK terms with highest probability P (t|S) are taken and used
to formulate the expanded query Q̂:

P (t|Q̂) =
X
t∈K

P (t|S)P
t′ P (t′|S)

. (17)

Calculating the sampling distribution P (t|S) can be viewed as the
following generative process: 1. Let the set of sample documents
S be given; 2. Select a document D from this set S with probabil-
ity P (D|S); and 3. From this document, generate the term t with

probability P (t|D). By summing over all sample documents, we
obtain P (t|S). Formally, this can be expressed as

P (t|S) =
P
D∈S P (t|D) · P (D|S) (18)

For estimating the term importance, P (t|D), we consider three nat-
ural options:

• Maximum likelihood estimate of a term (EX-QM-ML)

P (t|D) = PML(t|D) =
n(t,D)P
t′ n(t′, D)

(19)

• Smoothed estimate of a term (EX-QM-SM)

P (t|D) = P (t|θD) = (1−λ) ·PML(t|D)+λ ·PML(t|C)
(20)

• Use the ranking function proposed by Ponte and Croft [17]
for unsupervised query expansion (EX-QM-EXP)

s(t) = log
PML(t|D)

PML(t|C)
(21)

and set P (t|D) = s(t)/
P
t′ s(t

′).

The probability P (D|S) expresses the importance of sample doc-
ument D given the samples S. I.e., this is a weight that determines
how much a term t ∈ D will contribute to the sampling distribution
P (t|S). We consider three options for estimating P (D|S):

• Uniform: P (D|S) = 1/|S|, all sample documents are as-
sumed to be equally important. We assume conditional in-
dependence between the original query terms q ∈ Q and
the “expanded term” t. This can safely be done, since the
original query terms are preserved in P (t|θQ) because of the
smoothing (see Eq. 12).

• Query-biased: P (D|S) ∝ P (D|Q). A document’s impor-
tance is approximated by its relevance to the original query.

• Inverse query-biased: P (D|S) ∝ 1 − P (D|Q). We reward
documents that bring in aspects different from the query.

7. EXPERIMENTAL EVALUATION

7.1 Expanded Query Models
We start by evaluating the relevance models using blind feed-

back (Section 6.1). We explore the number of feedback documents
that need to be taken into account (note that the number of terms
extracted is K = 10). In Figure 3 (Left) the performance of query
expansion using BFB-RM1 and BFB-RM2 on different numbers
of feedback documents (|M |) is shown. A smaller number of feed-
back documents gives better performance on MAP for both models;
best performance is achieved with only 5 feedback documents.

Next, we construct relevance models on the sample documents
using relevance models (Section 6.2). EX-RM2 fails on two topics
(1 and 11), while topic 45 does not have any sample documents.
The influence of the number of selected terms K on retrieval per-
formance for EX-RM1 and EX-RM2 is displayed in Figure 3 (Cen-
ter). The best performance is achieved when selecting 15 terms for
EX-RM1 and 25 for EX-RM2.

Finally, we explore the number of selected termsK for our query
models generated from sample documents (Section 6.3). Results
are displayed in Figure 3 (Right).
Table 2 records our baseline performance (which is similar to the
median achieved at TREC 2007) and summarizes the results for
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Figure 3: (Left) BFB-RM, MAP against the number of feedback documents used for query models construction. (Center) and (Right)
MAP against the number of terms selected for query models construction; (Center): EX-RM, (Right) EX-QM.

(possibly) relevant (highly) relevant
model K MAP MRR MAP MRR
baseline .3576 .7134 .3143 .6326
BFB-RM1 10 .3145 .6326 .2679 .5335
BFB-RM2 10 .3382 .6683 .2845 .5609
EX-RM1 15 .3193 .8794 .2813 .7695
EX-RM2 25 .3454 .8596 .3111 .8169
EX-QM-ML 30 .3280 .8508 .2789 .7093
EX-QM-SM 40 .3163 .8050 .2822 .7133
EX-QM-EXP 5 .2263 .6131 .2062 .5854

Table 2: Performance of the expanded query model Q̂.

the expanded query model Q̂, together with the number K of feed-
back terms used. The query models based on query-dependent sam-
pling of expansion terms (BFB and EX) perform closer to the base-
line than those based on query-independent sampling (in terms of
MAP). EX-QM-ML and EX-QM-SM are able to add more terms
without hurting performance than EX-RM1 and EX-RM2, thereby
allowing more aspects to be retrieved.

7.2 Combination with the Original Query
Next, we combine the expanded query Q̂ and the original query

Q, where the parameter µ controls the weight of the original query
(see Eq. 12). We perform a sweep on µ to determine the optimal
mixture weight of the original query. The results are in Figure 4.

(possibly) relevant (highly) relevant
model µ MAP MRR MAP MRR
baseline .3576 .7134 .3143 .6326
BFB-RM1 0.6 .3677 .6703 .3171 .5772
BFB-RM2 0.6 .3797 .6905 .3296 .6033
EX-RM1 0.4 .4264* .8808* .3758* .8259*
EX-RM2 0.4 .4273* .9029* .3833* .8473*
EX-QM-ML 0.5 .4449* .8533* .3951* .7911*
EX-QM-SM 0.5 .4406* .8771* .3955* .8035*
EX-QM-EXP 0.7 .4016* .8148 .3520 .7603*

Table 3: Performance of the baseline run, relevance models on
blind feedback documents and sample documents, and query
models on sample documents using optimal K and λ settings
for each model. Results marked with * are significantly differ-
ent from the baseline.

The best results together with the optimal µ values are listed in
Table 3. Here we see two of the query models based on query-
independent sampling outperforming all other query models (in

terms of (possibly) relevant MAP), although the differences be-
tween the best relevance model (EX-RM2) and our best query model
(EX-QM-ML) are not significant.

7.3 The Importance of a Sample Document
Finally, we evaluate the three options we considered for esti-

mating the importance of a sample document (P (D|S)); see Sec-
tion 6.3. Table 4 lists the results. Non-uniform document im-
portance settings tend to hurt MAP performance, for two of the
three flavors of term importance estimations (ML, SM); the query-
biased setting has an early precision enhancing effect, boosting
MRR scores for all term importance estimations methods.3

P (D|S) (possibly) relevant (highly) relevant
MAP MRR MAP MRR

EX-QM-ML
Uniform .4449 .8533 .3951 .7911
P (D|Q) .4294 .8810 .3871 .8399
1− P (D|Q) .4184 .8268 .3681 .7376
EX-QM-SM
Uniform .4406 .8771 .3955 .8035
P (D|Q) .4189 .8950 .3831 .8533
1− P (D|Q) .4264 .8248 .3755 .7375
EX-QM-EXP
Uniform .4016 .8148 .3520 .7603
P (D|Q) .4026 .8383 .3544 .7803
1− P (D|Q) .3988 .7928 .3503 .7411

Table 4: Importance of a sample document.

8. ANALYSIS/DISCUSSION

8.1 Topic-level comparison
So far, we have looked at results at an aggregate level. Next,

we continue the comparison by looking at the topic-level perfor-
mance. Figure 5 presents the difference in average precision of the
best performing query generation methods (BFB-RM2, EX-RM2,
and EX-QM-ML) against the baseline. Most topics gain from the
query models, although there are always some topics that are hurt.
Clearly, EX-RM2 and EX-QM-ML have bigger gains than BFB-
RM2; possibly relevant and highly relevant assessments yield sim-
ilar patterns.

Next, we zoom in on two example topics, where these methods
display interesting behavior. The first example concerns the topic
3Only the difference between the P (D|Q) and 1 − P (D|Q) ver-
sions of EX-QM-SM is significant.
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Figure 4: MAP is plotted against the weight (µ) of the original query. (Left): BFB-RM. (Center): EX-RM. (Right): EX-QM.
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Figure 5: AP differences between baseline and (Top): BFB-
RM2, (Middle): EX-RM2, (Bottom): EX-QM-ML, on (Left):
possibly, and (Right): highly relevant.

machine vision; Table 5 reports the MAP scores, and Table 6 dis-
plays the top 10 terms for the query models constructed for the
topic machine vision, with EX-QM-ML and EX-RM2 performing
much better than BFB-RM2. EX-QM-ML is mostly on target (with
a shift to surveillance and security), while the other two models dis-
play a shift to a far broader topical area.

relevance BFB-RM2 EX-RM2 EX-QM-ML
possibly .0722 .1283 .2848
highly .0696 .1552 .3062

Table 5: Performance on topic # 32.

The next example, termites, shows a different behavior, with BFB-
RM2 beating EX-QM-ML, which in turn beats EX-RM2. Table 7
reports the MAP scores, and Table 8 displays the top 10 terms for
query models constructed for this topic. We see topic drift for EX-
RM2 and EX-QM-ML, but many on target terms for BFB-RM2.

8.2 Sampling Conditioned on the Query
Interestingly, when we compare two document importance esti-

mation methods (query-biased and inverse query-biased) and two

P (t|θQ) t P (t|θQ) t P (t|θQ) t
0.4123 vision 0.2707 vision 0.2796 vision
0.3935 machine 0.2641 machine 0.2762 machine
0.0336 csiro 0.0735 csiro 0.0513 csiro
0.0303 image 0.0267 projects 0.0248 image
0.0302 toolbox 0.0256 high 0.0224 vehicles
0.0227 robot 0.0245 research 0.0220 safe
0.0221 information 0.0239 systems 0.0214 cam
0.0204 control 0.0223 development 0.0178 traffic
0.0202 visual 0.0204 computing 0.0176 technology
0.0147 object 0.0191 performance 0.0173 camera

Table 6: Query models for topic # 32 “machine vision". (Left)
BFB-RM2; (Center) EX-RM2; (Right) EX-QM-ML.

relevance BFB-RM2 EX-RM2 EX-QM-ML
possibly 0.7971 0.1205 0.2342
highly 0.8107 0.1886 0.4520

Table 7: Performance on topic # 36.

term selection methods (EX-QM-SM and EX-QM-ML), we see a
mostly balanced picture; see Figure 6. For some topics the query-
biased document importance works best (promoting aspects cov-
ered by the query), while for others inverse query-biased works
best (promoting aspects not covered by the query that comes with
the topic). On average, though, the query-independent sampling
delivers the best performance; see Table 4.
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Figure 6: AP differences between query-biased (“baseline")
and inverse query-biased document sampling methods. (Top):
EX-QM-ML, (Bottom): EX-QM-SM, on (Left): possibly, and
(Right): highly relevant.

Let us return to the issue of aspect recall. We have seen that us-
ing query models leads to better ranking of documents. Looking



P (t|θQ) t P (t|θQ) t P (t|θQ) t
0.7405 termites 0.4729 termites 0.5653 termites
0.0401 csiro 0.0452 site 0.0299 site
0.0388 wood 0.0443 information 0.0292 information
0.0316 food 0.0412 legal 0.0281 legal
0.0314 termite 0.0410 notice 0.0281 notice
0.0258 vibrations 0.0404 disclaimer 0.0271 disclaimer
0.0242 blocks 0.0402 privacy 0.0271 privacy
0.0231 species 0.0381 web 0.0252 drywood
0.0228 australian 0.0378 subject 0.0243 statement
0.0217 made 0.0378 drywood 0.0173 subject

Table 8: Query models for topic # 36 “termites". (Left) BFB-
RM2; (Center) EX-RM2; (Right) EX-QM-ML.

at the individual documents returned by each model, we find that
using blind relevance feedback, recall either decreases (BFB-RM1;
over all queries, BFB-RM1 retrieves 2,564 highly relevant docu-
ment vs. 2,763 for the baseline; see Table 9) or only marginally
increases (BFB-RM2; 2,816 vs. 2,763). On the other hand, expand-
ing the query based on the example documents can help to capture
on average 10% more relevant documents than the baseline, on both
relevance levels; see Table 9. Importantly, there is a number of doc-

BFB- EX- EX-QM-
relevance baseline RM1 RM2 RM1 RM2 ML SM EXP
possibly 5,445 5,238 5,582 5,951 5,882 6,052 5,953 5,671
highly 2,763 2,564 2,816 2,954 2,929 3,047 3,019 2,823

Table 9: Number of relevant documents retrieved.

uments that are found only when sampling is done independent of
the query (EX-QM-*). Consider topic #32 (machine vision) again.
First, the number of relevant documents found for this topic are
the following: baseline: 53, BFB-RM2: 54, EX-RM2: 54, and
EX-QM-ML: 62. The additional documents are identified through
the new terms introduced by our query models, as is clearly illus-
trated in Table 6: the terms cam and camera are captured only by
EX-QM-ML. In sum, then, our sampling method from sample doc-
uments does indeed pick up different aspects of the topic, and as
such, helps improve “aspect recall.”

9. CONCLUSIONS
We introduced a method for sampling query expansion terms in

a query-independent way, based on sample documents that reflect
aspects of the user’s information need that are not captured by the
query. We described various versions of our expansion term se-
lection method, based on different term selection and document
importance weighting methods, and compared them against more
traditional query expansion methods that select expansion terms in
a query-biased manner.

Evaluating our methods on the TREC 2007 Enterprise track test
set, we found that our expansion method outperforms a high per-
forming baseline as well as standard language modeling based query
expansion methods. Our analysis revealed that our query-indepen-
dent expansion method does help to address the “aspect recall”
problem, and helped to identify relevant documents that are not
identified by the other query models that we considered.

As to future work, we see a number of other ways of exploit-
ing sample documents provided for a topic. One possibility is to
look at other features of these example documents, including lay-
out, link structure, document structure, etc. and favor documents in
the ranking that share the same characteristics. Another possibil-
ity is to combine terms extracted from blind feedback documents,
together with terms from sample documents.
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